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Bayesian model comparison and distinguishability

Julien Diard (julien.diard@upmf-grenoble.fr)
Laboratoire de Psychologie et NeuroCognition CNRS-UPMF

Grenoble, France

Abstract

This paper focuses on Bayesian modeling applied to the exper-
imental methodology. More precisely, we consider Bayesian
model comparison and selection, and the distinguishability of
models, that is, the ability to discriminate between alternative
theoretical explanations of experimental data. We argue that
this last concept should be central, but is difficult to manipu-
late with existing model comparison approaches. Therefore,
we propose a preliminary extension of the Bayesian model se-
lection method that incorporates model distinguishability, and
illustrate it on an example of modeling the planning of arm
movements in humans.

Keywords: Bayesian modeling; model selection; distin-
guishability; arm movement; trajectory planning; human con-
trol.

Notation
δ a single data point
∆ a set of data points
x,y coordinates for data points
mi a single model (the i-th)
M a set of models
θ a single parameter value
Θ a set of parameter values
D measure of distinguishability

Introduction

In probabilistic modeling, models are usually encoded by a

term that describes the probability of an experimental datum

δ, given the model Mi: P(δ | Mi).
When the purpose is to select a model out of several alter-

natives, given some observed data points, the P(δ | Mi) term

is usually hierarchically encapsulated in a higer-level model,

which relates several models M, several possible parameter

values for these models Θ, and several data points ∆:

P(M ∆ Θ) = P(M)P(Θ | M)P(∆ | Θ M) . (1)

This leads to a variety of interesting model selection tech-

niques, like the Maximum Likelihood Estimator (MLE),

the Maximum A Posteriori estimator (MAP), various least

squares based estimators, or algorithms using the Akaike In-

formation Criterion (AIC), the Bayesian Information Crite-

rion (BIC), or, more generally, the Bayesian Model Selection

method (BMS). We refer the interested reader to previous re-

views of these techniques (Myung & Pitt, 2004; Hélie, 2005).

All of these methods, at their core, aim at selecting a model

out of a class of models, in order to maximize the fit mea-

sure, or some compound of the fit and model complexity.

One of the possible extensions is, instead of selecting one

single model, to consider the whole distributions over models

P(M | ∆) in order to gain a better understanding of the relation

between the best model and the next best models. The issues

here are legitimate: how is the best model winning over the

rest? Is it only marginally better?

However, some further questions, that are relevant in terms

of scientific methodology, cannot easily be treated on the ba-

sis of Eq. (1) alone. Indeed, it is a very simple structure,

which places at the heart of the analysis the fit of a single

datum δi to a single model m j, in the term P(δi | [M = m j]).
For instance, a couple of questions, that are crucial for

the scientific methodology, are: “are mi and m j predict-

ing different results?”, and “where should the next exper-

iment investigate in order to clarify whether mi or m j is

the best model?”. In other words, the central issue here

is the distinguishability of models mi and m j (Berthier, Di-

ard, Pronzato, & Walter, 1996) 1, in particular with respect

to the space of experimental data. Instead of caring about

the particular fit, or lack thereof of a model, the concern

is about the relative fits of available models; are models

with relatively close fits able to being discriminated, or not?

The two above questions could then be translated mathe-

matically by P(distinguishable | [M1 = m1] [M2 = m2]) and

P(xT+1 | [distinguishable = 1]) (using an informal notation

for the moment).

However, it appears that Eq. (1) is too limited to allow for

an easy formulation of the inclusion of the distinguishability

of models. The fit and experimental adequacy of a model, in

science, is a complex concept; capturing this rich and diffi-

cult concept in a single number that would form the basis of

an absolute ranking might be a red herring. Indeed, even the

composition of the notion of fit and generalization into a sin-

gle measure has proven a challenging task for a wide variety

of modeling approaches, even though the two concepts are re-

lated. Therefore, we propose to pursue an alternate route, de-

veloping explicit mathematical formulations of the measure

of interest, so as to allow their principled manipulation, using

Bayesian inference.

Therefore, we propose to extend here the hierarchical

model of Eq. (1) so as to incorporate the notion of distin-

guishability of models. The central component is to augment

the model fit term with a model comparison term.

In the remainder of this paper, we develop the theoretical

distinguishability analysis Bayesian model, illustrate it on a

hypothetical example, and finally apply it to a scientifically

relevant area, the modeling of the planning of arm movements

in humans.

Bayesian model distinguishability

Let m1 and m2 be two models under consideration. Consider

a data space where x are inputs, and models m1 and m2 pre-

dict outputs y1 and y2, respectively, according to the term

1This is not a self reference, despite the homonymy of the second
author.
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Figure 1: P(D = 1 | x y M1 M2 Θ1 Θ2) plotted against P(M =
M1 Θ = θ1 | x y) and P(M = M2 Θ = θ2 | x y).

P(y | x θ M), which is the general likelihood term. Let D

be a probabilistic variable, that is binary: it can take values 1

if the models are distinct, and 0 if the models are not distinct.

Therefore, we are interested in P(D | x y θ1 M1 θ2 M2): what

is the probability that the models are distinguishable given an

experimental point x,y and two models?

We define the hierarchical model of model comparison, our

alternative to Eq. (1) for the purpose of manipulating distin-

guishability, as follows:

P(D x y M1 M2 Θ1 Θ2)

= P(M1 M2)P(Θ1 | M1)P(Θ2 | M2)

P(x)P(y | x M1 M2 Θ1 Θ2)

P(D | x y M1 M2 Θ1 Θ2)

We call the term P(D | x y M1 M2 Θ1 Θ2) the a posteriori

distinguishability, because it is the distinguishability of M1

and M2 with respect to some already observed data point x,y,

as opposed to P(D | M1 M2 Θ1 Θ2), which is the a priori dis-

tinguishability of M1 and M2, irrespective of any data point.

The latter will be obtained via Bayesian inference from the

former, as shown below.

a posteriori distinguishability

Model We define P(D | x y M1 M2 Θ1 Θ2) as follows:

P(D = 1 | x y M1 M2 Θ1 Θ2) =
√

(P(M = M1 Θ = θ1 | x y)−P(M = M2 Θ = θ2 | x y))2 .

It is illustrated Fig. 1 2

This measure of distance between model recognition given

an experimental data has some interesting properties; for in-

stance, the probability that D = 1 is 0 if and only if the proba-

bilities P(M = M1 Θ = θ1 | x y) and P(M = M2 Θ = θ2 | x y)
are equal. The probability that D = 1 is 1 if and only if either

one of P(M = M1 Θ = θ1 | x y) and P(M = M2 Θ = θ2 | x y)
is 1 and the other is 0.

2Alternative definitions, based on other Lp norms, do exist and
have been explored experimentally. For instance, we also used the
absolute distance of the difference (the L1 norm). However, these
alternate definitions do not appear to yield dramatically different re-
sults. The issue of the distinguishability of distinguishability mea-
sures is a topic for further research.
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Figure 2: Left: The models are clearly distinguishable. Right:

In case of higher standard deviation, the indistinguishability

gap between the predictions is wider.
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Figure 3: Left: Hardly distinct models (gaussian distributions

with same means and close standard deviations). Right: Mod-

els with different means and different standard deviations.

Note the asymmetry of the bump of distinguishability around

the left gaussian model, which corresponds to the cases where

it is recognized as the correct model.

Another property of our measure of distinguishability is to

be noted: it is symmetric with respect to M1 and M2, contrary

to previous approaches (Navarro, Pitt, & Myung, 2004).

Finally, since D is a binary variable, we easily turn our dis-

tinguishability into a probability measure by defining P(D =
0 | .) = 1−P(D = 1 | .): a posteriori distinguishability inte-

grates to one. Therefore, the probability distributions over D

can fully be described by a single number. By convention, in

the remainder of the paper, we only focus on P(D = 1 | .).

Example We give a straightforward example, in order to

illustrate the a posteriori distinguishability of models.

We define two models m1 and m2, of the same family of

models, both being defined by Gaussian probability distribu-

tions over some arbitrary unit. We set x to some arbitrary

value for the moment, in order to have a mono-dimensional

data point, over y. Finally, we only consider two possible sets

of parameters θ1 and θ2. In the following figures, we show

how P(D | x y M1 M2 Θ1 Θ2) evolves as a function of y, in

different cases for θ1 and θ2.

The first example is when the two models clearly predict

different outcomes over y. The Gaussian probability distribu-

tions for m1 and m2 are centered on values µ1 and µ2 that are

far apart, in the sense that µ1 − µ2 ≫ σ1 and µ1 − µ2 ≫ σ2.

This case is shown Fig. 2 (left). It can be seen that the distin-

guishability measure is very high over the whole space, ex-

cept for the data points that fall right between the two mean

205



predictions µ1 and µ2. When the certainty in these predictions

gets lower, the indistinguishability gap between the predic-

tions is wider (Fig. 2, right).

Another example concerns the opposite case and is shown

Fig. 3 (left): the models are hardly distinct, except if data

points fall very far from the predicted means (the flatter of the

two models is recognized). Finally, we show Fig. 3 (right) the

general case of varying means and standard deviations.

a priori distinguishability

A priori distinguishability is the analysis of models and their

prediction, without reference to any actual experimental data

point. In this paper, we have chosen to separate the data space

in two components, x and y, which have different practical

interpretations. x is the input data, that is to say, the part of

the experimental point which is decided by the experimenter.

On the other hand, y is the output data, that is to say, the

measure which is made in experimental condition x.

For instance, if studying free falling objects, x might be

weights, and y the time that it takes for an object of weight x to

fall from the top of the tower of Pisa. When studying human

memory, x might be the time of presentation of a stimulus to

a participant, and y the number of features of that stimulus

which are correctly recalled by the participant.

Having these two components in the data space opens two

variants for a priori distinguishability. Firstly, it can be the

distinguishability of models M1 and M2 for a given experi-

mental condition x, without knowing y:

P(D | x M1 M2 Θ1 Θ2) ,

which we refer to as the a priori distinguishability proper. It

can also be the distinguishability of models M1 and M2 for all

experimental conditions x and possible outcomes y:

P(D | M1 M2 Θ1 Θ2) ,

which we refer to as the overall a priori distinguishability.

Both can be obtained from a posteriori distinguishability

by Bayesian inference from the hierarchical model of model

comparison P(D x y M1 M2 Θ1 Θ2). Indeed, assuming

uniform probability distributions over discrete x and y vari-

ables 3:

P(D | x M1 M2 Θ1 Θ2) ∝ ∑
y

P(D | x y M1 M2 Θ1 Θ2) ,

P(D | M1 M2 Θ1 Θ2) ∝ ∑
x,y

P(D | x y M1 M2 Θ1 Θ2) .

Fig. 4 shows the a priori distinguishability of two mod-

els that are based on Gaussian probability distributions, with

means that are linear in x and standard deviations that are

constant, and equal between the two models:

P(y | x M = M1) = Gµ=a1x+b1,σ=k(y)

P(y | x M = M2) = Gµ=a2x+b2,σ=k(y)

3An interesting case would be to consider when y is assumed to
be distributed according to the average prediction given by all con-
sidered models: P(y) = ∑x,M,Θ P(y | x M Θ). We will not develop

this further here.
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Figure 4: A priori distinguishability. Left: each model is

linear with some normal noise of small standard deviation

(σ = 1.0). As a result, models are easily distinguished in

most of the space. Right: the noise is increased around the

linear predictions (σ = 5.0): in the whole middle portion of

the space, models are hardly distinguishable.

The left panel of Fig. 4 shows the case where the standard

deviation k is small for the two models, so that they are highly

distinguishable for almost all input data x, except where the

means get close, because the linear functions a1x + b1 and

a2x + b2 cross. The right panel shows a similar case, where

the standard deviations σ = k are larger, so that the region

where models are less distinguishable is larger.

The computation of the overall a priori distinguishability

is not detailed here, but it is trivial that it yields a higher dis-

tinguishability for the two models on the left panel than for

the two models of the right panel of Fig. 4.

Full scale example: human arm control and

planning strategies

Having illustrated the distinguishability model on a few

mono-dimensional examples in previous sections, we now

turn to a more complex scenario. We study here the planning

and execution of movements for a two degree-of-freedom

arm.

Human arm geometric model and notation

We consider a simple model of the right human arm, using

two segments of same unitary length and two joints, α1 the

shoulder angle, and α2 the elbow angle. This arm is con-

strained to move in the horizontal plane, and its endpoint

(wrist) position is described by its x,y coordinates in this

plane.

We only consider a limited range for possible arm config-

urations, that include biologically relevant positions: α1, the

shoulder angle, ranges from −π/6 (arm extended behind the

subject) to 5π/6 (arm crossing, in front of the chest). The

elbow goes from α2 = 0 when the arm is outstretched, to a

maximum value which is function of the shoulder position:

when the arm is away from the chest, we assume the elbow

can bend totally (α2 = π), while when the arm is close to the

chest, this restricts the elbow angle to decrease linearly with

α1, so that when α1 is maximum, α2 only goes up to π/2.

The shoulder position is set at the origin (x,y) = (0,0).
The set of possible angular joint configurations defines a
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Figure 5: Overhead view of the horizontal plane, the reach-

able workspace (red or grey crosses), and some examples of

possible arm configurations (blue or solid dark segments).

The green square (light grey) delimits the integration space

for computing the a priori distinguishability (see main text).

workspace of possible reachable positions for the endpoint,

which is shown Figure 5. Each of these endpoint positions

can be described either in the joint space by a pair of angular

coordinates α1,α2, or in a Cartesian reference frame by the

pair of x,y endpoint coordinates in the workspace.

Models of trajectory formation: interpolation in the

joint space or in the workspace?

Movements in this two dimensional space are defined be-

tween a start position S and an end position E. Trajecto-

ries between these points are assumed to take a unitary in-

terval of time; in other words, each trajectory is indexed by a

time variable τ that goes between 0 and 1, with α1(0),α2(0)
(or x(0),y(0)) being the start position S and α1(1),α2(1) (or

x(1),y(1)) being the end position E.

There are two main hypotheses concerning the planning

of movements in this context: movements might be planned

in the articulatory or joint space (intrinsic planning), or they

might be planned in the Cartesian workspace (extrinsic plan-

ning) (Palluel-Germain, Boy, Orliaguet, & Coello, 2006). We

further assume, for these two alternatives, that the planning

process is a simple linear interpolation (Hollerbach & Atke-

son, 1987)

Bayesian models Mint and Mext

Here, we define the two probabilistic models we consider.

The first model, Mint assumes that movements are planned

in the intrinsic reference frame. In other words, given start

joint angular values S = (α1(0),α2(0)) and end joint angular

values E = (α1(1),α2(1)), the trajectory to be followed is

chosen so that, for all time index τ ∈ [0,1], the joint values

α1(τ),α2(τ) are interpolated linearly between the start and

end positions.

The start and end positions of movements constitute the x

“input” experimental condition of our data space. The chosen

and planned trajectory is the output of this experimental point,

what the model is predicting; in order to simplify the compu-

tational analysis, we choose to summarize the whole planned

trajectory by a single point along this trajectory, the one at

time τ = 1/2. Furthermore, we assume this point is observed

in the Cartesian space x,y. In other words, the “output” data

point, y, is the endpoint position xint(1,2),yint(1/2) reached

at time τ = 1/2 along the trajectory planned in intrinsic co-

ordinates. Around this predicted position, we will assume

some noise, normally distributed, using a two-dimensional

gaussian probability distribution with mean µint and diagonal

covariance matrix S:

µint =

[

x(1/2)
y(1/2)

]

, S =

[

σ 0

0 σ

]

.

Finally, Mint has no internal parameter Θint , which simpli-

fies the notation.

We can now make Mint formal in the Bayesian program-

ming notation:

P(y | x M = Mint)

= P(x y | α1(0) α2(0) α1(1) α2(1) M = Mint)

= Gµ,S(x,y)

The second model, Mext , on the other hand, assumes that

movements are planned in the extrinsic reference frame,

that is to say, directly the Cartesian workspace. In other

words, given start joint angular values S = (α1(0),α2(0)) and

end joint angular values E = (α1(1),α2(1)), these are first

converted into Cartesian start and end positions x(0),y(0),
x(1),y(1). Then the straight segment, in the workspace, that

connects these two points is the predicted trajectory. Triv-

ially, the predicted middle point at time τ = 1/2 is the geo-

metric middle of the segment (assuming a symmetric velocity

profile).

As previously, we assume some normally distributed noise

around the middle of the segment xext(1/2),yext(1/2):

P(y | x M = Mext)

= P(x y | α1(0) α2(0) α1(1) α2(1) M = Mext)

= Gµext ,S(x,y)

We show Fig. 6 some examples of trajectories predicted

by the intrinsic planning model Mint and the extrinsic plan-

ning model Mext , and the predicted points for the middles of

these trajectories, at τ = 1/2. A special case can be seen

where the trajectories are superposed: this is when the line

that passes by the start point S and end point E also passes

through the shoulder position (0,0). As previously demon-

strated, in this case of radial movements, the predicted trajec-

tories are straight segments both in the intrinsic and extrinsic

models (Hollerbach & Atkeson, 1987).

Distinguishability of intrinsic and extrinsic

interpolation models

Having defined the two intrinsic and extrinsic models in the

Bayesian framework, by the terms P(y | x M = Mint) and
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Figure 6: Some trajectories from the same starting position S:

α1(0) = π/6,α2(0) = 4π/6, predicted by the intrinsic plan-

ning model Mint (curved trajectories, in orange or light grey)

and the extrinsic planning model Mext (straight segments, in

purple or dark grey).

P(y | x M = Mext), we can then encapsulate them in the

Bayesian metamodel of distinguishability. This allows to

compute, for each possible movement to be performed in the

workspace, the a priori distinguishability between Mint and

Mext .

More precisely, we restrict the considered movements to

those that can be performed by both strategies. Indeed, be-

cause the reachable space is not convex (see Fig. 5 or Fig. 6)

some movements do have solutions in the intrinsic model, but

not in the extrinsic model. In other words, for some pairs of

start and end positions, the segment between them lies outside

of the reachable space. For instance, this is the case for trajec-

tories with the arm fully outstretched at the starting position.

For this reason, we restrict our analysis for a convex subre-

gion of the reachable space (the green rectangle of Fig. 5),

and only compute the distinguishability of models for move-

ments where both the start and end positions are inside it.

For a given movement, defined by a start position S =
(α1(0),α2(0)) and an end position E = (α1(1),α2(1)), we

compute the a priori distinguishability of models Mint and

Mext , by integrating over all possible data points. Here again,

we only consider possible data points that fall inside the green

rectangle of Fig. 5.

Therefore, we obtain, for all possible movements, the prob-

ability values P(D = 1 | α1(0) α2(0) α1(1) α2(1) M1 =
Mint M2 = Mext).

Result analysis However, since all possible movements de-

fine a four dimensional space, this distinguishability measure

cannot easily be visualized and interpreted as is. Some se-

lections and projections to lower dimensional spaces is re-

quired, for the distinguishability measure to be plotted. We

will firstly present results for a given start position (for all

possible end positions), and secondly, aggregated results for

all possible pairs of start and end positions.

We further define three projections, to analyse the results.

Figure 7: Top row: distinguishability of models plotted

against the amplitude of a movement. Middle row: dis-

tinguishability of models plotted against the distance of a

movement. Bottom row: distinguishability of models plotted

against the angle difference with respect to radial lines. Left

column: distinguishability of models for all possible move-

ments starting from S = (π/6,π/3). Right column: distin-

guishability of models for all possible movements starting

from S = (5π/8,π/6).

We will group movements according to their amplitude, their

distance to the shoulder, and their angle difference with re-

spect to radial lines.

The amplitude of a given movement from start position S

to end position E is simply defined as the Cartesian distance

between S and E in the workspace.

The distance of a given movement from start position S to

end position E we define as the distance to origin of the point

at τ = 1/2 predicted by Mext . In other words, we consider

the distance between the shoulder position and the middle of

the segment between S and E in the workspace: some move-

ments are performed very near the body, some movements are

performed near the outside limits of the workspace.

Finally, the angle difference with respect to radial lines, for

a given movement from start position S to end position E, we

define as the angle difference between the segment SE and

the segment from shoulder position (0,0) to S. This measure

allows to see whether a given movement is purely radial (go-

ing straight away from or to the shoulder), or if it is a circular

movement (tangent to some circle centered on the shoulder).

We show Fig. 7 the distinguishability analysis for three dif-

ferent starting positions. Fig. 8 shows the aggregate results

for all possible starting positions.
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Figure 8: Distinguishability of Mint and Mext for all possible

movements. Top left plot: distinguishability plotted against

the amplitude of movements. Top right plot: distinguishabil-

ity plotted against the distance of movements. Bottom plot:

distinguishability plotted against the angle difference with re-

spect to radial lines.

Result interpretation From these results, some conclu-

sions can be drawn.

The most prominent feature is that the models Mint and

Mext appear to be most distinguishable when movements are

large. Indeed, the distinguishability of models is high for

movements of large amplitude, and gets to 0 when the move-

ments are very small. This is confirmed easily by intuition:

for large movements, the geometry of the arm has the most

impact on the curve predicted by Mint . In other words, we see

here the effect of the direct kinematic transform.

A second feature is that, for all possible movements, the

distinguishability of models does not seem to be dependent

of the distance of the performed movement. However, an ex-

ception is to be noted: when movements are performed near

the outer boundary of the reachable space, the models be-

come hardly distinguishable: their distinguishability dips to

0. This is a confirmation of a fact that was already demon-

strated mathematically (Hollerbach & Atkeson, 1987). This

was a very important finding, as it allowed to cast doubt on the

discrimination power of a previous experiment, where partic-

ipants had to perform movements bringing them to that outer

boundary (Soechting & Lacquaniti, 1981).

A final feature we wish to analyze concerns the angle of

movements with respect to radial lines. Contrary to the pre-

vious case, this finding contradicts, or rather refines, previous

mathematical developments. Indeed, it was shown previously

that purely radial movements render the intrinsic and extrin-

sic planning models not distinguishable (Hollerbach & Atke-

son, 1987). Indeed, in this case, both models predict that

the trajectories performed are straight (radial) segments. We

also confirmed this in one of the example trajectories shown

Fig. 6. However, this indistinguishability is purely spatial:

when considering the time profile of trajectories, they be-

come distinguishable. This is shown by the bottom plot of

Fig. 8: while it is true that radial movements entail, overall,

a slightly lower distinguishability of models, there are radial

movements where Mint and Mext are still distinguishable. This

can also be demonstrated by isolating these trajectories, and

analyzing them. And indeed, even for radial movements, the

positions predicted at time τ = 1/2 are different for the two

models. This was also shown on the example radial trajectory

of Fig. 6.

Conclusion

In this paper, we developed an original Bayesian metamodel

that integrates the notion of distinguishability of models. It

allows to manipulate this concept using Bayesian inference,

to compute a posteriori distinguishability of given models,

but also their a priori and overall a priori distinguishability.

We illustrated our model on an example about the planning

of arm movements in humans, and showed how it could be

used to analyse the space of all possible experimental points.

For instance, it was shown that radial movements are indis-

tinguishable spatially, are distinguishable in the temporal do-

main, and finally, that movements of large amplitude could

be used to better discriminate between the alternative models

of intrinsic and extrinsic planning.

Further theoretical developments include using the dis-

tinguishability metamodel to draw experimental condi-

tions, given that we look for discriminating power, us-

ing Bayesian inference to compute a term of the form

P(x | M1 θ1 M2 θ2 D = 1).
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