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Abstract Quantization, defined as the act of attribut-
ing a finite number of levels to an image, is an essential

task in image acquisition and coding. It is also intri-

cately linked to image analysis tasks, such as denoising

and segmentation. In this paper, we investigate vec-
tor quantization combined with regularity constraints,

a little-studied area which is of interest, in particular,

when quantizing in the presence of noise or other acqui-

sition artifacts. We present an optimization approach

to the problem involving a novel two-step, iterative,
flexible, joint quantizing-regularization method featur-

ing both convex and combinatorial optimization tech-

niques. We show that when using a small number of

levels, our approach can yield better quality images in
terms of SNR, with lower entropy, than conventional

optimal quantization methods.

Keywords Vector quantization · Convex optimiza-

tion · Combinatorial optimization · Proximal methods ·
Graph cuts · Image coding · Compression · Informa-

tion theory · Entropy · Segmentation · Denoising ·
Regularization

1 Introduction

Quantization is a fundamental task in digital image pro-

cessing and information theory [1]. It plays a prominent
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role in early processing stages such as image digitiza-
tion, and it is essential in lossy coding. It bears close

resemblance to high level tasks such as denoising, seg-

mentation, and data classification. In particular, quan-

tizing a grey scale image in Q levels can be viewed as a
classification or segmentation of the image in Q areas

following an intensity homogeneity criterion. Each seg-

mented area then corresponds to a decision class of the

quantizer.

A classical solution for designing an optimal quan-

tizer of a monochrome image is provided by the cel-

ebrated Lloyd-Max (LM) algorithm [2,3]. An exten-

sion to the general vector case is the Linde–Buzo–Gray
(LBG) algorithm [4]. The LBG algorithm proceeds it-

eratively by alternatively optimizing codevectors and

decision classes so as to minimize a flexible quantiza-

tion error measure. It is known to present good conver-
gence properties in practice [5,6]. However, one draw-

back is the lack of spatial regularity of the quantized

image. Spatially smooth properties may be useful in

low-rate compression when using advanced coding al-

gorithms (e.g based on run length, differential or multi-
resolution techniques), especially in the context of med-

ical and low bit-rate video compression applications like

compression of confocal laser scanning microscopy im-

age sequences [7] or mobile television [8]. It may also
be of interest for quantizing images featuring noise. In

the latter case, quantization can be viewed as a means

for denoising discrete-valued images that are piecewise

constant.

Since the LBG algorithm is closely related to K-

means, which are widely used in data classification, a

possibility to enforce spatial smoothness of the quan-
tized image would be to resort to fuzzy C-means clus-

tering techniques and their extensions [9]. These algo-

rithms are however based on local measures of smooth-
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ness. Furthermore, an interesting approach was pro-

posed by Alvarez et al. [10]. However, this method is

based on reaction-diffusion PDEs and it addresses the

quantization of grey-scale images, while our approach is

more general and applicable to multicomponent images.

In this paper, we propose a quantization method

that enforces some global spatial smoothness. This is
achieved by introducing an adjustable regularization

term in the minimization criterion, in addition to a

quantization error measure. Similarly to the LBG algo-

rithm, the optimal design of the quantizer is performed

iteratively by alternating the minimization of a label
field iP and of a codebook r. The latter minimization

reduces to a convex optimization problem whereas the

former is carried out by efficient combinatorial opti-

mization techniques.

Section 2 describes the background of the work and

introduces the notation used throughout the paper. The

considered regularization approach is formulated in sec-
tion 3. Section 4 describes the proposed quantizer de-

sign algorithm. Section 5 provides more details on the

combinatorial optimization step. Finally, some simula-

tion results are provided in section 6 both for grey scale
and color images to show the effectiveness of the pro-

posed quantization method before a conclusion is drawn

in section 7.

2 Background

We consider the vector quantization of a multichannel

image f =
(
f(n,m)

)
(n,m)∈V

where V = {1, . . . , N} ×

{1, . . . ,M} is the image support and, for every (n,m) ∈
V,

f(n,m) =
(
f1(n,m), . . . , fD(n,m)

)⊤
∈ R

D. (1)

A similar notation will be used for the D-channel fields
defined throughout the paper. Example of such multi-

variate data are complex-valued images (D = 2), color

images (D = 3), multispectral images (D usually less

than 10), hyperspectral images (D usually more than
10),... In the following, the vector quantizer will oper-

ate on each D-dimensional vector of pixel values. The

case when D = 1 corresponds to a scalar quantization

of a monochannel image.

In order to define such a vector quantizer, we intro-

duce the following variables:Q is a positive integer, P =

(Dk)1≤k≤Q is a partition of V and r = (r1, . . . , rQ) is a
matrix belonging to a nonempty closed convex subset

C of RD×Q. The role of this constraint set will be made

more explicit in the next sections. The partition P can

be characterized by the label image
(
iP(n,m)

)
(n,m)∈V

∈

{1, . . . , Q}N×M , defined as: for every (n,m) ∈ V and

k ∈ {1, . . . , Q},

iP(n,m) = k ⇔ (n,m) ∈ Dk. (2)

A vector quantized image over Q codevectors r1, . . . , rQ
and associated with the partition P is then given by

qiP ,r = (riP (n,m))(n,m)∈V ∈ {r1, . . . , rQ}
N×M . (3)

A numerical example is given below to better explain

the relation between variables Q,r, iP and qiP ,r, which
play a prominent role in the rest of the paper. For in-

stance, if a quantization over 2 bits of a 3×3 monochan-

nel image is performed, we have N = M = 3, D = 1,

Q = 4, and we may have r = (1, 4, 9, 10) and iP =[
1 2 3
1 4 1
3 2 3

]
, then qiP ,r =

[
1 4 9
1 10 1
9 4 9

]
. Note that the iP matrix

values belong to the set {1, 2, 3, 4} which correspond to

the set of labels and qiP ,r matrix values belong to r.
An “optimally” quantized image qi

P
,r of f is usu-

ally obtained by looking for (iP , r) ∈ {1, . . . , Q}N×M

×C solution to the following problem:

minimize
(iP ,r)∈{1,...,Q}N×M×C

Φ(qiP ,r, f) (4)

where Φ : (RD)N×M × (RD)N×M → ]−∞,+∞] is some

measure of the quantization error.

Standard choices for Φ are separable functions of the
form
(
∀g =

(
g(n,m))(n,m)∈V ∈ (RD)N×M

)

Φ(g, f) =
N∑

n=1

M∑

m=1

ϕn,m

(
g(n,m), f(n,m)

)
(5)

where, for every (n,m) ∈ {1, . . . , N} × {1, . . . ,M},
ϕn,m : RD × R

D → ]−∞,+∞]. For example, one can

use:

– the matrix weighted quadratic norm

ϕn,m

(
g(n,m), f(n,m)

)
= ‖g(n,m)− f(n,m)‖2Γn,m

(6)

where Γn,m ∈ R
D×D is a symmetric definite positive

matrix and we have used the notation

(∀a ∈ R
D) ‖a‖Γn,m

= (a⊤Γn,ma)
1/2; (7)

– the weighted ℓp norm measure (p ∈ [1,+∞[)

ϕn,m

(
g(n,m), f(n,m)

)

=

D∑

d=1

ωd(n,m)|gd(n,m)− fd(n,m)|p (8)

where ωd(n,m) ∈ [0,+∞[. As a special case, a mean

absolute error criterion is found when p = 1.
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– the generalized Kullback-Leibler divergence

ϕn,m

(
g(n,m), f(n,m)

)
=

D∑

d=1

κ
(
gd(n,m), fd(n,m)

)

(9)

where

(
∀(u, v) ∈ R

2
)

κ(u, v) =





−v ln(u/v) + u− v

if (u, v) ∈ ]0,+∞[2

u if u ∈ [0,+∞[ and v = 0

+∞ otherwise.

(10)

Maximum error measures may also be useful, which are

expressed as
(
∀g =

(
g(n,m))(n,m)∈V ∈ (RD)N×M

)

Φ(g, f) = max
1≤n≤N
1≤m≤M

ϕn,m

(
g(n,m), f(n,m)

)
(11)

where, for every (n,m) ∈ V, ϕn,m : RD×R
D → ]−∞,+∞].

For example, we can use the sup norm:

ϕn,m

(
g(n,m), f(n,m)

)
= max

1≤d≤D
|gd(n,m)− fd(n,m)|.

(12)

In this context, a numerical solution to problem (4)
when C = R

D×Q is provided by the LBG algorithm,

the general form of which is recalled below.

Algorithm 1 (LGB Algorithm)

Fix Q ∈ N
∗ and r

(0) ∈ R
D×Q.

For ℓ = 0, 1, . . .⌊
i
(ℓ)
P ∈ ArgminiP∈{1,...,Q}N×MΦ(qiP ,r(ℓ) , f)

r
(ℓ+1) ∈ Argmin

r∈RD×QΦ(q
i
(ℓ)
P

,r
, f)

For separable and maximum error measures (see (5)

and (11)), the optimization of the label field at iteration

ℓ then amounts to applying a nearest neighbour rule,
i.e. finding i

(ℓ)
P such that, for every (n,m) ∈ V and, for

every k ∈ {1, . . . , Q}, i
(ℓ)
P (n,m) = k only if

(∀k′ ∈ {1, . . . , Q})

ϕn,m

(
rk, f(n,m)

)
≤ ϕn,m

(
rk′ , f(n,m)

)
. (13)

Note that, in general, i
(ℓ)
P (n,m) is not uniquely defined

since there may exist k′ ∈ {1, . . . , Q} \ {k} such that

ϕn,m

(
rk, f(n,m)

)
= ϕn,m

(
rk′ , f(n,m)

)
.

On the other hand, updating of the codebook at iter-

ation ℓ is performed by computing the centroid of each

region D
(ℓ)
k , k ∈ {1, . . . , Q}. For the matrix weighted

quadratic norm ((5) and (6)), we thus obtain the clas-

sical center of mass of D
(ℓ)
k :

r
(ℓ+1)
k =

( ∑

(n,m)∈D
(ℓ)
k

Γn,m

)−1( ∑

(n,m)∈D
(ℓ)
k

Γn,mf(n,m)
)
.

(14)

For the mean absolute value criterion ((5) and (8) with

p = 1 and equal weights), r
(ℓ+1)
k is the vector median

of the pixel values located in D
(ℓ)
k :

r
(ℓ+1)
k =

(
median

{
fd(n,m)

∣∣ (n,m) ∈ D
(ℓ)
k

})
1≤d≤D

.

(15)

For the generalized Kullback-Leibler divergence ((5),

(9) and (10)), we get

r
(ℓ+1)
k =

1

cardD
(ℓ)
k

∑

(n,m)∈D
(ℓ)
k

f(n,m) (16)

provided that f ∈ ([0,+∞[
D
)N×M . For the sup norm

((11) and (12)), we have

r
(ℓ+1)
k =

(βd,k + γd,k
2

)
1≤d≤D

(17)

where βd,k = min
{
fd(n,m)

∣∣ (n,m) ∈ D
(ℓ)
k

}
and γd,k =

max
{
fd(n,m)

∣∣ (n,m) ∈ D
(ℓ)
k

}
.

When a closed form expression of r
(ℓ+1)
k is not avail-

able, one may resort to numerical optimization algo-

rithms [11] to compute centroids.

It can also be noticed that an alternative to the

LBG algorithm is the dynamic programming approach

proposed in [12] (see also [13,14] for more recent exten-
sions) which features better global convergence proper-

ties. Generally, if LBG used, the final solution is sub-

optimal.

3 Considered design criterion

One drawback of the approach described in the pre-

vious section is that it does not guarantee any spatial

homogeneity of the resulting quantized image. To allevi-
ate this shortcoming, we propose to solve the following

problem:

minimize
(iP ,r)∈{1,...,Q}N×M×C

Φ(qiP ,r, f) + ρ(iP) (18)

where ρ : {1, . . . , Q}N×M → ]−∞,+∞] is some penalty

function which is used to promote the spatial regular-

ity of the label image. Note that an alternative ap-

proach for ensuring the smoothness of the quantized
image would be to solve a problem of the form

minimize
(iP ,r)∈{1,...,Q}N×M×C

Φ(qiP ,r, f) + ρ̃(qiP ,r) (19)
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where the regularization term ρ̃ is now a function from

(RD)N×M to ]−∞,+∞]. The latter problem appears

however more difficult to solve than (18) since the reg-

ularization term in (19) is a multivariate function de-

pending both on iP and r.

The existence of a solution to problem (18) is se-
cured by the following result:

Proposition 1 Assume that Φ(·, f) is a lower-semi-

continuous function and that one of the following con-

ditions holds:

(i) Φ(·, f) is coercive;1

(ii) C is bounded.

Then, problem (18) has a solution.

Proof Let iP be any given label field in {1, . . . , Q}N×M .

According to (3), r 7→ qiP ,r is a linear operator, and

consequently r 7→ Φ(qiP ,r, f) is a lower-semicontinuous

function. As a direct consequence of Weierstrass the-
orem [15], under Assumption (i) or (ii), there exists

rP ∈ C such that

Φ(qiP ,rP
, f) = min

r∈C
Φ(qiP ,r, f). (20)

Problem (18) can thus be reexpressed as

minimize
iP∈{1,...,Q}N×M

Φ(qiP ,rP
, f) + ρ(iP). (21)

The latter minimization can be performed by a search

among a finite number of candidate values, so leading
to an optimal label field iP . Hence, (iP , qiP ,r

P
) is a

solution to problem (18).

Typical choices for ρ in (18) that can be made are

the following:

– isotropic variation functions

ρ(iP) = µ

N−1∑

n=1

M−1∑

m=1

ψ(‖∇iP(n,m)‖), µ ≥ 0 (22)

where ∇iP(n,m) =
(
iP(n + 1,m) − iP(n,m),

iP(n,m+ 1)− iP(n,m)
)
is the discrete gradient of

iP at location (n,m).

– anisotropic variation functions

ρ(iP) = µ
(N−1∑

n=1

M∑

m=1

ψ(|iP(n+ 1,m)− iP(n,m)|)

+
N∑

n=1

M−1∑

m=1

ψ(|iP(n,m+1)−iP(n,m)|)
)
, µ ≥ 0.

(23)

1 This means that lim‖g‖→+∞ Φ(g, f) = +∞.

In the above two examples, ψ is a function from [0,+∞[

to ]−∞,+∞]. When ψ is the identity function, the

classical isotropic or anisotropic total variations are ob-

tained. A more flexible form is given by the truncated

linear function [16] defined as

(∀x ∈ [0,+∞[) ψ(x) =

{
x if x < ζ

ζ otherwise
(24)

where ζ > 0 is the limiting constant. If ψ = (·)2, then
a Tikhonov-like regularization is performed. Another

interesting choice of ψ is the binary cost function (also

named ℓ0 criterion).

(∀x ∈ [0,+∞[) ψ(x) =

{
0 if x = 0

1 otherwise.
(25)

When ψ is a (strictly) increasing function, higher

local differences of the label values entail a stronger pe-

nalization. For this behaviour to be consistent with the

quantized image values, some ordering relation should
typically exist between the codevectors. Hence, if D =

1, a natural choice is to constrain the vector r to belong

to the closed convex cone:

C =
{
(s1, . . . , sQ) ∈ R

Q
∣∣ s1 ≤ · · · ≤ sQ

}
. (26)

When D > 1, the definition of C becomes more debat-
able since there exists no total order on R

D. A possibil-

ity is to impose an artificial total order. In mathemat-

ical morphology, authors have proposed various lexico-

graphic orderings [17,18] or bit-mixing [19] along space-
filling (Peano-like) curves.

A possible choice for C is the closed convex cone:

C =
{
(s1, . . . , sQ) ∈ R

D×Q
∣∣ θ(s1) ≤ · · · ≤ θ(sQ)

}
(27)

where

(∀u ∈ R
D) θ(u) = η⊤u (28)

and η ∈ R
D. For example, for color images, by an ap-

propriate choice of η ∈ R
3 (possibly depending on the

considered color system [20]), the function θ may serve
to extract the luminance component of the codevectors.

More generally, the parameter vector η ∈ R
D may

be obtained through a principal component analysis

[21] of the original multichannel data. Note that, when

the binary function in (25) is employed, the magnitudes
of the local differences of the label fields have no in-

fluence as soon as they are nonzero. This means that

ordering the codevectors does not appear useful in this

case, and that one can set C = R
D×Q.

In addition to these considerations, when the regu-

larization constant µ in (22) or (23) takes large values,

solving (18) under the constraints modeled by (26) may
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lead to very close or even equal values of codevectors.

As a consequence, the readibility of the quantized image

may be affected. In some applications, it may therefore

be beneficial to redefine the constraint C in order to

prevent this effect. When D = 1, the closed convex set
C can thus be given by

C = {(s1, . . . , sQ) ∈ R
Q |

(∀k ∈ {1, . . . , Q − 1}) sk+1 − sk ≥ δ} (29)

where δ ≥ 0. Similarly, when D > 1, we propose to set

C = {(s1, . . . , sQ) ∈ R
D×Q |

(∀k ∈ {1, . . . , Q− 1}) θ(sk+1 − sk) ≥ δ} (30)

where δ ≥ 0 and θ is the function given by (28). Penal-

ization of quantization values for being too close to each
other was previously introduced in the energy model

proposed by Alvarez et al. [10].

4 Proposed optimization method

Even if Φ(·, f) and ρ are convex functions, problem (18)

is a nonconvex optimization problem due to the fact

that iP belongs to a (nonconvex) set of discrete values.

In order to solve numerically this problem, we propose
to use the following alternating optimization algorithm:

Algorithm 2 (Proposed algorithm)

Fix Q ∈ N
∗ and r

(0) ∈ C.

For ℓ = 0, 1, . . .⌊
i
(ℓ)
P ∈ ArgminiP∈{1,...,Q}N×MΦ(qiP ,r(ℓ) , f) + ρ(iP)

r
(ℓ+1) ∈ Argmin

r∈CΦ(qi(ℓ)
P

,r
, f)

It is worth noticing that this algorithm constitutes
an extension of the LBG algorithm (see Algorithm 1)

which would correspond to the case when ρ is the null

function and C = R
D×Q. Similarly to the LBG algo-

rithm, under the assumptions of proposition 1, Algo-

rithm 2 generates a sequence (i
(ℓ)
P , r(ℓ+1))ℓ∈N such that(

Φ(q
i
(ℓ)
P

,r(ℓ+1) , f) + ρ(i
(ℓ)
P )

)
ℓ∈N

is a convergent decaying

sequence. At each iteration ℓ, the determination of i
(ℓ)
P

given r
(ℓ) is a combinatorial optimization problem for

which there exist efficient solutions for particular choices

of Φ and ρ, as explained in the next section.

In turn, if Φ(·, f) is a convex function, the determi-

nation of r(ℓ+1) given i
(ℓ)
P is a constrained convex op-

timization problem the solution of which can be deter-

mined numerically. For any given iP ∈ {1, . . . , Q}N×M ,

let LiP be the linear operator defined as

LiP : RD×Q → (RD)N×M

r 7→ qiP ,r (31)

the adjoint of which is

L∗
iP : (RD)N×M → R

D×Q

g 7→
( ∑

(n,m)∈D1

g(n,m), . . . ,

∑

(n,m)∈DQ

g(n,m)
)

(32)

(with the convention
∑

(n,m)∈∅
· = 0). Then,

L∗
iPLiP : RD×Q → R

D×Q

r 7→ rDiag(cardD1, . . . , cardDQ). (33)

In addition, let Θ be the linear operator defined as

Θ : RD×Q → R
Q−1 (34)

(s1, . . . , sQ) 7→
(
θ(s2 − s1), . . . , θ(sQ − sQ−1)

)

(35)

where θ is given by (28) (with η = 1 when D = 1). The

set C defined in (29) or (30) is thus equal to

Θ−1([δ,+∞[Q−1). Hence, the problem of minimization

of r 7→ Φ(qiP ,r, f) over C can be reexpressed as

minimize
r∈RD×Q

Φ(LiPr, f) + ι[δ,+∞[Q−1(Θr) (36)

where ιS denotes the indicator function of a set S, which

is zero on S and equal to +∞ on its complement. If we

assume that Φ(·, f) belongs to Γ0

(
(RD)N×M

)
, the class

of lower-semicontinuous proper convex functions from
(RD)N×M to ]−∞,+∞], (36) can be solved through ex-

isting convex optimization approaches [11,22,23]. One

possible solution is to employ the method proposed in

[24] (hereafter called PPXA+) which constitutes an ex-
tension of the parallel proximal algorithm (PPXA) de-

veloped in [25] and of the simultaneous direction of mul-

tipliers method proposed in [26] (see also [27,28,29]).
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Algorithm 3 (PPXA+ for solving (36))

Initialization

(ω1, ω2, ω3) ∈ ]0,+∞[3

t(1,0) ∈ (RD)N×M , t(2,0) ∈ R
Q−1, s(0) ∈ R

D×Q

R = (ω1L
∗
iP
LiP + ω2Θ

∗Θ + ω3I)
−1

r
(0) = R (ω1L

∗
iP t

(1,0) + ω2Θ
∗t(2,0) + ω3s

(0))

For ℓ = 0, 1, . . .

p(1,ℓ) = prox 1
ω1

Φ(·,f)

(
t(1,ℓ)

)

p(2,ℓ) = P[δ,+∞[Q−1

(
t(2,ℓ)

)

c
(ℓ) = R (ω1L

∗
iP
p(1,ℓ) + ω2Θ

∗p(2,ℓ) + ω3s
(ℓ))

λℓ ∈ ]0, 2[

t(1,ℓ+1) = t(1,ℓ) + λℓ
(
LiP (2c

(ℓ) − r
(ℓ))− p(1,ℓ)

)

t(2,ℓ+1) = t(2,ℓ) + λℓ
(
Θ(2c(ℓ) − r

(ℓ))− p(2,ℓ)
)

s
(ℓ+1) = s

(ℓ) + λℓ(2c
(ℓ) − r

(ℓ) − s
(ℓ))

r
(ℓ+1) = r

(ℓ) + λℓ(c
(ℓ) − r

(ℓ)).

In the above algorithm, prox 1
ω1

Φ(·,f) is the proximity

operator of ω−1
1 Φ(·, f) [30] and P[δ,+∞[Q−1 is the pro-

jector onto [δ,+∞[Q−1. Expressions of proximity oper-

ators for usual convex functions are listed in [31]. The

convergence of the PPXA+ algorithm is guaranteed un-
der weak assumptions.

Proposition 2 Assume that

(i) there exists λ ∈]0, 2[ such that (∀ℓ ∈ N) λ ≤ λℓ+1 ≤
λℓ.

(ii) There exists r ∈ R
D×Q such that

LiPr ∈ ri domΦ(·, f) and Θr ∈]δ,+∞[Q−1 (37)

where domΦ(·, f) is the domain of Φ(·, f) and

ri domΦ(·, f) is its relative interior.

Then, the sequence (r(ℓ))ℓ∈N generated by Algorithm 3

converges to a solution to problem (36).

Proof See [24].

5 Combinatorial partitioning

We now consider two combinatorial optimization meth-

ods for finding

iP̂ ∈ Argmin
iP∈{1,...,Q}N×M

Φ(qiP ,r, f) + ρ(iP) (38)

for a given value of r ∈ C. Here we seek to use stan-

dard methods in combinatorial optimization which have

proved to be useful in applications to image processing.
In this context, a common form for regularization prob-

lems is the following:

minimize
iP∈{1,...,Q}N×M

Φ̃(iP , f) + ρ(iP), (39)

where Φ̃ : {1, . . . , Q}N×M × (RD)N×M → ]−∞,+∞] is

a data fidelity function, ρ a regularization function, f

the initial image and iP the target discrete one. To

formulate our problem in this framework, we need to

introduce the auxiliary function

χr : {1, . . . , Q}N×M 7→ {r1, . . . , rQ}
N×M

iP 7→ qiP ,r.

Then, our problem becomes

minimize
iP∈{1,...,Q}N×M

Φ(χr(iP), f) + ρ(iP). (40)

Note that χr is monotonic but nonlinear. Note further

that the set {r1, . . . , rQ} changes at each iteration of the

complete algorithm. However, during the regularization
step, this set is fixed.

In this section, we use graph-cut based algorithms,
which have proved to be effective in the context of

smoothing, denoising and segmentation [32].

5.1 Method I - convex regularization term

Here we describe a way to formulate the problem as a

globally optimal graph cut, inspired by the approach of

Ishikawa et al. [33]. In this approach, we build a discrete

graph that will allow us to represent the quantized and

regularized version of our original image. Let us define
the oriented, edge-weighted graph G = (V , E) as follows:

(i) V = V×{1, . . . , Q}∪ {s, t} the set of vertices quan-

tized over Q levels, where V is the image support

as defined in section 2. We add two special vertices,
the source s and the sink t.

(ii) E = ED ∪EC ∪EP , the set of edges. In the following

we denote an oriented edge by [a, b], with a and b

the vertices it joins in the direction from a to b. We

have :

(a) ED =
⋃

v∈V
Ev
D the upward columns of the graph.

For all v ∈ V, let hv,k denote the node in column

v and row k. A single column associated with
pixel v is defined as
Ev
D = {[s, hv,1]} ∪ {[hv,k, hv,k+1] |

k ∈ {1, ..., Q− 1}} ∪ {hv,Q, t} ,
(b) EC =

⋃
v∈V

Ev
C the downward columns of the

graph, with

Ev
C = {[hv,k, hv,k+1] | k ∈ {1, ..., Q− 1}},

(c) and the penalty edges of the graph are thus de-

fined as
EP = {[hv,k, hw,k] | {v, w} neighbours inV,

k ∈ {1, ..., Q}} .



7

The above graph is depicted in Fig. 1. In this figure,

for simplicity we assume each pixel has only two neigh-

bours, which allows us to represent the graph in a 2D

planar layout. For actual 2D images, there exist many

more penalty edges between all neighbours in V. The
graph layout is then non-planar, but remains similar.

For 2D images, it is best to see the arrangement of v

vertices as in the original images, with the column of

penalty edges in an extra dimension.

If Φ is the separable function defined in (5) and ρ

is the anisotropic TV in (23) where ψ is the identity
function, we define the capacities (or weights) c of edges

[a, b] ∈ E as follows:

(i) Links to the source have infinite capacity:

∀v ∈ V, c ([s, hv,1]) = +∞.

(ii) Data fidelity terms for any pixel v ∈ V is
∀k ∈ {1, . . . , Q− 1}, c ([hv,k, hv,k+1]) =

ϕv(rk, f(v)), c ([hv,Q, t]) = ϕv(rQ, f(v)).

(iii) The capacity of downward columns is infinite to con-

strain a single cut per column:

∀v ∈ V, ∀k ∈ {1 . . .Q− 1}, c ([hv,k+1, hv,k]) = +∞.
(iv) The regularization term along the penalty edges of

the graph is:

for every {v, w} neighbours in V, ∀k ∈ {1, . . . , Q},
c ([hv,k, hw,k]) = µ

The above graph G has the same topology as the
one proposed by Ishikawa and it can be extended to any

convex function ψ [33]. The capacities of E are adjusted

in such a way that a cut of G corresponds to the solution

of (40), granted by the following result:

Proposition 3 If ρ is the anisotropic TV in (23) where

ψ is the identity function, then the min cut of G =

(V , E) is the globally optimal solution to (40).

Proof This result is derived from the construction of the

graph. First note that we build here a binary flow net-
work with one source and one sink. Following Ishikawa,

relying on the celebrated discrete maxflow/mincut the-

orem of Ford and Fulkerson [34], any binary cut that

separates s and t along a series of edges, that can be
interpreted as a solution iP . Indeed, the infinite capac-

ity of the downward edges ensure a single cut edge in

each column of the graph, and the infinite capacity of

the upward [s, hv,1] edges for all v ensures that, in all

columns, this cut will be located above one of the nodes
corresponding to a level k ∈ {1, . . . , Q}. We can there-

fore associate the cut in column v with the value of

the level immediately below the cut, and associate this

with iP(v). Recalling that all labels below the cut will
have the same label as s, and all that above the cut

the same label as t, the value of iP at pixel v is the

highest level l in column v of the graph that is labelled

like the source s. Here, by convention, the source is la-

belled with 1 and the sink with 0. We can then write

iP(v) = max{k, hv,k = 1}.
Now, the computation of the maxflow/mincut on

this graph minimizes the energy of the cut, interpreted

as the sum of two terms:

(i) since the downward constraint edges ensure a single
cut edge along each column of the graph, this cor-

responds to contribution of the data fidelity term

ϕv(rQ, f(v)) to the total energy.

(ii) Similarly, we note that each penalty edges in EP
with capacity µ can be cut at most once. Let u and

v be two neighbouring pixels in the graph. The cut

along penalty edges between iP(u) and iP(v) crosses

exactly as many penalty edges as there are quantiza-

tion level differences between u and v. We note that
this correspond to a contribution of µ|iP(u)−iP(v)|
to the total energy.

Hence, the computation of the maxflow/mincut on this

graph solves (40) exactly, in the case of (23), when ψ
is the identity.

NM321

1

2

3

Q

Q−1

Q−2

s

t

Fig. 1 Construction of the Ishikawa-like optimization graph. Ar-
rows represent the edges E and circles the nodes in V . Horizontal
edges are in EP , the dotted upward vertical edges are in ED and
the plain downward vertical edges are in EC . Vertices s and t are
respectively the source and the sink. All pixels in the image from
1 to NM are represented in the columns. In actual 2D images,
there exist many more penalty edges EP than depicted here: all
those between neighbours in V.
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Remark 1

(i) It is also possible to solve this problem exactly in the

case when ψ is convex and not necessarily the iden-

tity, by adding non-horizontal penalty edges [35],
but we do not consider this case here, as ψ = Id is

favorable when discontinuities exist in the original

image.

(ii) In the case when the number of quantized levels

Q is small (say between 1 and 32), the Ishikawa
framework is very efficient.

(iii) As the dimensionality of the problem increases, so

does the number of penalty edges in the graph. The

cut is always an hypersurface of codimension 1.
(iv) Ishikawa recommends solving the maxflow/mincut

by using a push-relabel algorithm, which makes per-

fect sense as the dimensionality increases, because

these algorithms have an asymptotic complexity in-

dependent of the number of edges.

5.2 Method II - submodular regularization term

Since the method proposed in Section 5.1 works only

for a convex function ψ, we propose to solve the gen-

eral problem defined in (38) with the α-expansion al-
gorithm [32], which has been proven to be very ef-

fective for some non-convex functions ψ such as the

Potts model of (25). Though only a local minimum is

then guaranteed, the resulting energy will be within a
known factor of the global minimum energy [32]. Here

we reintroduce the standard notation of α-expansions

as we need to specify the capacities on the correspond-

ing edges in the context of this article. Following Kol-

mogorov et al. [36], we build a directed graph for each
quantization level, called α-expansion graph Gα = (V , E),
defined as follows:

(i) V = V ∪ {α, α} is the set of vertices, with α and α

two special term nodes and V = {1, ..., NM} is the
set of image nodes ;

(ii) E = EV ∪ EN is the set of edges, defined as follows :

(a) EV =
⋃

v∈V {[α, v], [v, α]} is the set of edges be-

tween special term nodes and image nodes ;
(b) EN =

⋃
{u,v} neighbours is the set of edges be-

tween neighbours and N is the set of neighbours

pairs containing only ordered pairs u, v, i.e. such

that u < v.

(c) The capacity for all edges are given in Table 1.

Computing the max-flow/min-cost cut of Gα sepa-

rates vertices α and α in such a way that the α region

can only expand, hence the name of the algorithm. The
value of the function associating new values to iP , based

on cut of Gα, is called “α-move of iP” [16]. The algo-

rithm is as follows:

Table 1 Capacities for the α-expansion graph of Fig 2.

edge capacity a

c([u, α]) R (Ku) +
∑

(u,v)∈N R(Au,v − Cu,v) +
∑

(v,u)∈N Cv,u

c([α, u]) R(−Ku) +
∑

(u,v)∈N R(Cu,v − Au,v)

c([u, v])
∑

(u,v)∈N (Bu,v + Cu,v − Au,v)

a The following notation is used:
R denotes the ramp function, i.e. R(x) = 0 if x ∈ (−∞, 0) and
R(x) = x if x ∈ [0,+∞)
Ku = ϕnu,mu(riP (nu,mu), f(nu, mu))− ϕnu,mu (rα, f(nu,mu))
Au,v = ψ(|iP (nu,mu)− iP (nv,mv)|)
Bu,v = ψ(|iP (nu, mu)− α|)
Cu,v = ψ(|α− iP (nv, mv)|)

Algorithm 4 (α-expansion algorithm)

Fix i
(0)
P

For ℓ = 0, 1, . . .
α̃(ℓ) ∈ Argminα∈{1,...,Q}

{
Φ(χr (̂iP), f) + ρ(̂iP) |

îP = α-move of i
(ℓ)
P

}

i
(ℓ+1)
P = α̃(ℓ)-move of i

(ℓ)
P

Proposition 4 If (38) is submodular then it can be

solved with the α-expansion algorithm.

Proof It is shown in [36] that in order to employ the α-

expansion algorithm, (38) has to satisfy the following

conditions at iteration ℓ:

(i) (38) has a binary representation of the form:

minimize
∑

u∈V B
(ℓ)
1 (b(nu,mu))+∑

{u,v}neighboursB
(ℓ)
2 (b(nu,mu), b(nv ,mv)),

(41)

where b is a binary field while B
(ℓ)
1 and B

(ℓ)
2 have

binary arguments.

(ii) The binary representation b is graph-representable,

which can be verified by testing if term B
(ℓ)
2 satisfies

the submodular inequality:

B
(ℓ)
2 (0, 0) +B

(ℓ)
2 (1, 1) ≤ B

(ℓ)
2 (1, 0) +B

(ℓ)
2 (0, 1) .

(42)

We now propose the following binary formulation of

(38) by defining :

B
(ℓ)
1 (b(nu,mu)) = ϕnu,mu

(r̂iP (nu,mu)
, f(nu,mu)) (43)

and

B
(ℓ)
2 (b(nu,mu), b(nv,mv)) =

ψ(|̂iP(nu,mu)− îP(nv,mv)|) (44)
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Fig. 2 Notations for the α-expansion graph, following Kol-
mogorov et al. [36]. Here we took a simplified 2-pixel neigh-
bourhood. The cost (or capacity) between u and v is labelled
as c([u, v]) for instance, and so on for all edges. The expressions
for the capacity for all edges are given in Table 1.

where

îP(nu,mu) =

{
i
(ℓ)
P (nu,mu) if b(nu,mu) = 0

α if b(nu,mu) = 1.
(45)

More standard graph-cut formulations would only

allow us to optimize (39). These formulations would be
problematic because we would not be able to separate

the two steps in the inner loop of Algorithm 2, and

therefore no convergence property could be derived.

Assuming (38) submodular, then the terms of its

binary representation defined in (44) satisfy (42). Fur-

thermore, it is shown in [16] that for ψ defined as Potts
model of (25) or the truncated linear function in (24),

and when ρ is the anisotropic TV of (23), then this type

of energy is indeed submodular. Consequently (38) can

be solved with α-expansions.

Figure 2 provides an illustration of the notation for

edge weights in a simplified situation. In order to solve

problem (38) with the α-expansion algorithm, we pro-

pose to define the capacities c of edges E in the graph
Gα for all {u, v} pairs of neighbours, as described in

Table 1.

5.3 Other methods

Other combinatorial optimization methods might also
be used. For instance, when minimizing isotropic TV

as in (22), one might want to use Chambolle’s algo-

rithm [37]. Similarly to the Ishikawa framework, we

would obtain the global optimum in this case also. More-
over isotropic TV minimization was recently discussed

among others by Lellmann et al. [38], Trobin et al. [39]

and Zach et al. [40]. One other possibility is the use of

α - β generalized range moves algorithm, which is shown

in [41] to be able to optimize a wider range of combi-

natorial energies than α-expansion method presented

in Section 5.2. Furthermore, similar properties are held

by the FastPD [42] and the PD3a [43] algorithms, both
introduced by Komodakis et al.. Also worth mentioning

is the Darbon and Sigelle method for levelable energies,

introduced in [44], the Kolmogorov and Shioura primal

and primal-dual algorithms and Zalesky’s MSFM al-
gorithm [45], since they are all faster than Ishikawa’s

approach, while still providing an exact solution for a

similar class of functions. Our method can be also im-

proved using higher order cliques, which already has

been proven to provide effective filtering results [46]. It
might be also possible to extend the quantization tech-

niques proposed by Chambolle and Darbon in [47]. Also

of interest would be to explore variants of anisotropic

diffusion, and other combinatorial optimizers such as
generalized Dirichlet solvers, which are naturally multi-

label [48] and could provide much simpler algorithms.

6 Simulation examples

In this section we present four experiments in order to

demonstrate the performance of our method in vari-

ous scenarii. Both color and grey scale images are con-

sidered. For grey scale images, our approach is con-

fronted with the LM method [3]. It is a fair compar-
ison, since the same function Φ is used for both al-

gorithms. Although sophisticated initialization proce-

dures [49,50,51] can be employed for LM and our ap-

proach, the methods presented in the following were
simply initialized with either uniform or cumulative his-

tograms based decision levels. In the case of color im-

ages, we compared our method with: i) special case of

LGB algorithm with Φ defined as ℓ2 norm (K-means),

ii) median cut [52] and iii) Wu’s method [53]. Ximagic
(http://www.ximagic.com) quantization package was us-

ed to generate results of K-means, Wu and median cut

algorithms. Their performance is measured in terms of

SNR between the original and quantized images and
also by the Shannon entropy of order (2, 2) (that is the

entropy over image blocks of size 3 × 3). Note that,

in all the following experiments, regularization func-

tions are used corresponding to a 4-pixel neighbour-

hood (2 pixels in horizontal and 2 in vertical direction)
in the employed graph cut techniques. They were imple-

mented with the help of the publicly available library

described in [54]. When running experiments using Al-

gorithm 3, there are 4 parameters to set. We have set
ω1 = ω2 = ω3 = 1/3 and λℓ was fixed and equaled 1.5.

The appropriate choice of parameter µ depends on the

ratio between maximum values of Φ and ρ codomain,
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the level of noise in original image and prior knowledge

about the desired entropy of output images.

6.1 Low resolution quantization

First, we consider grey scale image quantization over

Q = 8 levels. The combinatorial method described in

Section 5.1 was used to find the global optimum of con-
vex criterion (18) with function Φ defined as the ℓ1 norm

and function ρ defined by (23) where ψ is the identity. It

was applied to 8 bit microscopy image of size 512× 512

(from public domain, http://www.remf.dartmouth.edu),

the fragment of which is shown in Fig. 3(a). Regulariza-
tion parameter µ was hand-optimized to 10. Both meth-

ods, LM and ours, were initialized with uniform decision

levels. In order to solve (36), Algorithm 3 was used. The

convex set C is defined by (29), where δ = 12. As ex-
pected, our results provide the best spatial smoothness

among the considered methods, which is confirmed by

the entropy equal to 0.58 bpp, while in case of LM it

is equal to 0.84 bpp. In this example, it is shown that,

in case of quantization with high level reduction, our
method provides smaller entropy rate while maintain-

ing the desired fidelity.

In the second example, we show that a similar be-

haviour is obtained for different choices of Φ, regular-

ity criterion and combinatorial method. This time, the

number of quantization levels is Q = 32, function (18)
is specified by Φ defined as the squared ℓ2 norm and ρ

defined by (23) where ψ is the binary cost-function (25).

It is applied to the color-image of size 256× 256, which

is shown in Fig. 4(a). Fig. 4(e) presents the results when
µ is set to 25 and in Fig. 4(f), when it is set to 50. The

difference between the two presented images (Fig. 4(e)

and Fig. 4(f)) is not significant but highlights the vi-

sual influence of parameter µ. The criterion (18) was

minimized by using the modified α-expansion graph de-
scribed in Section 5.2, which was initialized with r

(0)

obtained by median cut algorithm. Image pixels were

mapped into the XY Z image space [55]. Similarly to

the previous example, Fig. 4 shows that a better spatial
smoothness is obtained with the proposed approach.

This is also verified by inspecting the entropy value,

which in our case is equal to 1.06 bpp for µ = 25,

and 1.00 bpp for µ = 50, whereas in the case of Wu,

K-means and Median-cut the entropies are equal to
1.18 bpp, 1.14 bpp, 1.19 bpp, respectively.

6.2 Quantization in the presence of noise

Next, we present the performance of our method in the

presence of noise. Note that here function φ is chosen

based on two noise models, i.e. ℓ2 for Gaussian and ℓ1
for Laplacian noise. Firstly, the problem of grey scale

image quantization over 16 levels is investigated. The

image of size 256×256, shown in Fig. 5(b), is corrupted

by zero-mean i.i.d. Laplacian noise with standard devi-
ation 9. Quantization is performed using Algorithm 2.

The method described in Section 5.2 is used to mini-

mize energy (18), where Φ is defined as the ℓ1 norm and

ρ is given by (23) with ψ taken as the truncated lin-
ear function (24), where the limiting constant is set to

ζ = 3. The associated regularization parameter µ was

experimentally chosen equal to 6. Both methods, LM

and ours, were initialized with cumulative histogram

based decision levels. Problem (36) was solved by us-
ing Algorithm 3. The convex set C is defined by (29),

where δ = 1. The proposed approach shows satisfac-

tory results when dealing with Laplacian noise: i) the

visual effect of the noise is reduced (see Fig. 5(d)), ii)
the SNR, which was equal to 22.7 dB for the noisy

image increases to 24.6 dB, and iii) the entropy is only

0.96 bpp. In case of LM (see Fig. 5(c)), the SNR is equal

22.4 dB and the entropy is 1.41 bpp. In this example,

we show that, in case of quantization in the presence
of noise, our method reconstructs the original image,

while performing image quantization.

Similar properties have been observed for D > 1.

To illustrate this fact, the quantization over 16 quanti-

zation levels of a 300× 300 color image is presented in
Fig. 6. Zero-mean Gaussian noise with standard devia-

tion 20 was added to the image presented in Fig. 6(a)

(source: photo by Neon JA, colored by Richard Bartz /

Wikimedia Commons). This image was transformed from
the RGB space into a more appropriate one, using the

linear transformation defined by the matrix of its PCA

(Principal Component Analysis) components. Then, the

total order of quantization levels along the principal

component is chosen, which corresponds to η⊤ =
[
1 0 0

]

The convex set C is defined by (29). Since the prob-

ability of merging codevectors is negligible in three-

channel color space, the associated parameter δ was

set to 0. The resulting image (see Fig. 6(f)) was ob-
tained by minimizing energy (18), which was initial-

ized with decision levels computed by the median cut

method. Function Φ was defined by (6) and ρ by (23)

where ψ is identity and µ is equal to 250. The algo-

rithm described in Section 5.1 was used for computing
i
(ℓ)
P . One can observe that the noise has been highly

reduced in our result (Fig. 6(f)), while the K-means

method (Fig. 6(d)) preserved noise in the images. This

is also verified by SNR values which is equal to 13.8 dB
for our method and 10.6 dB, 10.4 dB and 9.8 dB for the

K-means, Wu and median-cut, respectively. The differ-

ence is even greater in terms of entropy: our method
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led to 0.79 bpp and the other ones to 1.48 bpp. Addi-

tionally, the quantization result for the original image

is presented. Our result (Fig. 6(e)) was obtain with the

same algorithm settings as described above except µ,

which here is equal to 30 and of course the PCA pa-
rameters, which were computed from the original im-

age. Our method performs the required quantization

and provides an interesting tradeoff between precision

and smoothness, which is validated with an SNR of
18.5 dB and an entropy of 0.9 bpp. In contrast, K-

means (Fig. 6(c)) achieved a SNR = 20.2 dB and an

entropy = 1.1 bpp.

6.3 Note about computation time

The time complexity of Algorithm 2 is equal to the

product of the complexity of each iteration and the

complexity of the number of iterations ℓ. The bound on

ℓ is not known a priori. Our observation suggests that
it is a function of the weight of smoothness term µ,

number of quantization levels Q, and the spatial en-

tropy of original image f . Moreover, there may be small

differences in the number of iterations, depending on
the choice of the combinatorial optimization method.

For instance, the first problem described in Section 6.1,

which was solved with an Ishikawa-like graph, converges

in 18 iterations. In contrast, using the α-expansion algo-

rithm (Algorithm 4), it converges in only 16. In practice
the number of iterations never seems to exceed 50 for

grey-scale and 200 for color images. By analyzing the in-

ner loop of Algorithm 2, one can observe that the com-

plexity of step 1 is greater than the one of step 2. Thus,
the computation time of each iteration is strongly dom-

inated by the cost of step 1, namely finding i
(ℓ)
P . Note

that Algorithm 3 is run only if matrix r derived from a

centroid rule does not belong to C, so usually its influ-

ence on the overall time complexity of Algorithm 2 is
small for grey-scale images. It becomes more important

for multi-channel images. Generally, the cost of combi-

natorial graph-cut based methods depends on |V| and
on the number of quantization levels Q. More precisely,
the relabeling algorithm finds solution for single graphs

in polynomial time O(|V|3), where |V| is equal to Q×|V|
for the method described in Section 5.1 and to |V| for
the method described in Section 5.2. However, Algo-

rithm 4 (in Section 5.2) requires solving many different
graphs independently, so its computation cost increases

linearly with the number of quantization levels Q. It is

worth noting that some recently published extensions

of the α-expansion algorithm are faster. In particular,
Lipitsky et al. presented the LogCut and Fusion move

methods that lead to nearly logarithmic growth [56],

e.g. for Q = 256 the algorithm converges approximately

10 times faster. A similar acceleration was obtained by

the FastPD algorithm introduced by Komodakis et al.

[42] and analyzed by Kolmogorov in [57]. Likewise, re-

cently introduced primal and primal-dual algorithms by

Kolmogorov et al. in [58] may be an alternative for the
method described in Section 5.1. They offer a signif-

icant improvement in terms of time efficiency. For in-

stance, our first problem described in Section 6.1 solved

with the method described in Section 5.1 takes 37 sec-
onds, while using Kolmogorov’s primal only algorithm,

it takes only 12 seconds. As an alternative to the meth-

ods presented in Section 5, one may adopt these novel

methods. Constant progress in the efficiency of graph-

cut algorithms makes our approach increasingly com-
petitive with the ones that do not feature a smoothness

constraint. Nonetheless, our method may take signif-

icantly more time than the use of basic quantization

methods (for details see Table 2). The tests were per-
formed single-threaded, on a computer with a 2.5GHz

Intel Xeon processor, in the RedHat Enterprise Linux

5.5 environment, using the GCC compiler version 4.1

in 64-bit mode.

Ex1 Ex2 Ex3 Ex4

No. of iter. 18 183 (113) 6 51 (42)

Time [s] 37 1618 (1015) 27 808 (625)

Table 2 Iteration number and computation time for all exam-
ples presented in the paper. The values in the brackets for Ex2
concerns case with µ = 50, and without brackets with µ = 25.
The values in and without brackets for Ex4 concerns case without
and with noise, respectively.

7 Conclusion

In this paper, we have proposed a new quantization

method based on a two-step procedure intertwining a

convex optimization algorithm for quantization level se-
lection and a combinatorial regularization procedure.

Unlike classical methods, the proposed approach al-

lows us to enforce a tunable spatial regularity in the

quantized image. We have also shown that both grey

scale and color images can be processed. As shown by
our simulation results, the proposed approach leads to

promising results, in particular in the presence of noise.

As future work, we plan to explore isotropic regulariza-

tion methods, to adapt and implement faster combina-
torial algorithms and to take advantage of this method

in various applications such as image compression and

multispectral/hyperspectral imaging.
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10. L. Alvarez and J. Esclaŕın. Image quantization us-
ing reaction-diffusion equations. SIAM J. Appl. Math.,
57(1):153–175, 1997.

11. S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, Cambridge, England, Mar. 2004.

12. J. D. Bruce. Optimum quantization. Technical Report 429,
Massachusetts Institute of Technology, Research Laboratory
of Electronics, Cambridge, Massachusetts, Mar. 1965.

13. X. Wu and J. Rokne. An O(KN logN) algorithm for op-
timum k-level quantization on histograms of n points. In
ACM Annual Computer Science Conference, pages 339 –
343, Louisville, Kentucky, Jul. 1989.

14. X. Wu. Optimal quantization by matrix searching. Journal
of algorithms, 12(4):663–673, 1991.

15. R. T. Rockafellar and R. J.-B. Wets. Variational Analysis.
Springer, Oxford Oxfordshire, 2004.

16. O. Veksler. Efficient graph-based energy minimization meth-
ods in computer vision. PhD thesis, Cornell University,
Ithaca, NY, USA, 1999.

17. C. Vertan, V. Popescu, and V. Buzuloiu. Morphological like
operators for color images. In Proc. Eur. Sig. and Image
Proc. Conference, Trieste, Italy, Sep., 10-13 1996.

18. H. Talbot, C. Evans, and R. Jones. Complete ordering and
multivariate mathematical morphology. In ISMM ’98: Pro-
ceedings of the fourth international symposium on Mathe-
matical morphology and its applications to image and signal
processing, pages 27–34, Norwell, MA, USA, 1998. Kluwer
Academic Publishers.

19. J. Chanussot and P. Lambert. Bit mixing paradigm for mul-
tivalued morphological filters. In Image Processing and Its
Applications, 1997., Sixth International Conference on, vol-
ume 2, pages 804–808, Dublin, Jul. 1997.

20. B. Hill, Th. Roger, and F. W. Vorhagen. Comparative
analysis of the quantization of color spaces on the basis of
the CIELAB color-difference formula. ACM Trans. Graph.,
16(2):109–154, 1997.

21. C. Eckart and G. Young. The approximation of one by an-
other of lower rank. Psychometrika, 1(3):211–218, Sep. 1936.

22. P. L. Combettes and J.-C. Pesquet. Proximal splitting meth-
ods in signal processing. In H. H. Bauschke, R. Burachik,
P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz,

editors, Fixed-Point Algorithms for Inverse Problems in Sci-
ence and Engineering. Springer-Verlag, New York, 2010.

23. J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analy-
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(a)

(b)

(c)

Fig. 3 Figures (a,b,c) illustrate a fragment of the original image, LM and our results, respectively. Note that LM retained acquisition
vertical artifacts, which are absent in our result.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 (a) is the original image, (b,c,d) the Wu, K-means and median-cut results respectively ; (e,f) show our result for µ equal 25 and
50 respectively. Note that there are many isolated small regions in (b,c,d), while both (e) and (f) feature only smooth large regions,
retaining global aspect nonetheless.
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(a) (b)

(c) (d)

Fig. 5 (a) original image, (b) noisy version, and (c,d) LM and our result, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 (a) original image, (b) its noisy version, (c,e) and (d,f) K-means and our result for clear and noisy case, respectively.


