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Abstract. This paper presents a way to verify CCS (without renaming)
specifications using tree regular model checking. From a term rewriting
system and a tree automaton representing the semantics of CCS and
equations of a CCS specification to analyse, an over-approximation of the
set of reachable terms is computed from an initial configuration. This set,
in the framework of CCS, represents an over-approximation of all states
(modulo bisimulation) and action sequences the CCS specification can
reach. The approach described in this paper can be fully automated.
It is illustrated with the Alternating Bit Protocol and with hardware
components specifications.

1 Introduction

Model-checking techniques [20,21] are commonplace in computer aided verifica-
tion. Model checking refers to the following problem: given a desired property,
expressed as a temporal logic formula ϕ, and a structure M with initial state s,
decide if M, s |= ϕ. The use of model-checking techniques and tools is however
limited to systems whose state space can be finitely and concisely represented.

Recently, reachability analysis turned out to be a very efficient verification
technique for proving properties on infinite systems modeled by term rewriting
systems (TRSs for short). In the rewriting theory, the reachability problem is
the following: given a TRS R and two terms s and t, can we decide whether
R∗({s}) ∩ {t} = ∅ or not? This problem, which can easily be solved on strongly
terminating TRSs, is undecidable on non terminating TRSs. However, on the
one hand, there exist several syntactic classes of TRSs for which this problem
becomes decidable [13, 18, 26]. On the other hand, in addition to classical proof
tools of rewriting, given a set E ⊆ T (F) of initial terms, provided that s ∈ E,
one can prove R∗({s})∩ {t} = ∅ by using over-approximations of R∗(E) [13,19]
and proving that t does not belong to these approximations.
Motivations. Recently, some of the most successful experiments using reacha-
bility analysis were done on cryptographic protocols, [6, 16], and on Java byte
code programs [5]. For example, Java MIDLet applications security properties
are verified through R∗(E) over-approximations. To this end, following works on



CEGAR [8], an over-approximations refinement depending on a security prop-
erty to be verified is developed in [4]. As TRSs and tree automata are powerful
tools to express specifications, it is possible to perform reachability analysis on
those. This paper fits in line with this context by adapting reachability analysis
to verification of CCS (without renaming) specifications. Note that the reacha-
bility problem for this fragment of CCS is undecidable [7].

Contributions. This paper address the following problem : Is it easy to adapt
approximation rewriting to the verification of infinite state systems specified in
CCS ? The solution presented in this paper consists in a translation of a CCS
specification into a TRS and a tree automaton. Then it is possible to verify prop-
erties using reachability analysis. This solution is illustrated with the Alternating
Bit Protocol and with specifications of hardware components.

Structure of the paper. This paper is organised as follows. Section 2 intro-
duces basic definitions of terms, TRSs, tree automata completion and CCS. Then
Section 3 explains how to translate a CCS specification into a TRS and a tree
automaton, and then how to verify properties on sequences of actions. Section 4
and Section 5 show applications of the technique presented in Section 3. Finally,
Section 6 presents related works and the conclusion.

2 Preliminaries

Comprehensive surveys can be found in [1, 12] for TRSs, in [10, 17] for tree
automata and tree language theory, and in [22] for CCS.

2.1 Terms and TRSs

Let F be a finite set of symbols, associated with an arity function ar : F → N,
and let X be a countable set of variables. T (F ,X ) denotes the set of terms,
and T (F) denotes the set of ground terms (terms without variables). The set of
variables of a term t is denoted by Var(t). A substitution is a function σ from X
into T (F ,X ), which can be extended uniquely to an endomorphism of T (F ,X ).
A position p for a term t is a word over N. The empty sequence ε denotes the
top-most position. The set Pos(t) of positions of a term t is inductively defined
by Pos(t) = {ε} if t ∈ X and by Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤
n and p ∈ Pos(ti)} otherwise. If p ∈ Pos(t), then t|p denotes the subterm of t
at position p and t[s]p denotes the term obtained by replacement of the subterm
t|p at position p by the term s. We also denote by t(p) the symbol occurring
in t at position p. Given a term t ∈ T (F ,X ), we denote PosA(t) ⊆ Pos(t)
the set of positions of t such that PosA(t) = {p ∈ Pos(t) | t(p) ∈ A}. Thus
PosF (t) is the set of functional positions of t. A TRS R is a set of rewrite rules
l → r, where l, r ∈ T (F ,X ) and l 6∈ X . A rewrite rule l → r is left-linear (resp.
right-linear) if each variable of l (resp. r) occurs only once within l (resp. r).
A TRS R is left-linear (resp. right-linear) if every rewrite rule l → r of R is
left-linear (resp. right-linear). A TRS R is linear if it is right and left-linear.
The TRS R induces a rewriting relation→R on terms whose reflexive transitive
closure is written →?

R. The set of R-descendants of a set of ground terms E is
R∗(E) = {t ∈ T (F) | ∃s ∈ E s.t. s→?

R t}.



2.2 Tree Automata Completion

Note that R∗(E) is possibly infinite: R may not terminate and/or E may be
infinite. The set R∗(E) is generally not computable [17]. However, it is possible
to over-approximate it [13] using tree automata, i.e. a finite representation of
infinite (regular) sets of terms. We next define tree automata.

Let Q be a finite set of symbols, of arity 0, called states such that Q∩F = ∅.
T (F ∪Q) is called the set of configurations.

Definition 1 (Transition and normalised transition). A transition is a
rewrite rule c → q, where c ∈ T (F ∪Q) is a configuration and q ∈ Q. A
normalised transition is a transition c → q where c = f(q1, . . . , qn), f ∈ F ,
ar(f) = n, and q1, . . . , qn ∈ Q.

Definition 2 (Bottom-up non-deterministic finite tree automaton). A
bottom-up non-deterministic finite tree automaton (tree automaton for short) is
a quadruple A = (F ,Q,Qf , ∆), Qf ⊆ Q and ∆ is a finite set of normalised
transitions.

The rewriting relation on T (F ∪Q) induced by the transition set ∆ of A is
denoted →∆. When ∆ is clear from the context, →∆ is also written →A.

Definition 3 (Recognised language). The tree language recognised by A in
a state q is L(A, q) = {t ∈ T (F) | t →?

A q}. The language recognised by A is
L(A) =

⋃
q∈Qf L(A, q). A tree language is regular if and only if it is recognised

by a tree automaton.

Let us now recall how tree automata and TRSs can be used for term reach-
ability analysis. Given a tree automaton A and a TRS R, the tree automata
completion algorithm proposed in [13] computes a tree automaton AkR such that
L(AkR) = R∗(L(A)) when it is possible (for the classes of TRSs where an exact
computation is possible, see [13]), and such that L(AkR) ⊇ R∗(L(A)) otherwise.

The tree automata completion works as follows. From A = A0
R the com-

pletion builds a sequence A0
R,A1

R . . .AkR of automata such that if s ∈ L(AiR)
and s →R t then t ∈ L(Ai+1

R ). If there is a fix-point automaton AkR such that
R∗(L(AkR)) = L(AkR), then L(AkR) = R∗(L(A0

R)) (or L(AkR) ⊇ R∗(L(A)) if R
is in no class of [13]). To build Ai+1

R from AiR, a completion step is achieved. It
consists of finding critical pairs between →R and →AiR . To define the notion of

critical pair, the substitution definition is extended to terms in T (F ∪Q). For
a substitution σ : X 7→ Q and a rule l → r ∈ R such that Var(r) ⊆ Var(l),
if there exists q ∈ Q satisfying lσ →∗AiR q then lσ →∗AiR q and lσ →R rσ is a

critical pair. Note that since R and AiR are finite, there is only a finite number of
critical pairs. Thus, for every critical pair detected between R and AiR such that
rσ 6→∗AiR q, the tree automaton Ai+1

R is constructed by adding a new transition

rσ → q to AiR. Consequently, Ai+1
R recognises rσ in q, i.e. rσ →Ai+1

R
q.
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However, the transition rσ → q is not necessarily normalised. Then, we use
abstraction functions whose goal is to define a set of normalised transitions



However, the transition rσ → q is not necessarily a normalized transition of
the form f(q1, . . . , qn)→ q and so it has to be normalized first. For example, to
normalize a transition of the form f(g(a), h(q′))→ q, we need to find some states
q1, q2, q3 and replace the previous transition by a set of normalized transitions:
{a→ q1, g(q1)→ q2, h(q′)→ q3, f(q2, q3)→ q}.

If q1, q2, q3 are new states, then adding the transition itself or its normalized
form does not make any difference. On the opposite, if we identify q1 with q2,
the normalized form becomes {a → q1, g(q1) → q1, h(q′) → q3, f(q1, q3) → q}.
This set of normalized transitions represents the regular set of non-normalized
transitions of the form f(g∗(a), h(q′))→ q which contains the transition we want
to add but also many others. Hence, this is an over-approximation. We could
have made an even more drastic approximation by identifying q1, q2, q3 with q,
for instance.

When always using a new states to normalize the transitions, completion
is as precise as possible. However, without approximation, completion is likely
not to terminate (because of general undecidability results [17]). To enforce
termination, and produce an over-approximation, the completion algorithm is
parametrized by a set N of approximation rules. When the set N is used during
completion to normalize transitions, the obtained tree automata are denoted
by A1

N,R, . . . ,AkN,R. Each such rule describes a context in which a list of rules
can be used to normalize a term. For all s, l1, . . . , ln ∈ T (F ∪Q,X ) and for all
x, x1, . . . , xn ∈ Q ∪ X , the general form for an approximation rule is:
[s → x] → [l1 → x1, . . . , ln → xn]. The expression [s → x] is a pattern to be
matched with the new transition t → q′ obtained by completion. The expres-
sion [l1 → x1, . . . , ln → xn] is a set of rules used to normalize t. to normalize
a transition of the form t → q′, we match s with t and x with q′, obtain a
substitution σ from the matching and then we normalize t with the rewrite sys-
tem {l1σ → x1σ, . . . , lnσ → xnσ}. Furthermore, if ∀i = 1 . . . n : xi ∈ Q or
xi ∈ Var(li)∪ Var(s)∪ {x} then x1σ, . . . , xnσ are necessarily states. If a transi-
tion cannot be fully normalized using approximation rules N , normalization is
finished using some new states.

The main property of the tree automata completion algorithm is that, what-
ever the state labels used to normalize the new transitions, if completion termi-
nates then it produces an over-approximation of reachable terms [13]. In other
words, approximation safety does not depend on the set of approximation rules
used. Since the role of approximation rules is only to select particular states for
normalizing transitions, the safety theorem of [13] can be reformulated in the
following way.

Theorem 1. Let A be a tree automaton, N be a set of approximation rules and
R be a left-linear TRS such that for every l → r ∈ R, Var(r) ⊆ Var(l). If
completion terminates on AkN,R then

L(AkN,R) ⊇ R∗(L(A))

Here is a simple example illustrating completion and the use of approximation
rules when the language R∗(E) is not regular.



Example 1. Let R = {g(x, y) → g(f(x), f(y))} and let A be a tree automaton
such that Qf = {qf} and ∆ = {a→ qa, g(qa, qa)→ qf}. Hence L(A) = {g(a, a)}
and R∗(L(A)) = {g(fn(a), fn(a)) | n ≥ 0}. Let N = [g(f(x), f(y)) → z] →
[f(x) → q1 f(y) → q1]. During the first completion step, we find a criti-
cal pair g(qa, qa) →R g(f(qa), f(qa)) and g(qa, qa) →∗A qf . We thus have to
add the transition g(f(qa), f(qa)) → qf to A. To normalize this transition,
we match g(f(x), f(y)) with g(f(qa), f(qa)) and match z with qf and obtain
σ = {x 7→ qa, y 7→ qa, z 7→ qf}. Applying σ to [f(x) → q1f(y) → q1] gives
[f(qa) → q1f(qa) → q1]. This last system is used to normalize the transition
g(f(qa), f(qa)) → qf into the set {g(q1, q1) → qf , f(qa) → q1} which is added
to A to obtain A1

N,R. The completion process continues for another step and

ends on A2
N,R whose set of transition is {a → qa, g(qa, qa) → qf , g(q1, q1) →

qf , f(qa) → q1, f(q1) → q1}. We have L(A2
N,R) = {g(fn(a), fm(a)) | n,m ≥ 0}

which is an over-approximation of R∗(L(A)).

2.3 The Calculus of Communicating Systems

Syntax. Let A = {a, b, c, . . .} be the set of names and Ā = {ā, b̄, c̄, . . .} be the
set of co-names. Let  L = A ∪ Ā be a set of labels, and let τ be the invisible
action such that τ 6∈  L. Let Act =  L ∪ {τ} be the set of actions. Let P be a
set of process names, and let 0 ∈ P be the inactive process. Let E be the set of
restricted CCS expressions defined according to the following syntax:
E,E1, E2 := α.E | E1 + E2 | E1 ‖ E2 | E \ ` | 0 | P
where α, ` ∈ Act, E,E1, E2 ∈ E and P ∈ P. Process names P ∈ P are defined

such that for all P and E ∈ E , one has : P
def
= E. The set Action(E) of ac-

tions is inductively defined by Action(α.E) = {α} ∪ Action(E), Action(0) = ∅,
Action(P ) = Action(E) (with P

def
= E) and Action(E1 + E2) = Action(E1 ‖

E2) = Action(E1)∪Action(E2). The set of actions ResAction(E) is inductively
defined by: ResAction(E \ `) = ResAction(E) ∪ {`} and ResAction(α.E) =

ResAction(E), ResAction(0) = ∅, ResAction(P ) = ResAction(E) (with P
def
=

E) and ResAction(E1 + E2) = ResAction(E1 ‖ E2) = ResAction(E1)
∪ResAction(E2). The set Subterm(E) of CCS expressions is inductively defined
by Subterm(α.E) = {α.E} ∪ Subterm(E), Subterm(0) = ∅, Subterm(P ) =

Subterm(E) (with P
def
= E), Subterm(E1 +E2) = {E1 +E2} ∪ Subterm(E1) ∪

Subterm(E2) and Subterm(E1 ‖ E2) = {E1 ‖ E2}∪Subterm(E1)∪Subterm(E2).
A CCS expression E′ is a sub-term of E, or E contains E′, if E′ ∈ Subterm(E).

CCS programs. A CCS program S is a 3-tuple S = (Λ, Γ, P0) where Λ ⊆ Act,

Γ ⊆ P×E is a finite set of equations, denoted by (P,E) or by P
def
= E, and P0 ∈

dom(Γ ) is the head process name, which usually builds the complete system. For

example if we have : A
def
= a.B, B

def
= b.B, S = ({a, b}, {(A, a.B), (B, b.B)}, A)

is a CCS program.

Semantics. A CCS program S = (Λ, Γ, P0) defines the labeled transition system
(LTS) TCCS ⊆ E×Λ×E , built according to inference rules in Fig. 1. A transition



Act
α.E

α→ E
Com1

E1
α→ E′1

E1 ‖ E2
α→ E′1 ‖ E2

Sum1
E1

α→ E′1

E1 + E2
α→ E′1

Com2
E2

α→ E′2

E1 ‖ E2
α→ E1 ‖ E′2

Sum2
E2

α→ E′2

E1 + E2
α→ E′2

Com3
E1

a→ E′1 E2
ā→ E′2

E1 ‖ E2
τ→ E′1 ‖ E′2

Res
E

α→ E′

E \ ` α→ E′ \ `
if α, ᾱ 6= ` ∈  L

Con
E

α→ E′

P
α→ E′

if (P,E) ∈ Γ

Fig. 1. Inference rules of CCS

E
α→ E′ will denote the 3-uplet (E,α,E′) ∈ TE . In this context, CCS expressions

E and E′ can be called states.
As a CCS program S = (Λ, Γ, P0) has a head process, the initial state of the

corresponding LTS is the state (or process) P0.
A CCS expression E can perform an action α and becomes a CCS expression

E′ if the transition E
α→ E′ can be inferred by the rules of Fig. 1. For example,

the transition (a.b.0 + c.0) ‖ d.0 a→ b.0 ‖ d.0, can be inferred by rules Com1,
Sum1 and Act.

Derivatives. If E
α→ E′, the pair (α,E′) is called the immediate derivative of

E. If E
α0→ . . .

αn→ E′, the pair (α0 . . . αn, E
′) is called a derivative of E, where

α0 . . . αn is an action sequence.
Let deriv(E) be the set of all derivatives of E such that

deriv(E) = {(α0 . . . αn, E
′) | E′ ∈ E , E α0→ . . .

αn→ E′}.

3 Rewriting Approximations for CCS
Section 3 shows how to encode a CCS program into a TRS R and an initial
automaton A. The aim is to compute an over-approximation of R∗(L(A)) rep-
resenting an over-approximation of all derivatives of a CCS program and, then,
to verify properties such as absence of specific succession of actions.

3.1 Representation of a CCS program and semantics with terms
and TRS

Terms for CCS expressions. A term corresponding to a CCS expression in E
is built by induction on the structure of the CCS expression. Let FCCS be an
alphabet such that FCCS = F0∪F1∪F2∪F3, where F0 = {0}, F1 = {bar}∪Act,
F2 = {Pre, Sum,Com,Res, Sys}. Let Φ : E → T (FCCS) be the function such
that:

Φ(α.E) = Pre(Φ(α), Φ(E))
Φ(E1 + E2) = Sum(Φ(E1), Φ(E2))
Φ(E1 ‖ E2) = Com(Φ(E1), Φ(E2))



Φ(P ) = P , if P ∈ P
Φ(E \ `) = Res(Φ(E), `)
Φ(0) = 0

Φ(α) =

{
α if α ∈ A
bar(a) if α = ā and α ∈ Ā

Example 2. Let E = (a.b.0 + c.0) ‖ d.0 be in E . The term corresponding to this
expression is:
Φ(E) = Com(Φ(a.b.0 + c.0), Φ(d.0)

= Com(Sum(Φ(a.b.0), Φ(c.0)), P re(d, Φ(0)))
= Com(Sum(Pre(a, Φ(b.0)), P re(c, Φ(0))), P re(d,0))
= Com(Sum(Pre(a, Pre(b, Φ(0))), P re(c,0)), P re(d,0))
= Com(Sum(Pre(a, Pre(b,0)), P re(c,0)), P re(d,0))

Terms for derivatives. Let E be in E . A derivative (α0 . . . αn, E) is encoded into
a term of the type Sys(α0, Sys(. . . , Sys(αn, Φ(E)))). Formally, the encoding
function Ψ : deriv(E)× T (FCCS) is defined by:

Ψ((α,E)) = Sys(α,Φ(E))
Ψ((α0 . . . αn, E)) = Sys(α0, Ψ((α1 . . . αn, E)))

Rewriting rules for CCS semantics. Rewriting rules corresponding to CCS se-
mantic are in Figure 2.

ρ1 Pre(x, p) → Sys(x, p)
ρ2 Sum(Sys(x, p), r) → Sys(x, p)
ρ3 Sum(r, Sys(x, p)) → Sys(x, p)
ρ4 Com(Sys(x, p), r) → Sys(x,Com(p, r))
ρ5 Com(r, Sys(x, p)) → Sys(x,Com(r, p))
ρ6 Com(Sys(x, p), Sys(bar(x), r)) → Sys(τ, Com(p, r))
ρ7 Com(Sys(bar(x), p), Sys(x, r)) → Sys(τ, Com(p, r))
ρ8 Res(Sys(x, p), y) → Sys(x,Res(p, y))

Fig. 2. Rewriting rules for CCS semantics

Let Rϑsem denote the TRS defined by Rϑsem = {ρ1, . . . , ρ5} ∪ {lσ → rσ |
σ = (x, α), α ∈ ϑ, l → r ∈ {ρ6, ρ7}}, where ϑ ⊆ Act. Let RΘ1,Θ2

res be the
TRS defined by RΘ1,Θ2

res = {ρ8σ | σ(x) = α, σ(y) = β, α ∈ Θ1, β ∈ Θ2, α 6= β},
where Θ1, Θ2 ⊆ Act. The right part of the union in Rϑsem is made to have a left-
linear TRS (as rewriting rules ρ6 and ρ7 are not left-linear) because completion
algorithm requires a left-linear TRS to be correct. And, let RθCon denotes the
TRS defined such that RθCon = {Φ(P )→ Φ(E) | (P,E) ∈ θ}, where θ ⊆ P × E .

Now, we can define a TRS and a tree automaton corresponding to a CCS
program.

Given a CCS program S = (Λ, Γ, P0), let us denote by LS the tree language
defined such that LS = {Φ(P0)}, and let us denote by RS the TRS defined such
that RS = RΛsem∪RΓCon∪RΛ,Λ

′

res , where Λ′ = ResAction(E)∪ResAction(P ) for
all (P,E) ∈ Γ . The TRS RΓCon corresponds to the Con inference rule. The set



of actions Λ′ is the set of all actions ` used for the restriction in the definition
of S. Thereafter, we will use the TRS RΛ,Λ′

sr = RΛsem ∪RΛ,Λ
′

res .
The main idea is to compute the set R∗S(LS), representing all derivatives of

P0, and, then, compute the intersection betweenR∗S(LS) and a set of derivatives.
Intuitively, the TRS Rϑsem rewrites a term Φ(E) into a term Sys(α,Φ(E′)), if
it is possible, by rewriting leafs to the root. This process can be viewed as a
derivation of a transition E

α→ E′ by inference rules, but, in a reversed way.
Moreover, the TRS RθCon corresponds to equation(s) of a CCS program and
handles recursion in equations.

Example 3. Let E = (a.b.0 + c.0) ‖ d.0 be in E . According to CCS semantics

we have the transition E
a→ b.0 ‖ d.0, justified by inference rules Com1, Sum1

and Act. With the help of the TRS RAction(E)
sem rules, the term Φ(E) is rewritten

Sys(a, (Com(Pre(b,0), P re(d,0)))). More precisely we have :
Com(Sum(Pre(a, Pre(b,0)), P re(c,0)), P re(d,0))

→ρ1 Com(Sum(Sys(a, Pre(b,0)), P re(c,0)), P re(d,0))
→ρ2 Com(Sys(a, Pre(b,0)), P re(d,0))
→ρ4 Sys(a,Com(Pre(b,0), P re(d,0)))

As we can see, it is possible to draw a parallel between proving that one
has E

a→ b.0 ‖ d.0 with inference rules of Fig. 1, and rewriting Φ(E) into
Ψ((a, b.0 ‖ d.0)): rule ρ1 matches with the inference rule Act, rule ρ2 with
Sum1, and rule ρ4 with Com1.

Lemma 1. Let α be in Act and Es, E be in E. If α.Es ∈ Subterm(E) then
Pre(α,Φ(Es)) is a sub-term of Φ(E).

Proof. We will show that there exists a position p ∈ Pos(Φ(E)) such that
Φ(E)|p = Pre(α,Φ(Es)) by structural induction on E:

Case 1: E = β.E′

Case 1.1: β = α and E′ = Es
According to definition of Φ we have Φ(E) = Φ(α.Es) = Pre(α,Φ(Es))
and p = ε.

Case 1.2: β 6= α or E′ 6= Es
One has Φ(β.E′) = Pre(β, Φ(E′)) with α.Es is a sub-term of E′ and,
by induction hypothesis, there exists a position p = 2.p′ such that
Φ(E′)|p′ = Pre(α,Φ(Es). Then, the proof is by induction on E′, thus
p = 2.p′ satisfies the requirement.

Case 2: E = E1 + E2

Case 2.1: α.Es is a sub-term of E1

According to the definition of Φ we have :
Φ(E) = Φ(E1 + E2) = Sum(Φ(E1), Φ(E2)) with α.Es a sub-term of
E1. By induction hypothesis, one has p = 1.p′ such that Φ(E1)|p′ =
Pre(α,Φ(Es)). Then, the proof is by induction on E1.

Case 2.2: α.Es is a sub-term of E2

Similar to case 2.1.



Case 3: E = E1 ‖ E2

Similar to case 2.
Case 4: E = E′ \ `

According to definition of Φ we have Φ(E) = Res(Φ(E′), `) with α.Es a
sub-term of E′, and one has p = 1.p′ such that Φ(E′)|p′ = Pre(α,Φ(Es))}.
Then, the proof is by induction on E′.

There are no cases E = 0 or E = P with P ∈ P, because the condition of
lemma 1 α.Es ∈ Subterm(E) is not verified. ut

Proposition 1. Let E and E′ be two CCS expressions, let α ∈ Act, let AE =
Action(E) and A′E = ResAction(E). If E

α→ E′ then

Sys(α,Φ(E′)) ∈ RAEA
′
E∗

sr (Φ(E))

Proof. Assuming that E
α→ E′, we will show there exists a sequence of rewriting

rules r0, . . . , rn ∈ R
AEA

′
E∗

sr and a sequence of terms t0, . . . , tn ∈ T (FCCS) such
that Φ(E) = t0 →r0 . . .→rn tn = Sys(α,Φ(E′)). (1)

We begin by proving that r0 = ρ1. In fact, as Pos{Sys}(t0) = ∅, only rule

ρ1 can be applied to t0. As E
α→ E′, E contains a sub-term of the form α.Es,

then, according to Lemma 1, there exists a position p ∈ Pos(Φ(E)) such that
Φ(E)|p = Pre(α,Φ(Es)). We can conclude that there exists a substitution σ :
X → T (FCCS) such that t0 →ρ1 t0[rρ1σ]p (with ρ1 = lρ1 → rρ1). (2)

Now we have to show (1) using (2) by transition induction on the depth of

the inference by which the action E
α→ E′ is inferred. We argue by cases on the

form of E and its sub-terms:

Case 1: E = β.E1

As E
α→ E′, one has β = α and E1 = E′. Then, using (2), we have

Φ(E) = Pre(α,Φ(E′)) and Φ(E)→ρ1 Sys(α,Φ(E′)). One can conclude that

Sys(α,Φ(E′)) ∈ RAEA
′
E∗

sr (Φ(E)).
Case 2: E3 = E1 + E2, where E3 is a sub-term of E

Case 2.1: (α,E′1) is a derivative of E1

According to the definition of Φ, one has Φ(E3) = Sum(Φ(E1), Φ(E2)).
As Φ(E1) = Sys(α,Φ(E′1)), and by induction hypothesis (1), there exists
a substitution σ1 : X → T (FCCS) such that lρ2σ1 →ρ2 rρ2σ1. We obtain
Φ(E3) →ρ2 Sys(α,Φ(E′1)). If E3 = E then Proposition 1 is proved, else
the proof continues by induction on a sub-term of E containing E3.

Case 2.2: (α,E′2) is a derivative of E2

Similar to case 2.1.
Case 3: E3 = E1 ‖ E2

Similar to case 2.
Case 4: E2 = E1 \ `, where E2 is a sub-term of E such that (α,E′1) if a deriva-

tive of E1.
According to the Φ definition, one has Φ(E2) = Res(Φ(E1), Φ(`)). As Φ(E1) =
Sys(α,Φ(E′1)), one has Φ(E2) = Res(Sys(α,Φ(E′1)), Φ(`)).



One obtains Φ(E2) →ρ8 Sys(α,Res(Φ(E′1), Φ(`))). If E2 = E then Proposi-
tion 1 is proved, else the proof continues by induction on a sub-term of E
containing E2.

ut

Directly from Proposition 1, we can deduce that for all D ∈ Deriv(E) one

has Ψ(D) ∈ RAEA
′
E∗

sr (Φ(E)). Moreover, for CCS programs (and not only CCS
expressions as in Proposition 1) we have the following proposition:

Proposition 2. Let S = (Λ, Γ, P0) be a CCS program. If d ∈ Deriv(P0) then
Ψ(d) ∈ R∗S(LS).

Proof. We will show that Ψ(P0) →∗RS Ψ(d). As d ∈ Deriv(P0), one has d =

(α0 . . . αn, En) and by definition one has P0
α0→ E1 . . .

αn→ En. As P0 ∈ P and

P0
α0→ E1, there exists (P0, E0) ∈ Γ such that E0

α0→ E1. Let Λ′ = ResAction(E)∪
ResAction(P ) for all (P,E) ∈ Γ . According to Proposition 1, one has Φ(E0)→∗RΛΛ′

sr

Sys(α0, Φ(E1)). In addition, one has Φ(E0)→∗RΛΛ′
sr

Sys(α0, Φ(E1))→∗RΛΛ′
sr

. . .→∗RΛΛ′
sr

Sys(α0, Sys(. . . , Sys(αn−1, Φ(En−1)) . . .))→∗RΛΛ′
sr

Sys(α0, Sys(. . . , Sys(αn, Φ(En)) . . .)).
It remains to prove that Φ(P0) →∗RS Φ(E0). By definition, there exists a

rewriting rule Φ(P0) → Φ(E0) ∈ RΓCon. From this we obtain that Φ(P0) →∗RS
Φ(E0). Finally we can conclude Φ(P0)→∗RS Φ(E0)→∗RΛΛ′

sr
Sys(α0, Φ(E1))→∗RΛΛ′

sr

. . .→∗RΛΛ′
sr

Ψ((α0 . . . αn−1, En−1))→∗RΛΛ′
sr

Ψ(d) which completes the proof. ut

4 The Alternating Bit Protocol Verification

This section shows that the Alternating Bit Protocol (ABP) CCS program is not
able to perform a specific succession of actions represented by a set of derivatives.

Given the TRS R and the language L, corresponding to the ABP CCS pro-
gram, the construction of the set R∗(L) is not possible, but an over-approxima-
tion K of this reachability set can be computed [14, 19]. Because of the over-
approximation, we can only deduce that a language Lp is not reachable (R∗(L)∩
Lp = ∅) if K ∩ Lp = ∅. In our case, the language K recognises an over-
approximation of all possible derivatives of the ABP CCS program, and the
language Lp recognises a set of derivatives we do not want to be in K. Then,
if the intersection between K and Lp is empty, we can conclude that the set of
all possible derivatives of the ABP CCS Program does not contain derivatives
represented by Lp.

4.1 The Alternating Bit Protocol description

The ABP is a protocol made to ensure the successful transmission of messages
through a channel which may lose or duplicate data. More precisely, the ABP
is composed of a Sender and a Receiver communicating via two channels (which
may lose or duplicate messages) called Trans and Ack. The Sender sends a
message with a bit b through the Trans channel, and sends it one or more times
until the Receiver sends an acknowledgment with the bit b through the Ack



channel. After the reception of this message by the Sender, it sends (once or

more) another message with the bit b − 1 (also written b̂) until it receives an

acknowledgment with the bit b̂, and so on.

4.2 Modeling the ABP

The CCS specification of ABP used in this article can be found in [22], and is
represented by the CCS program ABP = (Λ, Γ,AB) where :

– the set Λ = {accept, ack(b), deliver, reply(b), send(b), trans(b)};
– the set Γ is composed of rules in Figures 3 and 4, where for each transition
A

α→ B we have (A,α.B) ∈ Γ , with A, B ∈ E and α ∈ Λ.

The corresponding TRS RABP and tree language LABP is defined according
to definition in Section 3. But also, we have to add rewriting rules to handle
sequences of bits.

Send(b)
def
= send(b).Sending(b)

Sending(b)
def
= τ.Send(b) + ack(b).Accept(b̂) + ack(b̂).Sending(b)

Accept(b)
def
= accept.Send(b)

Reply(b)
def
= reply(b).Replying(b)

Replying(b)
def
= τ.Reply(b) + trans(b̂).Deliver(b̂) + trans(b).Replying(b)

Deliver(b)
def
= deliver.Reply(b)

AB
def
= Accept(b̂) ‖ Trans(ε) ‖ Ack(ε) ‖ Reply(b)

Fig. 3. System equations for ABP

Ack(bs)
ack(b)−→ Ack(s)

Ack(s)
reply(b)−→ Ack(sb)

Ack(sbt)
τ→ Ack(st)

Ack(sbt)
τ→ Ack(sbbt)

Trans(sb)
trans(b)−→ Trans(s)

Trans(s)
send(b)−→ Trans(bs)

Trans(tbs)
τ→ Trans(ts)

Trans(tbs)
τ→ Trans(tbbs)

where s, t ∈ {0, 1}∗ and b ∈ {0, 1}.

Fig. 4. System transitions for ABP

4.3 Verifying the ABP

In this section we will show how to verify, using the tool Tomedtimbuk [2], that
the ABP can not send a message with the bit b after an acknowledgment with
the bit b.

We proceed as follows: first, the property is modeled using patterns. Then,
we have to find an abstraction function suitable for our analysis to ensure ter-
mination of the completion. Finally we use the Tomedtimuk tool to prove auto-
matically that the ABP can not acknowledge and then send a message with the
same bit.



The property modelisation is very simple, one can use the following patterns:

Sys(s,Sys(bar(send(b)),Sys(ack(b),Sys(bar(send(b)),Sys(ss,p)))))
Sys(s,Sys(bar(send(inv(b))),Sys(ack(inv(b)),Sys(bar(send(inv(b))),Sys(ss,p)))))
Sys(s,Sys(bar(send(b)),Sys(ack(b),Sys(bar(send(b)),p))))
Sys(s,Sys(bar(send(inv(b))),Sys(ack(x,y,inv(b())),Sys(bar(send(inv(b))),p))))
Sys(bar(send(b)),Sys(ack0(b),Sys(bar(send(b)),p)))
Sys(bar(send(inv(b))),Sys(ack(inv(b)),Sys(bar(send(inv(b))),p)))

where s, ss and p can be anything in T (FCCS). Those six patterns represent
all possible derivatives of ABP where an action send(b) succeeds to an action
ack(b) (with b ∈ {0, 1}).

Concerning the abstraction function, the main idea is to abstract each ac-
tion involved in the property in one state, and all other actions into one other
state. Abstraction rules for the ABP actions, process names and bits are: [x →
y] → [b → qb, inv(qb) → qb, send(qb) → qsend, bar(qsend) → qsend, ack(qb) →
qack, accept(qb) → qrem, reply(qb) → qrem, trans(qb) → qrem, deliver(qb) →
qrem, nil→ qrem, bar(qrem)→ qrem, Send(qb)→ qrem, Sending(qb)→ qrem,
Accept(qb) → qrem, Reply(qb) → qrem, Replying(qb) → qrem, Deliver(qb) →
qrem]. The [x → y] part matches any new transition which need to be nor-
malized. The rules b→ qb and inv(qb)→ qb merge all bit into one state qb. The
rules send(qb)→ qsend, bar(qsend)→ qsend and ack(qb)→ qack merge all actions

send(b) and ack(b) into, respectively, states qsend and qack. All others actions
and process names are merged into one state qrem, according to the fact that
those last actions and process names are not referenceed by the property.

Finally, given the initial automaton recognizing LABP , the TRS RABP , the
property and the abstraction function, the Tomedtimbuk tool computes a fix-
point automaton Ak over-approximating the set of all possibles derivatives of
ABP. The intersection between L(Ak) and the property is empty, so we can con-
clude the ABP can not do an action send(b) after an action ack(b), according
to the following Proposition 3.

Proposition 3. Let S = (Λ, Γ, P0) be a CCS program, let Lp be the language
representing a derivative (α0 . . . αn, E) with α0, . . . , αn ∈ Λ and E ∈ E such that
Lp = {Ψ((α0 . . . αn, E))}. One has: R∗S(LS)∩Lp = ∅ if and only if (α0 . . . αn, E)
is not a derivative of P0.

Proof. We have to prove that (R∗S(LS)∩Lp = ∅)⇔ ((α0 . . . αn, E) 6∈ Deriv(P0)).
The proof is divided into two parts: we will prove that (R∗S(LS) ∩ Lp = ∅) ⇒
((α0 . . . αn, E) 6∈ Deriv(P0)) (1), and then that ((α0 . . . αn, E) 6∈ Deriv(P0))⇒
(R∗S(LS) ∩ Lp = ∅) (2).

(1) By contraposition of Proposition 2, one has (R∗S(LS) ∩ Lp = ∅) ⇒
((α0 . . . αn, E) 6∈ Deriv(P0)).

(2) Suppose that ((α0 . . . αn, E) 6∈ Deriv(P0))⇒ (R∗S(LS)∩Lp = ∅) is false,
we have the following hypothesis : ((α0 . . . αn, E) 6∈ Deriv(P0))∧(R∗S(LS)∩Lp 6=
∅). If R∗S(LS) ∩ Lp 6= ∅ then Ψ(P0) →∗RS Ψ((α0 . . . αn, E)). We will prove that
(α0 . . . αn, E) ∈ Deriv(P0) which is in contradiction with the hypothesis. In
order to succeed we have to prove the Lemma 2.



Lemma 2. Let E and E′ be two CCS expressions, let α be an action name and
let AE = Action(E) and A′E = ResAction(E). If Φ(E)→∗

R
AEA

′
E

sr

ψ((α,E′)) then

E
α→ E′.

Proof. We have to show that E′ can be built according to the inference rules of
Figure 1 from E.

As Pos{Sys}(Φ(E)) = ∅, one has Φ(E)→ρ1 t1 →∗
R
AEA

′
E

sr

Ψ((α,E′)) such that

there exists p ∈ Pos(t1) where Φ(E)|p = Pre(α,Φ(E1)) and t1|p = Sys(α,Φ(E1)).

If p = ε then one has Φ(E) ≡ Φ(α.E′), and we can deduce that E
α→ E′ according

to the Act inference rule. Else, one has α.E1
α→ E1.

Then, we argue by cases of the term at a position p′, such that p = p′.1 or
p = p′.2:

Case 1: t1|p = Sum(Sys(α,Φ(E1)), t2) (resp. t1|p = Sum(t2, Sys(α,Φ(E1))))
According to rewriting rule ρ2 (resp. ρ3), it follows that t1|p →ρ2 Sys(α,Φ(E1))

(resp. t1|p →ρ3 Sys(α,Φ(E1))). As α.E1
α→ E1, hence α.E1 + E2

α→ E1

(where t2 = Φ(E2)), according to Sum1 and Sum2 inference rules.
Case 2: t1|p = Com(Sys(α,Φ(E1)), t2) (resp. t1|p = Com(t2, Sys(α,Φ(E1))))

Similar to Case 1.
Case 3: t1|p′.1 = Res(Sys(α,Φ(E1)), `), with ` an action name. According

to rewriting rule ρ8, it follows that t1|p′.1 →ρ8 Sys(α,Res(Φ(E1), `)). As

α.E1
α→ E1, hence α.E1 \ `

α→ E1 \ ` according to Res inference rule.
ut

Consequently to Lemma 2, one has (α0 . . . αn, E) ∈ Deriv(P0) if Ψ(P0)→∗RS
Ψ((α0 . . . αn, E)). This contradicts the hypothesis and proves (2).

Finally, from proofs of (1) and (2), one can conclude that (R∗S(LS) ∩ Lp =
∅)⇔ ((α0 . . . αn, E) 6∈ Deriv(P0)). ut

5 Hardware components verification
In this section we are going to verify properties over two hardware components
specified with CCS [25].

5.1 The Lockable component
The Lockable component is composed of two elements:

– one element with three inputs a, b and free, and one output z ;
– one element with two inputs lock and unlock, and one output free.

We call Lockable the component including the parallelization of this two elements,
while restricting the free action. Lockable allows the lock and unlock effects on
z output. Indeed, there is no output z when the lock action is done, until the
unlock is done. And there is an output z only after a silent action. The CCS
program corresponding to the Lockable component is defined in Figure 5, where
LC is the initial process.

The property we want to verify is : Is Lockable able to realize an action lock
followed by an action z ? To answer this question, we proceed in a same way



that for ABP. A TRS RLC and a tree automaton ALC are constructed from the
Lockable CCS program, the abstraction function is written following the principle
used for ABP. Finally, a tree automaton Ap is build to recognize derivative of
the form(α∗(lockz)α∗, E) (where α is an action and E a CCS expression). Using
Tomedtimbuk tools, one has R∗LC(L(ALC)) ∩ L(Ap) = ∅, so we can answer No
to the question.

LockC
def
= (a.b+ b.a).free.z.C

Lock
def
= free.Lock + lock.unlock.Lock

LC
def
= (LockC ‖ Lock) \ {free}

Fig. 5. Equations for the Lockable com-
ponent

U1
def
= r1.gS.g1.d1.pS.a1.U1

U2
def
= r2.gS.g2.d2.pS.a2.U2

S
def
= (gS.pS.S) \ {gS, pS}

Fig. 6. Equations for the RGDA com-
ponent

5.2 The RGDA component

The RGDA component (Request Grant Done Acknowledgment) is a component
handling two users access to a critical section. It ensures that one user access
to this section at a time. The CCS program corresponding to this component is
composed by equations of Figure 6, where S is the initial process, U1 and U2 are
users.

The property we want to verify is : Is RGDA able to realize the actions g1 and
g2 successively ? As the Lockable component, a TRS RRGDA, a tree automaton
ARGDA, an abstraction function and a tree automaton Ap are defined. The tree
automaton Ap recognizes derivatives of the form (α∗(g1g2)α∗, E) (where α is
an action and E a CCS expression). With the help of Tomedtimbuk, one can
compute that R∗RGDA(L(ARGDA)) ∩ L(Ap) = ∅, so we can answer No to the
question.

6 Conclusion and Related works

The paper describes a method of encoding CCS specifications into a TRS and
a tree automaton. Using the completion algorithm, one can compute an over-
approximation of reachable derivatives K, modulo bisimulation. It means that
the set K do not contain CCS expressions bisimilar to CCS expressions of deriva-
tives in K. Then, it is possible to semi-decide if derivatives, encoded into a tree
automaton, are reachable or not. So, bisimilar CCS expressions have to belong to
those derivatives in order to get a correct answer by the semi-decision procedure.

For other existing process algebras like CSP, BPP, BPA, PA, SDL, LOTOS,
. . ., sharing syntax and semantics elements with CCS, it could be insteresting to
adapt the over-approximation rewriting to those process algebras.

Furthermore, to build this over-approximation, a pertinent abstraction func-
tion is needed i.e. the abstraction function allows the termination of the over-
approximation computation without introducing spurious counter-examples which
prevent the verification to conclude. In sections 4 and 5, abstraction functions
can easily be generated automatically according to a property. However, it is not
always possible. Note that the automatic generation of abstraction function has
already been used for the protocol verification [3].



Related Works It exists some tools made for the verification of CCS programs,
as the Edinburgh Concurrency Workbench [23], the Concurrency Workbench
North Carolina [9] and XMC [24], which are finite-state model-checkers while
our technique deals with infinite-state systems. Also, verification of CCS pro-
grams can be done with Maude [27], where the CCS semantics is represented by
conditional rewriting rules, while our method uses rewriting rules.

In [15], authors present a semi-decision procedure allowing verification of
ACTL properties [11] (action based temporal properties) for infinite states sys-
tems. The method presented in this article does not handle CTL properties, but
allows to verify reachability properties, based on actions and on CCS expres-
sions. This property is represented by a tree automaton, instead of a temporal
property. This can be similar to the proof by bisimulation, where behaviors of
two CCS expressions are compared from the action point of view.
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