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Numerical simulations of a transport-aircraft configuration
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An implicit low-cost Navier-Stokes solver combined with a multigrid algorithm and wall functions has been
developed for efficient numerical simulations on a realistic wing-body aircraft configuration. A study of the
behavior of different transport-equation turbulence models is given. Comparisons are made with experimental
data. The structure of the three-dimensional flow separation predicted by computations is described and its
topological coherence is checked.
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1 INTRODUCTION

During the last decade, considerable progress has been made in the development and validation
of numerical simulation solvers for complex aerodynamic applications. Today, advanced
numerical tools are intensively used in the design process of aerospace components which
involve three-dimensional turbulent flows with separation. However, CFD codes still suffer from
deficiencies in representability of computations with respect to the physics, from the lack of
accuracy and robustness and from large CPU costs. Indeed, despite the computers growing
capacity, the resolution of the Reynolds-Averaged Navier-Stokes (RANS) equations coupled
with a transport-equation turbulence model, integrated down to the wall, for a complete aircraft
configuration remains expensive.

In order to reduce the CPU cost, different strategies have been explored : implicit methods,
multigrid algorithm and parallel computing. Another possibility to avoid the full Navier-Stokes
resolution is the use of wall functions as boundary conditions. Thanks to the robustness
improvement, the quality of results in two-dimensional separated flows and the CPU cost
saving, the wall law approach is a promising method (Mohammadi and Pironneau 1997, Craft
et al. 2004, Kalitzin et al. 2005). However, the existence of a law of the wall for three-dimensional
flows is still an open issue. Olcmen (Olcmen and Simpson 1992) has investigated the possible
existence of a universal velocity profile in three-dimensional boundary layers and has concluded
that there is not strong evidence for such a 3D turbulent boundary layer velocity profile, neither
for the streamwise component nor for the transversal component. In the numerical study of the
flow around an ellipsoid, Tsai and Withney (Tsai and Whitney 1999) used a logarithmic law
for the streamwise direction but changed the value of the constant to obtain a good agreement
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with the experimental data.

In the present study, we propose a low-cost implicit solver coupled with a multigrid algorithm
and the use of a wall law approach to investigate the 3D flow around a wing-body configuration.
Moreover, the behavior of four popular turbulence models is compared. This configuration has
been a European test-case to validate CFD codes and turbulence modeling. It was computed
by LeBalleur (LeBalleur et al. 1997) using a defect-formulation theory and a 3D thin-layer
approach. RANS computations have been performed with the Baldwin-Lomax model (Elsholtz
and John 1997), the Granville algebraic model, the one-equation Wolsthein model and the
Chen-Patel two-layer model (Tourrette 1996) and also with an improved k − ω model (Kroll
et al. 2000). A study of a drag polar has been realized with the k− ω linearized algebraic stress
(LEA) model (Rakowitz et al. 2003). Recently computations with explicit algebraic Reynolds-
stress models (EARSM) have been performed and attention was drawn to the leading-edge
separation pocket on the outboard part of the wing (Franke et al. 2005). Regarding the shock
location, algebraic models can not give predictions with an acceptable level of accuracy. At
least a transport-equation model, which takes into consideration history effects, is required to
accurately model 3D flow phenomena.

Finally, a study of the wing-fuselage junction flow is proposed. The adverse pressure gradient in
the streamwise direction imposed by the wing often causes the upwind boundary layer on the
body to separate and to form a horseshoe vortex around the wing. On the trailing edge, the
horseshoe vortex feeds a vortical structure, called tornado vortex. The topological coherence of
numerical vortices is checked based on the critical-point theory.

2 GOVERNING EQUATIONS AND TURBULENCE MODELS

2.1 Reynolds-Averaged Navier-Stokes equations

The compressible RANS equations coupled with a two-equation turbulence model can be ex-
pressed as :

∂w

∂t
+ div (Fc − Fv) = S (1)
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where w denotes the conservative variables, Fc and Fv the convective and viscous flux densities
and S the source terms which concern only the transport equations. Ψ is the length scale deter-
mining variable.
The exact expression of the eddy viscosity µt and the source terms depends on the turbulence
model, as well as the constants σk and σΨ.
The total stress tensor τ is evaluated following the Stokes hypothesis and the Boussinesq as-
sumption. The total heat flux vector q is obtained from the Fourier law with the constant Prandtl
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number hypothesis.

τ = τv + τ t = (µ+ µt)

[

1

2
( grad V + (grad V )t)−

2

3
( divV )I

]

+
2

3
kI (2)

q = qv + qt = −
(

µ

Pr
+

µt

Prt

)

Cp gradT (3)

The viscosity is determined by the Sutherland law.

2.2 Turbulence Models and Wall law approach

Various two-equation turbulence models are used in the present study : the Smith k − l model
(Smith 1994), the Wilcox k − ω model (Wilcox 1988), the Menter SST k − ω model (Menter
1993, 1994) and also the one-equation Spalart-Allmaras (Spalart and Allmaras 1992).

At the wall, a no-slip condition is used coupled to a wall law treatment. It consists in imposing
the diffusive flux densities, required for the integration process, in adjacent cells to a wall. The
shear stress τ and the heat flux q are obtained from an analytical velocity profile

u+ = y+ if y+ < 11.13

u+ =
1

κ
ln y+ + 5.25 if y+ > 11.13

u+ = u/Uτ ; y+ =
yUτ

νw

(4)

and from the integration of the total enthalpy equation, in which the convection is neglected

uτxy − qy = −qw (5)

where x and y denote here the longitudinal and normal direction with respect to the wall.
In equation (4), u represents the van Driest (1951, 1957) transformed velocity for compressible
flows

u =

∫ u

0

√

ρ

ρw
du (6)

For an adiabatic wall, integration of equations (5) and (6) gives

Tw − T = A
u2

2
; A =

µ+ µt

Cp

(

µ

Pr
+

µt

Prt

) (7)

u =
1

√
B

arcsin(
√
Bu) ; B =

A

2Tw
(8)

The wall law treatment is now straightforward. Knowing u from the Navier-Stokes solution,
relationships (7) and (8) give u. The shear stress value is obtained from (4) and is assumed
constant in the wall normal direction. To compute boundary layer separation, the wall law is
expressed in a reference frame defined by the velocity direction in adjacent cells to a wall. Such
a treatment is not in contradiction with the fact that the log law does not exist in separated
regions. Actually, in these regions, τw remains small and therefore y+ is small, leading to the use
of the linear part of the velocity profile. This is equivalent to computing the velocity gradient
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over two points instead of three for the ordinary cells.

For three-dimensional boundary layers, the existence of a wall law is assumed valid for the
streamwise velocity component. Moreover, in adjacent cells to a wall, the velocity is supposed
colinear to the wall friction direction. This is the only assumption made regarding the transversal
velocity component.

As concerns the transport equations of the turbulence models, k is set to 0 at the wall and its
production is imposed according to the formulation proposed by Viegas and Rubesin (Viegas
and Rubesin 1983, 1985) where the thickness of the viscous sub-layer y+v is assumed constant

(Pk)1 =
τ
3/2
w

2κy1
√
ρw

ln
2y1
yv

(9)

For the two-equation models, the second variable is deduced from an analytical relation and is
imposed in adjacent cells to a wall. The characteristic length scale of the Chen model (Chen and
Patel 1988) is used for the specific dissipation ω and a classical linear law for the length l.
For the one-equation Spalart-Allmaras model, the transported quantity is imposed in adjacent
cells to a wall by using the closure relations of the model, the velocity profile and a mixing-length
formulation for the eddy viscosity.
More details concerning the wall law approach are given in reference (Goncalves and Houdeville
2001).

3 NUMERICAL METHODS

The numerical simulations were carried out using an implicit CFD code solving the uncoupled
RANS/turbulent systems for multi-domain structured meshes. This solver is based on a cell-
centered finite-volume discretization.

3.1 Spatial discretization

The system in integral form is written for a computational cell of volume Ω limited by a surface
Σ and with an outer normal n. These equations can be expressed as :

d

dt

∫

Ω
w dΩ +

∮

Σ
Fc.n dΣ −

∮

Σ
Fv .n dΣ =

∫

Ω
S dΩ (10)

Using the finite-volume technique for space discretization, a semi-discrete form of equations may
be written as:

Ω
∂w

∂t
+

∑

allfaces

(Fc − Fv).nΣ = ΩS (11)

For the mean flow, the convective flux density vector on a cell face is computed with the
space-centered Jameson scheme stabilized by a scalar artificial dissipation (Jameson et al.

1981). The dissipative operator comprises second (parameter k2) and fourth (parameter k4)
order differences.

Discretization of the viscous terms is performed by a second-order space-centered scheme.
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For the turbulence transport equations, the upwind Roe scheme (Roe 1981) was used to obtain
a more robust method. The second-order accuracy was obtained by introducing a flux-limited
dissipation (Tatsumi et al. 1995).

3.2 Temporal discretization

Time integration is achieved through a low-cost implicit method (Luo et al. 1998, 2001). The
implicit method consists in solving a system of equations arising from the linearization of a fully
implicit scheme, at each time step. The main feature of this method is that the storage of the
Jacobian matrix is completely eliminated, which leads to a low-storage algorithm. The viscous
flux Jacobian matrices are replaced by their spectral radii. The convective flux are written with
the Roe scheme instead of the Jameson scheme because of the dissipation term, the use of an
inconsistent linearization having no consequence for steady computations. The Jacobian matrices
which appear from the linearization of the centered fluxes are approximated with the numerical
fluxes. The following system is obtained, for the iteration n:

∆wn +
∑

l=i,j,k

[

σlδlµl(∆fn
l )− σlδl(ρ

V
l Id∆wn)− σlδl (Dlδl∆wn)

]

= Rn
expl (12)

where ∆wn = wn+1−wn, σl = ∆t/∆xl, and Rn
expl represents the explicit conservative residuals.

For each direction l, ρVl is the viscous spectral radius, µl is the averaged operator, δl is the
difference operator, fl is the physical convective flux and Dl the dissipation matrix.
Then, the numerical dissipation matrices are replaced by their spectral radii and the system
becomes matrix-free.

The implicit time-integration procedure leads to a system which can be solved directly or itera-
tively. The direct inversion can be memory intensive and computationally expensive. Therefore,
an implicit relaxation procedure is preferred and the point Jacobi relaxation algorithm was
chosen.

Concerning the turbulence transport equations, the diffusive flux Jacobian matrix is also
replaced by its spectral radius. The source term needs a special treatment (Merci et al. 2000).
Only the negative part of the source term Jacobian matrix is considered and replaced by its
spectral radius. The system obtained is solved with a line-alternated Jacobi relaxation algorithm.

For steady state computations, convergence acceleration was obtained using a local time step
and the full approximation storage (FAS) multigrid method proposed by Jameson (Jameson
1985). Forcing functions are defined on the coarser grids and added to the residuals used for the
stepping scheme. The corrections computed on each coarse grid are transferred back to the finer
one by trilinear interpolations. The turbulent equations are only solved on the fine grid and the
computed eddy viscosity µt is transferred to the coarse grids. The multigrid algorithm is applied
through a V -type cycle.

3.3 Wall boundary condition

At the wall, a no-slip condition was used coupled to a wall law treatment. It consists in
imposing the diffusive flux densities, required for the integration process, in adjacent cells to
a wall. The shear stress τ and the heat flux q are obtained from the analytical velocity profile (4).

When using the wall law approach with the multigrid algorithm, the wall law boundary condition
is applied on the fine grid and the classical no-slip condition is applied on the coarse grids.
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3.4 Turbulence Models

As the discretization scheme does not insure the positivity of the turbulent conservative variables,
limiters are used to avoid negative k or ε values. These limiters are set equal to the corresponding
imposed boundary values in the far field.

4 COMPARISON TO EXPERIMENTS

4.1 Experimental conditions

The DLR-F4 wing-body configuration has been studied experimentally in three different Euro-
pean wind tunnels (Redeker et al. 1987). The model is representative of a realistic transport-
aircraft configuration (1,17m span and 1.19m body length) with a high aspect ratio transonic
wing and an Airbus-type fuselage. The test case is defined as follows :
M∞ = 0.75, Mach number
α = 0.93o, angle of attack
Ti = 300K, stagnation temperature
Rec = 3106, Reynolds number based on the aerodynamic mean chord equal to 0.14m.

4.2 Mesh

The mesh used is a single block C − O which defines half of the wing-body configuration. It
contains 1026715 nodes, 257 nodes in the main direction, 85 in the normal direction of the wing
and 47 in the spanwise direction along the wing. The outer boundaries are fixed at approxima-
tively 4 fuselage-lengths (FL) upstream, one FL below and above the configuration and 3 FL
downstream. In the spanwise direction, the mesh covers one additional FL. A special contraction
of the mesh is applied in the main flow direction, on the upper side of the wing, in the shock
wave area.
The goal of the paper is not to obtain the best results with the finest mesh, but to obtain a
reasonable quality of results at low cost. Thus, neither a grid refinement study nor a study of
the influence of far-field distance were undertaken.
The y+ values, at the center of the first cells, vary between 1 and 30 on the wing and between
30 and 80 on the fuselage. Views of the mesh on the solid walls are given in Figure 1.

4.3 Numerical parameters

Computations are started from an uniform flow-field using a local time step. The numerical
parameters used are :
- the CFL number, 10
- Jacobi iterations for the implicit stage, 14
- grids levels with multigrid algorithm, 2
- parameter k2 of artificial dissipation: 0.5
- parameter k4 of artificial dissipation: 0.032 for Jones-Launder and Wilcox models, 0.016 for
other ones
- the farfield value of turbulent viscosity µt∞ = 0.1µ∞

- the farfield value of turbulent kinetic energy k∞ = 0.0012 m2/s2

- the farfield value of dissipation rate ε∞ = 42 m2/s3

- the farfield value of specific dissipation ω∞ = 3500 s−1

For the computations, the flow is assumed to be fully turbulent.
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4.4 Convergence and CPU time

In Figure 2 is plotted the evolution of residuals for computations without multigrid algorithm
and with two grids level. Both computations have been carried out with the k − l model. The
use of an implicit solver coupled with a multigrid strategy and wall functions allows to obtain a
steady converged result with only 1000 iterations (about 55 minutes on a NEC-SX5 computer).
For one-grid computations with two-equation models, the CPU time for 1000 iterations is about
2400s, except the SST model, which needs about 6% more time. Two-grid computations need
about 45% more computational time.
Faster computations could be obtained by using more efficient multigrid algorithm such as an
adaptative-smoothing procedure (Drikakis et al. 2000).

4.5 Aerodynamic coefficients

The values of the aerodynamic coefficients of the complete configuration are reported in table 1,
for each turbulence model. The best lift coefficient is obtained with the Spalart-Allmaras model
(only 1.5 % of error). The Wilcox model over-predicts the lift coefficient (around 11%) whereas
the SST Menter model under-predicts it.
For all computations, the drag coefficient is largely under-estimated, especially with the Menter
model (around 25% of error).

4.6 Pressure coefficient

The pressure coefficient distribution is shown in Figure 3, for three spanwise sections on the
wing. The pressure level near the leading edge, on the suction side, is underestimated by all
computations. At the closest section to the body, y/b = 0.185, the best result is obtained with
the k − l model. The Spalart-Allmaras and Menter SST models predict a large and unrealistic
separation at the trailing edge. This was also observed on DLR-F6 wing-body computations
(Schwamborn 2006).
At the other sections, the shock location is well predicted with the Spalart-Allmaras model and
a little downstream with the Smith model. As observed for two-dimensional computations, the
Wilcox model predicts a shock location far away from the experimental data and the SST Menter
model at an upstream location.

4.7 Skin friction coefficient

The evolution of the skin friction coefficient in the streamwise direction, on the suction side, is
presented in Figure 4. There are no experimental values available, only an oil flow picture which
does not show any shock-induced separation, which is well predicted by all computations. The
SST Menter model gives the lowest skin friction levels. Near the wing root, the Spalart-Allmaras
model is close to the Menter model.

4.8 Deviation angle

The evolution of the deviation angle β0 (angle between the wall friction and the velocity at the
boundary layer edge), on the suction side, is considered in Figure 5. There is a clearly pronounced
peak at the shock location, the wall flow being deviated towards the wing tip. The SST model
predicts large values of the deviation in the shock region and at the trailing edge. At the closest
section to the body, as noticed on the pressure distribution, the Spalart-Allmaras and Menter
models predict a large separation.
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4.9 Vortical structures

The skin friction lines over the half configuration are plotted in Figure 6, computed with the
Smith model. A horseshoe vortex footprint around the wing root can be seen and also a vortical
structure footprint at the trailing edge, near the root of the wing. The experimental oil flow
picture also shows a vortex-like structure at the wing root but there is no flow visualization for
the fuselage.

An enlargement of the wing/body junction, at the leading edge of the wing, is presented in
Figure 7. We can well observe the horseshoe vortex around the root, the saddle point on
the fuselage and the stagnation point on the wing. Such a separation has been evidenced by
Furlano (Furlano et al. 2001) for 3D computations of an airfoil between walls, using the k − l
Smith model. In these results, the stagnation point is located on the fuselage. In the present
case, it is certainly the sweep angle effect which moves the stagnation point on the wing. It can
be noted that all turbulence models predict the same flow topology.

The horseshoe vortex feeds a vortical structure, called tornado vortex. The footprint of this
vortex on the wing and the body is a focus, interpreted as a rolling up of the separation surface.
This structure is generated by the interaction between the boundary layers of the wing and the
fuselage (Delery 1992).
A detail of the wing/body junction, at the trailing edge of the wing, is presented in Figure 8,
computed with the Smith model. The tornado vortex with the two foci are clearly evidenced.
We note a third focus on the fuselage, interpreted as an unrolling up of the flow, which feeds
the focus on the body, already fed by the horseshoe vortex. This third focus allows to preserve
the volume of the stagnation flow of the vortical structure. Moreover, when using a very large
close-up view of the trailing edge vicinity, it has been possible to identify a second saddle point
and a node near the third focus, on the wing/body junction. Downstream of the tornado vortex,
on the fuselage, is located a third saddle point which ends the horseshoe vortex surrounding
the wing/body junction. Finally, we have three foci, three saddle points and two nodes (the
stagnation point being equivalent to a node). To check the coherence of the three-dimensional
separation, we use the following relation based on the critical-point theory and only valid for an
isolated obstacle (Delery 1992, 2001) :

Σ(nodes and foci)− Σ(saddle points) = 2 (13)

This relation is well respected but one should be careful, the identification of all critical points
could be difficult.

When compared to the result obtained with the Smith model, the vortical structure predicted
by the Wilcox model (Figure 9) and the Spalart-Allmaras model (Figure 10) presents a similar
topology. This structure is a little less extended for the first model and largely overestimated
by the second one. The big vortical structure with five foci predicted by the SST Menter model
(Figure 11) is completely unphysical. This is certainly due to the SST correction based on
the Bradshaw hypothesis, established only for two-dimensional turbulent boundary layers. This
is consistent with conclusions derived from other studies on 3D configurations (Apsley and
Leschziner 2001, Leschziner 2006).

5 CONCLUSION

An efficient compressible CFD method has been presented and applied to a realistic aircraft
configuration. The combination of a low-storage implicit method, the FAS multigrid algorithm
and wall functions allows to largely reduce the CPU cost. Presented numerical results verify the
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ability of the numerical tool to correctly predict the three-dimensional flow.
Four popular turbulence models have been tested and compared. Only indications of the models
behavior can be provided considering the complexity of the flow and the experimental data
available. When comparing the pressure coefficient distribution, the Smith and the Spalart-
Allmaras models provide the best results. Yet, near the wing root, the Spalart-Allmaras model
predicts a large and unrealistic separation. As observed for two-dimensional computations over
airfoils, the Wilcox model predicts a shock location far away from the experimental data and
the SST Menter model at an upstream location.
With regard to the 3D separated flow generated on the wing-body junction, all models predict
a coherent topological structure, except the SST Menter model which yields an unphysical
vortical structure. This is certainly due to the rigid link the SST limiter establishes between
the turbulence energy and shear stress. Even if global results are acceptable, the use of the SST
correction for 3D flows should be clarified.
Additional works are in progress to simulate unsteady three-dimensional flows, to develop low
dissipative numerical schemes and to pursue comparative analyses between turbulence models.
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Table 1. Lift and drag coefficients

LIFT error DRAG error

experiment 0.602 - 0.0352 -
k − l 0.638 6 % 0.0303 14 %
k − ω 0.67 11 % 0.0306 13 %

k − ω SST 0.571 5 % 0.0261 25 %
Spalart-Allmaras 0.61 1.5 % 0.0283 19.5 %
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Figure 1. Views of the mesh
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Figure 2. Convergence history



16 REFERENCES

0 0.25 0.5 0.75 1
x/c

-0.5

0

0.5

1

1.5
-C

p

k-l
k-ω
k-ω SST
Spalart
experiment

y/b=0.185

(a)

0 0.25 0.5 0.75 1
x/c

-0.5

0

0.5

1

1.5

-C
p

k-l
k-ω
k-ω SST
Spalart
experiment

y/b=0.512

(b)

0 0.25 0.5 0.75 1
x/c

-0.5

0

0.5

1

1.5

-C
p

k-l
k-ω
k-ω SST
Spalart
experiment

y/b=0.844

(c)

Figure 3. Pressure coefficient
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Figure 4. Skin friction coefficient
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Figure 5. Deviation angle β0
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Figure 6. Skin friction lines - Smith model
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Figure 7. Detail of the leading edge - Smith model
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Figure 8. Detail of the trailing edge - Smith model
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Figure 9. Detail of the trailing edge - Wilcox model
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Figure 10. Detail of the trailing edge - Spalart-Allmaras model
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Figure 11. Detail of the trailing edge - Menter SST model


