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ON THE USE OF KÜLSHAMMER TYPE INVARIANTS IN

REPRESENTATION THEORY

ALEXANDER ZIMMERMANN

Abstract. Since 2005 a new powerful invariant of an algebra emerged using earlier work
of Horváth, Héthelyi, Külshammer and Murray. The authors studied Morita invariance
of a sequence of ideals of the centre of a finite dimensional algebra over a field of finite
characteristic. It was shown that the sequence of ideals is actually a derived invariant,
and most recently a slightly modified version of it an invariant under stable equivalences
of Morita type. The invariant was used in various contexts to distinguish derived and
stable equivalence classes of pairs of algebras in very subtle situations. Generalisations to
non symmetric algebras and to higher Hochschild (co-)homology was given. This article
surveys the results and gives some of the constructions in more detail.
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Introduction

Brauer studied representations of finite groups over fields of characteristic p dividing the
order of the group. In 1956 he showed [12] amongst many other things that, if the field
is algebraically closed, the number of simple modules is equal to the number of conjugacy
classes of elements of G of order prime to p. His method was rather general already and
Külshammer used these ideas 25 years later to define very sophisticated invariants for general
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2 ALEXANDER ZIMMERMANN

symmetric algebras. More precisely Külshammer defined and studied in a series of four
papers [30] a sequence of ideals of the centre of a symmetric algebra. In case of group
rings over a finite group Külshammer studied lower defect groups, proved Brauer’s main
theorems and many other results known in modular representation theory of finite groups
by these ideals and related invariants. Külshammer’s approach was left untouched until
Murray [35, 36] studied Külshammer’s approach in connection with the question of the
existence of real characters and of characters of defect 0. This was the starting point of the
collaboration between Breuer, Héthelyi, Horváth, Külshammer and Murray [19] and [13]
where the authors study the existence of odd diagonal entries in the Cartan matrix of a
group algebra. Moreover, in [19] the Morita invariance of the sequence of ideals is shown
and the question of derived invariance is posed.

In [52] completely different methods are used to show that indeed at least for perfect base
fields the sequence of ideals is invariant under derived equivalence. Still the assumption that
the algebras are symmetric was needed.

After a lecture of the author in September 2005 in Oberwolfach Holm became interested
in the sequence of ideals and proposed several improvements and applications. First, in
joint work of the author with Bessenrodt and Holm [4] using trivial extension algebras the
derived invariance, and also the very definition of the Külshammer ideals was extended to
not necessarily symmetric algebras. Further, the Külshammer ideals were used in [23] to
distinguish the derived equivalence class of two algebras of dihedral type and of two pairs
of algebras of semidihedral type which were not seen to be not derived equivalent in the
classification of Holm [20].

During the September 2005 Oberwolfach lecture Adem asked for a generalisation of the
Külshammer ideal structure to higher Hochschild (co-)homology. The question is far from
trivial and was solved in [53] where actually two approaches were taken, both of which are
not exactly what was asked for. The first approach uses Hochschild homology instead of
cohomology as in the Külshammer ideal structure, the second approach uses the Stasheff
approach to the Gerstenhaber structure to get a non linear analogue. The case of non
symmetric algebras was answered in [54] again using trivial extension algebras and the
Hochschild homology approach.

The derived equivalence classification of tame domestic weakly symmetric algebras was
given by Bocian, Holm and Skowroński for domestic algebras [9, 10, 21] using for the last
remaining delicate questions Külshammer ideals. Similarly, also using Külshammer ideals in
parts, Bia lkowski, Holm and Skowroński [6, 7, 22] gave a derived equivalence classification
of tame algebras of polynomial growth up to some difficult problems concerning scalars in
the relations of certain algebras, similar to the problem solved in [23].

Then, most recently Bia lkowski, Erdmann and Skowroński classified selfinjective algebras
with the property that the third syzygy of every simple module S is again isomorphic to
S. They obtain that these algebras are all certain deformations of preprojective algebras
of a generalised Dynkin type. The deformations involve parameters in the relations of the
algebra. As was seen [21, 22, 23] Külshammer ideals are well suited for this kind of questions.
Derived equivalence classes of one family called of type L, defined in detail in Example 2.19
and more generally in Section 5.2 below, were largely given in joint work with Holm [24].
Here we developed quite sophisticated methods to determine the Külshammer subspace
structure at the beginning which hold for a priori non symmetric algebras as well. We
display this method, even though strictly speaking only small parts of it are really necessary
in case of algebras of type L. Nevertheless, the method works in general, is potentially very
useful and it seems reasonable to present it here.

During a lecture of the author in October 2007 at Beijing Normal University the question
of an invariance under stable equivalences was posed. In most recent results with Yuming
Liu and Guodong Zhou a generalisation of Külshammer ideal theory was given for stable
categories and an invariance was proved for stable equivalences of Morita type ([33] and
[29]). Most interestingly the result has strong links to the Auslander-Reiten conjecture [3,
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Conjecture 5, page 409], which says that a stable equivalence should preserve the number
of simple non projective modules. The result [33, 29] was used in joint work with Zhou
[48] to give a classification of algebras of dihedral, of semidihedral and of quaternion type
as defined by Erdmann [16] up to stable equivalences of Morita type. Moreover, in [49], in
joint work with Zhou we prove that the classification of weakly symmetric tame algebras
of polynomial growth up to stable equivalence of Morita type coincides with the derived
equivalence classification of Bia lkowski-Holm-Skowroński.

In the present paper we survey these results and give at certain points quite complete
proofs for results which seem to be very useful also in further contexts. In Section 1 we trace
some steps in the origins, starting from Brauer and Reynolds. Section 2 reviews properties
of selfinjective algebras and develops tools to actually compute Külshammer ideals for quite
complicated algebras. These tools were developed during the past years for this purpose, but
the origins are, of course, very classical. Section 3 presents Külshammer ideals as they were
developed originally by Külshammer and as they were generalised later to non-symmetric
algebras. Section 4 displays the invariance of the various forms of Külshammer ideals un-
der Morita, derived and stable equivalences. Section 5 is devoted to various applications
mentioned above including a detailed outline of the proof for the deformed preprojective
algebras of type L. Section 6 gives the above mentioned two approaches to the Hochschild
(co-)homology generalisations of Külshammer invariants.

1. Historical facts and basic definitions: the origins by Brauer and
Reynolds

Brauer developed in the 1950’s the far reaching representation theory of groups over fields
of finite characteristic. In 1956 he showed in particular

Theorem 1. (Brauer [12, Statement 3B]) If K is an algebraically closed field of charac-
teristic p > 0 and if G is a finite group, then the number of simple KG-modules up to
isomorphism equals the number of conjugacy classes of G of elements of order prime to p.

Of course, in the spirit of that time, Brauer did speak of irreducible characters rather
than of modules, but the result translates into modern terms as it is shown above. The
method of proof he used is somewhat indirect. He defines for any K-algebra A the space of
commutators [A,A], which is defined as the K-vector space generated as vector space by all
possible expressions ab− ba where a, b ∈ A.

Further he defines
TA := {a ∈ A | ∃n ∈ N : ap

n

∈ [A,A]}

The first lemma is a little more general than stated in [12], but with identical proof. The
generalisation comes from the fact that actually one can consider more generally

TnA := {a ∈ A | ap
n

∈ [A,A]}

for all n ∈ N, a fact which is an observation due to Külshammer. We will need and study
TnA later in more detail.

Lemma 1.1. (Brauer [12, Statement 3A]) Let K be a field of characteristic p > 0 and let A
be a K-algebra. Then TnA is a K-subspace of A satisfying TA =

⋃

n∈N TnA. If A is finite
dimensional, and K is a splitting field for A, then the number of simple A-modules up to
isomorphism equals the dimension of A/TA.

The proof of this lemma is so simple that we may give it here in almost full detail.

Proof (Brauer). Take x, y ∈ TnA. Then develop (x + y)p and get a sum of all possible
words in x and y with p factors, each occurring exactly once. If 1 < s < p, then there
are n(s) of such words in which x occurs s times and y occurs p − s times. Take N(s) the
set of these words. Then the cyclic group of order p acts on this set by cyclic permutation
of the word: c · (a1a2 . . . ap−1ap) := (a2a3 . . . apa1) for a generator c of the cyclic group
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and ai ∈ {x, y}. Hence N(s) decomposes into orbits of length p, and the difference of two
elements in the same orbit is clearly in [A,A]. Hence,

(x + y)p − xp − yp ∈ [A,A].

Moreover

(xy− yx)p + [A,A] = (xy)p − (yx)p + [A,A] = x
(

(yx)p−1y
)

−
(

(yx)p−1y
)

x+ [A,A] = [A,A]

and
(λx)p = λpxp

for all x, y ∈ A and λ ∈ K show that TnA is a K-subspace of A.
Traces of commutators of matrices are 0. Therefore, if A = Matn(K), then [A,A] ⊆ {M ∈

Matn(K) | trace(M) = 0}. On the other hand, using elementary matrices, one sees that
the inclusion actually is an equality. The space of matrices with trace 0 is of codimension
1, and Matn(K) has exactly one simple module up to isomorphism. We denote by rad(A)
the Jacobson radical of the algebra A. Hence, putting A := A/rad(A), one gets

A/(TA) = A/(TA)

as vector spaces since rad(A) is nilpotent, and therefore rad(A) ⊆ T (A). This shows the
statement by Wedderburn’s theorem.

Brauer’s Theorem 1 follows from the fact that for a group ring KG a basis is formed
by the elements of G, and any element g ∈ G admits a unique (so-called the p-primary
decomposition) g = gp · gp′ where gp is a p-element and gp′ is of order prime to p commuting
with gp. Hence

(g − gp′)
pn + [KG,KG] = (gp

n

− gp
n

p′ ) + [KG,KG] = [KG,KG]

for a certain large n. Then,

hgh−1 − g = hgh−1 − gh−1h = [h, gh−1] ∀g, h ∈ G

and the rest is straightforward.

Remark 1.2. Observe that actually much more is shown: TA = rad(A) + [A,A].

Another concept due to Reynolds [41] is closely linked. Let G be a finite group, let K be
an algebraically closed field of characteristic p > 0. For any g ∈ G and h ∈ G consider the
p-primary decomposition g = gp · gp′ and h = hp · hp′ . Then

Sh := {g ∈ G | ∃x ∈ G : x · gp′ · x
−1 = hp′}

be the set of elements in G whose p′-part is conjugate to the p′-part of h. Put

Ch :=
∑

g∈Sh

g

the sum of all these elements in Sh. Recall that the centre of KG has a basis consisting of
all conjugacy class sums of elements of G. Therefore Ch ∈ Z(KG) for all h ∈ G.

Definition 1.3. (Reynolds [41, Theorem 1]) The Reynolds ideal of KG is the ideal of
Z(KG) generated as K-vector space by the elements Ch, for h ∈ G.

We get

Proposition 1.4. (Reynolds [41], cf [18, Theorem VI.4.6]) The Reynolds ideal R(KG) of
KG is the annihilator of rad(KG) in Z(KG).
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2. Selfinjective and symmetric algebras revisited

In order to be able to explain more deeply the relations between Reynolds ideals, T (KG)
and related objects we need to explain the structure of selfinjective and of symmetric alge-
bras. The theory is classical and originates in Nakayama’s work [37] in the late 1930’s.

Various approaches can be found in the literature, but as far as we know the approach
using Picard groups, which we will explain in Section 2.2 did not appear elsewhere, though
Yamagata [47] gives some related thoughts.

Throughout this section we suppose for simplicity that K is a field. However, many
results stay true under weaker assumptions on K, sometimes K being a commutative ring
would be sufficient.

2.1. Basic definitions and properties. Recall that for a K-algebra A the space of linear
forms HomK(A,K) is an A−A-bimodule by

(afb)(x) := f(bxa) ∀a, b, x ∈ A∀f ∈ HomK(A,K).

A group algebra is a symmetric algebra in the following sense.

Definition 2.1. Let K be a field and let A be a K-algebra. Then A is

• symmetric if A ≃ HomK(A,K) as A−A-bimodules.
• selfinjective if A ≃ HomK(A,K) as A left-modules.

We shall derive some consequences.
Suppose A is selfinjective and let ϕ : A −→ HomK(A,K) be an isomorphism of A left-

modules. Then we may define a K-bilinear form

〈 , 〉 : A×A −→ K

by
〈a, b〉 := (ϕ(b))(a).

The fact that ϕ is an isomorphism of vector spaces is equivalent to the fact that 〈 , 〉 is non
degenerate.

The fact that ϕ is A-linear is equivalent to

〈a, bc〉 = (ϕ(bc))(a) = (bϕ(c))(a) = ϕ(c)(ab) = 〈ab, c〉

for all a, b, c, where the linearity is used in the second equality. A bilinear form on an algebra
A is called associative if

〈a, bc〉 = 〈ab, c〉 for all a, b, c ∈ A.

Now ϕ is an A − A-bimodule homomorphism if and only if 〈 , 〉 is associative (i.e. ϕ is
left A-linear) and moreover

〈a, b〉 = (ϕ(b))(a) = (ϕ(1)b)(a) = ϕ(1)(ba) = 〈ba, 1〉 = 〈b, a〉

and so A is symmetric if and only if the associative non degenerate form 〈 , 〉 may be chosen
symmetric.

We summarise the statements in a (well known) proposition which gives an alternative
definition of selfinjective and symmetric algebras.

Proposition 2.2. Let K be a field and let A be a finite dimensional K-algebra. Then we
have the following statements.

• The algebra A is selfinjective if and only if there is a non degenerate associative
bilinear form on A.

• The algebra A is symmetric if and only if there is a non degenerate associative and
symmetric bilinear form on A.
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We should mention that the existence statement in Proposition 2.2 is constructive: The
bilinear form is as explicit as is the isomorphism. That is, if one knows the explicit iso-
morphism of A to its dual by an explicit formula, then one knows the bilinear form by an
explicit formula, and vice versa.

The non degenerate associative symmetric bilinear form is called symmetrising form for a
symmetric algebra. In the remaining parts of Section 2 these ideas are developed further in
particular with emphasis on the question how to actually determine the bilinear form and
associated questions.

For the moment we shall continue with Reynolds ideals and give the promised link.
In the following we frequently use for a symmetric algebra A and subsets S of A the

symbol S⊥ to designate the orthogonal space with respect to the symmetrising form of the
algebra.

Proposition 2.3. (Külshammer [31]; [30, Part I Lemma A; Satz C; Satz D]) Let K be a
field and let A be a finite dimensional symmetric K-algebra. Then [A,A]⊥ = Z(A) and
soc(A) = rad(A)⊥ = AnnA(rad(A)). In particular R(KG) = Z(KG)∩soc(KG) for a finite
group G.

Proof.

〈ab− ba, c〉 = 〈ab, c〉 − 〈ba, c〉 = 〈a, bc〉 − 〈c, ba〉 = 〈bc, a〉 − 〈cb, a〉 = 〈bc− cb, a〉

and hence c ∈ [A,A]⊥ if and only if 〈ab− ba, c〉 = 0 for all a, b. Therefore c ∈ [A,A]⊥ if and
only if 〈bc− cb, a〉 = 0 for all a, b. In particular c ∈ [A,A]⊥ if and only if bc− cb ∈ A⊥. But
A⊥ = 0 since the form is non degenerate. Hence c ∈ [A,A]⊥ if and only if bc = cb for all
b ∈ A. This shows [A,A]⊥ = Z(A).

〈I, rad(A)〉 = 〈1, I · rad(A)〉

and hence
I ⊆ rad(A)⊥ ⇔ I · rad(A) = 0 ⇔ I ⊆ soc(A).

This finishes the proof.

2.2. The Nakayama automorphism. Selfinjective algebras come along with an automor-
phism, called the Nakayama automorphism which will be explained now.

If A is a selfinjective K-algebra, then A ≃ HomK(A,K) as an A left-module. Hence,
HomK(A,K) is a free left A-module of rank 1. Moreover,

EndA( AHomK(A,K)) ≃ EndA( AA) ≃ A

and so HomK(A,K) is a progenerator over A with endomorphism ring isomorphic to A,
whence inducing a Morita self-equivalence of A. This implies that the isomorphism class of
HomK(A,K) is in the Picard group PicK(A) (cf e.g. [40, Section 37]). As is shown there
there is a group homomorphism

ω0 : AutK(A) −→ PicK(A)

given by ω0(α) = 1Aα. Here for any two automorphisms α and β of A the A−A-bimodule

αAβ denotes A as vector space, on which a ∈ A acts by multiplication by β(a) on the right
and by α(a) on the left. To shorten the notation we abbreviate in this context the identity
on A by 1. One gets ker(ω0) = Inn(A) the inner automorphisms of A and hence

OutK(A) := AutK(A)/Inn(A)

is a subgroup of PicK(A). (Observe that the group of inner automorphisms does not depend
on K.) The image of ω0 consists of those isomorphism classes of invertible A−A-bimodules
which are free on the left (cf. [40, (37.16) Theorem]). Observe that

α−1A1 −→ 1Aα

a 7→ α(a)
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is an A−A-bimodule homomorphism. Hence ω0 may also be defined by twisting the action
on the left.

Now, as HomK(A,K) is free of rank 1 as left-module one gets that HomK(A,K) is in
the image of OutK(A) in PicK(A) and therefore there is an automorphism ν ∈ AutK(A) so
that

HomK(A,K) ≃ 1Aν

as A-A-bimodules. The automorphism ν is unique up to an inner automorphism.

Definition 2.4. Let A be a selfinjective K-algebra. Then there is an automorphism ν of A
so that HomK(A,K) ≃ 1Aν as A-A-bimodules. This automorphism is unique up to inner
automorphisms and is called the Nakayama automorphism.

Remark 2.5. In Nakayama’s original approach νA1 is used instead of 1Aν and so the
Nakayama automorphism in Nakayama’s work corresponds to the inverse of what we define
here.

In principle, the definition of selfinjectiveness uses an isomorphism of the A-left-module of
linear forms on A with the regular A-module. One could use the right module structure as
well. We get the well-known result that left selfinjective is equivalent to right selfinjective.

Corollary 2.6. AA ≃ AHomK(A,K) ⇔ AA ≃ HomK(A,K)A.

To prove the Corollary one just needs to see that the isomorphism as left-modules implies
the following bimodule isomorphisms.

HomK(A,K) ≃ 1Aν ≃ ν−1A1

and so HomK(A,K) ≃ A as A right-modules.

Now, for a selfinjective K-algebra A, given a simple A-module S, then 1Aν ⊗A S ≃
HomK(A,K) ⊗A S is again a simple A-module.

Definition 2.7. Let K be a field and let A be a finite dimensional K-algebra. Then A is
weakly symmetric if A is selfinjective and HomK(A,K) ⊗A S ≃ S for all simple A-modules
S.

This definition will be important in Section 5.3.

2.3. The Nakayama twisted centre. Let K be a field and let A be a finite dimensional
K-algebra. For an explicitly given algebra, say as quiver with relations, it is not very hard to
write down many commutators. This gives an upper bound for the dimension of A/[A,A].
However, to prove that the commutators found really generate [A,A] is quite difficult in
general. The method is to interpret A/[A,A] as different space, in which it is easier to
find many linearly independent elements. This then gives a lower bound for the dimension
of A/[A,A]. If the lower and the upper bound coincide, then one has proved that the
commutators found actually generate the whole space [A,A].

Let A be a selfinjective K-algebra. Given a ring R and a right R-module M and a left
R-module N , the very definition of the tensor product M ⊗R N as free abelian on symbols
m⊗n with relations m⊗ rn = mr⊗n and additivity in each variable gives an isomorphism
A/[A,A] ≃ A⊗A⊗KAopA. An alternative way to see this is by the bar resolution of Hochschild
homology.

Now

HomK(A/[A,A],K) ≃ HomK(A⊗A⊗KAop A,K)

≃ HomA⊗KAop(A,HomK(A,K))

≃ HomA⊗KAop(A, 1Aν)

which gives

HomK(A/[A,A],K) ≃ {a ∈ A | b · a = a · ν(b) ∀b ∈ A}
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where the isomorphism is given by sending a homomorphism to the image of 1 ∈ A which
will satisfy the equation by the property of the homomorphism being A⊗K Aop-linear.

Definition 2.8. (Holm and Zimmermann [24, Definition 2.2]) Let K be a field and let A
be a selfinjective K-algebra with Nakayama automorphism ν. Then the Nakayama twisted
centre is defined to be

Zν(A) := {a ∈ A | b · a = a · ν(b) ∀b ∈ A}.

Remark 2.9. The definition works for K a commutative ring as well.
The automorphism ν is unique only up to an inner automorphism. If ν differs from ν ′ by

an inner automorphism, let ν(b) = u · ν ′(b) · u−1 for all b ∈ A and some unit u of A. Then

Zν(A) = {a ∈ A | b · a = a · ν(b) ∀b ∈ A}

= {a ∈ A | b · a = a · u · ν ′(b) · u−1 ∀b ∈ A}

= {a ∈ A | b · (a · u) = (a · u) · ν ′(b) ∀b ∈ A}

= {a ∈ A |a · u ∈ Zν′(A)}

= Zν′(A) · u−1

Remark 2.10. In general the Nakayama twisted centre will not be a ring: if a, b ∈ Zν(A),
then

b(a1a2) = (ba1)a2 = (a1ν(b))a2 = a1(ν(b)a2) = a1a2ν
2(b)

and ν2 = ν is equivalent to ν = id. Nevertheless, if z ∈ Z(A) and a ∈ Zν(A) then

b · za = zba = za · ν(b)

and za ∈ Zν(A). Hence Zν(A) is a Z(A)-submodule of A. The module structure does not
depend on the chosen Nakayama automorphism, up to isomorphism of Z(A)-modules.

Remark 2.11. In case one follows Nakayama’s original definition of a Nakayama automor-
phism we need to replace ν by ν−1 and hence there the Nakayama twisted centre would
consist of elements a satisfying ν(b) · a = a · b.

We summarise our results in the following

Proposition 2.12. (Holm and Zimmermann [24, Lemma 2.4]) If A is a selfinjective K-
algebra over a field K with Nakayama automorphism ν. Then HomK(A/[A,A],K) ≃ Zν(A)
as Z(A)-modules.

Again, the proposition holds as well for K being a commutative ring.

2.4. How to get the Nakayama automorphism explicitly. Let K be a field and let
A be a finite dimensional selfinjective K-algebra.

In order to compute the Nakayama automorphism ν we need to find an explicit isomor-
phism A −→ HomK(A,K) as A-modules.

Proposition 2.13. (Holm and Zimmermann [24, Lemma 2.7]) Let K be a field and let
A be a finite dimensional selfinjective K-algebra with associated bilinear form 〈 , 〉. Then
the Nakayama automorphism ν of A, satisfies 〈a, b〉 = 〈b, ν(a)〉 for all a, b ∈ A, and any
automorphism satisfying this formula is a Nakayama automorphism.

Remark 2.14. If one would use Nakayama’s original definition the form would satisfy
〈ν(a), b〉 = 〈b, a〉 for all a, b ∈ A.

Proof of Proposition 2.13. There is a non-degenerate associative bilinear form on A,
which induces an isomorphism between A and the linear forms on A as A-modules by
Proposition 2.2. The isomorphism gives an isomorphism of A-A-bimodules of 1Aν and
HomK(A,K) by

1Aν
ϕ

−→ HomK(A,K)

a 7→ 〈−, a〉 = ϕ(a).
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Therefore, ϕ(a) = ϕ(1 · ν−1(a)) = ϕ(1) · ν−1(a) and ϕ(a) = ϕ(a · 1) = a · ϕ(1). Since for
f ∈ HomK(A,K) one has (fa)(b) = f(ab) and (af)(b) = f(ba) for all a, b ∈ A, one gets

〈b, a〉 = (ϕ(a))(b) = (ϕ(1) · ν−1(a))(b) = ϕ(1)(ν−1(a)b)

= (b · ϕ(1))(ν−1(a)) = ϕ(b)(ν−1(a)) = 〈ν−1(a), b〉.

Now, putting a := ν(a′) one gets

〈b, ν(a′)〉 = 〈a′, b〉

for all a′, b ∈ A. Hence, the Nakayama automorphism has the above property. Conversely,
if an automorphism ν satisfies 〈a, b〉 = 〈b, ν(a)〉 for all a, b ∈ A, then the mapping A −→
HomK(A,K) given by a 7→ 〈−, a〉 gives an isomorphism of A and HomK(A,K) as A-
modules, inducing the element 1Aν in the Picard group of A.

2.5. Practical questions for algebras given by quivers and relations. In [23] the fol-
lowing very useful result was proved for weakly symmetric algebras. However the statement
holds in a more general form.

Proposition 2.15. Let K be a field and let A = KQ/I be a selfinjective algebra given by
the quiver Q and ideal of relations I, and fix a k-basis B of A consisting of pairwise distinct
non-zero paths of the quiver Q. Assume that B contains a basis of the socle soc(A) of A.
Define a K-linear mapping ψ on the basis elements by

ψ(b) =

{

1 if b ∈ soc(A)
0 otherwise

for b ∈ B. Then an associative non-degenerate K-bilinear form 〈−,−〉 for A is given by
〈x, y〉 := ψ(xy).

Remark 2.16. In case A is weakly symmetric Proposition 2.15 was proved in [23]. The
assumption that A is weakly symmetric was used in [23] only to prove the non degeneracy
of the form. For the reader’s convenience we include a complete proof.

Proof. By definition, since A is an associative algebra, ψ is associative on basis elements,
hence is associative on all of A.

Let ν be a Nakayama automorphism of A. We observe now that ψ(x · ν(e)) = ψ(e · x) for
all x ∈ A and all primitive idempotents e ∈ A. Indeed, since ψ is linear, we need to show this
only on the elements in B. Let b ∈ B. If b is a path not in the socle of A, then bν(e) and eb are
either zero or not contained in the socle either, and hence 0 = ψ(b) = ψ(bν(e)) = ψ(eb). If
b ∈ B is in the socle of A, then b = ebb = bν(eb) for exactly one primitive idempotent eb and
e′b = bν(e′) = 0 for each primitive idempotent e′ 6= eb. Therefore, ψ(e′b) = ψ(bν(e′)) = 0
and ψ(ebb) = ψ(b) = ψ(bν(eb)).

It remains to show that the map (x, y) 7→ ψ(xy) is non-degenerate. Suppose we had
x ∈ A \ {0} so that ψ(xy) = 0 for all y ∈ A. In particular for each primitive idempotent ei
of A we get ψ(eixy) = ψ(xyν(ei)) = 0 for all y ∈ A. Hence we may suppose that x ∈ eiA
for some primitive idempotent ei ∈ A.

Now, xA is a right A-module. Choose a simple submodule S of xA and s ∈ S \{0}. Then,
since s ∈ S ≤ xA there is a y ∈ A so that s = xy. Since S ≤ xA ≤ A, and since S is simple,
s ∈ soc(A) \ {0}. Moreover, since x ∈ eiA, also s = eis, i.e. s is in the (1-dimensional) socle
of the projective indecomposable module eiA. So, up to a non zero scalar factor, s is a path
contained in the basis B (recall that by assumption B contains a basis of the socle). This
implies that

ψ(xy) = ψ(s) = ψ(eis) 6= 0,

contradicting the choice of x, and hence proving non-degeneracy.

Remark 2.17. It should be noted that the form depends on the chosen basis of the algebra.
Indeed, take A = K[X]/X2. The socle is one-dimensional, and take a basis {X}. Then
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one may complete with an element 1 + µX for µ ∈ K to a basis of A. Hence 1 + X =
(1 + µX) + (1 − µ)X and we get 〈1 +X, 1〉 = 1 − µ which depends heavily on µ.

Example 2.18. This example was communicated to me by Guodong Zhou in January 2010
during a visit in Paderborn. Let K be a field and let Aq = K〈X,Y 〉/(X2, Y 2,XY − qY X)
for q 6= 0. Then Aq is always selfinjective and Aq is symmetric if and only if q = 1. Now,
ν(X) = qX and ν(Y ) = q−1Y defines a Nakayama automorphism. Indeed if we use the
K-basis {1,X, Y,XY } for Aq we get

1 = 〈X,Y 〉 = 〈Y, ν(X)〉 = 〈Y, qX〉 = 1

1 = 〈Y,X〉 = 〈X, ν(Y )〉 = 〈X, q−1Y 〉 = 1

and likewise for the other basis elements.
Now, if q 6= 1, we get

Z(Aq) = K · 1 +K ·XY

whereas
Zν(Aq) = K ·X +K · Y +K ·XY.

Hence the Z(Aq)-module Zν(Aq) is isomorphic to (Z(Aq)/rad(Z(Aq)))3.
If A is a symmetric algebra, and ν is chosen to be inner, then Zν(A) is a rank 1 free

Z(A)-module.
Observe that the order of the above automorphism is the multiplicative order of q in K.

Hence for big fields K it is possible to create algebras with Nakayama automorphisms of
any given order, even infinite order.

Example 2.19. Proposition 2.15 is stated in [21] and in [22] with an additional conclusion.
Namely it is stated there that the form 〈 , 〉 is symmetric in case the algebra is symmet-
ric. This is not true in general. A counterexample was given during the collaboration on
[24]. Namely, the deformed preprojective algebra in the sense of Bia lkowski, Erdmann and
Skowroński [5] of type Ln for n ≥ 3 gives an example (see Remark 5.4 below). This algebra
is defined by the quiver

•

0

•

1

•

2

•

3

•

n− 2

•

n− 1

· · · · · · · · ·
- - - -

������
��

?

ǫ
a0 a1 a2 an−2

a0 a1 a2 an−2

subject to the following relations

aiai + ai−1ai−1 = 0 for all i ∈ {1, . . . , n− 2} ,

an−2an−2 = 0 , ǫ2n = 0 , ǫ2 + a0a0 + ǫ3p(ǫ) = 0

for a polynomial p(X) ∈ K[X]. These algebras are the deformed preprojective algebras of
type Ln, in the sense of Bia lkowski, Erdmann and Skowroński [5].

For the special case p(X) = X2j for j ∈ N and for abbreviation we call this algebra

by Lj
n and assume that K is of characteristic 2. Here we just give an example where the

bilinear form Proposition 2.15 does not yield a symmetric bilinear form. We will deal with
the general case in a later Section 5.2.

In order to be able to apply Proposition 2.15 we need to fix a basis of the socle of Lj
n. The

fact that the elements below is indeed a basis of the algebra is shown in [24] and the basis
displayed in Proposition 5.6 can easily be transformed into the basis below. Most recently
in a completely independent approach Andreu [1] shows that the basis below is indeed a
basis.

For our purpose it seems to be most natural to take as K-basis of the socle the set

{ǫ2n−1, ai−1ai−2 . . . a0ǫ
2n−3−2ia0a1 . . . ai−1 | i ∈ {1, 2 . . . , n− 2}}.

Complete the elements
ai−1ai−2 . . . a0ǫ

2n−3−2ia0a1 . . . ai−1



ON THE USE OF KÜLSHAMMER TYPE INVARIANTS IN REPRESENTATION THEORY 11

of eiL
j
nei, for i ≥ 1, to a basis of eiL

j
nei by the elements

ai−1ai−2 . . . a0ǫ
ℓa0a1 . . . ai−1

for ℓ ≤ 2n− 4 − 3i and

aiai+1ai+2 . . . ajajaj−1 . . . ai+2ai+1ai

for i+ 1 ≤ j ≤ n− 2. A basis of e0L
j
ne0 is given by ǫℓ, for 0 ≤ ℓ ≤ 2n− 1.

Now we verify

〈a0ǫ
m, a0〉 =

{

1 if m = 2n− 3
0 if m 6= 2n− 3

〈a0, a0ǫ
m〉 =

{

1 if m = 2n− 3 or m = 2n− 4 − 2j

0 else

Hence the bilinear form from Proposition 2.15 is not symmetric. However, the algebras Lj
n

are symmetric (cf Proposition 8 below).

3. Külshammer, the new idea in the 1980s

We come back to Brauer’s proof displayed in Section 1, Reynolds discoveries and present
the original approach which was introduced by Külshammer to improve and unify these
earlier approaches. Moreover we explain the generalisation to non symmetric algebras.

3.1. Külshammer’s original construction for symmetric algebras. Recall that for
a symmetric K-algebra A one defined Tn(A) := {a ∈ A| ap

n

∈ [A,A]} and T⊥
n (A) is the

orthogonal space with respect to the symmetrising form.

Definition 3.1. (Külshammer [30, Part IV]) Let A be a symmetric K-algebra. Then the
ideal Tn(A)⊥ of Z(A) is the n-th Külshammer ideal.

Remark 3.2. • Remark 1.2 gives that T (A) = [A,A] + rad(A). Hence

T (A)⊥ = rad(A) ∩ soc(A) =: R(A).

• Külshammer calls the ideals Tn(A)⊥ the generalised Reynolds ideals.
• Since Tn(A) ⊆ Tn+1(A) we get Tn(A)⊥ ⊇ Tn+1(A)⊥ and the set of Külshammer

ideals is a decreasing sequence of ideals of the centre with first term being the centre
and last term being the Reynolds ideal R(A).

Külshammer obtained in [30] many properties of a group in terms of properties of the se-
quence of ideals Tn(KG)⊥. Already in the first discussions in [30] the setup was completely
general and the definitions were given for a symmetric algebra over a field of finite char-
acteristic in general. Nevertheless, the applications in focus in Külshammer’s discussions
mainly have been group algebras and representations of finite groups.

The main tool for technical proofs is still the symmetrising form. Since we have by
Proposition 2.3 that [A,A]⊥ = Z(A), the restriction of the symmetrising form 〈 , 〉 to Z(A)
on the left argument induces a non degenerate form, also denoted by 〈 , 〉,

〈 , 〉 : Z(A) ×A/[A,A] −→ K.

As we have seen in Lemma 1.1 the mapping

A/[A,A]
µ

−→ A/[A,A]

a+ [A,A] 7→ ap + [A,A]

is additive and semilinear, i.e. linear if one applies in addition a twist with the Frobenius
automorphism of the field. If V and W are finite dimensional vector spaces over a field K
and if 〈., .〉 is a non degenerate bilinear pairing V ×W −→ K. Then any endomorphism ϕ
of W has a unique left adjoint ϕ∗ ∈ EndK(V ) satisfying 〈v, ϕ(w)〉 = 〈ϕ∗(v), w〉 for all v ∈ V
and w ∈W .
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Now, this fact holds for semi-linear maps as well as for linear maps, and the map µ has
a left adjoint

ζ : Z(A) −→ Z(A).

Now, a ∈ Tn(A) ⇔ a ∈ ker(µn) gives

Lemma 3.3. z ∈ Tn(A)⊥ ⇔ z ∈ im(ζn).

This characterisation will be the main tool for most of the abstract statements later.

3.2. Extending to general algebras: trivial extension algebras and Külshammer

theory. Up to now, in order to establish a Külshammer ideal theory it was necessary already
for the very definition to work over symmetric algebras. There is a method to circumvent
this difficulty.

Let A be any finite dimensional K-algebra. Then, as already mentioned, HomK(A,K)
is an A−A-bimodule by

(afb)(c) := f(bca) ∀a, b, c ∈ A and f ∈ HomK(A,K).

Recall the construction of the trivial extension algebra, which is well-known and very use-
ful in the representation theory of associative algebras. We may form TA := HomK(A,K)×
A, which is naturally a K-vector space. We may define an algebra structure on this space.

(f, a) · (g, b) := (ag + fb, ab) ∀ a, b ∈ A, f, g ∈ HomK(A,K) .

It is a tedious but straightforward computation to verify that TA is a K-algebra by this mul-
tiplication. Moreover the projection to the second component is an algebra homomorphism
TA −→ A with kernel HomK(A,K) being an ideal with square 0.

Definition 3.4. For any finite dimensional K-algebra A the algebra TA is called the trivial
extension algebra.

The property that is most interesting for our purposes is that TA is a symmetric algebra,
whatever may be the structure of the algebra A. Indeed,

〈(f, a), (g, b)〉 := g(a) + f(b) ∀(f, a), (g, b) ∈ TA

is a symmetric associative non degenerate bilinear form on TA. This fact can be found in
e.g. [4, Section 3]. Proposition 2.2 shows then the statement.

In [4] Bessenrodt, Holm and the author compute the Külshammer ideals of TA. We
denote

AnnHomK(A,K)(I) := {f ∈ HomK(A,K) | f(I) = {0}}

for any subset I ⊆ A. With this notation we showed

Proposition 3.5. (Bessenrodt, Holm, Zimmermann [4, Theorem 4.1]) Let A be a finite-
dimensional algebra over a field of characteristic p > 0, and let TA be its trivial extension.

(1) We have T0(TA)⊥ = Z(TA) = AnnHomK(A,K)([A,A]) × Z(A).

(2) For all n ≥ 1 one has Tn(TA)⊥ = AnnHomK(A,K)(TnA) × 0.

This result, though not difficult to prove, is most remarkable, since for symmetric algebras
we may use the symmetrising form to transport Tn(A) via orthogonality to an ideal Tn(A)⊥

of the centre of A. The ideal structure allows to consider many invariants from commutative
algebra attached to this ideal Tn(A)⊥. If A is not symmetric, this is not easily possible.
Hence it is surprising that enlarging A to TA, the space Tn(TA)⊥ keeps the trace of Tn(A)⊥

faithfully in the sense that Tn(A)⊥ can be fully recovered by Tn(TA)⊥.
If A is already symmetric, the isomorphism TA −→ HomK(TA,K) takes Tn(A)⊥ to

AnnHomK(A,K)(Tn(A)). This fact is not hard to see. Indeed, if A is symmetric, HomK(A,K)
is the space of all 〈a,−〉 for a ∈ A. Now, a linear form being in AnnHomK(A,K)(Tn(A)) is

equivalent to 〈a, Tn(A)〉 = 0 which in turn is equivalent to a ∈ Tn(A)⊥.
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4. Morita, derived and stable invariance

4.1. Morita invariance. In [19] Héthélyi, Horváth, Külshammer and Murray studied
amongst other questions the invariance of Külshammer ideals Tn(A)⊥ under Morita equiv-
alence. Recall that if

M ⊗A − : A−mod −→ B −mod

is an equivalence, then for any z ∈ Z(A) there is a unique ϕM (z) ∈ Z(B) so that m · z =
ϕM (z) ·m for all m ∈M . Then, ϕM : Z(A) −→ Z(B) is an isomorphism of algebras.

Proposition 4.1. (Héthelyi, Horváth, Külshammer and Murray [19, Corollary 5.3]) Let K
be a perfect field of characteristic p > 0 and let A and B be finite dimensional K-algebras.
If

M ⊗A − : A−mod −→ B −mod

is a Morita equivalence, then ϕM (Tn(A)⊥) = Tn(B)⊥ for all n ∈ N.

The authors show that the mapping ζ of Lemma 3.3 behaves well with respect to mul-
tiplication by idempotents. Using this statement it is possible to reduce to basic algebras,
and to use then that two Morita equivalent basic algebras are isomorphic.

The existence of basic algebras, i.e. an up to isomorphism unique minimal algebra which
is Morita equivalent to the given algebra, is very specific for Morita equivalences. Such
a concept does not exist for weaker equivalences such as derived equivalences or stable
equivalences of Morita type.

4.2. Derived invariance. [19, Question 5.4] asked if Külshammer ideals are also invariant
under derived equivalences. The method used for the Morita invariance does not apply
since as said before a concept of ”derived basic” algebras do not exist. Nevertheless, an
equivalence between derived categories of finite dimensional algebras imply the existence of
an isomorphism of the centres.

More precisely, denote by Db(A) the derived category of bounded complexes of finitely
generated A-modules with non zero homology in only finitely many degrees.

The main tool is the following result.

Theorem 2. (Rickard [43, Theorem 3.3], Keller [26, Section 8]; cf also e.g. [28, Theorem
6.2.8]) Let K be a field, let A and B be finite dimensional K-algebras and suppose that
Db(A) ≃ Db(B) is an equivalence of triangulated categories. Then there is a complex X ∈
Db(B⊗K A

op) which is formed by modules which are projective as B-modules and projective
as A-modules, so that

X ⊗L

A − : Db(A) −→ Db(B)

is an equivalence of triangulated categories.

A complex X as in the theorem is called two-sided tilting complex. It is unknown if every
equivalence between derived categories is of the form

X ⊗L

A − : Db(A) −→ Db(B)

This is shown to hold on the level of objects, but it is not known if there may be an exotic
equivalence behaving differently on morphisms (cf Rickard [43, Corollary 3.5]).

The result has many consequences. In particular

X ⊗L

A (−⊗L

A HomA(X,A)) : Db(A⊗K Aop) −→ Db(B ⊗K Bop)

is an equivalence. Therefore, if Db(A) ≃ Db(B) there exists a two-sided tilting complex
realising an equivalence. The given equivalence one started with may be different. Then,
this two-sided tilting complex induces the equivalence of the derived categories of bimodules,
and this then has the property that

EndDb(A⊗Aop)(A)
≃

−→ EndDb(B⊗Bop)(B)

is an equivalence.
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It is known that the for any algebra C the module category is a full subcategory of
the derived category by identifying a module with the complex concentrated in a single
degree 0 (cf e.g. Verdier [45, Chapitre III Section 1.2.9]). Therefore for a C-module M
one gets EndC(M) ≃ EndDb(C)(M). Hence EndDb(A⊗Aop)(A) ≃ EndA⊗Aop(A) ≃ Z(A) and

EndDb(B⊗Bop)(B) ≃ EndB⊗Bop(B) ≃ Z(B).

Corollary 4.2. (Rickard [43, Proposition 2.5]) Let K be a field and let A and B be finite
dimensional K-algebras. If Db(A) ≃ Db(B), then a choice of a two-sided tilting complex X
realising this equivalence as tensor product induces an isomorphism ϕX as algebras between
the centre of A and the centre of B.

We see that still an equivalence between the derived categories of finite dimensional alge-
bras yield an isomorphism between the centres of the algebras. The isomorphism however
is far less explicit and somewhat complicate.

Despite these difficulties we obtain the following result.

Theorem 3. [52, Theorem 1] Let A and B be finite dimensional symmetric K-algebras
over a perfect field K of characteristic p > 0. Suppose that Db(A) ≃ Db(B) as triangulated
categories. Then any choice of a two-sided tilting complex X yields an isomorphism ϕX :
Z(A) −→ Z(B) satisfying ϕX(Tn(A)⊥) = Tn(B)⊥ for all n ∈ N.

It is worth writing that we use here the mapping that is induced by a functor on the
morphisms. We recall that possibly non standard derived equivalences exist. Non standard
derived equivalences are not standard only on morphisms, but we only use morphisms here.
Hence non standard derived equivalences would possibly induce an isomorphism between
the centres which does not preserve the Külshammer ideal structure.

The proof is much more involved than the proof for Morita invariance in the sense that
one needs to reformulate the construction of Külshammer ideals in a ”derived category
readable form”. Instead of explicit constructions of particular sets one needs to argue via
homological properties of morphism spaces.

One should mention that being symmetric is an invariant under derived equivalences.

Proposition 4.3. (Rickard [43, Corollary 5.3] for fields R, [51] for more general rings)
Let R be a Dedekind domain and let A and B be R-algebras of finite rank over R so that
Db(A) ≃ Db(B). Then if A is symmetric, B is symmetric as well.

Applications of Theorem 3 will be given in Section 5. Actually the invariance of Küls-
hammer ideals proved to be a rather powerful tool in particular in order to distinguish
algebras given by quivers and relations where the relations depend on certain parameters.
The structure of the quotient Z(A)/Tn(A)⊥ tends to depend on the parameters in several
cases.

4.3. Stable invariance. As usual the stable category A−mod of a module category A−mod
is the category with objects being A-modules and morphisms between two A-modules in the
stable category are equivalence classes of morphisms between these A-modules modulo those
which factor through a projective A-module. We denote by HomA(M,N) the morphisms
in A−mod from M to N .

Equivalences between stable categories can behave badly in general. An example was
given by Auslander and Reiten in 1973 [2, Example 3.5].

Example 4.4. Let K be a field. Then the algebras

A :=

(

K K
0 K

)

×

(

K K
0 K

)

and

B :=





K K K
0 K K
0 0 K





/





0 0 K
0 0 0
0 0 0
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the quotient of the upper triangular matrix ring by the ideal generated by the upper right
component matrices have equivalent stable categories. Indeed, A has six indecomposable
modules: four simple modules, two of which are projective, and the projective cover of the
non projective simple. Hence the stable module category is equivalent to two copies of
K −mod. The algebra B has five indecomposable modules: three simple modules, one of
which is projective and the projective covers of the other two simple modules. Hence the
stable module category is equivalent to two copies of K −mod as well.

The algebras A and B are hence stably equivalent and B is indecomposable whereas A
is not. Neither A nor B has any simple direct factor.

Given two self-injective algebras A and B and suppose X is a complex of A−B-bimodules
inducing a standard equivalence Db(B) −→ Db(A). The quasi-inverse is again a standard
equivalence, given by a complex Y of B − A-bimodules. Then a somewhat technical con-
struction on X and on Y produces an A − B-bimodule M , projective on either side, and
a B − A-bimodule N , projective on either side, so that the A − A-bimodule M ⊗B N is
isomorphic to A⊕P for some projective A−A-bimodule P , and so that one has an isomor-
phism of B −B-bimodules N ⊗AM ≃ B ⊕Q for some projective B −B-bimodule Q. This
motivated Broué to define a class of stable equivalences with nicer properties.

Definition 4.5. (Broué [14, Section 5]) Let K be a commutative ring, let A and B be two
K-algebras and let M ∈ A ⊗K Bop −mod and let N ∈ B ⊗K Aop −mod. Then (M,N) is
said to induce a stable equivalence of Morita type if

• M as well as N are projective as A-modules and as B-modules.
• M ⊗B N ≃ A⊕ P as A−A-bimodules for a projective A−A-bimodule P
• N ⊗A M ≃ B ⊕Q as B −B-bimodules for a projective B −B-bimodule Q.

Remark 4.6. Liu shows in [32, Theorem 2.2] that a stable equivalence of Morita type
between two finite dimensional algebras with no separable summands restricts to a stable
equivalence between their summands. Therefore the algebras A and B in Example 4.4 are
not stably equivalent of Morita type.

In the meantime many properties have been shown to be invariant under stable equiva-
lence of Morita type, whereas the general stable equivalences are still rather poorly under-
stood.

In particular, the following definition will be of importance in our discussion. Let A be a
K-algebra. Then

Z(A) = HomA⊗KAop(A,A)

and define the stable centre

Zst(A) = HomA⊗KAop(A,A)

The natural homomorphism

HomA⊗KAop(A,A) −→ HomA⊗KAop(A,A)

has a kernel denoted Zpr(A), the projective centre.

Proposition 4.7. (Broué [14, Proposition 5.4]) Let A and B be finite dimensional K-
algebras and let (M,N) be bimodules inducing a stable equivalence of Morita type. Then
Zst(A) ≃ Zst(B) as algebras.

How can we determine Zpr(A)? This is a result of Liu, Zhou and the author. The
Cartan matrix of the algebra A is denoted by CA. Recall that the Cartan matrix is square
of size n, where n is the number of simple A-modules up to isomorphism. If one labels
the rows and the columns by the isomorphism classes [S] of simple modules, then we have
that the coefficient in position ([S], [T ]) is HomA(PS , PT ), where PS denotes the projective
cover of S. Hence CA has integer coefficients and can therefore be interpreted as a linear
endomorphism of the K-vector space Kn.
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Proposition 4.8. (Liu, Zhou, Zimmermann [33, Proposition 2.4, Corollary 2.9, Lemma 7.8,
Proposition 7.10]) Let K be an algebraically closed field and let A be a finite dimensional sym-
metric K-algebra. Then Zpr(A) ⊆ Z(A) ∩ soc(A) = R(A) and dimK(Zpr(A)) = rankKCA.

In order to adapt the Külshammer ideal theory for stable equivalences of Morita type
we need to replace the centre by the stable centre since we know that a stable equivalence
gives an isomorphism of the stable centres and we do not have enough information about
the centre.

Further we need to find a replacement of A/[A,A]. For this purpose we recall the Hattori-
Stallings trace which was generalised by Bouc to a trace function on the whole Hochschild
homology.

Definition 4.9. (Bouc [11] for higher dimensional Hochschild homology, Hattori-Stallings
in degree 0) Let K be a field and let A and B be two finite dimensional K-algebras. Given an
A−B-bimodule M which is projective as B-module, then there are elements mi ∈M,ϕi ∈
HomB(M,B), for i = 1, . . . , n so that the identity on M in EndB(M) ≃M⊗BHomB(M,B)
is mapped to

∑n
i=1mi ⊗ ϕi. The fact that M is an A−B-bimodule gives a mapping

A
αM−→ EndB(M) ≃M ⊗B HomB(M,B)

a 7→

n
∑

i=1

(ami) ⊗ ϕi

We produce
eval : M ⊗B HomB(M,B) −→ B/[B,B]

by eval(m ⊗ ψ) := ψ(m) + [B,B] for ψ ∈ HomB(M,B) and m ∈ M . The composition
eval ◦ α factorises through A/[A,A] and the resulting mapping

A/[A,A] −→ B/[B,B]

is called the trace of M , denoted by trM . Similar statements hold if M is projective on the
left.

Using the Hattori-Stallings trace we define

Definition 4.10. [33, Defintion 4.1] Let A be a finite dimensional K-algebra

HHst
0 (A) :=

⋂

P projective indecomposable A−mod

ker(trP )

observing that any projective A-module P is a K−A-bimodule as required by Definition 4.9.

With this preparation we obtain that the dimension of HHst
0 (A) is an invariant under

stable equivalence of Morita type. Denote by ℓ(A) the number of simple A-modules up to
isomorphism.

Theorem 4. Let K be an algebraically closed field and let A and B be finite dimensional K-
algebras without any semisimple direct factor and suppose that A and B are stably equivalent
of Morita type.

• (Liu, Zhou, Zimmermann [33, Theorem 6.1]) Then

dimK(A/[A,A]) = dimK(B/[B,B]) ⇔ ℓ(A) = ℓ(B).

Moreover dim(Tn(A)/K(A)) = dim(Tn(B)/K(B)).
• (Liu, Zhou, Zimmermann [33, Corollary 6.2]) If in addition A is symmetric then

dimK(Z(A)) = dimK(Z(B)) ⇔ ℓ(A) = ℓ(B).

and (König, Liu, Zhou [29, Proposition 5.8])

Z(A)/Tn(A)⊥ ≃ Z(B)/Tn(B)⊥

for all n ≥ 1.
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The proof of the first part uses first that HHst
0 (A) is an invariant under stable equivalences

of Morita type. Then one shows [33, Theorem 4.4] that

dim(HHst
0 (A)) + rankK(CA) = dim(A/[A,A])

Further it is shown in [33, Section 5] that rankK(CA) − dimK(K ⊗Z K0(A)) equals the
dimension of the so-called stable Grothendieck group, which is known to be an invariant
under stable equivalences of Morita type by work of Xi [46, Section 5].

We should mention the long standing Auslander-Reiten conjecture.

Conjecture. (Auslander-Reiten [3, page 409 Conjecture 5]) Let A and B be finite dimen-
sional K-algebras. If A and B are stably equivalent, then the number of simple non projective
A-module up to isomorphism equals the number of simple non projective B-modules up to
isomorphism.

A priori I feel that there is no obvious reason why the invariance of the number of simple
A-modules has anything to do with the commutator quotient. This fact appears somewhat
surprisingly in this connection.

The conjecture has been verified for quite a few classes of algebras. Few general positive
results are known so far.

5. Applications

In the last five years Külshammer ideals were successfully employed to distinguish algebras
up to derived and up to stable equivalences of Morita type for various classes of algebras
which were extremely difficult to deal with previously. In particular if two algebras are
defined by the same quiver Q and a set of relations I(c) subject to some parameter c in
the base field, then the technique of computing Külshammer ideals and the quotient of the
centre by the ideal proves to be fruitful in various cases.

5.1. Algebras of dihedral, semidihedral and quaternion type. Many authors during
the last decades proved ring theoretic properties for group algebras, and still the question is
an active field of research. In particular many properties are shown to hold for the Cartan
matrices and the occurrence of certain components in the stable Auslander-Reiten quiver for
blocks of group algebras with dihedral, semidihedral or quaternion defect groups. Moreover
it was shown at that time that a block of a group algebra is of tame representation type (cf
Section 5.3 below for the precise definition) if and only if the defect group is a dihedral, a
semidihedral or a quaternion group.

Erdmann showed in [16] that these properties determine the Morita equivalence classes
of these algebras as belonging to a finite number of families, given by quivers with relations,
subject to certain parameters in the relations. Up to these parameters in the relations the
algebras are classified in a finite number of classes up to Morita equivalences.

Holm [20] classified further these Morita equivalence classes up to derived equivalences.
Many classes merge to a common derived equivalence class. However, Holm could not
determine for a certain number of parameters if two algebras within one class but with
different parameters are derived equivalent or not.

Külshammer ideals manage to distinguish derived equivalence classes in some of these
cases.

We display Thorsten Holm’s list [20] of algebras of dihedral, semidihedral and quaternion
type up to derived equivalences. Each of these types form a family. Each family is subdivided
into three subclasses: algebras with one simple module, algebras with two simple modules
and algebras with three simple modules. Each subfamily contains algebras defined by quivers
and relations, depending on parameters.
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dihedral semidihedral quaternion

1 simple K[X,Y ]/(XY,Xm − Y n), SD(1A)k
1
, k ≥ 2; Q(1A)k

1
, k ≥ 2;

m ≥ n ≥ 2,m+ n > 4;

D(1A)1
1

= K[X,Y ]/(X2, Y 2);

(charK = 2) (charK = 2) SD(1A)k
2
(c, d) (charK = 2) Q(1A)k

2
(c, d),

K[X,Y ]/(X2, Y X − Y 2); k ≥ 2, (c, d) 6= (0, 0); k ≥ 2, (c, d) 6= (0, 0);

D(1A)k
1
, k ≥ 2;

(charK = 2) D(1A)k
2
(d),

k ≥ 2, d = 0 or 1;

2 simples D(2B)k,s(c), SD(2B)k,t
1

(c) Q(2B)k,s
1

(a, c)
k ≥ s ≥ 1, c ∈ {0, 1} k ≥ 1, t ≥ 2, c ∈ {0, 1}; k ≥ 1, s ≥ 3, a 6= 0;

SD(2B)k,t
2

(c)
k ≥ 1, t ≥ 2,

k + t ≥ 4, c ∈ {0, 1};

3 simples D(3K)a,b,c, SD(3K)a,b,c Q(3K)a,b,c

a ≥ b ≥ c ≥ 1; a ≥ b ≥ c ≥ 1, a ≥ 2; a ≥ b ≥ c ≥ 1, b ≥ 2,
(a, b, c) 6= (2, 2, 1);

D(3R)k,s,t,u, Q(3A)2,2
1

(d)
s ≥ t ≥ u ≥ k ≥ 1, t ≥ 2 d 6∈ {0, 1}

All algebras with one simple module in the above list have the quiver of type 1A

"!
# 

"!
# 

6•6X Y

The quivers of the algebras of type 2B, 3K, 3A and 3R are respectively:

type 3K

•

•

•
-

�

@
@
@
@@R@

@
@

@
@

@I

�
�
�
���

�
�

�
�

�
�	

β

γ

δ
ηλ κ

type 2B

• •
-

���
��

��
��

6
?

α η

β

γ
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type 3A

• • •
-

�
-

�
η

β

γ

δ

type 3R

•

•

•6
-

@
@

@
@

@
@I �

�
�

�
�

�	

β

δ
λ

��
��

6 ��
��

��
��-

α

ξ

ρ

The relations are respectively

D(1A)k1 : X2, Y 2, (XY )k − (Y X)k;

D(1A)k2(d) : X2 − (XY )k, Y 2 − d · (XY )k, (XY )k − (Y X)k, (XY )kX, (Y X)kY ;

SD(1A)k1 : (XY )k − (Y X)k, (XY )kX,Y 2,X2 − (Y X)k−1Y ;

SD(1A)k2(c, d) : (XY )k − (Y X)k, (XY )kX,Y 2 − d(XY )k,

X2 − (Y X)k−1Y + c(XY )k;

Q(1A)k1 : (XY )k − (Y X)k, (XY )kX,Y 2 − (XY )k−1X,X2 − (Y X)k−1Y ;

Q(1A)k2(c, d) : X2 − (Y X)k−1Y − c(XY )k, Y 2 − (XY )k−1X − d(XY )k,

(XY )k − (Y X)k, (XY )kX, (Y X)kY.

as well as

D(2B)k,s(c) : βη, ηγ, γβ, α2 − c(αβγ)k, (αβγ)k − (βγα)k, ηs − (γαβ)k;

SD(2B)k,t1 (c) : γβ, ηγ, βη, α2 − (βγα)k−1βγ − c(αβγ)k, ηt − (γαβ)k, (αβγ)k − (βγα)k;

SD(2B)k,t2 (c) : βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα, γβ − ηt−1, α2 − c(αβγ)k , βη2, η2γ;

Q(2B)k,s1 (a, c) : γβ − ηs−1, βη − (αβγ)k−1αβ, ηγ − (γαβ)k−1γα,

α2 − a(βγα)k−1βγ − c(βγα)k , α2β, γα2;

D(3K)a,b,c : βδ, δλ, λβ, γκ, κη, ηγ, (βγ)a − (κλ)b, (λκ)b − (ηδ)c, (δη)c − (γβ)a;

D(3R)k,s,t,u : αβ, βρ, ρδ, δξ, ξλ, λα, αs − (βδλ)k, ρt − (δγβ)k , ξu − (λβδ)k ;

SD(3K)a,b,c : κη, ηγ, γκ, δγ − (γα)a−1γ, βδ − (κλ)b−1κ, λβ − (ηδ)c−1η;

Q(3K)a,b,c : βδ − (κλ)a−1κ, ηγ − (λκ)a−1λ, δλ − (γβ)b−1γ, κη − (βγ)b−1β,

λβ − (ηδ)c−1η, γκ − (δη)c−1δ, γβδ, δηγ, λκη;

Q(3A)2,21 (d) : βδη − βγβ, δηγ − γβγ, ηγβ − dηδη, γβδ − dδηδ, βδηδ, ηγβγ.

For the dihedral type algebras with two simple modules a result of Kauer and Roggenkamp
[25, Corollary 5.3] show that the parameters c = 0 and c = 1 yield different derived equiva-
lence classes of algebras. The method employed there is rather involved. The authors define
graph algebras and show that being a graph algebra is invariant under derived equivalences.
Further for one of the scalars the algebra is a graph algebra, for the other it is not. Holm
and the author gave a much simpler proof in [23] avoiding graph algebras.

The semidihedral type case can be dealt with at least partially. Again we consider the
derived equivalence classes of semidihedral type algebras with two simple modules, and again
the question if the parameters c = 0 and c = 1 yield different derived equivalence classes
was open.
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Theorem 5. (Holm and Zimmermann [23, Theorem 1.1, Theorem 1.2 and Theorem 1.3])
Let K be an algebraically closed field of characteristic 2.

• For any given integers k, s ≥ 1 consider the algebras of dihedral type D(2A)k,s(c) for
the scalars c = 0 and c = 1. Suppose that k ≥ 2. Suppose if k = 2 then s ≥ 3 is odd,
and if s = 2 then k ≥ 3 is odd.

Put Ak,s
0 := D(2A)k,s(0) and Ak,s

1 := D(2A)k,s(1).

Then the factor rings Z(Ak,s
0 )/T1(Ak,s

0 )⊥ and Z(Ak,s
1 )/T1(Ak,s

1 )⊥ are not isomor-
phic as rings.

In particular, the algebras D(2A)k,s(0) and D(2A)k,s(1) are not derived equivalent
and are not stably equivalent of Morita type.

• For any given integers k ≥ 1 and s ≥ 1, consider the algebras of semidihedral type

SD(2B)k,s1 (c) for the scalars c = 0 and c = 1. Suppose that k ≥ 2. Suppose that if
k = 2 then s ≥ 3 is odd, and if s = 2 then k ≥ 3 is odd.

Put Bk,s
0 := SD(2B)k,s1 (0) and Bk,s

1 := SD(2B)k,s1 (1).

Then the factor rings Z(Bk,s
0 )/T1(Bk,s

0 )⊥ and Z(Bk,s
1 )/T1(Bk,s

1 )⊥ are not isomor-
phic as rings.

In particular, the algebras SD(2B)k,s1 (0) and SD(2B)k,s1 (1) are not derived equiv-
alent and are not stably equivalent of Morita type in these cases.

• For any given integers k ≥ 1 and s ≥ 1, consider the algebras of semidihedral

type SD(2B)k,s2 (c) for the scalars c = 0 and c = 1. Suppose k ≥ 2. Put Ck,s
0 :=

SD(2B)k,s2 (0) and Ck,s
1 := SD(2B)k,s2 (1).

If the parameters k and s are both odd, then the factor rings Z(Ck,s
0 )/T1(Ck,s

0 )⊥

and Z(Ck,s
1 )/T1(Ck,s

1 )⊥ are not isomorphic as rings.

In particular, the algebras SD(2B)k,s2 (0) and SD(2B)k,s2 (1) are not derived equiv-
alent and are not stably equivalent of Morita type in these cases.

Remark 5.1. (1) We should mention that actually the dimension of the quotients of
the centres modulo the Külshammer ideals do not depend on the scalar c. The
algebra structure of the quotient is needed.

(2) It is worth noticing that these algebras are all symmetric and so [52] applies directly.
Moreover, the dimension of the centre of the algebra equals the dimension of the
quotient of the algebra by the commutator subspace. This immediate consequence
of the fact that the algebras are symmetric is not clear in case the algebra is selfin-
jective only. Example 2.18 gives an easy example for how complicated the situation
might become already for very small selfinjective algebras. For general selfinjective
algebras a rather sophisticated theory needs to be developed in order to compute
the commutator subspace.

Remark 5.2. I would like to mention that in [23, Theorem 1.1] the condition that k ≥ 2
in case of algebras of dihedral type in Theorem 5 is unfortunately missing. The condition is
necessary. A recent result of Frauke Bleher [8, Theorem 2] determines the parameter c in the
relations for a specific group by completely different methods. If k = 1 would be allowed,
then the parameter would be different than determined by Bleher. This observation is due
to Zhou.

In recent work Zhou and the author studied if the derived equivalence classification of
Holm of dihedral, semidihedral and quaternion type algebras also gives a classification up
to stable equivalence. Some partial statements are already given in Theorem 5.

One has to deal with several additional problems for stable equivalences of Morita type.
The first problem is that the Auslander-Reiten conjecture is open, that is we might a priori

have a stable equivalence of Morita type between two algebras of dihedral, semidihedral or
quaternion type with different number of simple modules. This does not happen for derived
equivalences since there the rank of the Grothendieck group is an invariant.
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The second problem is that a derived equivalence between an algebra and a local algebra
is in fact a Morita equivalence. This was shown by Roggenkamp and the author [50, Section
5]. The statement is false for stable equivalences of Morita type. Given a finite group G
and a field K of characteristic p dividing the order of G a KG-module M is endotrivial if
the KG-module EndK(M) has the property EndK(M) ≃ K ⊕ P for K being the trivial
K-module and P a projective KG-module. Every endotrivial module over a p-group gives
a stable self-equivalence of Morita type for the group ring over this p-group. The set of
endotrivial modules over a fixed p-group up to some equivalence relation form a group,
whose structure was completely determined by Carlson and Thévenaz, and which is non
trivial free abelian in most cases [15].

Since the statement of the result might be technical for the non specialist reader we
illustrate the result in a coarser form.

Recall that we have the following rough classification of algebras up to derived equiva-
lences.

dihedral semidihedral quaternion
1 simple five types of algebras two types of algebras two types of algebras

depending on parameters depending on parameters depending on parameters
2 simples one type of algebras two types of algebras one type of algebras

depending on parameters depending on parameters depending on parameters
3 simples two types of algebras one type of algebras two types of algebras

depending on parameters depending on parameters depending on parameters

Theorem 6 below states mainly that the columns are preserved under stable equivalences
of Morita type and that the rows are preserved under stable equivalences of Morita type.

The actual statement is finer than this, but this scheme gives a relatively good approxi-
mation of what is proved in Theorem 6.

The details we obtain are given in the following result.

Theorem 6. (Zhou and Zimmermann [48, Theorem 7.1]) Let K be an algebraically closed
field.

Suppose A and B are indecomposable algebras which are stably equivalent of Morita type.

• If A is an algebra of dihedral type, then B is of dihedral type. If A is of semidihe-
dral type, then B is of semidihedral type. If A is of quaternion type then B is of
quaternion type.

• If A and B are of dihedral, semidihedral or quaternion type, then A and B have the
same number of simple modules.

• Let A be an algebra of dihedral type.
(1) If A is local, then A is stably equivalent of Morita type to one and exactly one

algebra in the following list:
– A1(n,m) with m ≥ n ≥ 2 and m+ n > 4;
– C1;
– D(1A)k1 with k ≥ 2;
– if p = 2, B1 and D(1A)k2(d) with k ≥ 2 and d ∈ {0, 1}, except that we

don’t know whether D(1A)k(0) and D(1A)k(1) are stably equivalent of
Morita type or not.

(2) If A has two simple modules, then A is stably equivalent of Morita type to one
and exactly one of the following algebras: D(2B)k,s(0) with k ≥ s ≥ 1 or if
p = 2, D(2B)k,s(1) with k ≥ s ≥ 1.

(3) If A has three simple modules then A is stably equivalent of Morita type to one
and exactly one of the following algebras: D(3K)a,b,c with a ≥ b ≥ c ≥ 1 or
D(3R)k,s,t,u with s ≥ t ≥ u ≥ k ≥ 1 and t ≥ 2.

• Let A be an algebra of semidihedral type.
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(1) If A has one simple module then A is stably equivalent of Morita type to one
of the following algebras: SD(1A)k1 for k ≥ 2 or SD(1A)k2(c, d) for k ≥ 2
and (c, d) 6= (0, 0) if the characteristic of K is 2. Different parameters k yield
algebras in different stable equivalence classes of Morita type.

(2) If A has two simple modules then A is stably equivalent of Morita type to

SD(2B)k,s1 (c) for k ≥ 1, s ≥ 2, c ∈ {0, 1} or to SD(2B)k,s2 (c) for k ≥ 1, s ≥
2, c ∈ {0, 1}, k + s ≥ 4.

(3) If A has three simple modules, then A is stably equivalent of Morita type to one
and only one algebra of the type SD(3K)a,b,c for a ≥ b ≥ c ≥ 1.

• Let A be an algebra of quaternion type.
(1) If A has one simple modules, then A is stably equivalent of Morita type to one

of the algebras Q(1A)k1 for k ≥ 2 or Q(1A)k2(c, d) for k ≥ 2, (c, d) 6= (0, 0) if
characteristic if the K is 2. Different parameters k yield algebras in different
stable equivalence classes of Morita type.

(2) If A has two simple modules then A is stably equivalent of Morita type to one

of the algebras Q(2B)k,s1 (a, c) for k ≥ 1, s ≥ 3, a 6= 0.
(3) If A has three simple modules, then A is stably equivalent of Morita type to

one of the algebras Q(3K)a,b,c for a ≥ b ≥ c ≥ 1, b ≥ 2, (a, b, c) 6= (2, 2, 1) or

Q(3A)2,21 (d) for d ∈ K \ {0, 1}. Different parameters a, b, c yield algebras in
different stable equivalence classes of Morita type.

One particularly nice consequence should be mentioned though.

Corollary 5.3. (Zhou and Zimmermann [48, Corollary 7.3]) The Auslander-Reiten conjec-
ture 4.3 is true for algebras of dihedral, semidihedral or quaternion type.

5.2. Bia lkowski-Erdmann-Skowroński deformation of preprojective algebras. Re-
cently Bia lkowski, Erdmann and Skowroński classified in [5] all selfinjective algebras with
the property that for all simple modules S the third syzygy of S is again isomorphic to S.
A recent survey on the circle around these questions was given by Erdmann and Skowroński
in [17].

The problem of classifying algebras so that Ω2(S) ≃ S for all simple modules was com-
pletely solved before and the next most interesting case is Ω3(S) ≃ S for all simple modules.
In order to formulate the result [5] of Bia lkowski, Erdmann and Skowroński we need to
introduce deformed preprojective algebras as defined in [5].

The preprojective algebra of type An is given by the quiver

•
-

�

a1

a1

•
-

�

a2

a2

•
-

�

a3

a3

•
-

�

a4

a4

. . . . . .
-

�

an−1

an−1

•

subject to the relations

a1a1 = an−1an−1 = 0 and aiai = ai+1ai+1∀ i ∈ {1, 2, . . . , n− 2}.

The deformed preprojective algebra of type Dn+1 is given by the quiver

•
�
����

��	

a1
a1

•
@
@@R@

@@Ia0
a0

•
-

�

a2

a2

•
-

�

a3

a3

•
-

�

a4

a4

. . . . . .
-

�

an−1

an−1

•

subject to the relations

a0a0 = a1a1 = an−1an−1 = a1a1 + a0a0 + a2a2 + f(a0a0, a1a1) = (a1a1 + a0a0)n−2 = 0
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and aiai = ai+1ai+1∀ i ∈ {2, . . . , n − 2}.

for some element

f(X,Y ) ∈ rad2(K < X,Y > /(X2, Y 2, (X + Y )n−1).

The algebra of type Ln for n ≥ 2 was already displayed in Example 2.19 and is given by
the quiver

•

0

•

1

•

2

•

3

•

n− 2

•

n− 1

· · · · · · · · ·
- - - -

������
��

?

ǫ
a0 a1 a2 an−2

a0 a1 a2 an−2

subject to the relations

aiai + ai−1ai−1 = 0 for all i ∈ {1, . . . , n− 2} ,

an−2an−2 = 0 , ǫ2n = 0 , ǫ2 + a0a0 + ǫ3p(ǫ) = 0

for a polynomial p(X) ∈ K[X]. Denote by Lp
n the deformed preprojective algebra of type

L with deformation polynomial p(X) and abbreviate Lj
n := LX2j

n for simplicity when no
confusion may occur.

The deformed preprojective algebra of type En for n ∈ {6, 7, 8} is given by the quiver

•
-

�

a0

a0

•
-

�

a1

a1

•

6

?

a2 a2

•

-

�

a3

a3

•
-

�

a4

a4

. . . . . .
-

�

an−2

an−2

•

subject to the relations

a0a0 = an−2an−2 = a2a2 = 0, aiai = ai+1ai+1∀ i ∈ {5, . . . , n− 2}

a1a1 + a2a2 + a3a3 + f(a1a1, a2a2) = (a1a1 + a2a2)n−3 = 0

for some
f ∈ rad2(K < X,Y > /(X3, Y 2, (X + Y )n−3)

so that
(X + Y + f(X,Y ))n−3 = 0.

For all deformed preprojective algebras we number the vertices by the condition that the
vertex ai starts at vi and ends at a vertex of higher label. This convention numbers the
vertices in a unique way.

Remark 5.4. Observe that in [17, page 238] for type E only ”admissible deformations”
may be applied, which is the condition that (X+Y +f(X,Y ))n−3 = 0. However one relation
is missing in [17] for type D and type E whereas the relation is correctly displayed in [5]. I
am grateful to Karin Erdmann for a clarifying email on this subject.

The result is the following.

Theorem 7. (Bia lkowski, Erdmann and Skowroński [5, Theorem 1.2]) Let A be a finite
dimensional selfinjective K-algebra. Then Ω3(S) ≃ S for every simple A-module if and only

if A is preprojective of type An for (n ≥ 1) or deformed preprojective of type Df
n for (n ≥ 4),

Ef
6 , Ef

7 , Ef
8 or Lp

n for (n ≥ 1).
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It is a non trivial task to determine when deformations f actually lead to non isomorphic
algebras. In a lecture at the ICRA XIV conference in Tokyo in August 2010 Bia lkowski

annonce that in characteristic 2 the deformed preprojective algebras of type LX2j

n for j ∈
{0, 1, . . . , n − 1} form a complete set of Morita equivalence classes of these algebras, a
fact that Skowroński pointed out in an email to the author from March 2007. Skowroński
announces in another email to the author in October 2008 that all algebras Lp

n are symmetric
and that moreover, in characteristic different from 2 the algebra Lp

n is Morita equivalent to

LXn−1

n , the non deformed preprojective algebra of type Ln. The content of Bia lkowski’s
ICRA lecture are available in the conference abstract volume.

For type Df
n Bia lkowski, Erdmann and Skowroński [5, Proposition 6.2] show that the

algebras D
(XY )j
n are not Morita equivalent for different values of j.

No statement is known for type E preprojective algebras.

In joint work with Holm we computed the Külshammer ideals for the algebras LX2j

n . One
main difficulty was to determine the commutator subspace. It is not very difficult to get
a generating set for the quotient of the algebra modulo the commutator space, it is much
more complicated to prove that the commutators one found really generate the commutator
space. In order to do so we apply the method described in Section 2.3 and Section 2.4.

A first step is

Lemma 5.5. [24, Lemma 3.9] Let K be any field. Then Lp
n+1/[L

p
n+1, L

p
n+1] has a K-linear

generating set
{e0, e1, . . . , en, ǫ, ǫ

3, ǫ5, ǫ7, . . . , ǫ2n+1}.

We first need to fix a basis.

Proposition 5.6. [24, Proposition 3.1] Let K be any field. A K-basis of Lp
n is given by the

following paths between the vertices i and j, where i, j ∈ {0, 1, . . . , n− 1}.

(1) aiai+1 . . . aj−1 for i < j
(2) aiai+1 . . . aj−1aj . . . aℓaℓaℓ−1 . . . aj for i < j and some j ≤ ℓ ≤ n− 2
(3) ai−1ai−2 . . . aj for i ≥ j
(4) aiai+1 . . . aℓaℓaℓ−1 . . . ai . . . aj for i ≥ j and some i ≤ ℓ ≤ n− 2
(5) ai−1ai−2 . . . a0ǫa0a1 . . . aj−1 for any i, j
(6) ai−1ai−2 . . . a0ǫa0a1 . . . aℓ−1aℓaℓaℓ−1 . . . aj for i < j and some j ≤ ℓ ≤ n− 2
(7) aiai+1 . . . aℓaℓaℓ−1 . . . a1a0ǫa0a1 . . . aj−1 for i ≥ j and some i ≤ ℓ ≤ n− 2

Now we may define a Frobenius form with respect to this basis using Proposition 2.15.
It turns out that this form is in fact symmetric, non degenerate and associative.

Theorem 8. [24, Theorem 3.5] Let K be any field. Then the algebra Lp
n is symmetric.

We get many elements in the centre of Lp
n by

Lemma 5.7. [24, Lemma 3.13] Let K be any field. Then

Z(Lp
n) ∋ ǫ2 + ǫ3p(ǫ) +

n−2
∑

j=0

(−1)j+1ajaj.

Hence












ǫ2 + ǫ3p(ǫ) +
n−2
∑

j=0

(−1)j+1ajaj





ℓ

| ℓ ∈ {0, 1, . . . , n − 1}











⊆ Z(Lp
n)

is a K-free subset. Moreover soc(Z(Lp
n)) ⊆ Z(Lp

n).

Lemma 5.7 provides a large space in Z(Lp
n) of dimension 2n. Lemma 5.5 shows that

Lp
n/[L

p
n, L

p
n] has dimension at most 2n, whereas Proposition 2.12 show that the two vec-

tor spaces are isomorphic. Hence the elements displayed in Lemma 5.5 form a basis of
Lp
n/[L

p
n, L

p
n].
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Using this result it is then possible to show

Theorem 9. (Holm and Zimmermann [24, Theorem 4.1]) Let K be a perfect field of char-
acteristic 2. Then for 0 ≤ j < n we get

dim
(

Ti(L
X2j

n )
)

− dim
(

[LX2j

n , LX2j

n ]
)

= n− max

(⌈

2n− (2i+1 − 2)j − (2i+1 − 1)

2i+1

⌉

, 0

)

The attentive reader remarks that for the theorem one needs to suppose that the field K is
perfect, whereas this was not supposed in the auxiliary steps. The reason for this assumption
comes from the technicalities in the proof of Theorem 9. We need to find elements x so that
x2

n

∈ [Lp
n, L

p
n]. By what preceded and rather easy arguments it is necessary to consider this

question only for x being a K-linear combination of odd powers of ǫ. Now, the 2n powers
of x will give an element which is expressed in 2n-th powers of the original coefficients, and
from there it is not hard to imagine that one needs to take 2n-th roots of the solutions, in
order to get the original coefficients from some expression one obtains from some solution
one got by a linear algebra argument.

Moreover, we remark that the Morita equivalence classification of the algebras Lp
n is finer

than what can be done by Külshammer ideals. However, Külshammer ideals distinguish
algebras up to derived equivalences and even up to stable equivalences of Morita type (cf
Theorem 4).

5.3. Algebras of polynomial growth and domestic weakly symmetric algebras.

Let K be an algebraically closed field and let A be a finite dimensional K-algebra.

• The algebra A is called of finite representation type if A admits only a finite number
of indecomposable A-modules up to isomorphism.

• The algebra A is called of tame representation type if A is not of finite representation
type and if for every positive integer d there are a finite number of A ⊗K K[X]-
modules M1(d),M2(d), . . . ,Mn(d)(d), which are free as K[X]-modules and so that
for each d all but a finite number of d-dimensional indecomposable A-modules are
isomorphic to a module of the form Mi(d) ⊗K K[X]/(X − λ) for some λ ∈ K and
some i ∈ {1, . . . , n(d)}.

– The tame algebra A is called of domestic representation type if, taking n(d) as
small as possible, there is an integer m so that n(d) ≤ m for all d.

– The tame algebra A is called of polynomial growth if, taking n(d) as small as
possible, there is an integer m so that

lim
n→∞

n(d)

dm
= 0.

• The algebra A is called of wild representation type if for every algebra B there is a
functor B − mod −→ A − mod which is exact, preserves isomorphism classes and
carries indecomposable objects to indecomposable objects.

Of course, tame domestic algebras are polynomial growth tame algebras.
A fundamental result of Drozd says that A is either tame or wild or of finite represen-

tation type. There is intensive research aiming a possible classification of algebras of tame
representation type, though the goal seems still to be very far. Nevertheless Bocian, Holm
and Skowroński classified tame domestic weakly symmetric algebras [9, 10, 21] and tame
weakly symmetric algebras of polynomial growth [6, 7, 22] up to derived equivalences in a
series of papers.

We present some of the details.

Definition 5.8. A selfinjective algebra of tame representation type is called standard if its
basic algebra admits simply connected Galois coverings. Else a selfinjective algebra is called
non standard.

Theorem 10. [9, Theorem 1] For an algebra A the following statements are equivalent:
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(1) A is a representation-infinite domestic selfinjective algebra having simply connected
Galois coverings and the Cartan matrix CA is singular.

(2) A is derived equivalent to the trivial extension T (C) of a canonical algebra C of
Euclidean type.

(3) A is stably equivalent to the trivial extension T (C) of a canonical algebra C of
Euclidean type.

Moreover, the trivial extensions T (C) and T (C ′) of two canonical algebras C and C ′ of Eu-
clidean type are derived equivalent (respectively, stably equivalent) if and only if the algebras
C and C ′ are isomorphic.

In order to be able to formulate Bocian, Holm and Skowroński’s result for weakly sym-
metric algebras of domestic representation type with nonsingular Cartan matrices, we need
to define the following algebras.

"!
# 

"!
# 

6•6β α

A(λ)

λ ∈ K\{0}
α2 = 0, β2 = 0, αβ = λβα

�
���β1@

@@I
β2H
HHYβ3

�
β4
����

βq−3HHHj βq−2-
βq−1
���*

βq

�
���

α1

@
@@I

α2

HHHY

α3

�

α4

����

αp

αp−1αp−2
αp−3

���*
- HHHj

p p p p p p p
p p p
p p p p p p p p p p

ppppppp
ppp
pppppppppp

A(p, q)

1 ≤ p ≤ q

p+ q ≥ 3

α1α2 · · ·αpβ1β2 · · · βq = β1β2 · · · βqα1α2 · · ·αp

αpα1 = 0, βqβ1 = 0

αiαi+1 · · ·αpβ1 · · · βqα1 · · ·αi−1αi = 0, 2 ≤ i ≤ p

βjβj+1 · · · βqα1 · · ·αpα1 · · · βi−1βi = 0, 2 ≤ j ≤ q
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p p p p p p p
p p p
p p p p p p p p p p

β1@
@@I

β2H
HHYβ3

�
β4
����

βn−3HHHj βn−2-
βn−1
���*

βn

�
�����
���

α

Λ(n)

n ≥ 2

α2 = (β1β2 · · · βn)2, αβ1 = 0, βnα = 0

βjβj+1 · · · βnβ1 · · · βnα1 · · · βi−1βi = 0, 2 ≤ j ≤ n

p p p p p p p
p p p
p p p p p p p p p p

β1@
@@I

β2H
HHYβ3

�
β4
����

βn−3HHHj βn−2-
βn−1
���*

βn

�
���

�
�
����
�
���
A
A
AAUA

A
AAK γ1

α2

γ2

Γ(n)

n ≥ 1

α1α2 = (β1β2 · · · βn)2 = γ1γ2,

α2β1 = 0, γ2β1 = 0, βnα1 = 0

βnγ1 = 0, α2γ1 = 0, γ2α1 = 0

βjβj+1 · · · βnβ1 · · · βnα1 · · · βi−1βi = 0, 2 ≤ j ≤ n

Theorem 11. (Bocian, Holm and Skowroński [9, Theorem 2]) For a domestic standard
selfinjective algebra A the following statements are equivalent:

(1) A is weakly symmetric and the Cartan matrix CA is nonsingular.
(2) A is derived equivalent to an algebra of the form A(λ), A(p, q),Λ(n),Γ(n).
(3) A is stably equivalent to an algebra of the form A(λ), A(p, q),Λ(n),Γ(n).

Moreover, two algebras of the forms A(λ), A(p, q),Λ(n),Γ(n) are derived equivalent (re-
spectively, stably equivalent) if and only if they are isomorphic.

For algebras of non standard type we need to introduce the following algebra Ω(n). The
quiver with relations of Ω(n) is as follows.
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p p p p p p p
p p p
p p p p p p p p p p

β1@
@@I

β2H
HHYβ3

�
β4
����

βn−3HHHj βn−2-
βn−1
���*

βn

�
�����
���

α

Ω(n)

n ≥ 1

α2 = αβ1β2 · · · βn, αβ1β2 · · · βn + β1β2 · · · βnα = 0,

βnβ1 = 0, βjβj+1 · · · βnβ1 · · · βnα1 · · · βi−1βi = 0, 2 ≤ j ≤ n

Theorem 12. (Bocian, Holm and Skowroński [10, Theorem 1]) Any nonstandard repre-
sentation infinite selfinjective algebra of domestic type is derived equivalent (resp. stably
equivalent) to an algebra Ω(n) with n ≥ 1. Moreover, two algebras Ω(n) and Ω(m) are
derived equivalent (respectively, stably equivalent) if and only if m = n.

Bocian, Holm and Skowroński show that standard and non standard domestic algebras
cannot be derived equivalent. We are able to improve partially the result.

Lemma 5.9. (Zhou and Zimmermann [49, Lemma 2.3]) A standard weakly symmetric
algebra of domestic type cannot be stably equivalent to a nonstandard one.

The method of proof is to compare stable Auslander Reiten quivers and to use the fact
that the class of special biserial algebras is closed under stable equivalences, a result due to
Pogorza ly [38, Theorem 7.3].

Observe that a Morita equivalence classification of standard self-injective domestic alge-
bras is not given in the results of Bocian, Holm and Skowroński. This is the reason why we
suppose that the domestic algebras are weakly symmetric and not only selfinjective.

We show

Theorem 13. (Zhou and Zimmermann [49, Theorem 2.5])

(1) Two weakly symmetric algebras of domestic representation type are derived equivalent
if and only if they are stably equivalent.

(2) The class of weakly symmetric algebras of domestic representation type is closed
under stable equivalences.

Bocian, Holm and Skowroński give a classification of symmetric algebras of polynomial
growth up to derived equivalences [6], [7], [22]. They get a finite list of algebras which
are defined by quivers and relations, and where the relations involve some parameters. We
are not completely able to distinguish the algebras with the same quiver and relations and
different parameters. We call this problem the scalar problem.

As for symmetric algebras of polynomial growth we get the following result.

Theorem 14. (Zhou and Zimmermann [49, Theorem 3.5]) The classification of indecom-
posable non-domestic weakly symmetric algebras of polynomial growth up to stable equiva-
lences of Morita type coincide with the derived equivalence classification, modulo the scalar
problems.

The method of proof uses, among other general arguments, a computation of Külshammer
ideals.

Concerning the Auslander Reiten conjecture we get

Corollary 5.10. (Zhou and Zimmermann [49, Corollary 2.7, Theorem 3.6, Theorem 3.7])
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• Let A be an indecomposable algebra stably equivalent to an indecomposable symmetric
algebra B of domestic type. Then A and B have the same number of isomorphism
classes of simple modules.

• Let A be an indecomposable algebra stably equivalent to an indecomposable weakly
symmetric standard algebra B of domestic type. Then A and B have the same
number of isomorphism classes of simple modules.

• Let A and B be indecomposable algebras which are stably equivalent of Morita type.
If A is tame symmetric with only Ω-periodic modules, then A and B have the same
number of isomorphism classes of simple modules.

• Let A be an indecomposable algebra and suppose A is stably equivalent of Morita
type to an indecomposable non-domestic symmetric algebra B of polynomial growth.
Then A and B have the same number of isomorphism classes of simple modules.

• Let A and B be two indecomposable algebras which are standard non-domestic weakly
symmetric algebra of polynomial growth or non-standard non-domestic selfinjective
algebra of polynomial growth. If they are stably equivalent of Morita type, then A
and B have the same number of isomorphism classes of simple modules.

6. Hochschild (co-)homology

It is well-known (cf e.g. Loday [34, Paragraphs 1.1.6 and 1.5.2]), and actually we already
used this fact implicitly in e.g. in Section 2.3 and Section 4.3, that A/[A,A] = HH0(A) is the
degree 0 Hochschild homology and Z(A) = HH0(A) is the degree 0 Hochschild cohomology.
A natural question becomes now to generalise Külshammer’s ideals to higher Hochschild
(co-)homology. This was done by the author in [53] and [54].

The symmetrising form on A induces a non degenerate pairing HH0(A)×HH0(A) −→ K.
Hence, in order to generalise to higher Hochschild (co-)homology we first need to produce
a non degenerate bilinear form

HHn(A) ×HHn(A) −→ K

for symmetric algebras induced by the symmetrising form. Let BA be the bar resolution
(i.e. a specific projective resolution; and actually projective resolution will do at this place)
of A as A⊗K Aop-modules.

HomK(HHn(A),K) = HomK(Hn(BA⊗A⊗Aop A),K)

= Hn(HomK(BA⊗A⊗Aop A,K))

= Hn(HomA⊗KAop(BA,HomK(A,K))

≃ Hn(HomA⊗KAop(BA,A))

= HHn(A)

where the second last isomorphism is induced by the symmetrising form A ≃ HomK(A,K)
as A⊗K Aop modules.

This isomorphism yields a non degenerate bilinear form

〈 , 〉n : HHn(A) ×HHn(A) −→ K

which extends the symmetrising form on A.
In order to define Külshammer ideals we used the p-power map on HH0(A) = A/[A,A].

However, how to get a p-power map on HH∗(A) is not completely clear. Nevertheless, the
multiplicative structure on HH∗(A) defined by the cup product can be used instead. By
adjointness with respect to the bilinear form we get then an analogue of the Külshammer
ideal structure on Hochschild homology instead of cohomology. This dual construction on
A/[A,A] = HH0(A) was studied by Külshammer as well in [30, Part IV].

For the pn-power mapping by cup product HHm(A,A) −→ HHpnm(A,A) one gets a

right adjoint κ
(m),A
n : HHpnm(A,A) −→ HHm(A,A) with respect to 〈 , 〉m and 〈 , 〉pnm
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Observe that, if p is odd, the cup product square is 0 in odd degree cohomology. Hence for
p odd the p-power map as well as the adjoint is 0 in odd degree cohomology.

Proposition 6.1. [53, Lemma 2.6, beginning remarks of Section 3] Let A be a finite di-
mensional symmetric K algebra over a perfect field K of characteristic p > 0. Then, for all

n ∈ N and for all x ∈ HHpnm(A,A) there is a unique κ
(m)
n (x) ∈ HHm(A,A) so that for all

f ∈ HHm(A,A) one has

〈

fp
n

, x
〉

pnm
=

(〈

f, κ(m)
n (x)

〉

m

)pn

.

Using the mapping κ
(m)
n one gets the compatibility with derived equivalences.

Theorem 15. [53, Theorem 1] Let A be a finite dimensional symmetric K-algebra over a
perfect field K of characteristic p > 0. Let B be a second algebra so that Db(A) ≃ Db(B)
as triangulated categories. Let p be a prime and let m ∈ N. Then, there is a standard
equivalence F : Db(A) ≃ Db(B), and any such standard equivalence induces an isomorphism
HHm(F ) : HHm(A,A) −→ HHm(B,B) of all Hochschild homology groups satisfying

HHm(F ) ◦ κ(m),A
n ◦HHpnm(F )−1 = κ(m),B

n .

The proof is very much like the one in degree 0 for Hochschild cohomology. Nevertheless
a clear definition of an isomorphism on Hochschild homology induced by a standard derived
equivalence was not published explicitly before. The construction was somewhat implicit in
Rickard’s work, but an explicit clarification seems to appear in [53, Section 1.2] for the first
time.

One should notice however that a derived equivalence may be non standard, and then
it is not clear how to define an induced mapping on the category of bimodules, and in the
sequel on the Hochschild homology. One needs the standard equivalence in order to control
the way it acts on Hochschild homology.

What happens if A is not symmetric? Already for the non degenerate pairing between
Hochschild homology and cohomology it is not clear how to to define it properly. We may
again use trivial extension algebras. Then there are ring homomorphisms A −→ TA and
TA −→ A by projection, injection from and to the second component. Hochschild homology
is functorial, contrary to Hochschild cohomology. Hence we get mappings

HHn(ιA) : HHn(A) −→ HHn(TA)

and
HHn(πA) : HHn(TA) −→ HHn(A).

Now, defining

κ̂(m)
n := HHm(πA) ◦ κ(m)

n ◦HHpnm(ιA) : HHpnm(A) −→ HHm(A)

one obtains an invariant under derived equivalences.

Theorem 16. [54, Theorem 2] Let K be a perfect field of characteristic p > 0, let A and B be
finite dimensional K-algebras and suppose that Db(A) ≃ Db(B) as triangulated categories.
Let F be an explicit standard equivalence between Db(A) and Db(B). Then, F induces a
sequence of isomorphisms HHm(F ) : HHm(A) −→ HHm(B) so that

HHm(F ) ◦ κ̂(m);A
n = κ̂(m);B

n ◦HHpnm(F ).

Obviously Theorem 16 generalises Theorem 15 to non symmetric algebras. Since Hoch-
schild homology is often better understood than Hochschild cohomology we expect that this
generalisation will bear use in the future.

Nevertheless there is a p-power map available in some cases coming from the Gerstenhaber
structure on Hochschild homology. The construction is due to Stasheff and Quillen.

Let

Coder(B(A),B(A)) := {D ∈ EndA⊗Aop(B(A))|∆ ◦D = (idB(A) ⊗D +D ⊗ idB(A)) ◦ ∆}
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be the coderivations. Since B(A) is graded, Coder(B(A),B(A)) is graded as well. Denote
by Codern(B(A),B(A)) the degree n coderivations. The vector space Coder(B(A),B(A))
is a graded Lie algebra with Lie bracket being the commutator. Moreover (cf Stasheff [44,
Proposition]),

Coder(B(A),B(A)) ≃ HomA⊗Aop(B(A), A)[1] .

The key observation is

Lemma 6.2. [53, Lemma 4.1] (Keller, personal communication)

• Suppose K is a field. Then,

D ∈ Coder2n+1(B(A),B(A)) ⇒ D2 ∈ Coder2·(2n+1)(B(A),B(A)).

• Suppose K is a field of characteristic p > 0. Then,

D ∈ Coder2n(B(A),B(A)) ⇒ Dp ∈ Coder2pn(B(A),B(A)).

This p-power structure carries over to Hochschild cohomology.

Lemma 6.3. [53, Lemma 4.2] Let K be a field of characteristic p > 0 and let D ∈
Codern(B(A),B(A)).

(1) If p = 2 and n ∈ N, then the mapping D 7→ D2 induces a mapping

HHn+1(A,A) −→ HH2n+1(A,A)

(2) If p > 2 and n = 2m ∈ 2N, then the mapping D 7→ Dp induces a mapping

HH2m+1(A,A) −→ HH2pm+1(A,A)

Hence, for p = 2 the Hochschild cohomology becomes a 2-restricted Lie algebra with
the Gerstenhaber bracket and the 2-power map. For p > 2 the odd degree Hochschild
cohomology becomes a p-restricted Lie algebra with the Gerstenhaber bracket and the p-
power mapping.

Using these constructions we get

Theorem 17. [53, Proposition 4.4] Let A and B be K-algebras over a field K. Suppose
Db(A) ≃ Db(B) as triangulated categories.

• If the characteristic of K is 2 then HH∗(A,A) and HH∗(B,B) are isomorphic as
restricted Lie algebras.

• If the characteristic of K is p > 2, then the Lie algebras consisting of odd de-
gree Hochschild cohomologies

⊕

n∈NHH
2n+1(A,A) and

⊕

n∈NHH
2n+1(B,B) are

isomorphic as restricted Lie algebras.

However we fail to prove that the so-defined Gerstenhaber p-power map is additive, neither
semilinear. Hence it does not seem to be clear how a Külshammer structure could be built
from there.
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ized Dynkin type, Transactions of the American Mathematical Society, 359 (2007) 2625-2650.

[6] Jerzy Bia lkowski, Thorsten Holm and Andrzej Skowroński, Derived equivalences for tame weakly sym-
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[13] Thomas Breuer, László Héthelyi, Erzsébet Horváth, Burkhard Külshammer, John Murray, Cartan in-

variants and central ideals of group algebras, Journal of Algebra 296 (2006) 177-195.
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Lecture Notes in Mathematics 1685 (1998).

[29] Steffen König, Yuming Liu and Guodong Zhou, Transfer maps in Hochschild (co-)homology and applica-
tions to stable and derived invariants and to the Auslander-Reiten conjecture, to appear in Transactions
of the American Mathematical Society.

[30] Burkhard Külshammer, Bemerkungen über die Gruppenalgebra als symmetrische Algebra I, II, III, IV,
Journal of Algebra 72 (1981), 1–7; Journal of Algebra 75 (1982), 59–69; Journal of Algebra 88 (1984),
279–291; Journal of Algebra 93 (1985), 310–323.

[31] Burkhard Külshammer, Group-theoretical descriptions of ring theoretical invariants of group algebras,
Progress in Mathematics, 95 (1991), 425–441.

[32] Yuming Liu, Summands of stable equivalences of Morita type. Communications in Algebra 36(10) (2008),
3778-3782.
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