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Numerical study of cavitating flows with

thermodynamic effect

Eric Goncalvès ∗, Regiane Fortes Patella

LEGI Grenoble-INP, 1025 rue de la Piscine, 38400 St Martin d’Heres, France

Abstract

Thermodynamic effects play an important role in the cavitation dynamics of cryo-

genic fluids. Such flows are characterized by strong variations in fluid properties

with the temperature. A compressible, multiphase, one-fluid formulation that ac-

counts for the energy balance and variable thermodynamics properties of the fluid is

described. A preconditioning method for low Mach number areas is presented. Cav-

itation phenomenon is modelled by two different liquid-vapour mixture equations of

state (EOS). Mathematical and thermodynamic properties are studied. Numerical

results are given for a Venturi geometry with freon R-114 fluid and comparisons are

made with experimental data.

Key words: Cavitation, Homogeneous Model, Thermodynamic Effect, Equation of

State, RANS Simulations

1 Introduction

The simulation and the prediction of cavitation in cryogenic fluids is of crit-

ical importance for the efficient design and performance of turbopumps in
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rocket propulsion systems. With thermosensible fluids, thermal effects and

strong variations in fluid properties are observed, which alter the cavity char-

acteristics. Sheet cavitation involves complex interactions between the vapour

and liquid phases. The cavity is sustained by a continuous vaporization and

condensation processes whose rates are determined by the geometry and flow

conditions. The shape and size of the cavity are dependent on the physical

properties of the working fluid and the local fluid pressure, velocity and tem-

perature.

For cryogenic fluids, the liquid-vapour density ratio is lower than that of typ-

ical fluids (cold water) and consequently more liquid mass has to vaporize to

sustain a cavity. Therefore evaporative cooling effects are more pronounced

and the temperature of the liquid in the immediate vicinity of the liquid-

vapour interface is depressed below the free-stream temperature. Because of

the strong variation of thermodynamic properties (vapour pressure, density),

the temperature depression, negligible in water, is quite substantial. The local

cooling effect delays the cavitation phenomenon and reduces the local vapour

pressure of the fluid, which leads to a lower observed cavity pressure. Typical

temperature depressions in cryogenic fluids are only one to two Kelvin, this

corresponds to changes in vapour pressure of a factor of two.

First studies about thermal effects were generally focussed on obtaining corre-

lations for temperature depression as a function of flow conditions and liquid

properties. Classical methods include the B-factor theory [17,27,36] to charac-

terize the sensitivity of fluids to thermodynamic effects, and the entrainment

theory [5,16]. The B-factor method is based on the ratio of vapour volume

to liquid volume affected by the vaporization process. A simple heat balance

between the two phases can estimate the scale of temperature difference ∆T ∗

caused by thermal effects. The B-factor is estimated as the ratio between the
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actual temperature drop and ∆T ∗:

∆T ∗ =
ρV Lvap

ρLCpL

and B =
∆T

∆T ∗ (1)

where Lvap is the latent heat, ρL and ρV densities for the liquid and vapour

phases, respectively. CpL
represents the specific heat. Values of the tempera-

ture difference ∆T ∗ are given in Table 1 for water and freon R-114.

Various numerical models have been developed to investigate thermodynamic

effects in cavitating flows and more generally two-phase flows with phase tran-

sition in metastable liquids. A liquid initially in thermodynamic equilibrium

can reach a metastable state where the temperature is higher than the sat-

urated one (superheated liquid) or where the pressure is lower than the sat-

urated one (stretched liquid). Different classes of models are available in the

literature within the framework of the continuum modelling method. This

method makes no attempt to track the liquid and vapour interface but treats

the flow as two-phases with an averaged mixture density, which continuously

varies between the liquid and vapour extremes. These two-phase models are be-

coming more and more popular because of their abilities to include the physics

of cavitating flows. In its implementation, there are different approaches ac-

cording to the assumptions made: equilibrium models versus non-equilibrium

models, the one-fluid method or homogeneous models versus the two-fluid

method.

The two-fluid approach assumes that both phases co-exist at every point in

the flow field and each phase is governed by its own set of conservation laws.

For example, a seven-equation model has been used for inviscid high speed

cavitating applications and two-phase Riemann problems [22,33]. Because the

exchanges of mass, momentum and energy are treated explicitly as transfer

terms, these models can take into account the physical details occurring in

the cavitation phenomenon such as mass exchange, thermal transfer and sur-
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face tension. However, the transfer terms have to be known; such quantities

are usually very difficult to obtain. Moreover, these models can involve non-

conservative terms that is a numerical problem.

The one-fluid method treats the cavitating flows as a mixture of two fluids be-

having as one. The governing equations are composed by three conservation

laws written for the mixture. These models are based on the assumption of

local kinematic equilibrium between phases (the local velocity is the same for

both phases) and local thermodynamic equilibrium between the two compo-

nents (local temperature, pressure and free energy equality between phases),

which constitute the homogeneous equilibrium models (HEM). Moreover, va-

porization or condensation processes are assumed to be instantaneous. An

equation of state (EOS) is necessary to define the thermodynamic behaviour

of the mixture. Different closure relations that link the pressure to the temper-

ature and the density have been proposed, from tabular EOS (for ebullition

applications [7]), barotropic EOS (for cavitation in liquid hydrogen [8] or in

hot water [29]), to more sophisticated EOS (for cavitation in octane [10] or in

refrigerant R-114 [31]). Small non-equilibrium effects (spinodal values in the

metastable area) can be introduced in the EOS compared to an isothermal

thermodynamic path. When non-equilibrium effect becomes important, addi-

tional equations are needed for an accurate prediction.

Hybrid or reduced models are intermediate models between one-fluid and two-

fluid ones, based on four or five equations. A five-equation model can be ob-

tained from a simplification of a seven-equation two-fluid model. It is composed

by four conservation laws (two mass balance, one mixture momentum, one

mixture energy) plus a non-conservative equation for the void ratio. It involves

two temperature and then is able to capture temperature non-equilibrium ef-

fects. Such models have been used for inviscid high speed cavitating appli-

cations and cavitation pocket in fuel injector nozzles [34]. A four-equation

model has been used for ebullition applications and flashing flows: the homo-

geneous relaxation model (HRM). It is composed by three conservation laws
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for the mixture augmented by a void ratio equation with a relaxation term.

The source term involves a relaxation time that is the time for the system

to regain its thermodynamic equilibrium state. This time is very difficult to

determine and is estimated with experimental data [2–4]. Another formulation

of the relaxation term was proposed by [15], based on a constrained convex

optimization problem on the mixture entropy. Another four-equation model,

very popular to simulate cavitating flows in cold water, has been adapted to

cryogenic applications [1,18,40,42]. It is obtained by adding a mass equation

for the vapour or liquid density including a cavitation source term. The main

difficulty is related to the formulation of the source term and the tunable pa-

rameters involved for the vaporization and condensation processes (different

sets of parameters are presented in [40]).

The present paper proposes a simple homogeneous formulation with two differ-

ent mixture EOS: an EOS derived from a barotropic law and a model based on

the stiffened gas law. For both EOS, mathematical properties such as hyper-

bolicity and convexity are studied for the inviscid Euler equations. Numerical

simulations are performed with an implicit preconditioned compressible RANS

solver. The boundary conditions are treated with preconditioned characteristic

relations. We test different transport-equation turbulence models associated

with the Boussinesq assumption and calibrated for single-phase flows. The

models and numerical techniques are assessed by comparing the numerical re-

sults with experimental data on two Venturi geometries. The running fluid is

freon R-114 (C2Cl2F4). Local analyses with void ratio profiles and wall tem-

perature depression are proposed.

In the following, we first describe the essential elements of the governing equa-

tions, the modelling concepts, the numerical schemes, and then present the

results.
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2 Governing equations and models

The numerical simulations were carried out using an in-house CFD code solv-

ing the one-fluid compressible RANS system. First, we present the one-fluid

formulation for Euler equations, with the associated preconditioned method

and studies of mathematical and thermodynamic properties. Second, the com-

plete RANS system is presented.

2.1 The one-fluid Euler equations

The homogeneous model assumes strong coupling of the phases and moving

at the same velocity components. The phases are assumed in close proximity

to each other so that heat transfer would occur instantaneously maintaining

the phases in thermal equilibrium. Furthermore, the disperse phase behaves

quasi-statically to change in pressure and the mixture are assumed in constant

pressure. Therefore the phases share the same temperature T and the same

pressure P .

The evolution of the two-phase flow can be described by Euler equations that

employ the representative flow properties as unknowns just as a single-phase

problem. The mixture density ρ is defined by:

ρ = αρV + (1− α)ρL (2)

where ρL and ρV are respectively the liquid and vapour densities. The void ra-

tio α characterizes the volume of vapour in each cell: α = 1 means that the cell

is completely filled by vapour; inversely, a complete liquid cell is represented

by α = 0. Liquid and vapour phases are characterized by their thermodynamic

properties. On each cell, the unknowns are calculated by averaging them by

the volume occupied.
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In order to simplify the formulation, we present below the one-dimensional

equations, expressed in conservative variables w = (ρ, ρu, ρE):

∂ρ

∂t
+

∂ρu

∂x
= 0 (3)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (4)

∂(ρE)

∂t
+

∂(ρuH)

∂x
= 0 (5)

where E = e + u2/2 denotes the total energy and H = h + u2/2 the total

enthalpy; e the internal energy, h the enthalpy, which are related to the void

ratio and the liquid and vapour values:

ρe = αρV eV + (1− α)ρLeL (6)

ρh = αρV hV + (1− α)ρLhL (7)

To close the system, an equation of state (EOS) and a thermal relation are

necessary to link the pressure and the temperature to the internal energy and

the density. The difficulty with this homogeneous approach is to specify an

EOS that covers all possible fluid states: pure liquid, two-phase mixture and

pure gas. Different EOS can be used in pure phases and in the mixture. In

the present study, we propose a stiffened gas EOS for the pure phases and

two formulations for the two-phase mixture: a mixture of stiffened gas and a

modified barotropic EOS.

Moreover, mathematical and thermodynamic properties should be analyzed:

the hyperbolicity of the inviscid system has to be verified (i.e. the sound of

speed c2 > 0) and a suitable mixture EOS has to be convex to respect the

second principle of thermodynamics, and to obtain thermodynamically stable

states. Given a two-phase mixture with an entropy, a thermodynamic state

is said to be stable if it is an absolute maximum of the entropy and it is

metastable if it is a relative maximum of the entropy. This induces the fact

that the entropy s of a given state must always ensure the following criterion:
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d2s < 0 (condition of concave entropy, the Hessian matrix of s has to be

definite negative). Moreover, the concavity of s is equivalent to the convexity

of e (i.e. the Hessian matrix of internal energy has to be positive definite).

2.1.1 The pure phases EOS

Model description

For pure phases, we use the convex stiffened gas (SG) equation of state (see

[21]):

P (ρ, e) = (γ − 1)ρ(e− q)− γP∞ (8)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (9)

T (ρ, h) =
h− q

Cp

(10)

where γ = Cp/Cv is the heat capacity ratio, Cp and Cv are thermal capaci-

ties, q the energy of the fluid at a given reference state and P∞ is a constant

reference pressure.

The associated speed of sound c, defined as c2 =

(
∂P

∂ρ

)

s

=

P
ρ2 −

(
∂e
∂ρ

)
P(

∂e
∂P

)
ρ

, can

be easily computed:

c2 = γ
P + P∞

ρ
= (γ − 1)CpT (11)

c2 remains strictly positive (for γ > 1) that ensures the strict hyperbolicity

of the system and the existence of a convex mathematical entropy [14]. The

eigenvalues of the system are u and λ± = u± c.
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The low Mach number preconditioner

For low Mach number applications, a well-known problem concerns the stiff-

ness on the solution convergence. In this situation, the dominance of convec-

tion terms renders the system stiff and compressible solvers converge slowly. To

overcome this difficulty, a preconditioning method is necessary. The physical

acoustic waves are replaced by pseudo-acoustic modes that are much closer to

the advective velocity, reducing the stiffness and enhancing the convergence.

The method is based on the modification of the derivative term by a premulti-

plication with a suitable preconditioning matrix. With the primitive variables

W = (P, u, e) the preconditioned Euler equations can be expressed as:

P−1
e

∂W

∂t
+ Ae

∂W

∂x
= 0 (12)

We use the preconditioning matrix based on the Turkel approach [13,39] :

Pe =




β2 0 0

0 1 0

0 0 1




; Ae =




u ρc2 0

1/ρ u 0

0 P/ρ u




β is a parameter on the order of the Mach number. In our study, we have

chosen the form given by Choi and Merkle [6]:

β2 = min
[
max

(
M2, KM2

∞
)
, 1

]
(13)

This form implies that there is no preconditioning used in transonic and super-

sonic flow regions (in the mixture). When β2 = 1, the preconditioning matrix

becomes the identity matrix and the system returns to its classical non pre-

conditioned form. Moreover, for a very small flow velocity, β2 is not allowed
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to be less than a given percentage of the freestream velocity, determined by

the coefficient K. For inviscid computations, K is on the order of unity.

The eigenvalues of the preconditioned system are:

u ; λ± =
1

2

[
u(1 + β2)±

√
(β2 − 1)2u2 + 4β2c2

]
(14)

For the conservative variables w = [ρ, ρu, ρE], the corresponding form is:

P−1
c

∂w

∂t
+ Ac

∂w

∂x
= 0 (15)

where the preconditioning matrix P−1
c =

∂w

∂W
P−1

e

∂W

∂w
and Ac is the Jacobian

matrix of the convective fluxes. Expressions of R =
∂w

∂W
and R−1 =

∂W

∂w
are

given in appendix A.

The preconditioned matrix can be written as P−1
c = Id +

(1− β2)

β2(e− q)
×B where

Id is the identity matrix and the matrix B is:

B =




u2

2
−u 1

u2

2
u −u2 u

u2

2
(E − q) − u(E − q) E − q




The matrix B is idempotent (i.e. B2 = B) and the inverse matrix Pc can be

easily computed: Pc = Id +
(β2 − 1)

(e− q)
×B.

In the mixture area, whose models are presented below, the preconditioned

matrix is not necessary. Indeed, in the compressible area, β2 = 1, Pc = Id and

the classical compressible system is integrated.
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Another preconditioner based on the primitive variables (P, u, S) was tested

(the formulation is given in [12]), leading to less robust simulations.

2.1.2 The mixture EOS

The mixture of stiffened gas EOS - properties

The first cavitation model applied in this study is based on a mixture of

stiffened gas. This model was developed and tested for cold water applications

[12]. On the basis of the stiffened gas EOS for each pure phase, an expression

for the pressure and the temperature can be deduced from the thermal and

mechanical equilibrium assumption. These expressions, function of the void

ratio α, are available in all possible fluid states:

P (ρ, e, α) = (γ(α)− 1)ρ(e− q(α))− γ(α)P∞(α) (16)
1

γ(α)− 1
=

α

γV − 1
+

1− α

γL − 1
(17)

ρq(α) = αρV qV + (1− α)ρLqL (18)

P∞(α) =
γ(α)− 1

γ(α)

[
α

γV

γV − 1
P V
∞ + (1− α)

γL

γL − 1
PL
∞

]
(19)

T (ρ, h) =
hL − qL

CpL

=
hV − qV

CpV

=
h− q(α)

Cp(α)
(20)

ρCp(α) = αρV CpV
+ (1− α)ρLCpL

(21)

At thermodynamic equilibrium, the two Gibbs free energy (g = h−Ts) have to

be equal, that implies a relation between Pvap and T . The complete formulation

is detailed in [34] for a mixture of stiffened gas :

ln(P + PL
∞) = A +

B

T
+ Cln(T ) + Dln(P + P V

∞) (22)

dP

dT
(T ) =

C
T
− B

T 2

1
P+P V∞

− D
P+P L∞

(23)

where A, B, C and D are constant. A Newton algorithm can be used to solve

the non linear equation. The main characteristic of this model is the pres-
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ence of a ”kink”, a discontinuity in the derivatives along the saturation curves

which separates the single phase and the two-phase domains. Numerically, this

full equilibrium model is very stiff and very hard to converge.

To avoid an iterative procedure, we assume that the vapor pressure Pvap varies

linearly with the temperature :

Pvap(T ) = Pvap(Tref ) +
dP

dT
(T − Tref ) (24)

The constant quantity
dP

dT
is estimated with a thermodynamic table of freon

R-114 (values are given in Table 3). To evaluate the impact of this assump-

tion, we computed the derivative
dP

dT
of the full equilibrium model (equation

(23)), for a temperature Tref = 293K. In the mixture of freon, this quantity

is almost constant, it varies between 5970 and 6028 Pa/K. Consequently, the

variation of Pvap with the temperature is well quasi-linear.

The void ratio α can be computed with an iterative algorithm from these two

relations:

ρe = α (ρV eV − ρLeL) + ρLeL (25)

α =
ρ− ρL(T )

ρV (T )− ρL(T )
(26)

To avoid an iterative procedure, we assume that densities of each phase vary

linearly with the temperature :

ρL(T ) = ρsat
L (Tref ) +

dρL

dT
(T − Tref ) (27)

ρV (T ) = ρsat
V (Tref ) +

dρV

dT
(T − Tref ) (28)

The constant quantities
dρk

dT
are evaluated with a thermodynamic table of
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freon R-114 (see Table 2 and Table 3, Section 4.2.1). Equation (26) allows the

determination of α with the temperature evaluated at the previous iteration.

Thus, the system is closed.

The speed of sound in the mixture can be expressed as a function of the

enthalpy of each phase (see appendix B) :

C1 =
1

γ − 1
+

ρV hV − ρLhL

(ρL − ρV )dP
dT

(
α

dρV

dT
+ (1− α)

dρL

dT

)
(29)

ρc2 = ρ

(
∂P

∂ρ

)

s

=
1

C1

[
ρV ρL

(ρL − ρV )
(hV − hL)

]
(30)

c2 is always strictly positive therefore the system is strictly hyperbolic.

The convexity of internal energy is necessary to ensure thermodynamic stabil-

ity and to respect the entropy growth criterion. The Hessian matrix of e has to

be positive definite. With the introduction of these dimensionless parameters:

λ =
ρ

P

(
∂P

∂ρ

)

s

; g =
P

ρT 2

(
∂T

∂s

)

ρ

; Γ =
ρ

T

(
∂T

∂ρ

)

s

(31)

an equivalent condition of convexity was formulated by Perrier [28] for flows

with phase transition :

λ ≥ 0 ; g ≥ 0 ; λg − Γ2 ≥ 0 (32)

The different parameters can be computed (see Appendix C):

λ =
ρc2

P
> 0 (33)

C2 = ρCp +

[
(CpL

− CpV
)T + (qL − qV )

ρV − ρL

] (
αρL

dρV

dT
+ (1− α)ρV

dρL

dT

)
(34)

g =
P (1 + C1)

TC1C2

(35)
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Γ =
ρ(C1 + 1)c2

TC2

(36)

With parameters presented in Section 4.2.1, the quantities C1 and C2 are

positive therefore g and Γ are also positive.

The third condition can be expressed as:

c2 ≤ TC2

ρC1(1 + C1)
(37)

This condition is also respected for applications considered in the paper.

A modified barotropic EOS - properties

The second model proposed is based on a sinusoidal barotropic law [9,12]. This

law is modified by introducing thermal variations. When the pressure becomes

smaller than the quantity Pvap(T ) + ∆P and greater than Pvap(T )−∆P , we

have the relation:

P (α, T ) = Pvap(T ) +

(
ρsat

L − ρsat
V

2

)
c2
baro Arcsin (A (1− 2α)) (38)

where ∆P represents the pressure width of the law and, for a void ratio value

set at 0.5, the pressure is equal to the vaporization pressure Pvap(T ). The

constant A, close to 1, allows to avoid infinite value of the speed of sound in

pure phases. The quantity cbaro is an adjustable parameter of the model which

has the dimension of a velocity. For cold water, cbaro can be interpreted as the

minimum speed of sound in the mixture.

As previously with the stiffened gas EOS, we assume that the vaporization

pressure varies linearly with the temperature :

Pvap(T ) = Pvap(Tref ) +
dP

dT
(T − Tref ) (39)
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The void ratio is computed with saturation values of densities:

α =
ρ− ρsat

L

ρsat
V − ρsat

L

(40)

For an equilibrium two-phase flow, the pressure depends only on the temper-

ature, derivatives of P and T with respect to the density are zero. With this

EOS, these quantities are no more equal to zero (their expressions are given

in Appendix D), leading to a small thermal effect.

The speed of sound can be expressed as (see Appendix D):

(
∂ρ

∂T

)

P

= −dP

dT

1

Ac2
baro

cos

(
P − Pvap(T )

0.5(ρsat
L − ρsat

V )c2
baro

)
< 0 (41)

K1 =
ρCp

dP
dT

(42)

(K1 − 1)c2 =
ρV ρL

ρ(ρL − ρV )
(hV − hL)− ρCp

(
∂T

∂ρ

)

P

(43)

With our choice of parameters for the model (values are given in Table 4, Sec-

tion 4.2.2), the quantity K1 − 1 is positive and c2 is always strictly positive,

therefore the system is strictly hyperbolic.

The dimensionless parameters for convexity conditions concerning this ap-

proach are (see Appendix E):

λ =
ρc2

P
> 0 (44)

g =
P

T (ρCp − dP
dT

)
(45)

Γ =
ρc2

T dP
dT

+
ρ

T

(
∂T

∂ρ

)

P

(46)

With our choice of parameters, the first two conditions are well respected.

Assuming the cosine value is equal to 1 in the expression of
(

∂T
∂ρ

)
P

(that is to
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say the pressure P = Pvap(T )), the third convexity relation can be expressed

as:

K2 = c2
baro +

T dP
dT

2ρ(K1 − 1)
(47)

K2 +
√

K2
2 − c4

baro ≤ c2 ≤ K2 +
√

K2
2 + c4

baro (48)

This inequality is respected for void ratio values depending on the choice of

the parameter cbaro. For example, for the freon R-114, if cbaro = 1.48 m/s,

the convexity is verified for void ratio values smaller than 0.8. The convexity

domains are given in Table 4 for different values of the parameter cbaro.

2.2 Reynolds-Averaged Navier-Stokes equations

For turbulent computations, the compressible one-fluid RANS equations are

used, coupled with a one- or two-equation turbulence model. For low Mach

number applications, the inviscid preconditioner presented previously is used

(no viscous terms are introduced in the formulation). These equations can be

expressed as:

P−1
c

∂w

∂t
+ div (Fc − Fv) = S (49)

w =




ρ

ρV

ρE

ρk

ρΨ




; Fc =




ρV

ρV ⊗ V + pI

(ρE + p)V

ρkV

ρΨV




; Fv =




0

τ v + τ t

(τ v + τ t).V −Qv −Qt

(µ + µt/σk) grad k

(µ + µt/σΨ) grad Ψ
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where w denotes the conservative variables, Fc and Fv the convective and

viscous flux densities and S the source terms which concern only the transport

equations. k is the turbulent kinetic energy and Ψ is a turbulent variable.

The exact expression of the eddy-viscosity µt and the source terms depend on

the turbulence model, as well as the constants σk and σΨ.

The total stress tensor τ is evaluated following the Stokes hypothesis and the

Boussinesq assumption. The total heat flux vector Q is obtained from the

Fourier law with the constant Prandtl number hypothesis.

τ = τ v + τ t = (µ + µt)
[
1

2
( grad V + ( grad V )t)− 2

3
( div V )I

]
+

2

3
kI(50)

Q = Qv + Qt = −
(

µ

Pr

+
µt

Prt

)
Cp grad T (51)

In the pure liquid, the viscosity is determined by an exponential law and, in

pure vapour, the viscosity follows the Sutherland law. The mixture viscosity is

calculated as an arithmetic mean between the liquid and the vapour viscosity:

µL(T ) = µ0L
exp (B/T ) (52)

µV (T ) = µ0V

√
T

293

1 + TS/293

1 + TS/T
(53)

µ(T, α) = αµV (T ) + (1− α)µL(T ) (54)

where µ0L
, µ0V

, B and TS are constant parameters.

The mixture Prandtl number is also evaluated as an arithmetic mean between

the liquid and the vapour value:

Pr(α) = αPrV
+ (1− α)PrL

(55)

The turbulent Prandtl number Prt is set at 1.
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2.2.1 Turbulence model

The one-equation Spalart-Allmaras model (SA) [35] was used for this study.

Moreover, a comparison with two other models, the Jones-Launder k−ε model

(KE) [20] and the Menter SST k − ω model (KWSST) [24], is proposed.

3 Numerical scheme

The numerical simulations were carried out using an implicit CFD code solving

the RANS/turbulent systems for multi-domain structured meshes. This solver

is based on a cell-centered finite-volume discretization.

3.1 Spatial discretization

The system in integral form is written for a computational cell of volume Ω

limited by a surface Σ, with an outer normal n. It can be expressed as:

P−1
c

d

dt

∫

Ω

w dΩ +
∮

Σ

Fc.n dΣ −
∮

Σ

Fv.n dΣ =
∫

Ω

S dΩ (56)

Using the finite-volume technique for space discretization, a semi-discrete form

of equation (56) can be written as:

P−1
c Ω

∂w

∂t
+

∑

allfaces

(Fc − Fv).nΣ = ΩŜ (57)

For the mean flow, the convective flux density vector on a cell face is computed

with the Jameson scheme [19] in which the dispersive error is cancelled. The

artificial viscosity includes a second-order dissipation term D2 and a fourth-

order dissipation term D4. The use of a preconditioning method modifies these

dissipation terms:
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D2(w) = P−1
c

∑

l=i,j,k

δl

(
Pc ε

(2)
l | λ+ | δlw

)
(58)

D4(w) = P−1
c

∑

l=i,j,k

δl

(
Pc ε

(4)
l | λ+ | δ3

l w
)

(59)

where, for each direction l, ε
(2)
l = k(2) max (νl, νl+1) and ε

(4)
l = max (0, k(4) − ε

(2)
l ),

k(2) and k(4) are tunable numerical coefficients. λ+ is the higher eigenvalue of

the preconditioned system. δl is the difference operator and νl represents a

sensor based on the pressure gradients. For two-phase flows, νl is also based

on the density gradients.

The viscous terms are discretized by a second-order space-centered scheme.

For the turbulence transport equations, the upwind Roe scheme [30] is used

to obtain a more robust method. The second-order accuracy is obtained by

introducing a flux-limited dissipation [38].

3.2 Temporal discretization

Time integration is achieved using a low-cost implicit method [23]. The implicit

method consists in solving a system of equations arising from the linearization

of a fully implicit scheme, at each time step. The main feature of this method

is that the storage of the Jacobian matrix is completely eliminated, which

leads to a low-storage algorithm. More details are given in [12].

The implicit time-integration procedure leads to a system that can be solved

directly or iteratively. The direct inversion can be memory intensive and com-

putationally expensive. Therefore, an implicit relaxation procedure is preferred

and the point Jacobi relaxation algorithm was chosen.

For the turbulence transport equations, the diffusive flux Jacobian matrix is

19



replaced by its spectral radius. The source term needs special treatment [25].

Only the negative part of the source term Jacobian matrix is considered and

replaced by its spectral radius. The system obtained is solved with a line-

alternated Jacobi relaxation algorithm.

3.3 Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions is based on the use of

the preconditioned characteristic relations. The number of variables to impose

at boundaries is given by the number of positive characteristics. The charac-

teristic relations obtained for the preconditioned system, in two-dimensional

flows, are:

−c2(ρc − ρs) + (P c − P s) = 0 (60)

V c
t − V s

t = 0 (61)

(λ+ − Vn)(P c − P s) + ρβ2c2(V c
n − V s

n ) = 0 (62)

(λ− − Vn)(P c − P s) + ρβ2c2(V c
n − V s

n ) = 0 (63)

The variables with superscript c denote the variables to be computed at the

boundary. Variables with superscript s denote the variables obtained by the

current numerical scheme. Vt and Vn are the tangential and the normal com-

ponent of the mean velocity, respectively.

At inflow, four variables have to be imposed: we chose the stagnation pressure

Pi, the stagnation temperature Ti, and the direction of the velocity. A Newton

algorithm makes it possible to compute the pressure with the characteristic

relation (63) and the conservative variables can be evaluated at the boundary.

At outflow, only one variable is imposed: the static pressure was chosen. The

conservative variables are computed with three characteristic relations (60)-

(62).

We assumed that inlet and outlet areas are in a pure liquid region. No cavi-

tation appears in these boundaries.
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3.4 Turbulent variables

Since the discretization scheme does not ensure the positivity of the turbu-

lent conservative variables, limiters are used to avoid negative values. These

limiters are set equal to the corresponding imposed boundary values in the

inlet.

4 Numerical results

The proposed physical and numerical models were applied in a Venturi ge-

ometry, for freon R-114 cavitating flows. All experiments were led at the

CREMHyG (Centre d’Essais de Machines Hydrauliques de Grenoble).

4.1 Experimental conditions

The R-114 experimental facility of the CREMHyG is a closed loop operating

with a reference pressure, obtained by pressurizing a tank with nitrogen gas.

The cavitation tunnel was designed to simulate cavitating flows developing on

the blades of space turbopump inducers. The loop is fitted with a test section

having the shape of a two-dimensional Venturi, characterized by a convergence

angle of 4.3◦ and a divergence angle of 4◦ (Fig. 2). The edge forming the throat

of the Venturi is used to fix the separation point of the cavitation cavity. The

geometrical data are:

Inlet section: Si = 50 × 44 mm2 (where the reference pressure is measured)

Throat section: Sthroat = 43.7 × 44 mm2

Length of the test section (chord): Lref = 252 mm.

This geometry is equipped with three probing holes to take various measure-
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ments. Optical probes and micro-thermocouples are used to evaluate the local

void ratio and the wall temperature, respectively. Two different roofs were

used: a flat roof and an undulated roof.

The freon R-114 is a thermosensible fluid, which allows to study the ther-

modynamic effect in ambient conditions. It provides the same temperature

depression ∆T ∗ in comparison with the liquid hydrogen at Tref = 22K. The

thermodynamic properties at saturation for cold water and freon R-114 are

compared in Table 1.

4.1.1 The flat roof Venturi

For this geometry, only one inlet velocity was tested. The selected operation

point is characterized by the following physical parameters [11,37]:

Vinlet = 14.4 m/s : the inlet velocity

Pinlet = 265300 Pa : the pressure in the inlet section

Tref = 293K : the reference temperature

σinlet =
Pinlet − Pvap(Tref )

0.5ρV 2
inlet

' 0.55 : the cavitation parameter in the inlet

section

ReLref
=

VinletLref

ν(Tref )
= 18.4 106 : the Reynolds number based on Lref

∆T ∗ = 1.22 K : the characteristic temperature depression

With these parameters, a cavity length L around 80 mm was obtained, with

a relatively stable aspect.

4.1.2 The undulated roof Venturi

For this geometry, different cavity sheets were studied [26] by varying :

- the inlet velocity Vinlet from 14.4 to 38.2 m/s

- the reference temperature Tref from 293 to 303K

- the σinlet value from 0.52 to 0.62
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4.2 Computational parameters and meshes

4.2.1 Parameters of the stiffened gas EOS

The different parameters, evaluated with a R-114 thermodynamic table, are

presented in Table 2 and Table 3.

4.2.2 Parameters of the barotropic EOS

For pure phases, the stiffened gas EOS is used with the same parameters

defined on the previous section. In the mixture area, the different parameters

are presented in Table 4. We tested three cbaro values to study the influence

of this parameter. The last column indicates for which void ratio values the

convexity conditions are respected.

4.2.3 The speed of sound in the mixture

Figure 3 compares the evolution of the speed of sound in the mixture in

function of the void ratio for the EOS presented and the Wallis formulation

[41]. The Wallis speed of sound is calculated with the assumption of local

thermodynamic equilibrium and by neglecting the exchange of mass between

the two phases. The formulation is expressed as a weighted harmonic mean of

speeds of sound of each phase:

1

ρc2
=

α

ρV c2
V

+
1− α

ρLc2
L

(64)

To compare the different speeds, the temperature is assumed to be constant

equal to 293K and saturation values are used for ρL, ρV , hL and hV . The

speed of sound evaluated ”without thermo” means that quantities
dP

dT
,

dρk

dT
are equal to zero.
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The mixture sound of speed with both EOS is smaller than the Wallis one (for

α = 0.5, there is a factor 4), because the mass transfer is accounted. For both

EOS, the introduction of thermal variations for the vapour pressure induces

a decrease of the speed of sound. Moreover, the speed of sound obtained with

both EOS is not symmetric, that is not the case for the standard barotropic

law in cold water [12]. The minimum value (around 2.5 m/s) is reached for

void ratio close to zero. Finally, for the modified barotropic EOS, the influence

of the parameter cbaro is weak for the tested values. This parameter can not

be any more interpreted as the minimum of the speed of sound as observed

for cold water.

4.2.4 Meshes

For both geometries, the grid is a H-type topology. A special contraction is

applied in the main flow direction just after the throat to better simulate the

two-phase flow area.

For the flat roof Venturi, the mesh contains 193 nodes in the flow direction

and 93 in the orthogonal direction (Fig. 4).

For the undulated roof Venturi, the mesh contains 201 nodes in the flow di-

rection and 85 in the orthogonal direction (Fig. 5).

For both mesh, the y+ values at the center of the first cell vary between 1 and

4, for a non cavitating computation.

4.2.5 Numerical parameters

For the non cavitating regime, computations are started from an uniform flow-

field using a local time step. The numerical parameters used are :

- the CFL number, 10

- the preconditioned parameter, K = 1
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- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation: k(2) = 0 and k(4) = 0.032

- the farfield value of turbulent viscosity µt∞ = 0.1µ∞

All cavitating simulations are steady computations, which are started from

the non cavitating numerical solution. The numerical parameters are:

- the vaporization pressure, Pvap = 181100 Pa for Tref = 293K and Pvap =

249880 Pa for Tref = 303K

- the CFL number, 0.5

- the preconditioned parameter, K = 3

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation: k(2) = 0.5 and k(4) = 0.032.

4.3 The flat roof Venturi computations

Global analyses

Different calculations were performed with and without thermal model (i.e.

considering or not the thermal variations of the vapour pressure), for both

EOS, summarized in Table 5. All computations used the Spalart-Allmaras tur-

bulence model. The goal was to obtain a stable cavitation sheet with a length

close to 80 mm. The defined sheet length used for representing the computa-

tional results was determined by the length of the iso-line corresponding to a

void ratio α = 0.1.

For the modified barotropic EOS and for three different cbaro values, the nu-

merical value of the inlet cavitation number is a little over-predicted in com-

parison with the experimental value close to 0.55. For the SG EOS without

taking account thermodynamic effects (case 1), the cavity sheet obtained is
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short (Lcav ' 60 mm) but extremely thick and reaches the roof of the Venturi.

From numerical tests done, we did not obtain a cavity sheet around 80 mm

with this model.

Local analyses

Complementary analyses concern local void ratio profiles inside the cavity and

the wall temperature depression. The experimental void ratio profiles are ob-

tained for three stations, with a post processing algorithm from the signal

of the optical probe [37]. The wall temperature depression is measured with

three micro-thermocouples. The uncertainty on the temperature measurement

is about ±0.2K.

Figure 6 illustrates the numerical void ratio obtained with the stiffened gas

EOS in comparison with the measurements. Without the thermal model, the

cavity thickness is enormous and the maximum value of the void ratio is too

small. The thermal model allows to improve the results by reducing the cavity

thickness and increasing the void ratio. Yet, the thickness remains very high,

there is a factor 3 with the experimental data.

The temperature deficit profile at station 1 is plotted in Fig. 7 for the stiffened

gas EOS. As noticed for the void ratio profiles, the thermal model allows to

improve the results : the wall temperature is in better agreement in compar-

ison with the experimental data. The numerical wall temperature depression

is about 1.68K instead of 2.1K for the measurement (the error is around 20%).

Figures 8, 9 and 10 present the numerical void ratio obtained with the modi-

fied barotropic EOS for three values of the velocity cbaro: 2.61 m/s, 1.48 m/s
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and 0.74 m/s, respectively. For all values of this parameter, the thermal model

induces an increase of the cavity thickness and a decrease of the maximum

value of the void ratio, in comparison with the computations without thermal

model. We can verify that the void ratio values remain inside the convexity

domain, given in Table 4.

The influence of the velocity cbaro on the void ratio profiles is showed in Fig. 11

for all computations accounting thermodynamic effects. As observed for cold

water [12], the decrease of cbaro reduces the cavity thickness. Moreover, the

maximum void ratio value is augmented. At station 1, the numerical max-

imum is over-predicted in comparison with the experimental data. On the

contrary, at station 3, the peak value is under-estimated.

Figure 12 shows the temperature depression profile at station 1, obtained with

and without thermal model, for the three values of cbaro. Without model, the

peak of temperature deficit can reach large values. This maximum value is not

localized at the wall but inside the cavity. Moreover, the decrease of the veloc-

ity cbaro induces an augmentation of this maximum value. With the smallest

value cbaro = 0.74 m/s, the peak of depression temperature is around 12K

instead of 2K with the thermal model. For the wall temperature value, we

observe the opposite effect: the decrease of cbaro reduces this value. With the

smallest cbaro value, the wall temperature depression is near the experimental

data. A very important temperature gradient in the cavity is obtained without

the thermal model.

The influence of the velocity cbaro on the temperature depression profile is

showed in Fig. 15 for all computations accounting thermodynamic effects.

The numerical wall values are in good agreement with the experimental data
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equal to 2.1K. With the smallest cbaro value, the better result is obtained: the

wall temperature deficit is 2.1K.

These first computations allow us to better evaluate the modified cavitation

model including thermal variations. The stiffened gas EOS failed to predict

thermodynamic effects. This cavitation model seems unappropriate for these

computations.

On the contrary, the modified barotropic EOS can provide results in close

agreement with the experimental data. The small non-equilibrium effect in-

troduced in the model is enough to capture thermodynamic effects, especially

with the smallest value of the parameter cbaro.

Turbulence model influence

A comparison of three turbulence models is proposed: the Spalart-Allmaras

model (SA), the Jones-Launder k− ε model (KE) and the Menter k− ω SST

model (KWSST). All computations used the modified barotropic EOS with

cbaro = 0.74m/s. The goal was to obtain a stable cavitation sheet with a length

close to 80 mm.

The void ratio profiles obtained are plotted in Fig. 14. The Spalart-Allmaras

and the Menter models give similar results both for the cavity thickness and

the maximum void ratio, for the three stations. The void ratio profiles pro-

vided by the Jones-Launder model present numerical oscillations, especially

on the top of the cavity. The cavity thickness is in better agreement with the

experimental data. The maximum value of the void ratio is similar to those

obtained by other turbulence models.
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The temperature deficit profile is showed in Fig. 15. As remarked previously,

the Spalart-Allmaras and the Menter models give very close results, and the

Jones-Launder model provides spurious oscillations on the top of the cavity.

The convergence with the k − ε model was not rigourously obtained in spite

of the use of high values of artificial dissipation, maybe due to an unsteady

behaviour.

4.4 The undulated roof Venturi computations

For all these computations, only the modified barotropic EOS is considered

with cbaro = 0.74 m/s and coupled with the Spalart-Allmaras turbulence

model. Two reference temperatures were tested.

Reference temperature Tref = 293K

Different calculations were performed by considering four inlet velocities Vinlet,

three σinlet values, for a reference temperature Tref = 293K. The goal was to

obtain a stable cavitation sheet with a length Lcav close to the experimental

value. The experimental data and the numerical results are summarized in

Table 6.

For all computations, the numerical value of the inlet cavitation number is

under-predicted in comparison with the experimental value. The gap varies

between 0.05 and 0.12. Moreover, higher is the inlet velocity, more a small

variation on σinlet has an influence on the cavity length.

The numerical and experimental temperature depressions at station 1 are

given in Table 7. For the lower inlet velocity, the numerical results are in very

close agreement with the experimental data (the error is less than 1 %). But,
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higher is the inlet velocity, higher is the error. For the highest velocity (cases

10, 11 and 12), a large discrepancy is observed: the temperature deficit is over-

estimated on about 1K. Except for this velocity, the model provides a very

good quality of results based on the temperature depression (the maximum

error is around 5 %). Maybe, a higher value of the parameter cbaro could

improve the results.

The difficulties to capture thermodynamic effects at high inlet velocities were

also remarked by Rolland [32] with another homogeneous equilibrium model.

The metastability of the fluid becomes important and equilibrium assumptions

are too stiff.

Reference temperature Tref = 303 K

Different calculations were performed by considering three σinlet values for an

inlet velocity Vinlet = 22m/s and a reference temperature Tref = 303K. The

freon R-114 characteristics are given in Tables 1 and 2 at this temperature.

The goal was to obtain a stable cavitation sheet with a length close to the ex-

perimental one. The experimental data and the numerical results are summa-

rized in Table 8. As noticed previously, the numerical σinlet values are largely

smaller in comparison with the experimental data.

The wall temperature depression is plotted in Fig. 16 versus the distance

(x − xthroat)/Lcav for the three inlet cavitation numbers considered. For the

cases 1 and 2, the temperature deficit is well predicted by computations on the

first part of the cavity. At the end of the cavity, a large discrepancy is observed

(around 1.5K). For the case 3, the numerical results are in very close agreement

with the experimental data, in all the cavity. The analysis of results concerning

the closure part of the cavity is complex because of possible unsteadiness due

to a re-entrant jet. In this case, the present stationary computations are unable
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to correctly describe the flow behaviour.

5 Conclusion

A two-phase one-fluid compressible viscous CFD method was presented and

applied to Venturi R-114 cavitating flows. Several numerical aspects of the

method were outlined, including a low Mach number preconditioner, a low-

storage implicit strategy and preconditioned characteristic relations for the

boundary conditions treatment. Two different cavitation models based on two

mixture EOS were tested and compared. The respect of the second principle

of thermodynamic was verified through the convexity conditions.

Steady results of the temperature depression and void ratio profiles were pre-

sented for Venturi geometries, with different model coefficients. The mixture

EOS based on the stiffened gas law was not able to predict a cavity in close

agreement with the experimental data. It is certainly due to the equilibrium

assumptions made. On the other hand, the modified barotropic model made

it possible to accurately simulate the temperature drop in such cavitating

flows, especially with the smallest value of the parameter cbaro. This model

introduces a small non-equilibrium effect, which is enough to capture thermo-

dynamic effects, as much as the inlet velocity remains moderate. For higher

velocities, the model fails to predict the thermal depression (in comparison

with the experimental data, the error is around 50%).

Finally, a comparison between three transport-equation turbulence models

were proposed. Similar solutions were obtained with Spalart-Allmaras and

Menter k− ω SST models. The Jones-Launder k− ε model would seem more

sensitive to the flow unsteadiness, generating numerical oscillations.

Additional works are in progress to simulate cavitating flows with cryogenic

fluids (liquid hydrogen), to develop relaxed models (HRM) and to pursue com-
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parative analyses between numerical approaches, turbulence and cavitation

models. Moreover, further experimental works concerning local measurements

in thermosensible fluid cavitation are capital to allow model calibration and

validation.

Appendix

Appendix A : the preconditioned system for pure phases

For pure phases which follow the stiffened gas EOS, the different matrices are:

R =
∂W

∂w
=




(γ − 1)

2
u2 −(γ − 1)u (γ − 1)

−u/ρ 1/ρ 0

u2 − E − q

ρ
− u

ρ

1

ρ




R−1 =
∂w

∂W
=




1

(γ − 1)(e− q)
0 − ρ

e− q

u

(γ − 1)(e− q)
ρ − ρu

e− q

E − q

(γ − 1)(e− q)
ρu − ρu2

2(e− q)
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Appendix B : the speed of sound with a mixture of stiffened gas

Starting from the usual thermodynamic relation

de = Tds +
P

ρ2
dρ or d(ρe) = ρTds + hdρ (65)

And with the differential of ρe:

d(ρe) =

(
∂ρe

∂ρ

)

P

dρ +

(
∂ρe

∂P

)

ρ

dP (66)

We can obtained the differential of the pressure P :

(
∂ρe

∂P

)

ρ

dP = ρTds +

[
h−

(
∂ρe

∂ρ

)

P

]
dρ (67)

We deduce an expression of the speed of sound:

c2 =

(
∂P

∂ρ

)

s

=
h−

(
∂ρe
∂ρ

)
P(

∂ρe
∂P

)
ρ

(68)

We assume that phases are in thermodynamic equilibrium then the pres-

sure P and the temperature T are linked by a relation. Therefore we have(
∂P

∂ρ

)

T

= 0,

(
∂T

∂ρ

)

P

= 0 and

(
∂P

∂T

)

ρ

=
dPvap

dT
=

dP

dT
is constant.

The derivative of the void ratio α with the density and the pressure have to

be evaluated :

(
∂α

∂ρ

)

P

=
−1

ρL − ρV(
∂α

∂P

)

ρ

=
−1

ρV − ρL

dT

dP

[
α

dρV

dT
+ (1− α)

dρL

dT

]

With the stiffened gas EOS, we have the following equalities:
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(
∂ρe

∂P

)

ρ

= α

(
∂ρV eV

∂P

)

ρ

+ (1− α)

(
∂ρLeL

∂P

)

ρ

+ (ρV hV − ρLhL)

(
∂α

∂P

)

ρ

=
1

γ − 1
+

ρV hV − ρLhL

ρL − ρV

dT

dP

[
α

dρV

dT
+ (1− α)

dρL

dT

]

(
∂ρe

∂ρ

)

P

=
∂

∂ρ

[
α

(
P

γV − 1
+ ρV qV +

γV

γV − 1
P V
∞

)
+ (1− α)

(
P

γL − 1
+ ρLqL +

γL

γL − 1
PL
∞

)]

=
ρLhL − ρV hV

ρL − ρV

Finally, the speed of sound is:

ρc2 =
1(

∂ρe
∂P

)
ρ

[
ρV ρL

(ρL − ρV )
(hV − hL)

]
(69)

Appendix C : g and Γ parameters for the mixture of stiffened gas EOS

Starting from thermodynamic relations and differentials of ρe and ρh :

d(ρe) = ρTds + hdρ

d(ρh) = d(ρe) + dP

d(ρe) =

(
∂ρe

∂ρ

)

P

dρ +

(
∂ρe

∂P

)

ρ

dP

d(ρh) =

(
∂ρh

∂T

)

ρ

dT +

(
∂ρh

∂ρ

)

T

dρ

We can obtained the differential of temperature dT :

(
∂ρh

∂T

)

ρ

dT = ρT




(
∂ρe
∂ρ

)
P

+ 1
(

∂ρe
∂ρ

)
P


 ds −

[(
∂ρh

∂ρ

)

T

− h− c2

]
dρ (70)

We deduce these equalities:

(
∂T

∂s

)

ρ

=
ρT(
∂ρh
∂T

)
ρ




(
∂ρe
∂ρ

)
P

+ 1
(

∂ρe
∂ρ

)
P


 ;

(
∂T

∂ρ

)

s

=
h−

(
∂ρh
∂ρ

)
T

+ c2

(
∂ρh
∂T

)
ρ

(71)

With the stiffened gas EOS, we have:
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(
∂ρh

∂T

)

ρ

= ρCp +

[
(CpL

− CpV
)T + (qL − qV )

ρV − ρL

] [
αρL

dρV

dT
+ (1− α)ρV

dρL

dT

]

(
∂ρh

∂ρ

)

T

=
(ρV CpV

− ρLCpL
)T + ρV qV − ρLqL

ρV − ρL

Finally the expression of the dimensionless parameters are:

g =
P

ρT 2

(
∂T

∂s

)

ρ

=
P (1 +

(
∂ρe
∂ρ

)
P
)

T
(

∂ρe
∂ρ

)
P

(
∂ρh
∂T

)
ρ

Γ =
ρ

T

(
∂T

∂ρ

)

s

=
ρ

P

(
∂ρe

∂ρ

)

P

gc2

Appendix D : the speed of sound with the modified barotropic EOS

Starting from the usual thermodynamic relation

d(ρe) = ρTds + hdρ (72)

And with the differential of ρh:

d(ρh) =

(
∂ρh

∂ρ

)

P

dρ +

(
∂ρh

∂P

)

ρ

dP (73)

We can obtained the differential of the pressure P :




(
∂ρh

∂P

)

ρ

− 1


 dP = ρTds +

[
h−

(
∂ρh

∂ρ

)

P

]
dρ (74)

We deduce an expression of the speed of sound:

c2 =

(
∂P

∂ρ

)

s

=
h−

(
∂ρh
∂ρ

)
P(

∂ρh
∂P

)
ρ
− 1

(75)

This EOS allows to introduce a small non-equilibrium thermodynamic effect.

Indeed, we have no more

(
∂T

∂ρ

)

P

= 0 and

(
∂P

∂ρ

)

T

= 0 but new expressions :
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(
∂ρ

∂T

)

P

= −dP

dT

1

Ac2
baro

cos

(
P − Pvap(T )

0.5(ρsat
L − ρsat

V )c2
baro

)

(
∂ρ

∂P

)

T

=
1

Ac2
baro

cos

(
P − Pvap(T )

0.5(ρsat
L − ρsat

V )c2
baro

)

(
∂P

∂T

)

ρ

= −
(

∂P

∂ρ

)

T

(
∂ρ

∂T

)

P

=
dP

dT

With this EOS, we have the following equalities:

(
∂ρh

∂P

)

ρ

= ρCp

(
∂T

∂P

)

ρ

=
dT

dP
ρCp

(
∂ρh

∂ρ

)

P

= ρCp

(
∂T

∂ρ

)

P

+

[
(ρLCpL

− ρV CpV
)T + (ρLqL − ρV qV )

ρL − ρV

]

Finally, the speed of sound is :

c2 =

ρV ρL

ρ(ρL−ρV )
(hV − hL)− ρCp

(
∂T
∂ρ

)
P

ρCp
dT
dP
− 1

(76)

Appendix E : g and Γ parameters for the modified barotropic EOS

Starting from thermodynamic relations and differentials of ρh :

d(ρe) = ρTds + hdρ

d(ρh) = d(ρe) + dP

d(ρh) =

(
∂ρh

∂ρ

)

P

dρ +

(
∂ρh

∂P

)

ρ

dP

d(ρh) =

(
∂ρh

∂T

)

ρ

dT +

(
∂ρh

∂ρ

)

T

dρ

We can obtained the differential of temperature dT :

(
∂ρh

∂T

)

ρ

dT = ρT




(
∂ρh
∂P

)
ρ(

∂ρh
∂P

)
ρ
− 1


 ds −

[(
∂ρh

∂ρ

)

T

− h− c2

]
dρ (77)
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We deduce these equalities:

(
∂T

∂s

)

ρ

=
ρT(
∂ρh
∂T

)
ρ




(
∂ρh
∂P

)
ρ(

∂ρh
∂P

)
ρ
− 1


 ;

(
∂T

∂ρ

)

s

=
h−

(
∂ρh
∂ρ

)
T

+ c2

(
∂ρh
∂T

)
ρ

(78)

With this EOS, we have:

(
∂ρh

∂T

)

ρ

= ρCp

(
∂ρh

∂ρ

)

T

=
(ρLCpL

− ρV CpV
)T + ρLqL − ρV qV

ρL − ρV

h−
(

∂ρh

∂ρ

)

T

+ c2 = ρCP

[
dT

dP
c2 +

(
∂T

∂ρ

)

P

]

Finally the expression of the dimensionless parameters is:

g =
P

ρT 2

(
∂T

∂s

)

ρ

=
P

T

1

ρCp − dP
dT

Γ =
ρ

T

(
∂T

∂ρ

)

s

=
ρc2

T dP
dT

+
ρ

P

(
∂T

∂ρ

)

P

Assuming the cosine value is equal to 1 in the expression of

(
∂T

∂ρ

)

P

(that is

to say the pressure is equal to Pvap(T )). The expression of Γ becomes :

Γ =
ρ

T dP
dT

(c2 − c2
baro) (79)
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Table 1

Characteristics of water and freon R-114 at saturation.

fluid Tref (K) ρL (kg/m3) ρV (kg/m3) Pvap (Pa) dPvap

dT (Pa/K) ∆T ∗ (K)

water 293 998 0.02 2339 143 0.01

R-114 293 1470.3 13.52 181100 6000 1.22

R-114 303 1439.6 18.36 249880 7700 1.61
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Table 2

Parameters of the stiffened gas EOS, freon R-114.

Tref (K) γ P∞ (Pa) q (J/kg) Cp (J/K.kg) c (m/s) ρ (kg/m3)

liquid 293 1.1 3.835 107 -0.69 105 984 170 1470.3

vapour 293 1.07 0 0.142 106 700 120 13.52

liquid 303 1.1 3.94 107 -0.74 105 1000 174 1439.6

vapour 303 1.07 0 0.136 106 724 120 18.36
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Table 3

Parameters of thermal variations for the stiffened gas EOS.

Tref (K)
dPvap

dT
(Pa/K)

dρL

dT
(kg/m3.K)

dρV

dT
(kg/m3.K)

293 6000 -3.0 0.417

303 7700 -3.1 0.531
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Table 4

Parameters of the modified barotropic EOS, freon R-114.

Tref (K) ρsat
L (kg/m3) ρsat

V (kg/m3) cbaro (m/s) ∆P (Pa) convexity domain

293 1470.6 13.52 2.61 7794 α < 0.9

293 1470.4 13.52 1.48 2551 α < 0.8

293 1470.33 13.52 0.74 638 α < 0.7

303 1439.62 18.36 0.74 638 α < 0.7
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Table 5

The different computations, flat roof Venturi.

case EOS thermal model cbaro (m/s) σinlet Lcav (mm)

1 SG without - 0.44 60

2 SG with - 0.54 82

3 baro without 2.61 0.60 76

4 baro with 2.61 0.60 75

5 baro without 1.48 0.58 75

6 baro with 1.48 0.57 75

7 baro without 0.74 0.58 78

8 baro with 0.74 0.57 75
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Table 6

Parameters of the different computations, Tref = 293K, undulated roof Venturi.

experiment computations

case Vinlet (m/s) σinlet Lcav (mm) σinlet Lcav (mm)

1 14.4 0.68 30 0.56 28

2 14.4 0.61 43 0.54 39

3 14.4 0.55 67 0.50 69

4 18 0.61 47 0.54 43

5 18 0.56 63 0.51 64

6 18 0.54 88 0.495 88

7 27 0.62 55 0.54 55

8 27 0.58 75 0.535 74

9 27 0.57 96 0.525 99

10 38.2 0.63 64 0.543 68

11 38.2 0.60 84 0.540 82

12 38.2 0.59 103 0.522 97
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Table 7

Temperature depression, Tref = 293K, undulated roof Venturi.

experiment computations

case Tref − T (K) Tref − T (K) abs. error (K) relat. error (%)

1 2.1 2.09 0.01 0.5

2 2.29 2.31 0.02 0.9

3 2.54 2.56 0.02 0.8

4 2.31 2.37 0.06 2.6

5 2.62 2.62 0. 0.

6 2.81 2.72 0.09 3.2

7 2.12 2.23 0.11 5.2

8 2.48 2.51 0.03 1.2

9 2.75 2.78 0.03 1.1

10 2.01 2.92 0.91 45

11 2.18 3.10 0.92 42

12 2.51 3.86 1.35 54
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Table 8

Parameters of the different computations, Tref = 303K, undulated roof Venturi.

experiment computations

case σinlet Lcav (mm) σinlet Lcav (mm)

1 0.67 35 0.56 30

2 0.59 50 0.50 50

3 0.55 66 0.485 62
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Fig. 1. The sinusoidal barotropic EOS for cold water.
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Fig. 2. Schematic view of the Venturi profile.
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