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Abstract

The simulation of cavitating flows is a challenging problem both in terms of mod-

elling the physics and developing robust numerical methodologies. Such flows are

characterized by important variations of the local Mach number and involve ther-

modynamic phase transition. To simulate these flows by applying homogeneous

models, an appropriate equation of state (EOS) is necessary to cover all possible

fluid states (pure liquid, two-phase mixture and pure vapour). Moreover, the nu-

merical method has to handle any Mach number accurately. This paper presents

a one-fluid compressible Reynolds-Averaged Navier-Stokes (RANS) solver with a

preconditioning scheme. The cavitation phenomenon is modelled by two different

liquid-vapour mixture EOS. The mathematical and thermodynamic properties are

studied. Steady and unsteady numerical results are given for a Venturi geometry

and comparisons are made with experimental data.
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1 Introduction

The simulation and prediction of cavitating flows is of critical importance for

the efficient design and performance of many engineering devices (turboma-

chinery, turbopumps in rocket propulsion systems, hydrofoils, fuel injectors,

marine propellers, nozzles, underwater bodies, etc). In most cases, cavitation

is an undesirable phenomenon, significantly degrading performance, resulting

in reduced flow rates, lower pressure increases in pumps, load asymmetry, vi-

brations, noise and erosion. Cavitating flows in most industrial applications

are turbulent and the dynamics of the interface formed involves complex in-

teractions between the vapour and liquid phases. These interactions are not

well understood in the closure region of cavities, where a distinct interface

may not exist and where the flow is unsteady.

Several physical and numerical models have been developed to investigate cav-

itating flows and more generally two-phase flows with phase transition. Stud-

ies may be classified into two categories: the interface fitting method and the

continuum modelling method. Interface methods assume there is a clear and

distinct interface between the liquid and vapour, which can be determined via

an iterative procedure. Its applications are limited to simpler problems where

the cavity can be described as a well-defined closed volume of pure gas. On the

other hand, a continuum method makes no attempt to track the liquid and

vapour interface but treats the flow as two phases with an averaged mixture

density, which continuously varies between the liquid and vapour extremes.

These two-phase models are becoming more and more popular because they

include the physics of cavitating flows. They are implemented using differ-

ent approaches: the one-fluid method or homogeneous model, the two-fluid

method and the hybrid method. The two-fluid approach assumes that both

phases co-exist at every point in the flow field and each phase is governed by
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its own set of conservation laws. Because the exchanges of mass, momentum

and energy are treated explicitly as transfer terms, these models can take into

account the physical details occurring in the cavitation phenomenon such as

mass exchange, thermal transfer and surface tension. However, the transfer

terms have to be known; such quantities are usually very difficult to obtain.

Moreover, these models involve non conservative terms, that is a numerical

problem. Such models have been used for inviscid high-speed cavitating ap-

plications and two-phase Riemann problems [41,58].

On the contrary, the one-fluid method treats the cavitating flows as a mixture

of two fluids behaving as one. The governing equations are composed of three

conservation laws written for the mixture. These models are based on the as-

sumption of local kinematic equilibrium between phases (the local velocity is

the same for both phases) and local thermodynamic equilibrium between the

two components (local temperature and pressure equality between phases).

Moreover, vaporization or condensation processes are assumed to be instan-

taneous. Then, this model cannot reproduce strong thermodynamic or kinetic

non equilibrium effects but, because of its simplicity, it is often used for nu-

merical simulations. The most difficult part of this approach is to define the

thermodynamic behaviour of the mixture to close the system. Different ways

have been explored:

- tabulated EOS and thermodynamics tables for liquid/vapour mixture prop-

erties [7,12,54],

- a mixture entropy maximization procedure with a relaxed pressure law [2],

- barotropic mixture laws (a sinusoidal law [9,11,37], a logarithmic law [27,32,42],

a polynomial law [47], and a more complex law [46]),

- the computation of the temperature distribution to determine density vari-

ations with the Sanchez-Lacombe EOS for liquid [13],

- partial-mass and partial-density properties [29],

- the use of an algebraic system with saturation equations and thermodynam-
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ics tables [40].

Hybrid or reduced models are intermediate models between one-fluid and two-

fluid models, based on four or five equations. The four-equation model is ob-

tained by adding a mass equation for the vapour or liquid density including

a cavitation source term. This model is very popular in simulating cavitating

flows [1,14,19,23,26,43–45,57]. The main difficulty is related to the formulation

of the source term and the tunable parameters involved in the vaporization

and condensation process (different formulations and sets of parameters are

presented in [51]). The five-equation model is obtained from a simplification

of a seven-equation two-fluid model. It is composed of four conservation laws

plus a non conservative equation for the void ratio (see for example [33]). In

the literature, this model has not been employed for cavitating flows.

Another important aspect of two-phase simulations concerns the numerical

methods and CFD strategies. Cavitating flows are characterized by large vari-

ations in the local Mach number; indeed, the speed of sound can be several

orders of magnitude higher in the liquid phase than in the two-phase mixture

(supersonic regime). Then for low-speed applications, the numerical method

must be able to properly simulate incompressible and compressible areas. In

the literature, both incompressible and compressible solvers have been used.

The first category requires an elliptic pressure-correction equation. For cavi-

tating applications, density variations have to be included; see the following

papers with SIMPLE or PISO pressure-based algorithms [9,14,43,45,54,57].

Numerical methods must be modified to take into account finite acoustic

speeds and compressibility effects. According to [1], the method can lead

to an erroneous acoustic speed in the mixture, particularly in the interface

region, which may be not appropriate for unsteady simulations. From compu-

tations on axysymmetric bodies, it has been observed that the re-entrant jet

can progress further upstream because of physical waves [25,53].
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On the other hand, compressible codes solve hyperbolic equations with time-

marching algorithms and requires an equation of state to evaluate the pressure.

A well-known problem concerns the stiffness on the solution convergence when

the Mach number becomes low. In this situation, the dominance of convection

terms renders the system stiff and compressible solvers converge slowly. To

overcome this difficulty, a preconditioned method is necessary. The physical

acoustic waves are replaced by pseudo-acoustic modes that are much closer to

the advective velocity, reducing the stiffness and enhancing the convergence.

Different preconditioned compressible solvers have been used to simulate cav-

itating flows in water or cryogenic fluids [1,10,13,23,42,46].

In addition to modelling cavitation, modelling turbulence can significantly

influence the two-phase flow structures. Moreover, in large supersonic areas,

the compressibility of turbulence has to be considered. For usual applica-

tions, three-dimensional time-dependent computations obtained with large

eddy simulations (LES) or direct simulations (DNS) are not yet tractable.

The Reynolds decomposition is often used with an averaged statistical pro-

cessing resulting in the RANS equations for the mean flow quantities. This

approach leads to a low-frequency separation between the modelled and com-

puted scales. It is well known that these equations can be legitimately used

for flows in which the time scale of the mean flow unsteadiness is much larger

than the characteristic time scale of the turbulence. That is the case in most

usual unsteady cavitating applications where the frequency of periodic shed-

ding is less than 100 Hz.

Moreover, the standard eddy-viscosity models based on the linear Boussi-

nesq relation are known to suffer from numerous weaknesses. In particular,

the over-production of eddy-viscosity reduces the development of unsteadi-

ness and modifies the flow topology. For unsteady flows, the problem of lim-

iting the turbulent viscosity becomes determinant to capture oscillations of
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cavitation sheets. Usually, arbitrary limiters are introduced in the turbulent

viscosity calculation to obtain unsteady flow characteristics such as two-phase

structure shedding and re-entrant jet (e.g. the limiter proposed by Reboud [8]).

This paper proposes a simple homogeneous formulation with two different

mixture EOS: a barotropic law proposed by Delannoy and Kueny [11] and a

mixture of stiffened gas. For both EOS, mathematical properties such as hyper-

bolicity and convexity are studied for the inviscid Euler equations. Numerical

simulations are performed with an implicit preconditioned compressible RANS

solver. The boundary conditions are treated with preconditioned characteristic

relations. We test two transport-equation turbulence models associated with

the Boussinesq assumption and calibrated for single-phase flows. The Menter

Shear Stress Transport (SST) correction is used for unsteady computations.

The models and numerical techniques are assessed by comparing the numeri-

cal results with experimental data on a Venturi geometry. Local analyses with

void ratio and velocity profiles are proposed. Unsteady computations are also

done on the same geometry: they show the capability of the solver to capture

the dynamic behaviour of cavitation sheets.

In the following, we first summarize the essential elements of the governing

equations, the modelling concepts and the numerical schemes, then present

the steady and unsteady results.

2 Governing equations and models

The numerical simulations were carried out using an in-house CFD code solv-

ing the one-fluid compressible RANS system. First, we present the one-fluid

formulation for Euler equations, with the associated preconditioned method

and studies of mathematical and thermodynamic properties. Secondly, the

complete RANS system is presented.
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2.1 The one-fluid Euler equations

In the homogeneous model, the phases are assumed to be in kinematic and

thermodynamic equilibrium: they share the same pressure P , temperature T

and velocity u. The evolution of the two-phase flow can be described by Euler

equations that employ the representative flow properties as unknowns like a

single-phase problem.

The mixture density ρ is defined by:

ρ = αρV + (1− α)ρL (1)

where ρL and ρV are respectively the liquid and vapour densities. The void

ratio α characterizes the volume of vapour in each cell: α = 1 means that

the cell is completely filled with vapour; inversely, a complete liquid cell is

represented by α = 0. Liquid and vapour phases are characterized by their

thermodynamic properties. On each cell, the unknowns are calculated by av-

eraging them by the volume occupied.

In order to simplify the formulation, we use the one-dimensional equations,

expressed in conservative variables w = (ρ, ρu, ρE):

∂ρ

∂t
+

∂ρu

∂x
= 0 (2)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (3)

∂(ρE)

∂t
+

∂(ρuH)

∂x
= 0 (4)

where E = e + u2/2 denotes the total energy and H = h + u2/2 the total en-

thalpy; e and h, respectively, the internal energy and the enthalpy, are related

to the void ratio and the liquid and vapour values:
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ρe = αρV eV + (1− α)ρLeL (5)

ρh = αρV hV + (1− α)ρLhL (6)

To close the system, an equation of state (EOS) and a thermal relation are

necessary to link the pressure and the temperature to the thermodynamic

variables. The difficulty with this homogeneous approach is to specify an EOS

that covers all possible fluid states: pure liquid, two-phase mixture and pure

gas. Different EOS are used in pure phases and in the mixture. In the present

study, we propose a stiffened gas EOS for the pure phases and two formula-

tions for the two-phase mixture: a mixture of stiffened gas and a barotropic

EOS.

Moreover, mathematical and thermodynamic properties should be analyzed:

the hyperbolicity of the inviscid system has to be verified and a suitable mix-

ture EOS has to be convex (i.e. the Hessian matrix of internal energy has to

be positive definite) to respect the second principle of thermodynamics and

to obtain thermodynamically stable states.

2.1.1 The pure-phase EOS - low Mach number preconditioning

For pure phases, we use the convex stiffened gas (SG) equation of state (see

[24]):

P (ρ, e) = (γ − 1)ρ(e− q)− γP∞ (7)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (8)

T (ρ, h) =
h− q

Cp

(9)

where γ = Cp/Cv is the polytropic coefficient, Cp and Cv are thermal capaci-

ties, q the energy of the fluid at a given reference state and P∞ is a constant

reference pressure.
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The associated speed of sound c, defined as c2 =

(
∂P

∂ρ

)

s

=

P
ρ2 −

(
∂e
∂ρ

)
P(

∂e
∂P

)
ρ

, can

be easily computed:

c2 = γ
P + P∞

ρ
= (γ − 1)CpT (10)

c2 remains strictly positive (for γ > 1). It ensures the hyperbolicity of the sys-

tem and the existence of a convex mathematical entropy [18]. The eigenvalues

of the system are u and λ± = u± c.

For low Mach number applications, a preconditioning method is necessary. It

is based on the modification of the derivative term by a premultiplication with

a suitable preconditioning matrix. With the primitive variables W = (P, u, s)

where s is the entropy, the preconditioned Euler equations can be expressed

as:

P−1
e

∂W

∂t
+ Ae

∂W

∂x
= 0 (11)

We use the preconditioning matrix proposed by Turkel [17,50] :

Pe =




β2 0 0

0 1 0

0 0 1




; Ae =




u ρc2 0

1/ρ u 0

0 0 u




β is a parameter on the order of the Mach number. In our study, we have

chosen the form given by Choi and Merkle [6]:

β2 = min
[
max

(
M2, KM2

∞
)
, 1

]
(12)
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This form implies that there is no preconditioning used in transonic and super-

sonic flow regions (in the mixture). When β2 = 1, the preconditioning matrix

becomes the identity matrix and the system returns to its classical non pre-

conditioned form. Moreover, for a very small flow velocity, β2 is not allowed

to be less than a given percentage of the freestream velocity, determined by

the coefficient K. For inviscid computations, K is on the order of unity.

The eigenvalues of the preconditioned system are:

u ; λ± =
1

2

[
u(1 + β2)±

√
(β2 − 1)2u2 + 4β2c2

]
(13)

For the conservative variables w = [ρ, ρu, ρE], the corresponding form is:

P−1
c

∂w

∂t
+ Ac

∂w

∂x
= 0 (14)

where the preconditioning matrix P−1
c =

∂w

∂W
P−1

e

∂W

∂w
and Ac is the Jacobian

matrix of the convective fluxes. Expressions of R =
∂w

∂W
and R−1 =

∂W

∂w
are

given in appendix A.

The preconditioned matrix can be written as P−1
c = Id +

(1− β2)

β2(h− q)
×B where

Id is the identity matrix and the matrix B is:

B =




u2

2
−u 1

u2

2
u −u2 u

u2

2
(H − q) − u(H − q) H − q




The matrix B is idempotent (i.e. B2 = B) and the inverse matrix Pc can be

easily computed: Pc = Id +
(β2 − 1)

(h− q)
×B.
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In the mixture area, it is not necessary to compute the preconditioned matrix .

Indeed, in the compressible area, β2 = 1, Pc = Id and the classical compressible

system is integrated.

2.1.2 The mixture of stiffened gas EOS - properties

The first cavitation model applied in this study is based on a mixture of

stiffened gas. On the basis of the stiffened gas EOS for each pure phase, an

expression for the pressure and the temperature can be deduced from the

thermal and mechanical equilibrium assumption. These expressions, function

of the void ratio α, are available in all possible fluid states:

P (ρ, e, α) = (γ(α)− 1)ρ(e− q(α))− γ(α)P∞(α) (15)
1

γ(α)− 1
=

α

γV − 1
+

1− α

γL − 1
(16)

ρq(α) = αρV qV + (1− α)ρLqL (17)

P∞(α) =
γ(α)− 1

γ(α)

[
α

γV

γV − 1
P V
∞ + (1− α)

γL

γL − 1
PL
∞

]
(18)

T (ρ, h) =
hL − qL

CpL

=
hV − qV

CpV

=
h− q(α)

Cp(α)
(19)

ρCp(α) = αρV CpV
+ (1− α)ρLCpL

(20)

The void ratio is computed with the internal energy of each phase at satura-

tion:

α =
ρe− ρsat

L esat
L

ρsat
V esat

V − ρsat
L esat

L

(21)

The speed of sound in the mixture can be expressed as a function of the

enthalpy of each phase (see appendix B):

ρc2 = ρ

(
∂P

∂ρ

)

s

= (γ − 1)

[
ρV ρL

(ρL − ρV )
(hV − hL)

]
(22)
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c2 is always strictly positive and therefore the system is hyperbolic.

The convexity of internal energy is necessary to ensure thermodynamic stabil-

ity and to respect the entropy growth criterion. The Hessian matrix of e has to

be positive definite. With the introduction of these dimensionless parameters:

λ =
ρ

P

(
∂P

∂ρ

)

s

; g =
P

ρT 2

(
∂T

∂s

)

ρ

; Γ =
ρ

T

(
∂T

∂ρ

)

s

(23)

an equivalent condition of convexity was formulated by Perrier [36] for flows

with phase transition:

λ ≥ 0 ; g ≥ 0 ; λg − Γ2 ≥ 0 (24)

The different parameters can be computed with the stiffened gas EOS (see

Appendix C):

λ =
ρc2

P
> 0 ; g =

γP

ρCpT
> 0 ; Γ =

γ

γ − 1

c2

CpT
(25)

The first two conditions are always respected. The third one can be expressed

as c2 ≥ (γ − 1)2CpT

γ
.

With our choice of parameters for the stiffened gas EOS (see Section 4.2.1)

and for the applications presented in this paper, the condition is verified.

2.1.3 The barotropic EOS - properties

The second model considered in the present work is based on a sinusoidal

barotropic law (see Fig. 1) proposed by Delannoy et al. [11]. This law is char-

acterized by its maximum slope 1/c2
min. The quantity cmin is an adjustable

parameter of the model, which can be interpreted as the minimum speed of

sound in the mixture.
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In the original approach, pure phases are considered as incompressible and

the speed of sound is infinite in each phase. In our approach, in order to join

compressible pure phases, we have introduced a constant A, close to 1, to

avoid infinite value of the speed of sound.

When the pressure becomes smaller than the quantity Pvap + ∆P and greater

than Pvap −∆P , we have:

P (ρ, α) = Pvap +

(
ρsat

L − ρsat
V

2

)
c2
min Arcsin (A (1− 2α)) (26)

where ∆P represents the pressure width of the law and, for a void ratio value

of 0.5, the pressure is equal to the saturation pressure Pvap.

With this barotropic law, there is no coupling with the temperature and the

cavitation phenomenon is assumed to be isothermal. The speed of sound can

be computed easily:

c2 =

(
∂P

∂ρ

)

s

=

(
∂P

∂ρ

)

T

=
Ac2

min√
1− A2(1− 2α)2

(27)

c2 is always strictly positive and therefore the system is hyperbolic.

From Eqs. (8), (26) and (27), we introduce conditions to respect the continuity

of the pressure and the continuity of the speed of sound between the liquid

and the mixture (when P = Pvap + ∆P ):

∆P =
ρsat

L − ρsat
V

2
c2
min Arcsin A = ρsat

L (γL − 1)CvL
Tvap − PL

∞ − Pvap (28)

c2
L =

Ac2
min√

1− A2
(29)

These relations determine A and set cmin for given values of saturation con-

ditions. The continuity between the pure vapour and the mixture is not con-
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sidered because, in our applications, pure gas is never reached.

The dimensionless parameters for convexity conditions concerning this barotropic

approach are:

λ =
ρc2

P
; g = 0 ; Γ = 0 ; λg − Γ2 = 0 (30)

The quantity ∆P has to be smaller than the vaporization pressure Pvap in

order to avoid negative pressure; then:

cmin <

√√√√
(

2

π

2Pvap

ρsat
L − ρsat

V

)
(31)

For example, for water in the ambient condition, the velocity cmin has to be

less than 1.73 m/s. In this case, the parameter λ is positive therefore the

convexity of the EOS is verified.

2.2 Reynolds-Averaged Navier-Stokes equations

For turbulent computations, the compressible one-fluid RANS equations are

used, coupled with a one- or two-equation turbulence model. For low Mach

number applications, the inviscid preconditioner presented previously is used

(no viscous terms are introduced). These equations can be expressed as:

P−1
c

∂w

∂t
+ div (Fc − Fv) = S (32)
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w =




ρ

ρV

ρE

ρk

ρΨ




; Fc =




ρV

ρV ⊗ V + pI

(ρE + p)V

ρkV

ρΨV




; Fv =




0

τ v + τ t

(τ v + τ t).V −Qv −Qt

(µ + µt/σk) grad k

(µ + µt/σΨ) grad Ψ




where w denotes the conservative variables, Fc and Fv the convective and

viscous flux densities and S the source terms, which concern only the transport

equations. k is the turbulent kinetic energy and Ψ is a turbulent variable.

The exact expression of the eddy viscosity µt and the source terms depends

on the turbulence model, as well as the constants σk and σΨ.

The total stress tensor τ is evaluated following the Stokes hypothesis, the

Newtonian law and the Boussinesq assumption. The total heat flux vector Q

is obtained from the Fourier law with the constant Prandtl number hypothesis.

τ = τ v + τ t = (µ + µt)
[
1

2
( grad V + ( grad V )t)− 2

3
( div V )I

]
+

2

3
kI(33)

Q = Qv + Qt = −
(

µ

Pr

+
µt

Prt

)
Cp grad T (34)

In the pure liquid, the viscosity is determined by an exponential law and, in

pure vapour, the viscosity follows the Sutherland law. The mixture viscosity is

calculated as an arithmetic mean between the liquid and the vapour viscosity:

µL(T ) = µ0L
exp (B/T ) (35)

µV (T ) = µ0V

√
T

293

1 + TS/293

1 + TS/T
(36)

µ(T, α) = αµV (T ) + (1− α)µL(T ) (37)
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where µ0L
, µ0V

, B and TS are constant parameters.

The mixture Prandtl number is also evaluated as an arithmetic mean between

the liquid and the vapour value:

Pr(α) = αPrV
+ (1− α)PrL

(38)

The turbulent Prandtl number Prt is set at 1.

2.2.1 Turbulence models and the wall law approach

Two different turbulence models were used: the Menter k − ω SST model

(KWSST) [30] and the one-equation Spalart-Allmaras model (SA) [48].

At the wall, a two-layer wall law approach is used:

u+ = y+ if y+ < 11.13

u+ =
1

κ
ln y+ + 5.25 if y+ > 11.13

u+ = u/Uτ ; y+ =
yUτ

νw

(39)

In equation (39), u represents the van Driest [52] transformed velocity for

compressible flows.

u =

u∫

0

√
ρ

ρw

du (40)

We assume that wall functions are similar in a two-phase flow and in a single-

phase flow. For unsteady flows, the existence of a wall law is assumed to be
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valid at each instant.

With regard to the transport equations of the turbulence models, the produc-

tion of k is computed according to the formulation proposed by Viegas and

Rubesin [55]. The value of ω in the first cell is obtained using the characteristic

length scale of the Chen model [5].

For the one-equation Spalart-Allmaras model, the transported quantity is cal-

culated using the models closure relations, the velocity profile and a mixing-

length formulation for the eddy-viscosity. More details concerning the wall law

approach are given in [16].

3 Numerical methods

The numerical simulations were carried out using an implicit CFD code solving

the RANS/turbulent systems for multi-domain structured meshes. This solver

is based on a cell-centered finite-volume discretization.

3.1 Spatial discretization

The system in integral form is written for a computational cell of volume Ω

limited by a surface Σ, with an outer normal n. It can be expressed as:

P−1
c

d

dt

∫

Ω

w dΩ +
∮

Σ

Fc.n dΣ −
∮

Σ

Fv.n dΣ =
∫

Ω

S dΩ (41)

Using the finite-volume technique for space discretization, a semi-discrete form

of equation (41) can be written as:

P−1
c Ω

∂w

∂t
+

∑

allfaces

(Fc − Fv).nΣ = ΩŜ (42)
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For the mean flow, the convective flux density vector on a cell face is computed

with the space-centered Jameson scheme stabilized by a scalar artificial dissi-

pation [20]. The artificial viscosity includes a second-order dissipation term D2

and a fourth-order dissipation term D4. The use of a preconditioning method

modifies these dissipation terms:

D2(w) = P−1
c

∑

l=i,j,k

δl

(
Pc ε

(2)
l | λ+ | δlw

)
(43)

D4(w) = P−1
c

∑

l=i,j,k

δl

(
Pc ε

(4)
l | λ+ | δ3

l w
)

(44)

where, for each direction l, ε
(2)
l = k(2) max (νl, νl+1) and ε

(4)
l = max (0, k(4) − ε

(2)
l ),

k(2) and k(4) are tunable numerical coefficients. λ+ is the higher eigenvalue of

the preconditioned system. δl is the difference operator and νl represents a

sensor based on the pressure gradients. For two-phase flows, νl is also based

on the density gradients.

The viscous terms are discretized by a second-order space-centered scheme.

For the turbulence transport equations, the upwind Roe scheme [38] was used

to obtain a more robust method. The second-order accuracy was obtained by

introducing a flux-limited dissipation [49].

3.2 Temporal discretization

Time integration is achieved using a low-cost implicit method [28]. The implicit

method consists in solving a system of equations arising from the linearization

of a fully implicit scheme, at each time step. The main feature of this method is

that the storage of the Jacobian matrix is completely eliminated, which leads

to a low-storage algorithm. The viscous flux Jacobian matrices are replaced

by their spectral radii. The convective fluxes are written with the Roe scheme

instead of the Jameson scheme because of the dissipation term, the use of
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an inconsistent linearization having no consequences for steady computations.

The Jacobian matrices, which appear from the linearization of the centered

fluxes, are approximated with the numerical fluxes. The following system is

obtained, for the iteration n:

∆wn +
∑

l=i,j,k

[
σlδlµl(∆fn

l )− σlδl(ρ
V
l ∆wn)− σlδl (Dlδl∆wn)

]
= Rn

expl (45)

where ∆wn = wn+1 − wn, σl = ∆t/∆xl, and Rn
expl represents the explicit

conservative residuals. For each direction l, ρV
l is the viscous spectral radius,

µl is the averaged operator, δl is the difference operator, fl is the physical

convective flux and Dl the dissipation matrix. Then the numerical dissipation

matrices are replaced by their spectral radii and the system becomes matrix-

free.

With the preconditioned method, the dissipation matrices are modified, the

system leads to:

∆wn +
∑

l=i,j,k

[
σlδlµl(∆fn

l )− σlδl(ρ
V
l ∆wn)− 0.5σlδl

(
P−1

c ρ(PcAl)δl∆wn
)]

= Rn
expl (46)

where Al is the Jacobian matrix of the convective flux for the direction l and

ρ(PcAl) denotes the spectral radius of the matrix PcAl.

In this formulation, the preconditioned matrix P−1
c remains. By judiciously

exploiting the idempotence propriety of the matrix B, it is possible to pre-

serve a low-cost system where matrix operations and matrix-vector products

can be easily computed [22].

The implicit time-integration procedure leads to a system that can be solved

directly or iteratively. The direct inversion can be memory intensive and com-
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putationally expensive. Therefore, an implicit relaxation procedure is preferred

and the point Jacobi relaxation algorithm was chosen.

For the turbulence transport equations, the diffusive flux Jacobian matrix

is also replaced by its spectral radius. The source term needs special treat-

ment [31]. Only the negative part of the source term Jacobian matrix is con-

sidered and replaced by its spectral radius. The system obtained is solved with

a line-alternated Jacobi relaxation algorithm.

For unsteady computations, the dual time stepping method, proposed by

Jameson [21], was used to solve the lack of numerical efficiency of the global

time stepping approach. The derivative with respect to the physical time is

discretized by a second-order formula. Making the scheme implicit with re-

spect to the dual time provides fast convergence to the time-accurate solution.

Between each time step, the solution is advanced in a dual time, and accel-

eration strategies developed for steady problems can be used to speed up the

convergence in fictitious time. With respect to physical time, the derivative

was initialized with a first-order formula.

The local time step ∆t is evaluated from stability conditions on a convective

and a diffusive equation. The one-dimensional expression is:

∆t = CFL min

[
∆x

| λ+ | ,
∆x2

2ρV

]
(47)

where CFL is a positive coefficient and ∆x is the cell size.
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3.3 Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions is based on the use of the

preconditioned characteristic relations [15]. The number of variables to impose

at boundaries is given by the number of positive characteristics. The charac-

teristic relations obtained for the preconditioned system, in two-dimensional

flows, are:

−c2(ρc − ρs) + (P c − P s) = 0 (48)

V c
t − V s

t = 0 (49)

(λ+ − Vn)(P c − P s) + ρβ2c2(V c
n − V s

n ) = 0 (50)

(λ− − Vn)(P c − P s) + ρβ2c2(V c
n − V s

n ) = 0 (51)

The variables with superscript c denote the variables to be computed at the

boundary. Variables with superscript s denote the variables obtained by the

current numerical scheme. Vt and Vn are the tangential and the normal com-

ponent of the mean velocity, respectively.

At inflow, four variables have to be imposed: we chose the stagnation pressure

Pi, the stagnation temperature Ti, and the direction of the velocity. A Newton

algorithm makes it possible to compute the pressure with the characteristic

relation (51) and the conservative variables can be evaluated at the boundary.

At outflow, only one variable is imposed: the static pressure was chosen. The

conservative variables are computed with three characteristic relations (48)-

(50).

We assumed that inlet and outlet areas are in a pure liquid region. No cavi-

tation appears in these boundaries.

3.4 Wall boundary condition

At the wall assumed to be adiabatic, a no-slip condition was used combined

with a wall law treatment. It consists in imposing, in adjacent cells to a wall,
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the diffusive flux densities obtained from the analytical velocity profile (39).

3.5 Turbulent variables

Since the discretization scheme does not ensure the positivity of the turbu-

lent conservative variables, limiters were used to avoid negative values. These

limiters were set equal to the corresponding imposed boundary values in the

inlet.

4 Computational results on a Venturi geometry

4.1 Experimental conditions

The Venturi type test section of the CREMHyG (Centre d’Essais de Machines

Hydrauliques de Grenoble) cavitation small tunnel was sized and designed to

simulate cavitating flows developing on the blades of space turbopump in-

ducers. The Venturi is characterized by a convergence angle of 4.3◦ and a

divergence angle of 4◦, illustrated in Fig. 2. The edge forming the throat of

the Venturi is used to fix the separation point of the cavitation cavity. The

geometrical data are:

Inlet section: Si = 50 × 44 mm2 (where the reference pressure is measured);

Throat section: Sthroat = 43.7 × 44 mm2;

Length of the test section (chord): Lref = 252 mm.

This geometry is equipped with five probing holes to take various measure-

ments such as the local void ratio, instantaneous local speed and wall pressure

(Fig. 2).
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The selected operation point is characterized by the following physical param-

eters [3]:

Uinlet = 10.8 m/s: the inlet velocity

Q = 0.02375 m3/s: the flow imposed in the circuit

Pinlet = 35000 Pa: the pressure in the inlet section

σinlet =
Pinlet − Pvap

0.5ρU2
inlet

' 0.55: the cavitation parameter in the inlet section

Tref ' 293K: the reference temperature

ReLref
=

UinletLref

ν
= 2.7106: the Reynolds number

With these parameters, a cavity length L ranging from 70 mm to 85 mm has

been obtained, with a relatively stable aspect, as shown in Fig. 3.

4.2 Computational parameters and mesh

4.2.1 Parameters of the stiffened gas EOS

Many authors have used the stiffened gas EOS with different parameters ap-

plied to various applications with or without phase transition (essentially com-

pressible flows and shock tube problems). In Table (1) several sets of values are

given for liquid water (the speed of sound is given for a temperature T=293 K).

The stiffened gas model can provide a reasonable approximation of a fluid

at high pressure. The parameters γ and P∞ can be determined by these two

relations :

c2 = (γ − 1)CpT and ρ =
P + P∞

(γ − 1)CvT
(52)

For the water in the ambient condition, in order to respect the physical speed

of sound (c=1480 m/s) and the physical density (ρ=1000 kg/m3), we find a

large value of γ : γ=2.8, and an enormous value of P∞ : P∞ ' 8.108 Pa. As

a result of having a large speed of sound, liquid flows usually fall in the low
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Mach number flow regime and the coupling between the pressure and density

fields weakens. That is, the variation in density is insignificant even when a

very large pressure gradient is imposed on the flow, making the fluid essen-

tially incompressible. On the other hand, small changes in the density field

can result in huge changes in pressure, making numerical solutions prone to

oscillations, caused by to the presence of an enormous P∞ value in the EOS [4].

To avoid numerical pressure oscillations, we have chosen a smaller value of

γ for the liquid: γ=1.01, because the physical ratio Cp/Cv is very close to 1.

This choice allows a smaller value of P∞. Yet, the speed of sound is around

110 m/s instead of 1480 m/s in ambient conditions. When the Mach number

is uniformly small, the flow is almost incompressible. There will not be large

differences between a flow at Mach=0.1 and a flow at Mach=0.001. Therefore,

it seems reasonable to set an artificial speed of sound in the liquid.

For the vapour, physical values were chosen, since the pure vapour was not

reached in this geometry. In the mixture area, the speed of sound is computed

with relation (22), which does not depend on the liquid speed of sound.

The different parameters are presented in Table (2).

4.2.2 Parameters of the barotropic EOS

For pure phases, the stiffened gas EOS is used with the same parameters de-

fined on the previous section. In the mixture area, the different parameters are

presented in Table (3). We tested two values for the minimum speed of sound

cmin to study the influence of this parameter. Following the works of Pascarella

et al. [35] on hydrofoil geometry, this parameter has a great influence on un-

steady computations: for values around 3 m/s, quasi-steady sheet cavitation

was simulated, and for values around 0.8 m/s, unsteady sheet cavitation was

computed.
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4.2.3 The speed of sound in the mixture

Figure 4 compares the evolution of the speed of sound in the mixture as a

function of the void ratio for the EOS presented and the Wallis formulation

[56]. The Wallis speed of sound is calculated with the assumption of local

thermodynamic equilibrium and by neglecting the exchange of mass between

the two phases. The formulation is expressed as a weighted harmonic mean of

the speed of sound in each phase:

1

ρc2
=

α

ρV c2
V

+
1− α

ρLc2
L

(53)

To compare the different speeds, the temperature is assumed to be constant

equal to 293 K and saturation values are used for ρL, ρV , hL and hV . For the

barotropic law, cmin is set at 0.857.

We can observe that the mixture sound of speed with both EOS is smaller than

the Wallis speed of sound. The speed of sound obtained with the stiffened gas

EOS is not symmetric and the minimum value (around 0.65 m/s) is reached

for a void ratio close to zero.

4.2.4 Mesh

The grid is a H-type topology. It contains 251 nodes in the flow direction and

62 in the orthogonal direction. A special contraction of the mesh is applied in

the main flow direction just after the throat to better simulate the two-phase

flow area (Fig. 5). The y+ values of the mesh, at the center of the first cell,

vary between 12 and 27 for a non cavitating computation.

According to the study of mesh dependence led by Coutier [10], this grid size

is adequate to simulate the steady sheet cavitation in the Venturi type section.

25



4.2.5 Numerical parameters

For the non cavitating regime, computations are started from an uniform flow-

field using a local time step. The reference temperature is set at 293 K. The

numerical parameters used are:

- the CFL number, 10

- the preconditioned parameter, K = 1

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation: k(2) = 0 and k(4) = 0.032

- the farfield value of turbulent viscosity µt∞ = 0.1µ∞

- the farfield value of turbulent kinetic energy k∞ = 0.0045 m2/s2

- the farfield value of specific dissipation ω∞ = 45000 s−1

For the steady cavitating regime, computations are started from the non cav-

itating numerical solution. The numerical parameters are:

- the vaporization pressure, Pvap = 2339Pa

- the CFL number, 0.5

- the preconditioned parameter, K = 3

- Jacobi iterations for the implicit stage, 15

- the two coefficients of the artificial dissipation: k(2) = 0.5 and k(4) = 0.032.

For the unsteady cavitating regime, computations are performed with the

dual time stepping method and are started from the non cavitating numerical

solution. The numerical parameters are:

- the dimensionless time step , ∆t∗ =
∆tUinlet

Lref

= 0.0195

- sub-iterations of the dual time stepping method, 100

- the CFL number, 0.5

- the preconditioned parameter, K = 3

- Jacobi iterations for the implicit stage, 15

26



- the two coefficients of the artificial dissipation: k(2) = 0.5 and k(4) = 0.032.

4.3 Steady computations

The experimental visualizations showed quite stable cavity behaviour for this

geometry. A stable or quasi-stable cavity is characterized by a length that is

almost constant in time, although the closure region always fluctuates with

the existence of a re-entrant jet and little vapour cloud shedding. The re-

entrant jet is mainly composed of liquid, which flows upstream along the solid

surface. For this geometry, no periodic cycles with large shedding have been

observed. Consequently, the first analyses performed were based on steady

computations.

Global analyses

Different calculations were done by considering different EOS, turbulence mod-

els, parameters and σ values, summarized in Table (4). The goal was to obtain

a stable cavitation sheet with a length close to 80 mm. The defined sheet length

used for representing the computational results was determined by the length

of the iso-line corresponding to a void ratio α = 0.2.

The table shows a great sensitivity to the inlet cavitation number: a small

variation of this value can generate a large discrepancy on the cavity sheet

length, especially with the barotropic EOS (between cases 7 and 8, a varia-

tion of σinlet < 0.005 leads to a variation of the sheet length higher than 30

mm). Moreover, the numerical value of the inlet cavitation number is always

over-predicted in comparison with the experimental value close to 0.55, cor-

responding to a cavity length of about 80 mm. When this value is decreased

by modifying the outlet static pressure in boundary conditions, computations
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become unstable and do not converge, except for those using the Spalart-

Allmaras turbulence model and the mixture of stiffened gas EOS (case 3).

In the following, six calculations were compared to experimental data: cases

2, 5, 7, 10, 12 and 14.

Local analyses

Complementary analyses concern local void ratio and velocity profile compar-

isons inside the cavity. The experimental void ratio and velocity profiles are

obtained for five stations by a double optical probe (Fig. 3). The velocity is

evaluated as the most probable value and the void ratio is obtained with a

post-processing algorithm from the signal of the double optical probe. The

relative uncertainty on the void ratio measurement was estimated at roughly

15% [3].

Figure 6 shows the evolution of the longitudinal velocity for the experiments

and the six computations capturing an 80mm sheet cavitation length. The

overall agreement seems good between the experimental data and the simu-

lations. This is especially true for stations 1 and 2 where no re-entrant jet

phenomena occur. Further downstream, for stations 3, 4 and 5, experimental

observation indicates a recirculating behaviour with a re-entrant jet extending

roughly half the sheet thickness. According to experiments, this flow config-

uration is smoothly time fluctuating. The steady computations are not able

to reproduce this situation. At the last station, with the mixture of stiffened

gas EOS (SG), the presence of a recirculating area can be observed in the

closure region of the cavitation sheet. This recirculation does not appear in

the computations with the barotropic model.

Figure 7 illustrates experimental and numerical results concerning the void

ratio. For the first station, close to the throat, the vaporization phenomenon

is clearly represented. This is a relatively strong effect, and the void ratio value
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is almost equal to 0.9 near the wall. Computations with the SG mixture EOS

under-estimate the maximum value of the void ratio: the discrepancy with

the experimental value reaches 10%. The numerical cavity thickness is slightly

over-estimated. On the contrary, computations with the barotropic EOS over-

predict the maximum value of the void ratio (around 8%). By reducing the

minimum speed velocity cmin, the maximum void ratio is decreased, as is the

cavity thickness. For both EOS computations, the turbulence model has an

insignificant influence.

Downstream, at the second station, the void ratio is higher (around 96%).

The distribution is similar to that obtained for station 1, with an increase in

the sheet thickness. Computations with the SG mixture EOS largely under-

estimate the maximum value of the void ratio (around 20%), as observed for

station 1. The computations with the barotropic model are in very good agree-

ment with the experimental data, especially with the smallest value of cmin.

From the third station, the re-entrant jet becomes noticeable, as observed

before in the velocity field analyses. As this point, the void ratio values are

over-estimated by all computations. As noted above, the computations with

the stiffer barotropic law predict vey well the cavity thickness.

At stations 4 and 5, the void ratio is substantially over-estimated by numerical

computations, mainly because of the unsteady character of the sheet. In the

same way, the thickness of the cavitation is over-predicted by all the compu-

tations.

At the last station, oscillations of the void ratio are evidenced for all com-

putations because of the unsteadiness of the flow. With the SG EOS, the

recirculating flow, noted on the velocity profile, induces a small re-entrant jet

with liquid water in the wall region up to a distance y around 0.003 m. This

phenomenon is not observed on the experimental data.

The wall pressure profiles are plotted in Fig. 8 versus the distance x − xinlet.

The first five data are located inside the cavity (where the void ratio and
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velocity profiles are measured). For all computations, the pressure remains

at an almost constant value in the cavity. With the SG EOS, this constant

pressure is inferior to the vaporization pressure Pvap. This could be due to the

stiffness of the EOS and the choice of the saturation values used in the model.

Downstream, large discrepancies are notable for all computations because of

the re-entrant jet. The re-compression is respectively lower and higher for cal-

culations with barotropic and SG models in comparison with the experimental

data.

These steady computations evaluate physical and numerical models better. In

steady situations (stations 1 and 2), the results are in quite good agreement

with the experimental data. The stiffer barotropic law shows better results on

the void ratio profiles inside the sheet. For all computations, the influence of

the turbulence model seems to be low. A better representation of re-entrant jet

was obtained by unsteady calculations, as presented in the following section.

4.4 Unsteady computations

Unsteady computations were done with both EOS and the k−ω SST turbulent

model. The Spalart-Allmaras model, known to over-produce the turbulent

viscosity and to dampen the unsteadiness of the flow, was not used.

Global analyses

Different calculations were done by considering different σinlet values, sum-

marized in Table (5). The goal was to obtain a quasi-stable cavitation sheet

whose length varied between 70 - 85 mm and a re-entrant jet.

First of all, three types of behaviour can be distinguished for the cavity by
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decreasing the σinlet values. Figure 9 illustrates the different cavities where the

time-averaged void ratio is plotted.

a) an attached cavity sheet with a small recirculation area at the closure of

the sheet (cases 2, 3 and 8).

b) an attached cavity sheet with a large re-entrant jet and with the presence

of small clouds of mixture in the closure region of the sheet (cases 4, 5, 6, 9

and 10). This configuration of quasi-stable sheet is in good agreement with

the experimental data.

c) an attached cavity sheet with large two-phase structures (cases 7 and 11).

The re-entrant jet led to the break-off of the cavity, generating a large

structure with high void ratio value (α = 90%). In our computations, this

structure is not convected or dissipated in the flow.

Secondly, calculations obtained with the mixture of stiffened gas EOS (SG)

are not able to capture a quasi-stable sheet with a re-entrant jet. As observed

in the steady computations, the numerical value of the inlet cavitation number

is always over-predicted in comparison with the experimental value, close to

0.55, corresponding to Lcav ' 80 mm.

In the following, four simulations were compared to experimental data: cases

5, 6, 9 and 10, which predict a quasi-stable cavity sheet with a significant

re-entrant jet. The cavities obtained are presented in Fig. 10, where the time-

averaged void ratio for each computation is plotted. The attached cavity sheet

can clearly be seen just behind the throat and clouds of mixture in the sheet’s

closure region.
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Local analyses

Figure 11 illustrates the evolution of the longitudinal velocity for the experi-

ments and the numerical results. The numerical value is obtained by a time-

averaged treatment.

At stations 1 and 2, a good agreement is observed and all computations give

similar results. At stations 3, 4 and 5, the recirculating behaviour with a re-

entrant jet is simulated by all computations. However, the thickness of this

recirculating area is largely under-estimated by all calculations. For the last

station, the intensity of the recirculating zone near the wall is under-estimated

by all calculations.

Figure 12 shows the experimental and numerical results concerning the void

ratio. The numerical values were obtained by a time-averaged treatment.

For the first and second station, close to the Venturi throat, the results ob-

tained by computations are in good agreement with the experimental data,

predicting the cavity thickness very well.

At station 3, the numerical results are sensitive to the value of the minimum

speed of sound cmin. With the highest value of this parameter, the maximum

value of the void ratio is over-estimated (around 30%). Moreover, a liquid re-

entrant jet (α = 0) can be seen close to the wall, up to a distance y = 0.001

m. On the other hand, the re-entrant jet captured by the calculations with the

stiffer barotropic law is not composed of pure liquid. At the wall, the void ratio

value is around 0.28 for case 9 (σ=0.626), which is in very good agreement

with the experimental value equal to 0.274. For case 10 (σ=0.608), the wall

value is around 0.36. Moreover, above the wall, from y = 0.001 to y = 0.003,

a pure liquid area is evidenced by computations, which is not observed in the

time-averaged void ratio measurements. The maximum void ratio value is also

better predicted by the calculations with the smaller cmin value. For cases 9

and 10, the error is respectively around 10% and 16%. From stations 3 to

5, all the computations considered simulated a large re-entrant jet with the
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presence of mixture clouds and a pure liquid area (re-compression zone that

can be seen in the wall pressure distribution in Fig. 13).

At station 4, the void ratio is greatly over-estimated by numerical computa-

tions with the greater value of cmin, and the re-entrant is no longer composed

of pure liquid. For cases 5 and 6, we observed a large cloud of mixture with

large void ratio values. The behaviour is different for cases 9 and 10, with the

smallest cmin value. For case 9, a pure liquid zone with a small cloud of mix-

ture can be seen, whereas, for case 10, two small mixture clouds are present.

Finally, at station 5, for both cases 5 and 6, the length of the sheet is shorter

than the experimental measurement and the computations predict a recircu-

lation zone with pure liquid. For cases 9 and 10, a small mixture cloud is again

present above a large pure liquid area.

The wall pressure profiles are plotted in Fig. 13 versus the distance x− xinlet.

These values are obtained by a time-averaged treatment for both experi-

ments and calculations. Near station 3, for all computations, we can observe

a peak of pressure above the vaporization pressure, indicating the presence of

a pure liquid area. Yet, this peak is not visible on experimental values. Down-

stream, as noted with the steady calculations with the barotropic EOS, the

re-compression is lower in comparison with the experimental data.

These unsteady computations showed that the mixture of stiffened gas EOS

failed to predict a quasi-stable cavity sheet with a re-entrant jet. This aspect

must be confirmed with other unsteady applications. Only the barotropic law

provided good-quality results, both for velocity profiles and void ratio values.

To model turbulence, the SST correction of Menter captured the unsteady

behaviour of the flow and no arbitrary limiter was added.
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5 Conclusion

A two-phase one-fluid compressible CFD method was presented and applied

to Venturi cavitating flows. Several numerical aspects of the method were

outlined, including a low Mach number preconditioner, a low-storage implicit

dual-time strategy and preconditioned characteristic relations for the bound-

ary conditions treatment. Two different cavitation models based on two mix-

tures EOS were tested and compared. The convexity conditions were analyzed

and verified. To model turbulence, compressible wall functions associated with

the Menter k − ω SST model were used.

The numerical results presented verify the ability of the numerical tool to

accurately simulate cavitating flows on a Venturi geometry. Global and local

analyses of flows were proposed based on steady and unsteady calculations.

Simulations demonstrated mainly the influence of the mixture EOS.

Unsteady simulations applying the mixture of stiffened gas EOS associated

with the Menter k-w SST model provide a stable sheet without significant

re-entrant jet and do not agree with the qualitative behaviour observed ex-

perimentally. In further work, this cavitation model should be associated with

other turbulence models and should be evaluated on different unsteady appli-

cations with unstable behaviour and periodic shedding.

The barotropic model made it possible to obtain good-quality results in com-

parison with experimental data (void ratio and velocity profiles) by capturing

a quasi-stable behaviour of the cavity sheet with re-entrant jet. In relation to

previous numerical studies developed by our team on the same Venturi geom-

etry (a similar barotropic model and two other numerical approaches [3,9,10]),

it is worth noting that the present numerical study:

a) provided a better simulation of the qualitative and quantitative unsteady

behaviour of the cavitating flow and a more accurate prediction of local fields;

b) presented analyses of thermodynamic proprieties of the applied barotropic

EOS, which provides a better evaluation of cmin, the minimum speed of sound
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in the mixture.

Additional works are in progress to simulate cavitating flows with cryogenic

fluids, to develop other numerical schemes and to pursue comparative analyses

between numerical approaches, turbulence and cavitation models.

Appendix

Appendix A: the preconditioned system for pure phases

For pure phases, which follow the stiffened gas EOS, the different matrices are:

R =
∂W

∂w
=




(γ − 1)

2
u2 −(γ − 1)u (γ − 1)

−u/ρ 1/ρ 0

− (γ − 1)u2

2(P + P∞)
− γ

ρ
− (γ − 1)u

P + P∞

γ − 1

P + P∞




R−1 =
∂w

∂W
=




1

c2
0

−ρ

γ

u

c2
ρ

−ρu

γ

H − q

c2
ρu

ρu2

2γ



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Appendix B: the speed of sound in a mixture of stiffened gas

Starting from the usual thermodynamic relation

de = Tds +
P

ρ2
dρ or d(ρe) = ρTds + hdρ (54)

And with the differential of ρe:

d(ρe) =

(
∂ρe

∂ρ

)

P

dρ +

(
∂ρe

∂P

)

ρ

dP (55)

We can obtain the differential of the pressure P :

(
∂ρe

∂P

)

ρ

dP = ρTds +

[
h−

(
∂ρe

∂ρ

)

P

]
dρ (56)

We deduce an expression of the speed of sound:

c2 =

(
∂P

∂ρ

)

s

=
h−

(
∂ρe
∂ρ

)
P(

∂ρe
∂P

)
ρ

(57)

With the stiffened gas EOS, we have:

(
∂ρe

∂P

)

ρ

= α

(
∂ρV eV

∂P

)

ρ

+ (1− α)

(
∂ρLeL

∂P

)

ρ

=
1

γ − 1
(

∂ρe

∂ρ

)

P

=
∂

∂ρ

[
α

(
P

γV − 1
+ ρV qV +

γV

γV − 1
P V
∞

)
+ (1− α)

(
P

γL − 1
+ ρLqL +

γL

γL − 1
PL
∞

)]

=
ρLhL − ρV hV

ρL − ρV

Finally, the speed of sound is:

ρc2 = ρ

(
∂P

∂ρ

)

s

= (γ − 1)

[
ρV ρL

(ρL − ρV )
(hV − hL)

]
(58)
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Appendix C: convexity conditions for a mixture of stiffened gas

Starting from the relation (see Appendix A)

ρTds =
1

γ − 1
dP − c2

γ − 1
dρ (59)

And an expression of the differential of pressure:

1

γ − 1
dP = d(ρe) −

(
∂ρe

∂ρ

)

P

dρ (60)

And with the differential of ρe:

d(ρe) =

(
∂ρe

∂T

)

ρ

dT +

(
∂ρe

∂ρ

)

T

dρ (61)

We can obtain the differential of temperature dT :

(
∂ρe

∂T

)

ρ

dT = ρTds −
[(

∂ρe

∂ρ

)

T

−
(

∂ρe

∂ρ

)

P

− c2

γ − 1

]
dρ (62)

We deduce two equalities:

(
∂T

∂s

)

ρ

=
ρT(
∂ρe
∂T

)
ρ

;

(
∂T

∂ρ

)

s

= −
(

∂ρe
∂ρ

)
T
−

(
∂ρe
∂ρ

)
P
− c2

γ−1(
∂ρe
∂T

)
ρ

(63)

With the stiffened gas EOS, we have:

(
∂ρe

∂T

)

ρ

=
ρCp

γ
(

∂ρe

∂ρ

)

T

=
γ − 1

γ

ρL(eL − qL)− ρV (eV − qV )

ρL − ρV

+
1

γ

(ρLCpL
− ρV CpV

) T

ρL − ρV

+ ρV
qL − qV

ρL − ρV

Finally the expression of dimensionless parameters:

g =
P

ρT 2

(
∂T

∂s

)

ρ

=
γP

ρCpT
(64)
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Γ =
ρ

T

(
∂T

∂ρ

)

s

=
γ

γ − 1

c2

CpT
(65)
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Table 1

Parameters of the stiffened gas EOS for cold water applied by different authors.

authors γ P∞ (Pa) q (J/kg) Cp (J/K.kg) c (m/s)

Saurel & Abgrall [39] 4.4 6 108 0 - 1625

Barberon& Helluy [2] 3 8.533 108 -0.1148 107 4200 1569

Paillere et al. [34] 2.8 8.5 108 0 4186 1486

Le Metayer et al. [24] 2.35 109 -0.1167 107 4268 1300

Chang & Liou [4] 1.932 1.1645 109 0 8095 1487

Table 2

Parameters of the stiffened gas EOS for cold water.

γ P∞ (Pa) q (J/kg) Cp (J/K.kg) c (m/s) ρsat (kg/m3) esat (J/kg)

liquid 1.01 1.211 107 -0.1142 107 4183 110.7 998.19 83779

vapor 1.32 0 0.1985 107 1883 423 0.0173 2.402 106

Table 3

Parameters of the barotropic law.

A ρsat
L (kg/m3) ρsat

V (kg/m3) cmin (m/s) ∆P (Pa)

0.999999 998.193 0.0173 0.857 576

0.999999 998.16 0.0173 0.472 175
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Table 4

Parameters of the different steady computations.

case EOS turb model cmin (m/s) σinlet Lcav (mm)

1 SG SA 0.65 0.61 77.7

2 SG SA 0.65 0.608 79.8

3 SG SA 0.65 0.596 86.1

4 SG KWSST 0.65 0.61 70.1

5 SG KWSST 0.65 0.602 79.9

6 SG KWSST 0.65 0.595 unstable

7 baro SA 0.857 0.6087 80.2

8 baro SA 0.857 0.604 115.4

9 baro SA 0.857 0.592 unstable

10 baro SA 0.472 0.611 80.2

11 baro SA 0.472 0.605 unstable

12 baro KWSST 0.857 0.609 80.2

13 baro KWSST 0.857 0.604 unstable

14 baro KWSST 0.472 0.614 79.9

15 baro KWSST 0.472 0.608 103.8

16 baro KWSST 0.472 0.602 unstable
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Table 5

Parameters of the different unsteady computations.

case EOS cmin (m/s) σinlet Lcav (mm) comments

1 SG 0.65 0.624 L = 65.5 mm stable sheet without re-entrant jet

2 SG 0.65 0.61 L = 90 mm stable sheet with small re-entrant jet

3 SG 0.65 0.593 L = 95 mm stable sheet with small re-entrant jet

4 baro 0.857 0.65 L = 64 mm quasi-stable sheet with re-entrant jet

5 baro 0.857 0.624 L = 70 mm quasi-stable sheet with re-entrant jet

6 baro 0.857 0.61 L = 73 mm quasi-stable sheet with re-entrant jet

7 baro 0.857 0.605 L ' 60 mm break-off of the sheet

8 baro 0.472 0.645 L = 54 mm stable sheet with small re-entrant jet

9 baro 0.472 0.626 L = 70 mm quasi-stable sheet with re-entrant jet

10 baro 0.472 0.608 L = 73 mm quasi-stable sheet with re-entrant jet

11 baro 0.472 0.59 L ' 48 mm break-off of the sheet
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Fig. 1. The sinusoidal barotropic EOS.

Fig. 2. Schematic view of the Venturi profile.

Fig. 3. Photograph of the cavity.
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Fig. 6. Velocity profile from station 1 to 5 - steady computations.
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Fig. 11. Velocity profile from station 1 to 5 - unsteady computations.
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Fig. 12. Void ratio profile from station 1 to 5 - unsteady computations.
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Fig. 13. Wall pressure evolution - unsteady computations.
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