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The most widely used tools in statistical quality control are control charts. However, the 

main problem of multivariate control charts, including the Hotelling‘s T
 2

 control chart, lies in 

that they indicate that a change in the process has happened, but do not show which variable or 

variables are the source of this shift. Although a number of methods have been proposed in the 

literature for tackling this problem, the most usual approach consists in decomposing the T
 2 

statistic. 

In this paper, we propose an alternative method interpreting this task as a classification 

problem and solving it through the application of boosting with classification trees. The 

classifier is then used to determine which variable or variables caused the change in the process. 

The results prove this method to be a powerful tool for interpreting multivariate control charts. 

 

Keywords: Statistical process control, Hotelling’s T
 2
 control chart, boosting trees 
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1. Introduction 

In statistical process control (SPC), univariate techniques are designed to control the 

quality of the product by analyzing only one product characteristic. In most industrial 

production processes, however, there are several interrelated characteristics which 

jointly influence the quality of the final products. Although one possible solution might 

be to develop univariate control methods for each quality characteristic, a better 

alternative involves simultaneously controlling each feature using multivariate 

statistical techniques. Multivariate statistical process control does not only analyze the 

effect of each characteristic on the quality, but also considers the effect of the 

interactions among them. 

Of all these multivariate techniques three stand out: distance-based methods 

(basically Hotelling’s T
 2

 control chart) and MEWMA and MCUSUM control charts. In 

this article, we have used Hotelling's T
 2

 control chart, which is a multivariate extension 

of the Shewhart control chart and one of the widest used. 

In most multivariate control methods, a statistic is calculated to summarize the 

information. In this paper we use the T
 2

 statistic. This depicts dispersion and position 

measurements of the variables being analyzed. For individual observations, the 

Hotelling’s T
 2

 statistic at time i is defined by: 

)()(
12

µxΣµx −−= −
i

t

iiT           (1) 

where xi represents a p-dimensional vector of measurements made on a process at time 

period i. Let us assume that when the process is in control, xi are independent and 

follow a multivariate normal distribution with mean vector µ and covariance matrix Σ. 

It should be noted that if µ and Σ are known, 2

iT  follows a Chi-square distribution with 

p degrees of freedom ( 2

pχ ). 

For individual multivariate observations when µµµµ and ΣΣΣΣ are unknown, we estimate 

these parameters from a reference sample (phase I). The usual parameter estimators are 

the sample mean vector ( x ) and the sample covariance matrix (S). Thus, if we consider 

the sample {x1,x2,…,xn} where xi=(xi1, xi2,…,xip), with xij the i-th individual observation 

of the j-th characteristic, the T
 2 

statistic for xi can be constructed in the following way:  

 

)()( 12
xxSxx −−= −

i

t

iiT        (2) 
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where ),,,( 21 pxxx K=x  and S=(suv)u,v=1,2,…,p. The elements of these estimators are 

defined as: 
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The distribution of the T
 2

 statistic was analyzed in Tracy et al. (1992) and Mason & 

Young (2002). If µµµµ and ΣΣΣΣ are unknown and are estimated using x  and S obtained from 

a historical data set, then the upper control limit at level α (UCL) of the T
 2

 statistic for a 

new individual observation vector x is given by: 

pnpF
npn

nnp
−−

−+
= ,,2

)1)(1(
UCL α       (3) 

where pnpF −,,α is the 100·(1-α)% quantile of the Snedecor’s distribution with p and n-p 

degrees of freedom.  

On the other hand, when the observation vector x is included in the computation of 

x  and S, the UCL is given by: 

2/)1(,2/,

2)1(
UCL −−

−
= pnp

n

n
αβ  

where 2/)1(,2/, −− pnpαβ is the 100·(1-α)% quantile of the Beta distribution with p/2 and (n-

p-1)/2 degrees of freedom. Henceforth, we will consider the distribution given in 

Equation 3, as it is commonly accepted, with an overall false alarm probability (α) of 

0.05. 

Detecting out-of-control observations is relatively easy with the graphical techniques 

of multivariate control since the analysis is similar to the univariate case; determining 

the causes of that change, however, is more complicated. In this article, we propose the 

application of a classification technique to determine the variable or variables that have 

caused the out-of-control situation. In particular, we propose the application of boosting 

trees as an alternative to the neural networks that have been widely applied to the 

problem. Section 2 of this paper, therefore, describes various developments in terms of 

interpreting an out-of-control signal. Section 3 briefly presents the main points of 

boosting as a classification technique. Section 4 explores the examples proposed in the 

literature and shows the advantages of the proposed method over various other 
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alternatives. Finally, our concluding remarks and future lines of research are outlined in 

Section 5. 

2. Review of published work 

The problem of interpreting out-of-control signals in multivariate control charts is 

partly responsible for holding back the development of these techniques in industry. 

Multivariate control charts in general and Hotelling’s T
 2 

control chart in particular, do 

not indicate which variable or variables have caused the out-of-control situation. This 

interpretation requires complex subsequent work to determine which variables have 

changed since an out-of-control situation might be due to one or more variables being 

out of control, or to a change in the relationship among the variables. 

In order to interpret out-of-control signals the simplest alternative consists in 

analyzing univariate control charts for each quality characteristic. However, this 

approach has certain disadvantages. The first is that when there are many variables, this 

technique can prove to be tedious because of the large number of univariate control 

charts to be analyzed. The second, and perhaps the most important drawback, is that an 

out-of-control signal is not normally caused by only a single feature but rather by the 

relationships among them. Taking this into account, univariate control charts are not 

able to show all the out-of-control signals, neither to determine the causes of the 

multivariate out-of-control situation. 

Various authors have tackled this problem by introducing methods which help to 

interpret out-of-control signals in multivariate control charts. Alt (1985) suggests using 

individual mean charts with Bonferroni-type control limits and replacing 2/αZ  in the 

individual average control chart with )2/( pZα ( where kZ is the 100·k% quantile of the 

standard Normal distribution); Hayter & Tsui (1994) extended the idea of Bonferroni-

type control limits by giving a procedure which used simulations to simultaneously 

obtain an exact control interval for each variable mean. These intervals are essentially 

substitutes for the individual average control charts and are usually more effective 

identifying the variable or variables which cause the out-of-control signal. This 

procedure can also be used in situations where the normality assumption is not valid.  

Another approach for diagnosing an out-of-control signal is to decompose the T
 2

 

statistic into components that reflect the contribution of each individual variable. If T
 2
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is the current value of the statistic, and 2

)(iT  is the value of the statistic for all used 

variables except the i-th one, we can calculate an indicator of the contribution of the i-th 

feature on the set in the following way: 

2

)(

2

ii
TTd −=  

Nowadays, the use of T
 2 decomposition as proposed by Mason et al. (1995) is 

considered to be the standard way. The main idea behind this method is to decompose 

the T
 2

 statistic into independent parts, each one showing the influence of an individual 

variable. The problem with this method is that the decomposition of the T
 2

 statistic into 

p independent T
 2

 components is not unique. Therefore, this situation has generated a 

number of different articles, the most outstanding of which were published by Mason et 

al. (1996, 1997), Doganaksoy et al. (1991), Timm (1996) and Runger et al. (1996). 

Following other approaches, Jackson (1980) and Fuchs & Benjamini (1994) 

proposed the use of control charts based on the p principal components. These 

components are linear combinations of the original variables and sometimes they have 

not a clear interpretation, being this the main drawback of this approach. Murphy (1987) 

developed procedures based on discriminant analysis, the classical statistical procedure 

for classifying observations into predetermined groups. Detecting the cause (variable or 

variables) of an out-of-control signal can be considered as a classification problem 

where the output is the variable or variables causing that signal and the inputs are the 

values of the variables and the T 
2 

statistic.  

Intensive research has recently been conducted into the use of artificial neural 

networks as an effective tool for interpreting out-of-control signals in multivariate 

control charts. The application of this technique has been developed by: Cheng (1995, 

1997), Chang (1996), Zorriassatine (1998), Guh & Hsieh (1999), Guh & Tannock 

(1999a, 1999b), Ho & Chang (1999), Cook & Chiu (1998), Cook et al. (2001), Guh 

(2003), Noorosana et.al. (2003), Niaki & Abassi (2005), Aparisi et al. (2006) and Guh 

(2007).This approach allows the process, which identifies those variables that have 

changed during the production process, to be automated using a neural network. The 

procedure is as follows: samples are taken from the process to control it using a 

multivariate control chart. When the chart indicates an out-of-control case, the neural 

network is used to recognize the variables which have shifted. It therefore seems 

advisable to use Hotelling’s T
 2

 control chart not in an isolated way but with some of the 
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analysis techniques for out-of-control signals described above. This approach allows a 

clearer interpretation of the results. 

In this research paper, we propose the application of boosting trees to determine the 

variable or variables which have caused the out-of-control signal. The Boosting method 

constitutes a powerful classification technique alternative to neural networks. In the 

empirical application, we will see how well they behave when interpreting out-of-

control signals. In the following section, we will briefly describe the boosting algorithm 

which will be used. 

3. AdaBoost-SAMME 

A classifier system builds a model which is able to predict the class of a new 

observation given a data set. The accuracy of the classifier will depend on the quality of 

the method used and the difficulty of the specific application. When the obtained 

classifier achieves a better accuracy than the default rule it is due to the classification 

method has found some structure in the data. The AdaBoost method (Freund & 

Schapire 1996) uses a single classifier as a subroutine making the most of it in terms of 

accuracy.  

AdaBoost applies the classification system repeatedly to the training data, but at each 

epoch the learning attention is focused on different examples of this set using adaptive 

weights (ωb(i)). Once the training process has finished, the single classifiers obtained 

are combined into a final, highly accurate, one. The final classifier therefore usually 

achieves a high degree of accuracy in the test set as several authors have shown both 

theoretically and empirically (Freund et al. 1998, Breiman 1998, Bauer & Kohavi 1999, 

Dietterich 2000, and Banfield et al. 2004). 

Since the AdaBoost method is mainly intended for dichotomous problems, various 

modifications of this algorithm have been proposed for multi-class problems (Friedman, 

Hastie & Tibshirani 2000). In this study, we have chosen the Stagewise Additive 

Modeling using a Multi-class Exponential loss function (SAMME) algorithm (Zhu et al. 

2006). There are three reasons for our decision: SAMME is a natural extension of 

Adaboost for more than two classes, it is very easy to be programmed and it has shown 

encouraging results in Zhu’s paper. SAMME can be summarized as follows: 

SAMME Algorithm (Zhu et al. 2006) 
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1. Start with ωb(i) = 1/n, i=1, 2, ..., n. 

2. Repeat for b=1, 2, ....,B 

 a) Fit the classifier Cb(x)Є{1,2,…k} using weights ωb(i) on TS
b
. 

 b) Compute: ∑ ≠=
=

n

i
iibbb yCIi

1

))(()( xωε and  αb = ln((1 - εb)/εb)+ln(K-1) 

 c) Update the weights ))((exp()()(1 iibbbb yCIii ≠⋅=+ xαωω and normalize 

them. 

3. Output the final classifier ∑ ==
=

B

b
bb

k
kCIC

1

))((maxarg)( xx α  

 

A training set is given by TSn = {(x1, y1), (x2, y2), ..,(xn, yn)} where y takes values of 

{1,2,..,K}. The weight ωb(i) is assigned to each observation xi and is initially set to 1/n. 

This value will be updated after each step. A basic classifier denoted as Cb(xi) is built on 

the new training set, TS
 b

, and is applied to each training sample.  

Then, the error of the classifier in the b-th iteration, represented by εb, is calculated as 

in step 2b. From this error, a constant αb is calculated and will be used to update the 

weights. It is worth mentioning that the only difference between this and the AdaBoost 

algorithm is the way in which the alpha constant is calculated, since in AdaBoost it is 

defined as αb = ln((1 - εb)/ εb). Due to this modification, in the SAMME algorithm it is 

only necessary that 1- εb>1/K in order for the alpha constant to be positive and the 

weight updating follows the right direction. That is to say, the accuracy of each weak 

classifier should be better than the random guess instead of 1/2, which would be an 

appropriate requirement for the two class case but very demanding for the multi-class 

one.  

In step 2c the weights for the b+1-th iteration are calculated and normalized so that 

they add up to one. Therefore, the weights of the wrongly classified observations are 

increased and the weights of the correctly classified ones are decreased, forcing the 

single classifier built in the following iteration to focus on the hardest examples. 

Furthermore, the differences when the weights are updated are greater when the error of 

the single classifier is small since more importance is given to the few mistakes made 

when the classifier achieves a high level of accuracy.  
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This process is repeated at every step for b=1, 2, 3, …, B. Finally, the ensemble 

classifier is built as a linear combination of the single classifiers weighted by the 

corresponding constant αb, giving more importance to those classifiers with smaller 

errors. It is worth noting that the alpha constant can therefore be interpreted as an 

adaptive learning rate which is calculated every epoch as a function of the error.  

 

4. Experimental results 

Our proposal is a combined two-step approach: firstly, we detect the out-of-control 

signal using Hotelling’s well-known T
 2

 control chart and then we apply the boosting 

classifier to determine which variable or variables have changed. In the phase I of the 

control process, the classification method is trained to detect those variables and then, 

the obtained model is used when the system is working (phase II), detecting the variable 

or variables involved in an out-of-control situation. 

In order to show how our approach works, we considered it relevant to use examples 

which have previously proved useful for this task. Specifically, we compare our results 

with those provided by Niaki & Abbasi (2005) and Alfaro et al. (2008) which are based 

on three examples that cover different levels of difficulty since they work with two, 

three and four variables, respectively.  

In order to apply the SAMME algorithm we have used a slightly modified version of 

the Adaboost function that belongs to the adabag package (Alfaro et al. 2006) which 

runs under the R program (http://www.R-project.org). This program is a free statistical 

package which has been widely developed in recent years and constitutes a strong tool 

for spreading the results of research worldwide. The Adaboost-SAMME function has 

two parameters which need to be set; the size of the single trees, and the number of 

these trees. There are several ways to determine the size of each tree, and here we use 

the maxdepth parameter which limits the distance between the leaf nodes and the root 

node. For instance, if maxdepth=1, only one split is developed and the tree has only two 

leaf nodes, when maxdepth= 2 there are 4 leaf nodes, and so on. Regarding the number 

of trees, this parameter is fixed as a result of a trade-off between complexity and 

accuracy. The higher these parameters are, the more complex the classifier is. Hence, 

we need to increase the value of these parameters as the difficulty of the problem 

increases, i.e. when there are more classes (example 2) or the classes are more difficult 

to be separated (example 3). 
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4.1 Example 1: the case of two variables 

Let us start with the simple case of two variables, covering the measures of stiffness 

(X1) and bending strength (X2) for a particular grade of lumber. The specifications 

(which are either known or estimated from a large amount of previous data) for the 

mean vector and covariance matrix are: 









=∑








=

12166

66100
,

470

265
µ  

The out-of-control observations are detected by applying Hotelling’s T
 2

 control chart 

with α = 0.05. The subsequent question is whether the out-of-control situation was 

caused by a change in the X1 variable, the X2 variable, or both, and this can be set as a 

classification problem with three classes: change in X1, change in X2, and change in 

both. If we consider a 1.5 standard deviation shift, the mean vectors are, respectively, 

(265+1.5*10, 470), (265, 470+1.5*11), and (265+1.5*10, 470+1.5*11). We therefore 

generate 500 repetitions, collecting each value of the T 
2
 and the value of the variables 

which mark the previously described situation. These 1500 observations (500 of each 

class) comprise our training set. The boosting classifier is built with 100 single trees, 

each one of them with a maximum depth of 2. 

In order to test the trained model, we generate sets of observations with shifts of 2, 

2.5, and 3 standard deviations by following the same procedure. We apply Hotelling’s  

T
 2 

control chart to detect the out-of-control signals for each class where the Type I error 

(α) is 5%. The procedure is repeated until 500 observations of each class have been 

achieved, and the test set obtained. 

Once we have trained the boosting model on the set generated with a 1.5 standard 

deviation shift, we test its generalization capability when confronted by new cases, and 

more specifically, we have considered shifts of 2, 2.5 and 3 standard deviations, 

respectively. The results can be seen in Table 1. In the three cases, the boosting model 

clearly manages to predict the correct class for most of the examples. It can also be seen 

that when the size of the shift increases, it is easier for the classifier to detect the true 

reason for the out-of-control signal and it makes fewer errors. The improvement is more 

gradual for the class “change in X1”, while in the other two classes there are minor 

differences between shifts of 2.5 and 3 standard deviations, although in both cases the 

number of errors is significantly lower than for a 2-deviations shift. 
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4.2 Example 2: the case of four  variables 

This example was firstly used at the beginning of the nineties by Doganaksoy et al. 

(1991). It works with four variables connected with ballistic missile testing. The mean 

vector and the covariance matrix are: 



















=∑



















=

06.99

42.6957.64

02.8055.8674.142

06.5403.6734.8874.102

,

0

0

0

0

µ  

In this case, we detect the out-of-control signal as in the previous example although 

because it uses four variables, the complexity of interpreting the out-of-control signals 

increases considerably since there are 2
4
-1=15 possible classes. In this example, the size 

of the shift in the training set is 2σ (7500 observations) and 2σ, 2.5σ, and 3σ for the test 

sets.  The boosting classifier is built with 300 single trees with a maximum depth of 3. 

From the point of view of classification problems, this is the most complex case 

owing to the high number of classes involved (15). Nevertheless, the boosting classifier 

also obtains the most correct answers not only when the shift occurs in a single variable 

but also when several of them change simultaneously. In general terms, as we expected, 

the larger the shift in the mean vector, the lower the error. Tables 2, 3, and 4 show the 

results of boosting in this example. 

4.3 Example 3: the case of three variables 

This example focuses on a company which produces washing powder where three 

variables are controlled: colour, free oil percentage, and acidity percentage. The 

corresponding classification problem has 2
3
-1= 7 classes. The estimated mean vector 

and covariance matrix are: 

















−

−

=
















=

03.0

12.000.1

07.036.068.0

,

0.97

0.12

5.67

Sx  

In this case the shift size is 3σ for the training set (700 observations) and 2σ, 3σ, and 

4σ for the test set. The boosting classifier is built with 300 single trees with a maximum 

depth of 5. 
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It is worth mentioning that we use estimations of the true population values of the 

parameters which are unknown since this is a real case. The closeness of this case to 

reality does, in fact, make it even more interesting. As in the previous examples, the 

boosting approach is able to find the true nature of the change that occurred in most 

cases for the three shift sizes (2, 3 and 4 standard deviations). The worst result is for the 

lower 2 standard deviation shift where the classifier finds it difficult to distinguish the 

classes when the shift affects more than one variable; the results when the three 

variables change simultaneously are particularly bad. On the other hand, accuracy is 

much better in the other two test sets and very good when the shift is 3σ. Table 5 shows 

these results. 

4.4 Comparison of boosting results with previous studies 

The aim of our research is to present the boosting method as a useful and extremely 

powerful tool for interpreting out-of-control signals in multivariate process quality 

control. Nevertheless, since the same examples used for data generation were previously 

employed, we do believe that it is worth comparing the results of our proposal with 

those of previous works. We will therefore analyze the differences between our paper 

and that of Niaki & Abbasi (2005), who applied neural networks (MLP, Multilayer 

Perceptron) and multivariate Shewart (MSCH), and Alfaro et al. (2008), who used a 

classification tree (CART, Breiman et al. 1984) for the same task. The comparison is 

made using only the test set errors for conciseness purposes. It is worth noting that the 

data have been generated from the same mean vectors and covariance matrices, but they 

are not the same.  

Table 6 presents the error percentages for the boosting method proposed here 

(SAMME) and the CART, MLP and MSCH methods mentioned above. The results 

show how SAMME performs better than any of the methods in each test set, with the 

exception of MSCH in the case of 2 variables for a 2 standard deviation shift. SAMME 

outperforms both the MLP and the CART tree in all scenarios. It is also worth 

highlighting the successful results for 2.5 and 3σ with two variables, for 3σ with three 

variables where the error is below 5% and for 3σ with four variables with an error of 

5.73%. These results are extremely promising and encourage us to continue working on 

the application of this type of classifier. 
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5. Conclusions 

The main contribution of this research paper is to propose the use of boosting trees 

using the SAMME algorithm to interpret the out-of-control signals that occur in 

multivariate process quality control. These ensemble trees have proved to be a very 

powerful tool when classifier accuracy is a key factor. It is worth mentioning that our 

proposal is a combined two-step approach: we first detect the out-of-control signal 

using Hotelling’s well-known T
 2

 control chart, and we then apply the boosting classifier 

to determine which variable or variables have changed. 

We have developed an empirical application which confirms the usefulness of this 

boosting method for this particular task with very encouraging results in all the 

examples and under all scenarios envisaged. Moreover, the separate use of training and 

test sets guarantees the generalization capability of these classifiers. This means that the 

classifier has not learned only the characteristics of a particular set, but it has been able 

to understand the intrinsic nature of the problem, and will therefore be able to correctly 

classify new observations. 

Furthermore, comparison with the results of previous studies proves to be entirely 

satisfactory since our proposed method achieves the best results, outperforming the 

classification tree (CART), the multilayer perceptron (MLP), and the multivariate 

Shewart chart (MSCH). There are many aspects that we have not covered in this paper 

but which we would like to explore in future research, such as the use of the boosting 

method not just as a tool for interpreting out-of-control signals but also for detecting 

whether the process is in control or not, or even for determining the size of the shift 

when it occurs.  It would also be interesting to apply some pruning methods to reduce 

the number of trees in boosting techniques. The goal being to reduce significantly the 

complexity without any important loss of accuracy, which obviously would be 

advantageous 
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Tables 

 

 

 

 

 

 

 

 

 

Table 1. Confusion matrices for different shifts in the two variables case 
  Predicted Class 

  2σ Shift 2.5σ Shift 3σ Shift 

Variables X1 X2 (X1, X2) X1 X2 (X1, X2) X1 X2 (X1, X2) 

X1 455 1 44 473 0 27 482 0 18 

X2 0 477 23 0 491 9 0 490 10 

O
b

se
rv

ed
  

C
la

ss
  

(X1, X2) 12 28 460 2 12 486 4 11 485 
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Table 2. Results obtained for 2 standard deviation shift in the mean vector of example 2 

 

 Predicted Class 

 X1 X2 X3 X4 (X1, X2) (X1, X3) (X1, X4) (X2, X3) (X2, X4) (X3, X4) (X1, X2, X3 ) (X1, X2, X4 ) (X1, X3, X4 ) (X2, X3, X4 ) (X1, X2, X3, X4 ) 

X1 454 0 0 0 4 6 20 0 0 0 1 2 2 0 11 

X2 0 440 0 0 22 0 0 6 24 0 0 0 0 8 0 

X3 0 0 440 0 0 25 0 11 0 18 6 0 0 0 0 

X4 0 0 0 451 0 0 31 0 4 6 0 3 1 1 3 

(X1, X2) 5 16 0 0 453 0 0 0 1 0 3 11 0 0 11 

(X1, X3) 13 0 21 0 0 432 0 0 0 1 9 0 24 0 0 

(X1, X4) 31 0 0 28 0 0 424 0 0 0 0 12 5 0 0 

(X2, X3) 0 5 16 0 0 0 0 432 0 0 22 0 0 23 0 

(X2, X4) 0 11 0 8 1 0 0 0 458 0 0 15 0 2 5 

(X3, X4) 0 0 17 3 0 0 0 0 0 456 0 0 14 7 3 

(X1, X2, X3 ) 1 4 4 0 7 9 0 22 0 0 444 0 0 0 9 

(X1, X2, X4 ) 3 0 0 3 25 0 16 0 27 0 0 419 0 0 7 

(X1, X3, X4 ) 14 0 0 2 0 14 6 0 0 19 0 0 433 0 12 

(X2, X3, X4 ) 0 6 2 0 0 0 0 22 12 7 0 0 0 438 13 

O
b

se
rv

ed
  

C
la

ss
  

(X1, X2,  X3, X4 ) 2 0 0 3 11 1 4 0 2 2 6 4 8 20 437 
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Table 3. Results obtained for 2.5 standard deviation shift in the mean vector of example 2 

 

 Predicted Class 

 X1 X2 X3 X4 (X1, X2) (X1, X3) (X1, X4) (X2, X3) (X2, X4) (X3, X4) (X1, X2, X3 ) (X1, X2, X4 ) (X1, X3, X4 ) (X2, X3, X4 ) (X1, X2, X3, X4 ) 

X1 442 0 0 0 8 2 19 0 0 0 1 4 11 0 13 

X2 0 444 0 0 21 0 0 4 17 0 1 0 0 9 4 

X3 0 0 450 0 0 30 0 6 0 8 6 0 0 0 0 

X4 0 0 0 440 0 0 31 0 6 8 0 7 2 1 5 

(X1, X2) 3 13 0 0 453 0 0 0 0 0 1 17 0 0 13 

(X1, X3) 5 0 15 0 0 461 0 0 0 0 6 0 9 0 4 

(X1, X4) 12 0 0 9 0 0 470 0 0 0 0 3 4 0 2 

(X2, X3) 0 3 9 0 0 0 0 467 0 0 11 0 0 10 0 

(X2, X4) 0 7 0 3 1 0 0 0 457 0 0 24 0 1 7 

(X3, X4) 0 0 10 0 0 1 0 0 0 466 0 0 12 9 2 

(X1, X2, X3 ) 2 1 3 0 4 6 0 14 0 0 454 0 0 0 16 

(X1, X2, X4 ) 0 0 0 2 14 0 7 0 10 0 0 466 0 0 1 

(X1, X3, X4 ) 5 0 1 3 0 16 4 0 0 14 0 0 450 0 7 

(X2, X3, X4 ) 0 3 1 1 0 0 0 18 4 14 0 0 0 447 12 

O
b

se
rv

ed
  

C
la

ss
 

(X1, X2,  X3, X4 ) 2 1 2 6 6 2 1 0 2 5 12 6 5 21 429 
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Table 4. Results obtained for 3 standard deviation shift in the mean vector of example 2 

 

 Predicted  Class 

 X1 X2 X3 X4 (X1, X2) (X1, X3) (X1, X4) (X2, X3) (X2, X4) (X3, X4) (X1, X2, X3 ) (X1, X2, X4 ) (X1, X3, X4 ) (X2, X3, X4 ) (X1, X2, X3, X4 ) 

X1 454 0 0 0 2 5 17 0 0 0 3 2 6 0 11 

X2 0 462 0 0 9 0 0 4 17 0 0 0 0 6 2 

X3 0 0 468 0 0 20 0 3 0 6 1 0 1 1 0 

X4 0 0 0 447 0 0 37 0 5 2 0 5 0 0 4 

(X1, X2) 1 6 0 0 469 0 0 0 0 0 1 22 0 0 1 

(X1, X3) 3 0 3 0 0 485 0 0 0 0 1 0 5 0 3 

(X1, X4) 1 0 0 1 0 0 492 0 0 0 0 2 3 0 1 

(X2, X3) 0 0 3 0 0 0 0 485 0 0 5 0 0 7 0 

(X2, X4) 0 4 0 0 0 0 0 0 479 0 0 15 0 1 1 

(X3, X4) 0 0 5 0 0 0 0 0 0 498 0 0 7 0 0 

(X1, X2, X3 ) 0 0 3 0 1 3 0 11 0 0 479 0 0 0 3 

(X1, X2, X4 ) 0 1 0 1 8 0 6 0 8 0 0 472 0 0 4 

(X1, X3, X4 ) 5 0 0 0 0 9 2 0 0 7 0 0 473 0 4 

(X2, X3, X4 ) 0 2 3 0 0 0 0 13 5 11 0 0 0 463 3 

O
b

se
rv

ed
  

C
la

ss
 

(X1, X2,  X3, X4 ) 1 0 0 5 2 0 2 0 1 3 8 4 6 14 454 
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Table 5. Results obtained for example 3 

 
 Predicted  Class  (2 standard deviation shift in the mean vector) 

 X1 X2 X3 (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3 ) 

X1 89 1 6 4 0 0 0 

X2 0 72 22 6 0 0 0 

X3 3 5 81 10 1 0 0 

(X1, X2) 6 15 17 60 2 0 0 

(X1, X3) 14 0 29 15 42 0 0 

(X2, X3) 0 30 40 5 0 25 0 

O
b

se
rv

ed
  

C
la

ss
 

(X1, X2, X3 ) 1 0 30 42 14 4 9 

 Predicted  Class  (3 standard deviation shift in the mean vector) 

 X1 X2 X3 (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3 ) 

X1 99 0 0 0 1 0 0 

X2 0 98 0 2 0 0 0 

X3 0 1 97 0 2 0 0 

(X1, X2) 1 1 1 96 1 0 0 

(X1, X3) 0 0 1 0 98 0 1 

(X2, X3) 0 0 0 0 0 99 1 

O
b

se
rv

ed
  

C
la

ss
 

(X1, X2, X3 ) 0 0 0 0 0 7 93 

 Predicted  Class (4 standard deviation shift in the mean vector) 

 X1 X2 X3 (X1, X2) (X1, X3) (X2, X3) (X1, X2, X3 ) 

X1 89 0 0 2 9 0 0 

X2 0 73 0 1 0 23 3 

X3 0 0 82 1 10 4 3 

(X1, X2) 0 1 0 64 0 2 33 

(X1, X3) 0 0 0 0 94 0 6 

(X2, X3) 0 0 0 0 0 97 3 

O
b

se
rv

ed
  

C
la

ss
 

(X1, X2, X3 ) 0 0 0 0 0 0 100 
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Table 6. Error percentage on the test sets 

 

 2 variables 3 variables 4 variables 

Methods 2 σ 2.5 σ 3 σ 2 σ 3 σ 4 σ 2 σ 2.5 σ 3 σ 

SAMME 7.2 3.33 2.87 46.00 2.86 14.43 11.85 9.39 5.73 

CART 

(Alfaro et al. 2008) 
9.07 6.53 5.47 49.86 12.71 18.71 15.28 14.08 11.19 

MLP * 

 (Niaki & Abbasi 

2005 ) 

13.93 10.73 8.73 50.00 62.14 45.29 33.03 24.87 18.69 

MSCH 

  (Niaki & Abbasi 

2005 ) 

4.60 10.93 10.93 n.a. n.a. n.a. 71.15 66.68 68.53 

* The topologies (#units input-hidden-output) of the MLP models are: 2-9-2, 3-13-3, and 4-31-4 for the 

cases of 2, 3 and 4 variables respectively. 
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