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A NONLINEAR ADIABATIC THEOREM FOR COHERENT

STATES

RÉMI CARLES AND CLOTILDE FERMANIAN-KAMMERER

Abstract. We consider the propagation of wave packets for a one-dimensional
nonlinear Schrödinger equation with a matrix-valued potential, in the semi-
classical limit. For an initial coherent state polarized along some eigenvector,
we prove that the nonlinear evolution preserves the separation of modes, in a
scaling such that nonlinear effects are critical (the envelope equation is non-
linear). The proof relies on a fine geometric analysis of the role of spectral
projectors, which is compatible with the treatment of nonlinearities. We also
prove a nonlinear superposition principle for these adiabatic wave packets.

1. Introduction

We consider the semi-classical limit ε→ 0 for the nonlinear Schrödinger equation

(1.1)




iε∂tψ

ε +
ε2

2
∂2xψ

ε = V (x)ψε + Λ|ψε|2
CNψε, (t, x) ∈ R×R,

ψε
|t=0 = ψε

0

where Λ ∈ R. The data ψε
0 and the solution ψε(t) are vectors of CN , N > 1. The

quantity |ψε|2
CN denotes the square of the Hermitian norm in CN of the vector ψε.

Finally, the potential V is smooth and valued in the set of N by N Hermitian
matrices. Such systems appear in the modelling of Bose-Einstein condensate (see [1]
and references therein).

Definition 1.1. We say that a function f is at most quadratic if f ∈ C∞(R) and
for all k > 2, f (k) ∈ L∞(R).

We make the following assumptions on the potential V :

Assumption 1.2. (1) We have V (x) = D(x)+W (x) with D,W ∈ C∞(R,RN×N),
D diagonal with at most quadratic coefficients, and W symmetric and bounded as
well as its derivatives, W ∈ W∞,∞(R).
(2) The matrix V has P distinct, at most quadratic, eigenvalues λ1, . . . , λP and

(1.2) ∃c0, n0 ∈ R+, ∀j 6= k, ∀x ∈ R, |λj(x)− λk(x)| > c0 〈x〉−n0 .

Under these assumptions (the first point suffices), we can prove global existence
of the solution ψε for fixed ε > 0:

Lemma 1.3. If V satisfies Assumption 1.2 and ψε
0 ∈ L2(R), there exists a unique,

global, solution to (1.1)

ψε ∈ C
(
R;L2(R)

)
∩ L8

loc

(
R;L4(R)

)
.
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2 R. CARLES AND C. FERMANIAN

The L2-norm of ψε does not depend on time: ‖ψε(t)‖L2(R) = ‖ψε
0‖L2(R), ∀t ∈ R.

The proof of this lemma is sketched in Appendix A.
In this nonlinear setting, the size of the initial data is crucial. As in [4], we

choose to consider initial data of order 1 (in L2), and to introduce a dependence
upon ε in the coupling constant (note that the nonlinearity is homogeneous). This
leads to the equation

iε∂tψ
ε +

ε2

2
∂2xψ

ε = V (x)ψε + Λε2β |ψε|2
CNψ

ε,

and we choose the exponent β = 3/4, which is critical for the type of initial data
we want to consider (coherent state) when the potential V is scalar (see [4]). We
are left with the nonlinear semi-classical Schrödinger equation

(1.3) iε∂tψ
ε +

ε2

2
∂2xψ

ε = V (x)ψε + Λε3/2|ψε|2
CNψ

ε ; ψε
|t=0 = ψε

0.

We focus on initial data which are perturbation of wave packets

(1.4) ψε
0(x) = ε−1/4eiξ0(x−x0)/εa

(
x− x0√

ε

)
χ(x) + rε0(x),

where the initial error satisfies

(1.5) ‖rε0‖L2(R) + ‖xrε0‖L2(R) + ‖ε∂xrε0‖L2(R) = O(εκ) for some κ >
1

4
.

The profile a belongs to the Schwartz class, a ∈ S(R;C), and the initial datum is
polarized along an eigenvector χ(x) ∈ C∞(R;CN ):

V (x)χ(x) = λ1(x)χ(x), with |χ(x)|CN = 1.

Note that λ1 is simply a notation for some eigenvalue, up to a renumbering of
eigenvalues. The L2-norm of ψε

0 is independent of ε, ‖ψε
0‖L2(R) = ‖a‖L2(R). As

pointed out above, this is equivalent to considering (1.1) with initial data of the
same form (1.4), but of order ε3/4 in L2(R). The evolution of such data when a is
a Gaussian has been extensively studied by G. Hagedorn on the one hand, and by
G. Hagedorn and A. Joye on the other hand, in the linear context Λ = 0 (see [8, 9]).
These data are also particularly interesting for numerics (see [12] and the references
therein).

Because of the gap condition, the matrix V has smooth eigenvalues and eigenpro-
jectors (see [11]). Besides, the gap condition (1.2) also implies that we control the
growth of the eigenprojectors (see Lemma C.2). Note however than in dimension 1
(x ∈ R), one can have smooth eigenprojectors without any gap condition. We
explain this fact below and give an example of projectors that we can consider; we
also illustrate why things may be more complicated in higher dimensions (d > 2).

Example 1.4. For N = 2 and x ∈ R, consider

(1.6) V (x) = (ax2 + b)Id +

(
u(x) v(x)
v(x) −u(x)

)
,

for a, b ∈ R, and u and v smooth and bounded with bounded derivatives. Such a
potential satisfies Assumption 1.2. Its eigenvalues are the two functions

λ±(x) = ax2 + b±
√
u(x)2 + v(x)2.

These functions are clearly smooth outside the set of points x0 such that u(x0)
2 +

v(x0)
2 = 0. Besides, for such points, one can renumber the modes in order to
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build smooth eigenvalues. More precisely, observe first that if u(x)2 + v(x)2 =
O((x − x0)

∞) close to x0, the functions λ± are smooth close to x0. Moreover, if
u(x)2 + v(x)2 = (x − x0)

kf(x) with f(x0) 6= 0, necessarily f(x0) > 0 and k = 2p,
so we have

λ±(x) = ax2 + b± |x− x0|p
√
f(x).

For p even these functions are again smooth. However, when p is odd, they are no
longer smooth and we perform a renumbering of the eigenfunctions, observing that

x 7→ ax2 + b+ (x− x0)
p
√
f(x)

are smooth eigenvalues of V close to x0.

Example 1.5. Resume the above example, with now x ∈ Rd, d > 2. The smoothness
of the eigenvalues is no longer guaranteed: suppose u(x) = x1 and v(x) = x2, then
the functions λ± are not smooth and one cannot find any renumbering which makes
them smooth.

Example 1.6. For an example of a potential which satisfies 1.2, we simply choose
V as in (1.6) with

cuu(x) = cvv(x) = 〈x〉−n0 , c2u + c2v 6= 0.

1.1. The ansatz. We consider the classical trajectories (x(t), ξ(t)) solutions to

(1.7) ẋ(t) = ξ(t), ξ̇(t) = −∇λ1(x(t)), x(0) = x0, ξ(0) = ξ0.

Because λ1 is at most quadratic, the classical trajectories grow at most exponen-
tially in time (see e.g. [4]):

(1.8) ∃C > 0, |ξ(t)| + |x(t)| . eCt.

We denote by S the action associated with (x(t), ξ(t))

(1.9) S(t) =

∫ t

0

(
1

2
|ξ(s)|2 − λ1(x(s))

)
ds.

We consider the function u = u(t, y) solution to

(1.10) i∂tu+
1

2
∂2yu =

1

2
λ′′1 (x(t)) y

2u+ Λ|u|2u ; u(0, y) = a(y),

and we denote by ϕε the function associated with u, x, ξ, S by:

(1.11) ϕε(t, x) = ε−1/4u

(
t,
x− x(t)√

ε

)
ei(S(t)+ξ(t)(x−x(t)))/ε.

Global existence of u and control of its derivatives and momenta are proved in [3].
More precisely, we have the following result.

Theorem 1.7 (From [3]). Suppose a ∈ S(R). There exists a unique, global so-
lution u ∈ C(R;L2(R)) ∩ L8

loc(R;L4(R)) to (1.10). In addition, for all k, p ∈ N,

〈y〉k ∂pyu ∈ C(R;L2(R)) and

(1.12) ∀k, p ∈ N, ∃C > 0, ∀t ∈ R+, ‖ 〈y〉k ∂pyu(t, ·)‖L2(R) . eCt.

In particular, note that ∂pyu(t, ·) is in L∞ for all p ∈ N. These results have
consequences on ϕε. As far as the L∞ norm is concerned, we infer, using (1.8),

(1.13) ∀p ∈ N, ‖(ε∂x)pϕε(t)‖L∞ . ε−1/4eCpt.



4 R. CARLES AND C. FERMANIAN

We use the time-dependent eigenvectors constructed in [8] (see also [9] and [14]).
To make the notations precise, we denote by dj the multiplicity of the eigenvalue λj ,
1 6 j 6 P (note that

∑
16j6P dj = N).

Proposition 1.8. There exists a smooth orthonormal family
(
χℓ(t, x)

)
16ℓ6d1

such

that for all t,
(
χℓ(t, x)

)
16ℓ6d1

spans the eigenspace associated to λ1, χ
1(0, x) = χ(x)

and for m ∈ {1, · · · , d1},
(1.14)

(
χm(t, x), ∂tχ

ℓ(t, x) + ξ(t)∂xχ
ℓ(t, x)

)
CN = 0.

Moreover, for ℓ ∈ {1, . . . , d1}, k, p ∈ N, there exists a constant C = C(p, k) such
that ∣∣∂pt ∂kxχℓ(t, x)

∣∣
CN 6 C eCt 〈x〉(k+p)(1+n0) ,

where n0 appears in (1.2).

Note that equation (1.14) for m = ℓ is true as soon as the eigenvector χℓ is
normalized and real-valued.

Equation (1.14) is often referred to as parallel transport. These time-dependent
eigenvectors are commonly used in adiabatic theory and are connected with the
Berry phase (see [14]). Their construction is recalled in Section 2, where the control
of their growth is also established.

Notation. In the case of a single coherent state, we complete the family
(
χℓ(t, x)

)
16ℓ6d1

as an orthonormal basis
(
χℓ
j

)
16j6P
16ℓ6dj

of CN as follows:

• χℓ
1 = χℓ,

• For j > 2 and 1 6 ℓ 6 dj , χ
ℓ
j = χℓ

j(x) does not depend on time,

• For j > 2, (χℓ
j)16j6dj spans the eigenspace associated to λj .

1.2. The results. We prove that there is adiabatic decoupling for the solution
of (1.3) with initial data which are coherent states of the form (1.4): the solution
keeps the same form and remains in the same eigenspace.

Theorem 1.9. Let a ∈ S(R) and rε0 satisfying (1.5). Under Assumption 1.2, con-
sider ψε solution to the Cauchy problem (1.3)–(1.4), and the approximate solution
ϕε given by (1.11). There exists a constant C > 0 such that the function

wε(t, x) = ψε(t, x)− ϕε(t, x)χ1(t, x),

where χ1 is given by Proposition 1.8, satisfies

sup
|t|6Cloglog 1

ε

(‖wε(t)‖L2 + ‖xwε(t)‖L2 + ‖ε∂xwε(t)‖L2)−→
ε→0

0.

This adiabatic decoupling between the modes is well-known in the linear setting
and is at the basis of numerous results on semi-classical Schrödinger operator with
matrix-valued potential in the framework of Born-Oppenheimer approximation for
molecular dynamics. On this subject, the reader can consult the article of H. Spohn
and S. Teufel [13] or the book of S. Teufel [14] for a review on the topic (see also [2]
for an adiabatic result in a nonlinear context and [10] for application of adiabatic
theory to the obtention of resolvent estimates).

Remark 1.10. Suppose that V depends on ε with V ε = D + εW , where D and W
are as in Assumption 1.2; this is so in the model presented in [1]. Then the above
result remains true for |t| 6 C log

(
1
ε

)
: we gain one logarithm. See Remark 4.1 for
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the key arguments. Also, the assumption on the initial error can be relaxed: to
prove the analogue of Theorem 1.9 with an approximation in L2 up to C log 1/ε,
(1.5) can be replaced with

‖rε0‖L2(R) → 0 as ε→ 0.

In contrast with the general framework of this paper, no rate is needed: the rate in
(1.5) is due to the fact that we cannot use Strichartz estimates here.

It is also interesting to analyze the evolution of solution associated with data
which are the superposition of two data of the studied form. We suppose

ψε
0(x) = ϕε

1(0, x)χ1(x) + ϕε
2(0, x)χ2(x),

where both functions ϕε
1 and ϕε

2 have the form (1.11), for two eigenvectors of V ,
χ1 and χ2, and phase space points (x1, ξ1) and (x2, ξ2). We assume

(χ1, x1, ξ1) 6= (χ2, x2, ξ2) .

We associate with the phase space points (xj , ξj), j ∈ {1, 2} the classical trajectories
(xj(t), ξj(t)), and the action Sj(t) associated with λ̃j such that

V (x)χj(x) = λ̃j(x)χj(x).

Note that we may have λ̃1 = λ̃2. Let us denote by χℓ
j(t) 16j6P

16ℓ6dj

a time-dependent

orthonormal basis of eigenvectors defined according to Proposition 2.1 (see also

Proposition 1.8 above) with χ1
1(0, x) = χ1(x), χ2(x) = χ2

1(0, x) if λ̃1 = λ̃2, χ2(x) =
χ1
2(0, x) otherwise, and by ϕε

j the ansatz defined by (1.11). To unify the presenta-
tion, we write

χ1 = χ1
1 ; χ2 =

{
χ2
1 if λ̃1 = λ̃2,

χ1
2 otherwise.

Theorem 1.11. Set Ej =
ξ2j
2 + λ̃j(xj) for j ∈ {1, 2} and suppose

Γ = inf
x∈R

∣∣∣λ̃1(x)− λ̃2(x)− (E1 − E2)
∣∣∣ > 0.

There exists C > 0 such that the function

wε(t) = ψε(t)− ϕε
1χ

1(t, x) − ϕε
2χ

2(t, x).

satisfies

sup
t6Cloglog 1

ε

(‖wε(t)‖L2 + ‖xwε(t)‖L2 + ‖ε∂xwε(t)‖L2)−→
ε→0

0.

Note that if λ̃1 = λ̃2, one recovers the condition E1 6= E2 of [4]. The proof of
Theorem 1.11 follows the same lines as in [4, Section 6]. The constant Γ controls
the frequencies of time interval where trajectories cross.

Remark 1.12. In finite time, the situation is different whether λ̃1 = λ̃2 or not. If
λ̃1 = λ̃2, the superposition holds in finite time without any condition on Γ; this
comes from the fact that the trajectories x1(t) and x2(t) only cross on isolated

points (see [4]). However, if λ̃1 6= λ̃2 one may have x1(t) = x2(t) on intervals of
non-empty interior: the condition Γ 6= 0 prevents this situation from happening.
For example, if

V (x) =

(
cosx sinx
sinx −cosx

)
+ v(x)Id
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with v smooth and at most quadratic, we have λ1(x) = v(x)−1 and λ2(x) = v(x)+1:
classical trajectories for both modes, issued from the same point of the phase space,
are equal.

1.3. Strategy of the proof of Theorem 1.9. The proof is more complicated
than in the scalar case [4], due to the fact that the spectral projectors do not
commute with the Laplace operator. From this perspective, a much finer geometric
understanding is needed and we revisit [8, 7, 9, 13, 14] by adapting to our nonlinear
context ideas contained therein.

Observe first that the function ϕε satisfies

(1.15) iε∂tϕ
ε +

ε2

2
∂2xϕ

ε = Tε(t, x)ϕε + Λ ε3/2|ϕε|2
CNϕε,

where

Tε(t, x) = λ1(x(t)) + λ′1(x(t))(x − x(t)) +
1

2
λ′′(x(t))(x − x(t))2.

This term corresponds to the beginning of the Taylor expansion of λ1 about x(t).
Therefore, the function wε(t, x) = ψε(t, x)−ϕε(t, x)χ1(t, x) satisfies wε

|t=0 = rε0 and

iε∂twε(t, x) +
ε2

2
∂2xw

ε(t, x) − V (x)wε(t, x) = εÑL
ε
(t, x) + εL̃ε(t, x)

where

ÑL
ε
= Λ ε1/2

(∣∣ϕεχ1 + wε
∣∣2
CN (ϕεχ1 + wε)− |ϕε|2ϕεχ1

)
,

L̃ε = i∂tχ
1ϕε + ε∂xχ

1∂xϕ
ε +

ε

2
ϕε∂2xχ

1 + ε−1 (λ1(x) − Tε)ϕεχ1.

Since ϕε is concentrated near x = x(t) at scale
√
ε, we have

(λ1(x) − Tε)ϕε = O
(
ε3/2eCt

)
in L2(R),

where we have used Theorem 1.7. The term L̃ε a priori presents an O(1) con-
tribution, which is an obstruction to infer that wε is small by applying Gronwall
Lemma. Observing that in view of the estimates on the classical flow (see (1.8))

ε∂xϕ
ε = iξ(t)ϕε +O

(√
ε eCt

)
in L2(R),

we write,

L̃ε = i
(
∂tχ

1 + ξ(t)∂xχ
1
)
ϕε +O

(√
ε eCt

)
in L2(R).

The choice of the time-dependent eigenvectors ensures that for all time, the O(1)

contribution of L̃ε is orthogonal to the first mode (the eigenspace associated with
λ1). Then, to get rid of these terms, we introduce a correction term to wε. We set

θε(t, x) = wε(t, x) + εgε(t, x), gε(t, x) =
∑

26j6P

∑

16ℓ6dj

gεj,ℓ(t, x)χ
ℓ
j(x),

where for j > 2 and for 1 6 ℓ 6 dj , the function gεj,ℓ(t, x) solves the scalar
Schrödinger equation

(1.16) iε∂tg
ε
j,ℓ +

ε2

2
∂2xg

ε
j,ℓ − λj(x)g

ε
j,ℓ = ϕεrj,ℓ ; gεj,ℓ|t=0 = 0,

where

(1.17) rj,ℓ(t, x) = −i
(
∂tχ

1(t, x) + ξ(t)∂xχ
1(t, x) , χℓ

j(x)
)
CN .
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The function θε(t) then solves

(1.18)




iε∂tθ

ε(t, x) +
ε2

2
∂2xθ

ε(t, x) = V (x)θε(t, x) + εNLε(t, x) + εLε(t, x),

θε|t=0 = rε0,

with

NLε = Λ ε1/2
(
|ϕεχ1 + θε − εgε|2

CN (ϕεχ1 + θε − εgε)− |ϕε|2ϕεχ1
)
,(1.19)

Lε = L̃ε +

(
iε∂t +

ε2

2
∂2x − V (x)

)
gε(t, x)(1.20)

= O(
√
εeCt) +

∑

26j6P

∑

16ℓ6dj

[
ε2

2
∂2x, χ

ℓ
j

]
gεj,ℓ

where the O(
√
εeCt) holds in L2. The proof of the theorem then follows from a

precise control of the functions χℓ
j and gεj,ℓ, which is achieved in Sections 2 and 3,

respectively. Then, the analysis of θε as ε goes to zero by an energy method is
presented in Section 4.

2. The family of time-dependent eigenvectors

In this section we prove Proposition 1.8, recalling the construction of the eigen-
vectors satisfying (1.14), and analyzing the behavior of their derivatives for large
time. We follow the proof of [8]. More generally, we prove the following result which
implies Proposition 1.8. We consider the Hamiltonian curves of 1

2 |ξ|2 + λj(x), that
we denote by (xj(t), ξj(t)).

Proposition 2.1. There exists a smooth orthonormal basis of CN
(
χℓ
j(t, x)

)
16ℓ6dj

16j6P

such that for all t,
(
χℓ
j(t, x)

)
16ℓ6dj

spans the eigenspace associated to λj, with

χ1(0, x) = χ(x) and for m ∈ {1, · · · , dj},
(
χm
j (t, x), ∂tχ

ℓ
j(t, x) + ξj(t)∂xχ

ℓ
j(t, x)

)
CN = 0.

Moreover, for ℓ ∈ {1, . . . , dj}, k, p ∈ N, there exists a constant C = C(p, k) such
that

∣∣∂pt ∂kxχℓ
j(t, x)

∣∣
CN 6 C eCt 〈x〉(k+p)(1+n0) ,

where n0 appears in (1.2).

Proof of Proposition 2.1. We consider a smooth basis of eigenvectors (χℓ
j(0))16ℓ6dj

16j6P

such that χ1
1(0) = χ. Then, we denote by Πj(x) the smooth eigenprojector associ-

ated with the eigenvalue λj(x) and define

Kj(x) = −i [Πj(x), ∂xΠj(x)] .

We set z = x− xj(t) and we consider the Schrödinger type equation

(2.1) i∂tY
ℓ
j (t, z) = ξj(t)Kj(z + xj(t))Y

ℓ
j (t, z) ; Y ℓ

j (0, z) = χℓ
j(xj(0) + z).
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Let us prove that the vector Y ℓ
j (t, z) is in the eigenspace of λj(xj(t) + z). Indeed,

the evolution of Zℓ
j(t, z) = (Id−Πj(xj(t) + z))Y ℓ

j (t, z) obeys to Z
ℓ
j(0, z) = 0 and

∂tZ
ℓ
j(t, z) = −ξj(t)∂xΠj(xj(t) + z)Y ℓ

j

− ξj(t)(Id−Πj(xj(t) + z))[Πj(xj(t) + z), ∂xΠj(xj(t) + z)]Y ℓ
j

= −ξj(t)∂xΠj(xj(t) + z)(Id−Πj(xj(t) + z))Y ℓ
j

= −ξj(t)∂xΠj(xj(t) + z)Zℓ
j

where we have used ∂xΠj = ∂x(Π
2
j) = Πj∂xΠj + (∂xΠj)Πj , whence

Πj(∂xΠj)Πj = Πj (Πj∂xΠj + (∂xΠj)Πj)Πj = 2Πj(∂xΠj)Πj = 0.

Therefore, Zℓ
j(t) satisfies an equation of the form ∂tZ

ℓ
j = A(t, z)Zℓ

j , which combined

with Zℓ
j(0) = 0, implies Zℓ

j(t) = 0 for all t ∈ R: the vectors Y ℓ
j (t, z) are eigenvectors

of V (xj(t) + z) for the eigenvalue λj(xj(t) + z).
Besides, since ξj(t)Kj(z + xj(t)) is self-adjoint, Y

ℓ
j (t, z) is normalized for all t, and

the family (Y ℓ
j )16ℓ6dj is orthonormal. We define χℓ

j(t, x) by

(2.2) χℓ
j(t, x) = Y ℓ

j (t, x− xj(t))

and we obtain an orthonormal basis of eigenvectors of V (x).
It remains to check that (1.14) holds. We have

∂tχ
ℓ
j + ξj(t)∂xχ

ℓ
j = ∂tY

ℓ
j (t, x − xj(t))

= iξj(t)Kj(x)χ
ℓ
j

= −ξj(t)[Πj(x), ∂xΠj(x)]χ
ℓ
j ,

whence
(
∂tχ

ℓ
j + ξj(t)∂xχ

ℓ
j , χ

k
j

)
CN = −ξj(t)

(
[Πj , ∂xΠj ]χ

ℓ
j , χ

k
j

)
CN

= −ξj(t)
(
Πj [Πj , ∂xΠj ]Πjχ

ℓ
j , χ

k
j

)
CN

since χ
ℓ/k
j = Πjχ

ℓ/k
j . We then observe that Π2

j = Πj implies

Πj [Πj , ∂xΠj ]Πj = Π2
j∂xΠjΠj −Πj∂xΠjΠ

2
j = 0.

This concludes the first part of Proposition 1.8. It remains to study the behavior
at infinity of the vectors χℓ

j(t, x) and of their derivatives.

By the definition of χℓ
j(t, x) in (2.2), it is enough to prove

|∂pt ∂kxY ℓ
j (t, z)|CN . eCt 〈xj(t) + z〉(p+k)(1+n0) .

For this, we crucially use the estimates of Lemma C.2 and we argue by induction.
Let us first consider the case p = 1 and k = 0. By Lemma C.2, we have |Kj(x)| .
〈x〉1+n0 , whence (2.1) gives

|∂tY ℓ
j (t, x− xj(t))| . |ξj(t)||Kj(x)| . eCt 〈x〉1+n0 .

Let us now suppose k > 1 and p = 0. We observe that ∂kzY
ℓ
j (t, z) solves

(2.3)

{
i∂t∂

k
zY

ℓ
j (t, z) = −iξj(t)Kj(z + xj(t))∂

k
zY

ℓ
j (t, z) + f(t, z),

∂kzYj(0, z) = ∂kxχ
ℓ
j(0, z + xj(0)),
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where
f(t, z) =

∑

06γ6k−1

cγ ξj(t)∂
γ
zKj(z + xj(t))∂

k−γ
z Y ℓ

j (t, z),

for some complex numbers cγ independent of t and z. We obtain

∂kzY
ℓ
j (t, z) = Uj(t, 0)∂

k
xχ

ℓ
j(z + xj(0)) +

∫ t

0

Uj(t, s)f(s, z)ds,

where Uj(t, s) denotes the unitary propagator associated to (2.1) (when the initial
time is equal to s). We have by Lemma C.2

|∂kzY ℓ
j (0, z)|CN =

∣∣∂kxχℓ
j(0, z + xj(0))

∣∣
CN . 〈z + xj(0)〉k(1+n0) ,

therefore the induction assumption

∀γ ∈ {0, . . . , k − 1}, |∂γxY ℓ
j (t, z)|CN . eCt 〈xj(t) + z〉γ(1+n0)

implies, along with Lemma C.2,

|∂kxY ℓ
j (t, z)|CN . eCt 〈xj(t) + z〉k(1+n0) .

We have obtained the estimate for p = 0, k ∈ N, and for p = 1, k = 0. Note that
Equation (2.3) yields

∀k ∈ N, |∂t∂kxY ℓ
j (t, z)|CN . eCt 〈xj(t) + z〉(1+k)(1+n0) ,

and allows to prove the general estimate for time derivatives by an induction ar-
gument which crucially uses the fact that we have an exponential control of the
derivatives in time of ξj(t). This property follows by induction from (1.7), (1.8),
and the fact that λj is at most quadratic. �

Before concluding this section, note that in view of the definition of the function
rj,ℓ in (1.17), Proposition 1.8 gives the following corollary.

Corollary 2.2. For all p ∈ N and k ∈ N, there exists a constant C = C(p, k) such
that, for x ∈ R, j ∈ {1, · · · , P} and ℓ ∈ {1, · · · , dj},

∣∣∂pt ∂kxrj,ℓ(t, x)
∣∣ . eCt 〈x〉(1+p+k)(1+n0) .

3. Analysis of the correction terms

In this section, we will make use of the following norms defined for p ∈ N,

‖f‖Σp
ε
= sup

α+β6p

∥∥∥|x|αεβf (β)(x)
∥∥∥
L2
.

We associate with this norm the functional space Σp
ε defined by

Σp
ε = {f ∈ L2(Rd), ‖f‖Σp

ε
<∞}.

In view of (1.8) and (1.13), for all p ∈ N, there exists c(p) such that

(3.1) ‖ϕε(t)‖Σp
ε
. ec(p)t, ∀t > 0.

We can obviously take c(0) = 0 by conservation of the L2-norm, but in general, the
norm of ϕε in Σ1

ε potentially grows exponentially in time (see [3]). We denote by

Uε
k(t) the semi-group associated with the operator − ε2

2 ∂
2
x + λk(x) and we observe

that for p ∈ N, there exists a constant C(p) such that

(3.2) ‖Uε
k(t)‖L(Σp

ε) 6 C(p)eC(p)|t|.

The following averaging lemma shows an asymptotic orthogonality property.



10 R. CARLES AND C. FERMANIAN

Lemma 3.1. For T > 0 and k 6= j, there exists a constant C such that

∀t ∈ [0, T ], ∀p ∈ N,

∥∥∥∥
1

iε

∫ t

0

Uε
k(−s)Uε

j (s)ds

∥∥∥∥
L
(
Σ

(p+3)n0+p+2
ε ,Σp

ε

) 6 CeCt.

Proof. We first observe that

(3.3) iε∂t
(
Uε
k(−t)Uε

j (t)
)
= Uε

k(−t) (λj(x)− λk(x))U
ε
j (t).

Indeed, if f ∈ L2(R) and f ε(t) = Uε
k(−t)Uε

j (t)f. We have

iε∂tf
ε(t, x) = −

(
−ε

2

2
∂2x + λk(x)

)
f ε(t) + Uε

k(−t)
(
−ε

2

2
∂2x + λj(x)

)
Uε
j (t)f

= Uε
k(−t) (λj(x)− λk(x))U

ε
j (t)f

because Uε
k(−t) commutes with − ε2

2 ∂
2
x + λk(x). We use Equation (3.3) to perform

an integration by parts:

Uε
k (−t)Uε

j (t) = Uε
k(−t) (λj − λk)

−1
Uε
k(t)U

ε
k (−t) (λj − λk)U

ε
j (t)

= iε Uε
k(−t) (λj − λk)

−1
Uε
k (t) ∂t

(
Uε
k (−t)Uε

j (t)
)
.

Therefore,

1

iε

∫ t

0

Uε
k (−s)Uε

j (s)ds =
[
Uε
k (−s) (λj − λk)

−1
Uε
j (s)

]t
0

−
∫ t

0

∂s

(
Uε
k(−s) (λj − λk)

−1
Uε
k(s)

)
Uε
k(−s)Uε

j (s) ds.

Set

(3.4) γj,k = (λk − λj)
−1 .

The behavior as x goes to infinity of these functions is studied in Appendix C (see
Lemma C.1). It is proven there that for all β ∈ N,

∣∣∂βxγj,k(x)
∣∣ . 〈x〉n0+|β|(1+n0) .

Since the propagators Uε
k(t) and Uε

j (t) map continuously Σp
ε into itself uniformly

with respect to ε, we have
∥∥∥
[
Uε
k(−s)γj,kUε

j (s)
]t
0

∥∥∥
L
(
Σ

(p+1)n0+p
ε ,Σp

ε

) . C(p),

where in all this paragraph, C(p) denotes a generic constant depending only on the
parameter p ∈ N. Besides, we observe that

∂s (U
ε
k(−s)γj,kUε

k(s)) =
1

iε
Uε
k(−s)

[
−ε

2

2
∂2x + λk , γj,k

]
Uε
k (s).

In view of

1

iε

[
−ε

2

2
∂2x + λk , γj,k

]
=

1

iε

[
−ε

2

2
∂2x , γj,k

]
= iγ′j,k(x)ε∂x + iεγ′′j,k(x),

and of
∥∥Uε

k(−s)γ′j,k(x)ε∂xUε
j (s)

∥∥
L
(
Σ

(p+3)n0+p+2
ε ,Σp

ε

)

+
∥∥Uε

k(−s)γ′′j,k(x)Uε
j (s)

∥∥
L
(
Σ

(p+2)n0+p+2
ε ,Σp

ε

) . eCs,
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which comes from (3.2) and Lemma C.1, we get

‖∂s (Uε
k(−s)γj,kUε

k(s))‖L(Σp+2
ε ,Σp

ε)
. eCt,

which concludes the proof. �

We now prove the following proposition.

Proposition 3.2. For p ∈ N, there exists C(p) such that for all j > 2, and all
ℓ ∈ {1, . . . , dj},

‖gεj,ℓ(t)‖Σp
ε
. eC(p)t, ∀t > 0,

where gεj,ℓ is defined in (1.16).

Proof. We use Duhamel’s formula and write

gεj,ℓ(t) =
1

iε

∫ t

0

Uε
j (t− s) (ϕε(s)rj,ℓ(s)) ds.

Besides, if ϕ̃ε
j,ℓ(t, x) = ϕε(t, x)rj,ℓ(t, x), then we have,

(
iε∂t +

ε2

2
∂2x − λ1(x)

)
ϕ̃ε
j,ℓ = iε∂trj,ℓϕ

ε + rj,ℓε
3/2|ϕε|2ϕε +

ε2

2

[
∂2x, rj,ℓ(t, x)

]
ϕε

︸ ︷︷ ︸
=:εr̃ε(t,x)

.

Therefore, we can write

ϕ̃ε
j,ℓ(t) = Uε

1 (t)ϕ̃
ε
j,ℓ(0)− i

∫ t

0

Uε
1 (t− s)r̃ε(s)ds,

whence

gεj,ℓ(t) =
1

iε

∫ t

0

Uε
j (t− s)Uε

1 (s)dsϕ̃
ε
j,ℓ(0)−

1

ε

∫ t

0

∫ s

0

Uε
j (t− s)Uε

1 (s− τ)r̃ε(τ)dτds

=
1

iε

∫ t

0

Uε
j (t− s)Uε

1 (s)dsϕ̃
ε
j,ℓ(0)−

∫ t

0

[
1

ε

∫ t

τ

Uε
j (t− s)Uε

1 (s− τ)ds

]
r̃ε(τ)dτ.

Lemma 3.1 yields

‖gεj,ℓ(t)‖Σp
ε
. eCt +

∫ t

0

eCτ‖r̃ε(τ)‖Σq
ε
dτ,

with q = p+ 2+ (p+ 3)(1 + n0). Let us now study r̃ε. We write r̃ε = r̃ε1 + r̃ε2 with

r̃ε1(t, x) = i∂trj,ℓϕ
ε +

ε

2

[
∂2x, rj,ℓ(t, x)

]
ϕε.

In view of Corollary 2.2 and of (3.1), we have for all q ∈ N,

‖r̃ε1(t)‖Σq
ε(R) . eC(q)t.

A very rough estimate yields

‖r̃ε2(t)‖Σq
ε
= ‖

√
εrj,ℓ|ϕε|2ϕε‖Σq

ε
.

√
ε ‖rj,ℓ 〈x〉q ϕε‖Σq

ε
‖〈ε∂x〉q ϕε‖2L∞

.
√
εeCt

∥∥∥〈x〉q+(1+q)(n0+1)
ϕε

∥∥∥
Σq

ε

‖〈ε∂x〉q ϕε‖2L∞ ,

where we have used Corollary 2.2. Now with (1.13) and (3.1), we conclude

‖r̃ε2(t)‖Σq
ε
. eCt.

This completes the proof of Proposition 3.2. �
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4. Consistency

We now prove Theorem 1.9. We go back to Equation (1.18), that we recall:



iε∂tθ

ε(t, x) +
ε2

2
∂2xθ

ε(t, x) = V (x)θε(t, x) + εNLε(t, x) + εLε(t, x),

θε|t=0 = rε0,

where NLε and Lε are defined in (1.19) and (1.20), respectively. The standard
L2-estimate yields:

‖θε(t)‖L2 6 ‖rε0‖L2 +

∫ t

0

(‖NLε(s)‖L2 + ‖Lε(s)‖L2) ds.

In view of (1.20), Proposition 2.1 and Proposition 3.2, we have

‖Lε(t)‖L2 .
√
εeCt.

Besides, we observe

‖NLε(t)‖L2 .
√
ε
∥∥(|ϕε(t)|2 + |θε(t)|2

CN + ε2|gε(t)|2
CN

)
(θε(t)− εgε(t))

∥∥
L2

.
√
ε
(
‖ϕε(t)‖2L∞ + ‖θε(t)‖2L∞ + ε2‖gε(t)‖2L∞

)
(‖θε(t)‖L2 + ε‖gε(t)‖L2) .

In view of (1.13), we have ‖ϕε(t)‖L∞ . ε−1/4eCt. On the other hand, Proposi-
tion 3.2 implies, in view of the Gagliardo-Nirenberg inequality

(4.1) ‖f‖L∞ . ε−1/2‖f‖1/2L2 ‖ε∂xf‖1/2L2 ,

the estimate

ε2‖gε(t)‖2L∞ . εeCt.

Therefore, it is natural to perform a bootstrap argument assuming, say

(4.2) ‖θε(t)‖L∞ 6 ε−1/4eCt.

Note that we fixed the value of the constant in factor of the right hand side equal to
one. We did so because θε, as an error term, is expected to be smaller than ϕε (the
approximate solution) in the limit ε → 0. As long as (4.2) holds, the L2-estimate
implies, in view of (1.5)

‖θε(t)‖L2 . εκ +

∫ t

0

(√
εeCs + eCs‖θε(s)‖L2

)
ds.

By Gronwall Lemma, we obtain

(4.3) ‖θε(t)‖L2 6 C
(
εκ +

√
ε
)
ee

Ct

.

It remains to check how long the bootstrap assumption (4.2) holds. For this, we
use Gagliardo-Nirenberg inequality (4.1), and we look for a control of the norm of
θε(t) in Σ1

ε. Differentiating the system (1.18) with respect to x, we find

iε∂t(ε∂xθ
ε) +

ε2

2
∂2x(ε∂xθ

ε) = V (x)ε∂xθ
ε + εV ′(x)θε + ε2∂xNL

ε + ε2∂xL
ε,

We observe that since V is at most quadratic, |V ′(x)θε|CN . 〈x〉 |θε|CN . Therefore,
in order to obtain a closed system of estimates, we consider the equation satisfied
by xθε: multiply (1.18) by x,

iε∂t(xθ
ε) +

ε2

2
∂2x(xθ

ε) = V (x)(xθε) + ε2∂xθ
ε + εxNLε + εxLε.
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By Proposition 3.2, we have

‖xLε(t)‖L2 + ‖ε∂xLε(t)‖L2 .
√
εeCt.

Besides,

|xNLε(t, x)|CN .
(
|φε(t, x)|2 + |θε(t, x)|2

CN + ε2|gε(t, x)|2
CN

)
×

× (|xθε(t, x)|CN + ε|xgε(t, x)|CN ) ,

|ε∂xNLε(t, x)|CN .
(
|φε(t, x)|2 + |θε(t, x)|2

CN + ε2|gε(t, x)|2
CN

)
|ε∂xθε(t, x)|CN

+ ε
(
|φε(t, x)|2 + |θε(t, x)|2

CN + ε2|gε(t, x)|2
CN

)
|ε∂xgε(t, x)|CN

+ |ε∂xφε(t, x)| × |φε(t, x)| × |θε(t, x)|CN

+ ε|φε(t, x)|2 × |∂xχ1(t, x)|CN × |θε(t, x)|CN .

Arguing as before and using again (1.13), we obtain that under (1.2) we have

‖ε∂xθε(t)‖L2 + ‖xθε(t)‖L2 .
(
εκ +

√
ε
)
ee

Ct

.

Gagliardo–Nirenberg inequality then implies

‖θε(t)‖L∞ . ε−1/2
(
εκ +

√
ε
)
ee

Ct

.

We infer that (4.2) holds (at least) as long as
(
εκ−1/2 + 1

)
ee

Ct ≪ ε−1/4eCt,

which is ensured provided that t 6 Cloglog
(
1
ε

)
, for some suitable constant C, since

κ > 1/4. This concludes the bootstrap argument: we infer

sup
|t|6Cloglog( 1

ε )
(‖θε(t)‖L2 + ‖xθε(t)‖L2 + ‖ε∂xθε(t)‖L2)−→

ε→0
0.

Theorem 1.9 then follows from the above asymptotics, together with the relation
θε = wε + εgε, and Proposition 3.2.

Remark 4.1. In the case where V ε = D + εW , as in Remark 1.10, the proof can
be adapted, in order to reproduce the argument given in [4]. The main point to
notice is that (local in time) Strichartz estimates are available for the propagator

associated to − ε2

2 ∂
2
x + D(x), thanks to [6]. Then in the presence of the power ε

in front of W , the potential εW can be considered as a source term in the error
estimates: the factor ε is crucial to avoid a singular power of ε due to the presence
of ε in front of the time derivative in (1.18). The proof in [4, Section 6] for the
cubic, one-dimensional Schrödinger equation can be reproduced: another bootstrap
argument can be invoked, which does not involve Gagliardo–Nirenberg inequalities,
since a useful a priori estimate for the envelope u is available.

5. Superposition

As explained in the introduction, the only difficulty in the proof of Theorem 1.11
is to treat a nonlinear interaction term. Indeed, we set

wε = ψε − ϕε
1χ

1 − ϕε
2χ

2 + εgε

where gε is the sum of two correction terms, similar to the one introduced in §1.3.
More precisely, set p(1) = 1, and p(2) = 1 if λ̃1 = λ̃2, p(2) = 2 otherwise. Define
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gε = gε1 + gε2, with

gε1 =
∑

16j6P, j 6=p(1)

∑

16ℓ6dj

gεj,1,ℓ(t, x)χ
ℓ
j(t, x),

gε2 =
∑

16j6P, j 6=p(2)

∑

16ℓ6dj

gεj,2,ℓ(t, x)χ
ℓ
j(t, x),

where for k = {1, 2}, j 6= p(k) and 1 6 ℓ 6 dj , the function gεj,k,ℓ(t, x) solves the
scalar Schrödinger equation

(5.1) iε∂tg
ε
j,k,ℓ +

ε2

2
∂2xg

ε
j,k,ℓ − λj(x)g

ε
j,k,ℓ = ϕεrj,k,ℓ ; gεj,k,ℓ|t=0 = 0,

where

(5.2) rj,k,ℓ(t, x) = −i
(
∂tχ

k(t, x) + ξp(k)(t)∂xχ
k(t, x) , χℓ

j(t, x)
)
CN .

The function wε(t) then solves

iε∂tw
ε +

ε2

2
∂2xw

ε = V (x)wε + εNLε + εLε ; wε
|t=0 = 0,

with

Lε = O(
√
εeCt) +

∑

k=1,2

∑

16j6P
j 6=p(k)

∑

16ℓ6dj

[
ε2

2
∂2x, χ

ℓ
j

]
gεj,k,ℓ = O(

√
εeCt).

Here, the O(
√
εeCt) holds in Σ1

ε, from Proposition 3.2. Besides,

NLε =
√
ε
(∣∣wε + ϕε

1χ
1 + ϕε

2χ
2 + εgε

∣∣2 (wε + ϕε
1χ

1 + ϕε
2χ

2 + εgε
)

− |ϕε
1|2ϕε

1χ
1 − |ϕε

2|2ϕε
2χ

2
)

Adding and subtracting the term
√
ε|ϕε

1χ
1 + ϕε

2χ
2|2(ϕε

1χ
1 + ϕε

2χ
2), we have

|NLε| 6 Nε
S +Nε

I ,

where we have the pointwise estimates

Nε
I .

√
ε
(
|ϕε

1|2|ϕε
2|+ |ϕε

2|2|ϕε
1|
)
,

Nε
S .

√
ε
(
|ϕε

1|2 + |ϕε
2|2 + |wε|2 + ε2|gε|2

)
(|wε|+ ε|gε|) .

The semilinear term Nε
S can be treated exactly in the same manner as in Section 4.

It remains to analyze

∫ t

0

‖NLε
I(s)‖Σ1

ε
ds. We observe

√
ε

∫ t

0

∥∥|ϕε
1(s)|2ϕε

2(s)
∥∥
L2 ds =

∫ t

0

∥∥∥∥∥

∣∣∣∣u1
(
s, y − x1(s)− x2(s)√

ε

)∣∣∣∣
2

u2(s, y)

∥∥∥∥∥
L2

ds,

and we note that the contribution of |ϕε
1|2ϕε

2 and that of |ϕε
2|2ϕε

1 play the same
role. Also, we leave out the other terms which are needed in view of a Σ1

ε estimate,
since they create no trouble. Arguing as in [4, Lemma 6.1], we obtain:

Lemma 5.1. Let T ∈ R, 0 < γ < 1/2 and

Iε(T ) = {t ∈ [0, T ], |x1(t)− x2(t)| 6 εγ} .
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Then, for all k ∈ N, there exists a constant Ck such that
∫ T

0

‖NLε
I(t)‖Σ1

ε
dt . (Mk+2(T ))

3
(
Tεk(1/2−γ) + |Iε(T )|

)
eCkT ,

with

Mk(T ) = sup
{
‖ 〈x〉α ∂βxuj‖L∞([0,T ],L2(R)); j ∈ {1, 2}, α+ β 6 k

}
.

In view of this lemma and of Equation (1.12), we obtain
∫ T

0

‖NLε
I(t)‖Σ1

ε
dt . eCT

(
Tεk(1/2−γ) + |Iε(T )|

)
,

and the next lemma yields the conclusion.

Lemma 5.2. Set

Γ = inf
x∈R

∣∣∣λ̃1(x)− λ̃2(x)− (E1 − E2)
∣∣∣ ,

and suppose Γ > 0. Then for 0 < γ < 1/2, there exists C0, C1 > 0 such that

|Iε(t)| . εγΓ−2eC0t, 0 6 t 6 C1log

(
1

ε

)
.

Proof. Consider Jε(t) an interval of maximal length included in Iε(t), and Nε(t)
the number of such intervals. The result comes from the estimate

|Iε(t)| 6 Nε(t)×max |Jε(t)|,
with

(5.3) |Jε(t)| . εγeCtΓ−1 and Nε(t) . teCtΓ−1,

provided that εγeCt ≪ 1. Let us prove the first property: consider τ, σ ∈ Jε(t).
There exists t∗ ∈ [τ, σ] such that

|(x1(τ) − x2(τ)) − (x1(σ) − x2(σ))| = |τ − σ| |ξ1(t∗)− ξ2(t
∗)| ,

whence

|τ − σ| 6 |ξ1(t∗)− ξ2(t
∗)|−1 × 2εγ.

On the other hand,

|ξ1(t∗)− ξ2(t
∗)| > ||ξ1(t∗)| − |ξ2(t∗)|| >

∣∣|ξ1(t∗)|2 − |ξ2(t∗)|2
∣∣

|ξ1(t∗)|+ |ξ2(t∗)|
.

We use

|ξ1(t∗)|+ |ξ2(t∗)| . eCt,

|ξ1(t∗)|2 − |ξ2(t∗)|2 = 2
(
E1 − E2 − λ̃1(x1(t

∗)) + λ̃2(x2(t
∗))

)
,

and infer∣∣∣E1 − E2 − λ̃1(x1(t
∗)) + λ̃2(x2(t

∗))
∣∣∣ >

∣∣∣E1 − E2 − λ̃1(x1(t
∗)) + λ̃2(x1(t

∗))
∣∣∣

−
∣∣∣λ̃2(x1(t∗)) + λ̃2(x2(t

∗))
∣∣∣

> Γ− CεγeCt,
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where we have used the fact that λ̃2 is at most quadratic. Therefore, if εγeCt is
sufficiently small,

∣∣∣E1 − E2 − λ̃1(x1(t
∗)) + λ̃2(x2(t

∗))
∣∣∣ > Γ

2
.

We infer

|τ − σ| . εγeCtΓ−1,

provided εγeCt ≪ 1.

Let us now consider Nε(t). We use that as t is large, Nε(t) is comparable to
the number of distinct intervals of maximal size where |x1(t) − x2(t)| > εγ . More
precisely, Nε(t) is smaller than t divided by the minimal size of these intervals.
Therefore, we consider one interval ]τ, σ[ of this type and we look for lower bound
of σ − τ . We have

|x1(τ)− x2(τ)| = |x1(σ)− x2(σ)| = εγ , and ∀t ∈ [τ, σ], |x1(t)− x2(t)| > εγ .

Besides, inside ]τ, σ[, x1(t)−x2(t) has a constant sign that we can suppose to be +
(one argues similarly if it is −). Under this assumption, we have

ξ1(τ) − ξ2(τ) > 0 and ξ1(σ) − ξ2(σ) < 0.

Using the exponential control of λ′j(xj(t)) for j ∈ {1, 2}, we obtain

(5.4) (ξ1(τ)− ξ2(τ)) − (ξ1(σ)− ξ2(σ)) . eCt(σ − τ).

We write

ξ1(τ) − ξ2(τ) = |ξ1(τ) − ξ2(τ)| >
∣∣|ξ1(τ)|2 − |ξ2(τ)|2

∣∣
|ξ1(τ)| + |ξ2(τ)|

(5.5)

& e−Ct
∣∣|ξ1(τ)|2 − |ξ2(τ)|2

∣∣

and

(5.6) − ξ1(σ) + ξ2(σ) = |ξ1(τ) − ξ2(τ)| & e−Ct
∣∣|ξ1(σ)|2 − |ξ2(σ)|2

∣∣ .

As before, we prove

∣∣|ξ1(τ)|2 − |ξ2(τ)|2
∣∣+

∣∣|ξ1(σ)|2 − |ξ2(σ)|2
∣∣ & Γ,

provided that εγeCt ≪ 1. Therefore, plugging the latter equation, (5.5) and (5.6)
into (5.4), we obtain

σ − τ & e−2CtΓ thus Nε(t) . teCtΓ−1 . eCtΓ−1

which completes the proof of Theorem 1.11. �

Remark 5.3. The proof shows that if the approximation of Theorem 1.9 is proven
to be valid on some time interval [0, C log(1/ε)], then Theorem 1.11 will also be
valid on a time interval of the same form.
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Appendix A. Global existence of the exact solution

The proof of Lemma 1.3 follows classical arguments; see [15] (or [5]) for more
details. We suppose ε = 1 without loss of generality. We use the decomposi-
tion V (x) = D(x) +W (x) of Assumption 1.2 and we denote by U(t) the unitary
propagator of − 1

2∂
2
x +D(x). Let XT be the set

XT =
{
ψ ∈ C(IT ,Σ1

1), ψ, xψ,∇ψ ∈ L8(IT , L
4(R,CN ))

}
, IT =]s− T, s+ T [

for s ∈ R and T ∈ R to be fixed later. The proof consists in a fixed point argument
for the function

Φs : ψ 7→ Φs(ψ)

where for s ∈ R, the function Φs(ψ) is defined by

Φs(ψ)(t) = U(t−s)ψ(s)−iΛ
∫ t

s

U(t−τ)
(
|ψ|2

CNψ
)
(τ)dτ−i

∫ τ

s

U(t−τ) (Wψ(τ)) dτ.

By [6], local in time Strichartz estimates are available for U . Strichartz estimates
and Hölder inequality imply that there exists a constant C > 0 such that

‖Φs(ψ)‖L8(IT ,L4)∩L∞(IT ,L2) 6 C‖ψ(s)‖L2 + C‖ψ‖2L8/3(IT ,L4)‖ψ‖L8(IT ,L4)

+ C‖Wψ‖L1(IT ,L2).

Using the boundedness of the coefficients of W and Hölder inequality in time, we
obtain

‖Φs(ψ)‖L8(IT ,L4)∩L∞(IT ,L2) 6 C‖ψ(s)‖L2 + C
√
T‖ψ‖3L8(IT ,L4) + CT ‖ψ‖L∞(IT ,L2).

We can then infer that Φs is a contraction on a ball of XT for some T which depends
only on ‖ψ(s)‖L2 . Then, the conservation of ‖ψ(t)‖L2 yields the lemma.

Appendix B. Some formulas involving the projectors

In this section, we list and prove some formulas which will be used in the course
of the computations in the next appendix. We consider here the more general case
x ∈ Rd, with d > 1. Fix once and for all in this paragraph j ∈ {1, . . . , P} and
ℓ ∈ {1, . . . , d}. First, recall that we have seen in §2 that since Π2

j = Πj ,

(B.1) Πj (∂ℓΠj)Πj = 0.

Differentiating the relation Π2
j = Πj , we find: ∀j ∈ {1, . . . , P}, ∀ℓ ∈ {1, . . . , d},

(B.2) ∂ℓΠj = (∂ℓΠj)Πj +Πj(∂ℓΠj).

We now show: ∀j ∈ {1, . . . , P}, ∀ℓ ∈ {1, . . . , d},

(B.3)

∂ℓΠj =
∑

k 6=j

(Πk(∂ℓΠj)Πj +Πj(∂ℓΠj)Πk)

=
∑

16k6P

(Πk(∂ℓΠj)Πj +Πj(∂ℓΠj)Πk) ,

where the last equality stems from (B.1). To prove (B.3), simply write

∂ℓΠj =
∑

k,m

Πk(∂ℓΠj)Πm

where we have used
∑

k Πk = Id. Then, observe that ΠkΠj = δjkΠj yields

Πk(∂ℓΠj) + (∂ℓΠk)Πj whence Πk(∂ℓΠj) = −(∂ℓΠk)Πj .
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The fact that ΠjΠm = 0 for all m 6= j gives (B.3).

The last formulas we wish to establish involve the spectral gap. Since we have a
basis of eigenfunctions, we have

VΠj = ΠjV = λjΠj .

Differentiating with respect to xℓ, we infer

(∂ℓΠj)V +Πj∂ℓV = λj∂ℓΠj + (∂ℓλj)Πj .

For k ∈ {1, . . . , P}, multiply this relation by Πk on the right, and use the property
VΠk = λkΠk:

λk(∂ℓΠj)Πk +Πj (∂ℓV − ∂ℓλj)Πk = λj(∂ℓΠj)Πk,

hence

(B.4) (λj − λk)(∂ℓΠj)Πk = Πj (∂ℓV − ∂ℓλj)Πk.

Similarly, we have

(B.5) (λj − λk)Πk(∂ℓΠj) = Πk (∂ℓV − ∂ℓλj) Πj .

Appendix C. About the growth of the eigenvectors at infinity

This section is devoted to the proof of estimates at infinity for the eigenprojectors
associated with a potential V satisfying Assumption 1.2. We will use a lemma on
the derivatives of the inverse of the gap between two different eigenvalues. For
j, k ∈ {1, . . . , P}, j 6= k, we recall that we have set (see (3.4))

∀x ∈ R, γj,k(x) = (λj(x)− λk(x))
−1.

Since the results are not specific to the space dimension one, we prove them for
potentials depending on x ∈ Rd, d > 1.

Lemma C.1. Assume (1.2) is satisfied with n0 ∈ N and that the functions V
and λj (j ∈ {1, · · · , P}) are at most quadratic. Then, for β ∈ Nd and for j, k ∈
{1, . . . , P} with j 6= k,

∣∣∂βxγj,k(x)
∣∣ . 〈x〉n0+|β|(1+n0) .(C.1)

Proof. For β = 1ℓ, we immediately obtain

|∂ℓγj,k(x)| =
∣∣∣∣∣
∂ℓ (λj(x)− λk(x))

(λj(x) − λk(x))
2

∣∣∣∣∣ . 〈x〉1+2n0 ,

from (1.2), and the fact that λj and λk are at most quadratic.
Set Λj,k = λj − λk: it is at most quadratic. Besides, for β ∈ Nd, we have

∂βx (γj,k) =
∑

α1+···+αp=β

|αℓ|>1, p6|β|

aα1,...,αpΛ
−1−p
j,k ∂α1

x Λj,k · · · ∂αp
x Λj,k

for some real-numbers aα1,...,αp . The result then follows by observing that
∣∣∣Λ−1−p

j,k ∂α1
x Λj,k · · · ∂αp

x Λj,k

∣∣∣ . 〈x〉n0(1+p) 〈x〉p ,

from (1.2), and the property |∂αxΛj,k| . 〈x〉(2−|α|)+ , which follows from the fact
that Λj,k is at most quadratic, in the sense of Definition 1.1. �
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We now consider the eigenprojectors Πj associated with the eigenvalues λj of
the matrix V . Because of the gap condition, these functions are smooth in Rd. We
prove the following

Lemma C.2. Let Πj be an eigenprojector of V for j ∈ {1, . . . , P}, we have for
β ∈ Nd

|∂βxΠ|CN,N . 〈x〉|β|(1+n0) ,(C.2)

where the norm | · |CN,N denotes the matricial norm.

Proof. The case |β| = 0 is immediate since Πj is a projector. In view of (B.3),
relations (B.5) and (B.4) imply (C.2) for |β| = 1.

We now argue by induction. We suppose that (C.2) holds for any γ ∈ Nd

with |γ| = K for some K ∈ N and we consider β with |β| = K + 1 and βℓ 6= 0.
Differentiation of order β−1ℓ of (B.2) and multiplication on both sides by Πj yields

Πj(∂
β
xΠj)Πj = Πj


 ∑

0<|α|<|β|

aα∂
α
xΠj∂

β−α
x Πj


Πj ,

where all along this proof, aα will denote real numbers whose exact value is unim-
portant. We obtain

(C.3)
∣∣Πj(∂

β
xΠj)Πj

∣∣
CN,N . 〈x〉|β|(1+n0) .

Then, for all k 6= j, we estimate (∂βxΠj)Πk. To do so, we differentiate (B.4) and get

(∂βxΠj)Πk =
∑

0<|α|<|β|

aα∂
α
xΠj∂

β−α
x Πk

+
∑

α1+···+α4=β−1ℓ

bα1,...,α4∂
α1
x

(
(λj − λk)

−1
)
∂α2
x Πj∂

α3
x ∂ℓ (V − λj) ∂

α4
x Πk.

In the first sum, the induction assumption yields

(C.4)
∥∥∂αxΠj∂

β−α
x Πk

∥∥
CN,N . 〈x〉|α|(1+n0)+|β−α|(1+n0) = 〈x〉|β|(1+n0)

Besides, for each term in the second sum, we write
∥∥∂α1

x

(
(λj − λk)

−1
)
∂α2
x Πj∂

α3
x ∂xi (V − λj) ∂

α4
x Πk

∥∥
CN,N

. 〈x〉n0+|α1|(1+n0) 〈x〉(1−|α3|)+ 〈x〉(1+n0)(|α2|+|α4|)

where r+ = max(r, 0) and where we have used the fact that V and λj are at most
quadratic, together with the induction assumption and Lemma C.1. We have the
two alternatives:

• If α3 = 0, then

n0 + |α1|(1 + n0) + (1 − |α3|)+ + (1 + n0)(|α2|+ |α4|)
= n0 + |α1|(1 + n0) + 1 + (1 + n0)(|α2|+ |α4|)
= (1 + n0)(1 + |α1|+ |α2|+ |α3|) = (1 + n0)|β|,

since α1 + α2 + α4 = β − 1ℓ.
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• If α3 6= 0, then

n0 + |α1|(1 + n0) + (1− |α3|)+ + (1 + n0)(|α2|+ |α4|)
= n0 + (1 + n0)(|α1|+ |α2|+ |α4|)
6 (1 + n0)(1 + |α1|+ |α2|+ |α4|)
6 (1 + n0)|β|.

We deduce

(C.5)
∥∥(∂βxΠj)Πk

∥∥
CN,N . 〈x〉|β|(1+n0) , ∀k 6= j.

Similarly,

(C.6)
∥∥Πk(∂

β
xΠj)

∥∥
CN,N . 〈x〉|β|(1+n0) , ∀k 6= j.

In view of (C.3), we infer

(C.7)
∥∥Πj(∂

β
xΠj)Πk

∥∥
CN,N +

∥∥Πk(∂
β
xΠj)Πj

∥∥
CN,N . 〈x〉|β|(1+n0) , ∀j, k.

Applying the operator ∂β−1ℓ
x to (B.3), the induction assumption and equations

(C.5), (C.6) and (C.7) yield (C.2), which concludes the induction. �
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