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Abstract

In an undirected graph G, a subset C ⊆ V (G) such that C is a dominating set of G, and each vertex
in V (G) is dominated by a distinct subset of vertices from C, is called an identifying code of G. The
concept of identifying codes was introduced by Karpovsky, Chakrabarty and Levitin in 1998. For a given
identifiable graph G, let γID(G) be the minimum cardinality of an identifying code in G. In this paper, we
show that for any connected identifiable triangle-free graph G on n vertices having maximum degree ∆ ≥ 3,
γID(G) ≤ n− n

∆+o(∆) . This bound is asymptotically tight up to constants due to various classes of graphs

including (∆− 1)-ary trees, which are known to have their minimum identifying code of size n− n
∆−1+o(1) .

We conjecture that the bound γID(G) ≤ n− n
∆ +O(1) holds for any nontrivial connected identifiable graph

G.
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1. Introduction

Identifying codes, which have been introduced in [19], are dominating sets having the additional property
that each vertex of the graph can be uniquely identified using its neighbourhood within the identifying
code. They have found numerous applications, such as fault-diagnosis in multiprocessor networks [19], the
placement of networked fire detectors in complexes of rooms and corridors [23], compact routing [20], or
the analysis of secondary RNA structures [17]. Identifying codes are a variation on the earlier concept of
locating-dominating sets (cf. e.g. [9, 25, 26]). Identifying codes have been studied in specific graph classes
such as cycles [3, 16], trees [4, 6], grids [19] or hypercubes [18, 22]. Extremal problems regarding the
minimum size of an identifying code have been studied in [8, 10, 11, 12, 15, 21].

Herein, we further investigate these extremal questions by giving new upper bounds on the size of
minimum identifying codes for triangle-free graphs using their maximum degree.

1.1. Notations and definitions

Let G = (V,E) be a simple undirected graph. We denote the vertex set of G by V = V (G) and its edge
set, by E = E(G). We also denote by n = |V | the order of G and by ∆ = ∆(G), the maximum vertex
degree of G.

For a vertex v of G, the ball B(v) is the set of all vertices of V which are at distance at most 1 from v.
We denote by N(v) = B(v) \ {v}, the neighbourhood of v. For a set X of vertices of G, we define N(X) to
be the union of the neighbourhoods of all vertices of X , that is N(X) = ∪x∈XN(x). Whenever we find it
necessary to emphasize on the graph G for which the neighbourhood is considered, we write BG(u), NG(u)
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and NG(X). Two distinct vertices u, v are called twins if B(u) = B(v) [7]. They are called false twins if
N(u) = N(v) but u and v are not adjacent [5].

For a subset S of vertices of G, we denote by G[S] the subgraph of G induced by S. A matching M of a
graph G is a subset of edges of G such that no two edges of M have a common vertex. If within the set of
all endpoints of the edges of M no other edges than the ones of M exist, we call M an induced matching.

Given a set S of vertices of G, we say that a vertex x of G is S-isolated if x ∈ S and no neighbour of
x belongs to S. We say that vertex u dominates vertex v if v ∈ B(u). For two subsets C,U of vertices, C
dominates U if each vertex of U is dominated by some vertex of C. Set C ⊆ V is called a dominating set
of G if C dominates V . The vertices of a pair u, v of vertices of V are separated by some vertex x ∈ V if x
dominates exactly one of the vertices u and v. We call C ⊆ V an identifying code of G if it is a dominating
set of G, and for all pairs u, v of vertices of V , u and v are separated by some vertex of C. The latter
condition can be equivalently stated as B(u) ∩ C 6= B(v) ∩C, or as (B(u)⊕B(v)) ∩ C 6= ∅ (denoting by ⊕
the symmetric difference of sets). In the following, we might simply call an identifying code a code and a
vertex of the code, a code vertex. Given a graph G and a subset S of its vertices, we say that a set C ⊆ S
is an S-identifying code of G if C is an identifying code of G[S].

A graph is said to be identifiable if it admits an identifying code. This is the case if and only if it does
not contain any pair of twins [19]. An example of a graph which is not identifiable is the complete graph
Kn. For an identifiable graph G, we denote by γID(G) the cardinality of a minimum identifying code of G.
The problem of determining the exact value of γID(G) is known to be an NP-hard problem, even when G
belongs to the class of planar graphs of maximum degree 4 having arbitrarily large girth [1], or to the class
of planar graphs of maximum degree 3 and girth 9 [2].

1.2. Main conjecture and motivation

This paper deals with the study of paramater γID and its relation with the order and the maximum
degree of graphs. This work is an extension of earlier results.

For any graph G on n vertices, the lower bound γID(G) ≥ ⌈log2(n+ 1)⌉ was given in [19]. This bound is
tight, and all graphs reaching it have been described in [21]. In [19], it was also shown that the improved
bound γID(G) ≥ 2n

∆+2 holds, and all graphs reaching this bound have been described in [10]. This bound
shows that the maximum degree has a strong influence on the minimum possible value of γID.

Considering upper bounds in terms of n and ∆, we conjecture that the following result holds.

Conjecture 1. Let G be a nontrivial connected identifiable graph of maximum degree ∆. Then γID(G) ≤
n− n

∆ +O(1).

It is known that there exist examples of specific families of graphs such that γID(G) = n − n
∆ (e.g.

the complete bipartite graph K∆,∆, Sierpiński graphs [14] and other classes of graphs described in the first
author’s master thesis [10]). Other classes of graphs with slightly smaller values of parameter γID are known,
including graphs having high girth. For instance, it is shown in [4] that γID(T ) = ⌈n − n

∆−1+1/∆⌉ for any

complete (∆− 1)-ary tree T on n vertices.
For all identifiable graphs having at least one edge, the upper bound γID(G) ≤ n − 1 holds [8, 15].

This bound is tight, in particular for the star K1,n−1 and other graphs which have been recently classified
in [11]. Hence, for graphs of very high maximum degree (say ∆ = n − 1), the conjecture holds since
n− 1 = n− n

∆ + 1
n−1 .

Moreover, for any connected graph G of maximum degree 2 (i.e. when G is either a path or a cycle),
the exact value of γID(G) is known (see [3, 16]). In this case, the bound γID(G) ≤ n

2 + 3
2 = n− n

2 + 3
2 holds

and is reached for infinitely many values of n (more precisely, this is the case when G is a cycle of odd order
n ≥ 7). Hence, the conjecture holds for ∆ = 2.

It was shown in [11] that for any connected identifiable graph G of maximum degree ∆, γID(G) ≤
n− n

Θ(∆5) , and if G is ∆-regular, γID(G) ≤ n − n
Θ(∆3) . In this paper, we improve these results by showing

that the conjectured bound holds asymptotically when G is triangle-free. More precisely, it is proved in
Theorem 13 that γID(G) ≤ n − n

∆+o(∆) when G is a nontrivial connected identifiable triangle-free graph.

This result strongly supports Conjecture 1. Moreover, the proof is constructive and can be used to build
the corresponding code in polynomial time.
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1.3. Organization of the paper

The paper is structured as follows. In Section 2.1, we begin by giving an informal overview of the
technique and the construction used to prove our results. In Sections 2.2 to 2.4, we introduce some definitions
and preliminary results that are needed in the proof of our main result. This result is proved in Section 2.5.
Finally, Section 3 concludes the paper with some remarks.

2. The upper bound

2.1. Proof ideas

The general idea of our proof technique is to construct a sufficiently large independent set of the graph
such that some specific conditions hold. Taking the complement of this set and performing some local
modifications yields an identifying code. This technique originates from the following proposition, which we
give in order to give the reader a first intuition of our technique. The proof is given in Subsection 2.2.

Proposition 2. Let G be an identifiable (not necessarily connected) triangle-free graph, and S, an indepen-
dent set of G. Then, if the following conditions hold, V (G) \ S is an identifying code of G.

1. S contains no isolated vertex of G.

2. For any pair u, v of vertices of S, N(u) 6= N(v) (i.e. S does not contain any pair of false twins).

3. For each vertex v of degree 1 in G, some vertex at distance 2 from v does not belong to S.

4. The graph G[V (G) \ S] has no isolated edges.

In order to prove our main result, we show how to build (large enough) independent sets in triangle-free
graphs such that the three first conditions of Proposition 2 hold (see Lemma 10). However, it seems difficult
to also ensure that the last condition holds while keeping the size of S reasonably large. Therefore, after
building S, we compute the set M of isolated edges of G[V \ S] and partition V (G) into the end-vertices of
M (set R) together with their neighbours (set L) on the one hand, and the rest of the vertices, V \ (L∪R),
on the other hand. We then build a sufficiently small (L,R)-quasi-identifying code C1, a variation of an
identifying code which will be defined later (see Definition 6). This construction is done in Lemmas 11
and 12. Setting C2 as the complement of S restricted to V \ (L ∪ R), our final code is C1 ∪ C2. We also
combine this method with another technique (Proposition 3) which is suitable for the special case where the
graph has a large number of false twins. The whole procedure is sketched in Algorithm 1.

Algorithm 1 Construction of an identifying code

Input: a nontrivial connected identifiable triangle-free graph G = (V,E)
1: Compute the set X of vertices having at least one false twin
2: if X is “small” then

3: Use Lemma 10 to compute an independent set S of G fulfilling the three first properties listed in
Proposition 2.

4: Compute the set R ⊆ V of vertices such that for each v ∈ R, v has a neighbour u where both u and
v are of degree at least 2, and all the vertices of N(u) ∪N(v) \ {u, v} belong to S.

5: L← N(R) \R
6: Compute an (L,R)-quasi-identifying code C1 of G using the constructions of Lemmas 11 and 12.
7: C2 ← (V \ (L ∪R)) \ S
8: C ← C1 ∪ C2

9: else (X is “big”)
10: C ← an identifying code of G computed using Proposition 3.
11: end if

12: return C

This process is detailed in Subsection 2.5 (Theorem 13). All auxiliary results needed for this proof are
developed in the next subsections.
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2.2. Preliminary results

The next proposition shows how to build an identifying code of a graph G which has relatively small
size when G contains a large number of false twins. But first, we let ≡ denote the false twin relation over
V (G), where u ≡ v if u, v are false twins. This relation is an equivalence relation. We call an equivalence
class of ≡ nontrivial if it has at least two elements.

Proposition 3. Let G be a nontrivial connected identifiable triangle-free graph on n vertices and maximum
degree ∆ non isomorphic to C4. Let F = {F1, . . . , F|F|} be the set of all nontrivial equivalence classes over
≡ in G. Then G has an identifying code of size at most n− |F|.

Proof. First, we may suppose that G is not isomorphic to P3 since in that case the lemma holds: P3 has its
minimum identifying code of size 2 and |F| = 1.

For each Fi ∈ F , 1 ≤ i ≤ |F|, let xi be an arbitrary vertex of Fi, and let X = ∪
|F|
i=1xi. We claim that

if G is not isomorphic to P3 or C4, C = V (G) \X is an identifying code of G. First, observe that C is a
dominating set of G. Now, consider two vertices x, y and suppose, for the sake of contradiction, that they
are not separated by C. This means that B(x) ⊕B(y) ⊆ X .

If x and y are not adjacent, then x and y both belong to X (otherwise they are separated). Hence they
are not false twins, and one of them (say y) has a neighbour z which is not adjacent to x. If z /∈ X , x and
y are separated by z and we are done. Otherwise, z has a false twin z′ and z′ /∈ X . Then z′ is adjacent to
x but not to y, hence z′ separates x and y, a contradiction.

If x and y are adjacent, since G is identifiable, again one of them (say y) is adjacent to a vertex z which
is not adjacent to x. Since x and y are not separated z ∈ X . Hence z has a false twin z′ not adjacent to
x, but to y, and z′ /∈ X . Hence if z′ 6= x, x and y are separated by z′. Now suppose x = z′. Since G is
not isomorphic to P3, G contains at least one other vertex. Since G is connected and triangle-free and x, z
are false twins, some new vertex is adjacent to exactly one of x and y, and since x, y are not separated, it
belongs to X . Suppose y has such a neighbour, t. Since z ∈ X , t and x, z are not false twins. Hence t has a
false twin t′ which is not in X but is adjacent to y. Hence x and y are separated by t′, a contradiction. Now,
if y has no other neighbour, x has a neighbour, u. Then x, y, z, u induce a 4-cycle. But since G is connected
and G is not isomorphic to C4, G contains another vertex, v, and by our assumption v is not adjacent to y.
We have two cases. First, suppose v is a neighbour of x and z. Then, v ∈ X (otherwise v separates x and
y). But since u ∈ X , u and v are not false twins, hence v must have a false twin v′ /∈ X , and v′ separates
x and y, a contradiction. Now, assume v is a neighbour of u. Since v is not a neighbour of y, u and y are
not false twins. But since u ∈ X , u must have a false twin u′ and u′ /∈ X . Then u′ separates x and y, a
contradiction.

In our main proof, we want to construct an independent set S having some prescribed properties, consider
the set V (G) \ S as a potential code, and modify it in order to identify those vertices which form isolated
edges in G[V (G) \S]. The following definition introduces a notion which will help to capture this situation.

Definition 4. Given a graph G together with an induced matching M of G, we denote by R(M), the set
of end-vertices of the edges of M and by L(M), the set of neighbours of the vertices of R(M): L(M) =
N(R(M)) \R(M). M is called a strong induced matching if the following holds:

• L(M) is an independent set in G.

• Each vertex x of R(M) has degree at least 2 in G (i.e. N(x) ∩ L(M) 6= ∅).

An illustration of a strong induced matching is given in Figure 1. Note that in some graphs, one cannot
necessarily find a strong induced matching. Indeed, if G is triangle-free, each edge of such a matching must
belong to at least some induced path on four vertices.

Note that in any triangle-free graph G having a strong induced matching M , G[L(M) ∪ R(M)] has no
isolated edge (i.e. two adjacent vertices of degree 1). Since in a triangle-free graph, a pair of twins necessarily
forms an isolated edge, the following observation is immediate.
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L(M)

R(M)

Figure 1: Example of a strong induced matching M (thick edges) in a triangle-free graph

Observation 5. Let G be a triangle-free graph G having a strong induced matching M . Then G[L(M) ∪
R(M)] is identifiable.

In order to construct small identifying codes of a triangle-free graph G having a strong induced matching
M , we will construct special codes for the subgraph of G induced by set L(M) ∪ R(M). These codes are
defined as follows.

Definition 6. Let G be a triangle-free identifiable graph having a strong induced matching M with L = L(M)
and R = R(M). Let G′ = G[L ∪R]. We say that C ⊆ L ∪R is an (L,R)-quasi-identifying code of G if:

1. Each vertex of L ∪R is dominated by some vertex of C.

2. For each pair u, v of vertices in L∪R, C ∩BG′(u) 6= C ∩BG′(v), unless u and v both belong to L and
NG′(u) = NG′(v).

3. For each edge e of M , at least one of the vertices of e belongs to C.

Note that because of condition 2 of Definition 6, an (L,R)-quasi-identifying code of G is not necessarily
an (L∪R)-identifying code of G. Conversely, because of condition 3, an (L∪R)-identifying code of G might
not be an (L,R)-quasi-identifying code of G.

The following proposition shows that we can use an (L,R)-quasi-identifying code of G to construct a
valid identifying code of G.

Proposition 7. Let G = (V,E) be an identifiable triangle-free graph having a strong induced matching
M , with L = L(M) and R = R(M), and suppose that L does not contain any pair of false twins in G.
Also suppose that there exists an (L,R)-quasi-identifying code C1 of G without C1-isolated vertices and a
(V \ (L∪R))-identifying code C2 of G where all the neighbours of vertices of L within V \ (L∪R) belong to
C2.

1 Then, C1 ∪ C2 is an identifying code of G.

Proof. Let us show that the vertices of all pairs of vertices of G are separated. Since C2 is a (V \ (L ∪R))-
identifying code, all pairs of vertices of V \ (L ∪ R) are separated. Since C1 is (L,R)-quasi-identifying and
there are no C1-isolated vertices, each vertex x of L ∪R is dominated by at least one vertex of R ∩C1 (see

1Note that if a (V \ (L ∪ R))-identifying code C exists (i.e. G[V \ (L ∪ R)] is identifiable), then adding all neighbours of
vertices of L to C yields an identifying code. In fact, any superset of an identifying code is still an identifying code.
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points number 1 and 3 of Definition 6), which we denote fC1
(x). Moreover, by definition of sets L and R, no

vertex of V \ (L∪R) is dominated by a vertex of R. Therefore, all pairs of vertices x, y with x ∈ L∪R and
y ∈ V \ (L∪R) are separated by fC1

(x). It remains to check the pairs of vertices of L∪R. By contradiction,
suppose there are two vertices u, v of L ∪R which are not separated. By point number 2 of Definition 6, u
and v belong to L and have the same neighbourhood within L∪R. But since we assumed that they are not
false twins and all their neighbours in V \ (L ∪R) are in C2, u and v are separated by the neighbours they
do not have in common, a contradiction.

We now give a proof of Proposition 2, after recalling its statement.

Proposition (Proposition 2). Let G be an identifiable (not necessarily connected) triangle-free graph, and
S, an independent set of G. Then, if the following conditions hold, V (G) \ S is an identifying code of G.

1. S contains no isolated vertex of G.

2. For any pair u, v of vertices of S, N(u) 6= N(v) (i.e. S does not contain any pair of false twins).

3. For each vertex v of degree 1 in G, some vertex at distance 2 from v does not belong to S.

4. The graph G[V (G) \ S] has no isolated edges.

Proof. Let C = V (G) \ S. Since S is an independent set and does not contain any isolated vertex, each
vertex having at least one neighbour within G[V (G) \ (L ∪R)] is dominated. Thus, C is a dominating set.
Let us now check the separation condition. Let u, v be an arbitrary pair of vertices of V (G). We distinguish
several cases.

If u and v are adjacent and both have degree at least 2, suppose by contradiction that they are not
separated. This means that all their neighbours are in S. But then they form an isolated edge in G[C], a
contradiction.

Now, suppose u and v are adjacent and one of them, say u, has degree 1. Since G is identifiable, v has
at least one neighbour and by the first property of S, there is a vertex at distance 2 of u in C, separating u
and v.

If u and v are false twins, they do not both belong to S and hence they are separated by themselves.
Finally, if u and v are not adjacent and are not false twins of each other, if either u or v belong to C,

they are separated. If both u and v belong to S, all their neighbours belong to C (none of them can belong
to S), and since they have distinct sets of neighbours they are separated.

In order to use Proposition 2, we need to build (large enough) independent sets in triangle-free graphs.
The next subsection is devoted to that task.

2.3. Building large independent sets in triangle-free graphs

In this subsection, we use the following result of J. Shearer [24] to show that triangle-free graphs have
large independent sets which fulfill some useful conditions. Note that this result is constructive.

Theorem 8 ([24]). Let G be a triangle-free graph on n vertices and average degree d. Then G has an

independent set of size at least d(ln d−1)+1

(d−1)2
n.

The following corollary of Theorem 8 is an approximate bound which is easier to deal with and which
is tight enough for our purposes. It follows from the facts that d(G) ≤ ∆(G) and that when x > 1, the

function x(lnx−1)+1
(x−1)2 is decreasing. Moreover in that case, x(ln x−1)+1

(x−1)2 ≥ ln x−1
x and for x ≥ 3, ln x−1

x > 0.

Corollary 9. Let G be a triangle-free graph on n vertices and maximum degree ∆ ≥ 3. Then G has an
independent set of size at least ln∆−1

∆ n.

We get the following lemma as a corollary, which we will use in the proof of our main result.

Lemma 10. Let G be an identifiable triangle-free graph on n vertices and maximum degree ∆ ≥ 3, and let
Y be the set of all vertices of G having no false twin. Then G[Y ] has an independent set S with the following
properties:
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1. For each vertex u of degree 1 in G, there exists a vertex of G at distance 2 of u which does not belong
to S.

2. |S| ≥ ln∆−1
∆ |Y |

Proof. Let S1 ⊆ Y be the set of vertices of Y having degree 1 in G. Note that since G is identifiable, it has
no isolated edges and therefore S1 is an independent set in G (and G[Y ]). Moreover since Y has no vertices
having a false twin, all vertices of S1 are at distance at least 3 from each other. Let T1 be the set of vertices
constructed as follows. All the vertices of S1 belong to T1. For each element s of S1, its unique neighbour
in G belongs to T1, and some arbitrary neighbour at distance 2 of s belongs to T1. Since all the vertices
of S1 are at distance at least 3 from each other, for each vertex s of S1 there is a vertex at distance 2 of s

belonging to T1 \ S1. We now set Y1 = T1 ∩ Y . Note that we have |S1| ≥
|T1|
3 ≥

|Y1|
3 since for each vertex of

S1, at most three vertices of G have been inserted into T1.
We also set Y2 = Y \ Y1. By the previous construction, Y2 does not contain any vertex of degree 1 in G.

By Corollary 9, G[Y2] has an independent set S2 of size at least ln∆−1
∆ |Y2|.

Taking S = S1∪S2, we get an independent set of G[Y ] fulfilling the first property of the claim. Moreover,
Y1 and Y2 form a partition of Y , S1 ⊆ Y1 and S2 ⊆ Y2. Since for strictly positive x, 1

3 > lnx−1
x , we have:

|S| ≥ min{ |Y |
3 , ln∆−1

∆ |Y |} ≥ ln∆−1
∆ |Y |

The next subsection is devoted to the construction of small enough quasi-identifying codes.

2.4. Quasi-identifying the vertices in and around a strong induced matching

Recall that in order to prove our main result, given a nontrivial identifiable connected triangle-free graph
G, we will construct an independent set S and consider the (possibly empty) strong induced matching M
such that R(M) forms the set of isolated edges of V (G) \ S. In order to ensure that there are no isolated
edges uv in G[V (G)\S], it would suffice to remove an arbitrary neighbour of either u or v from S. However,
this could lead to a very large identifying code. Indeed, consider the example of a complete graph Kn where
each edge is subdivided twice, K∗

n. The original vertices of Kn form a (maximal) independent set S and
each original edge of Kn corresponds to an isolated edge in the subgraph of K∗

n induced by the complement
of S, K∗

n[V (K∗
n) \ S]. Now, in K∗

n, getting rid of all isolated edges of K∗
n[V (K∗

n) \ S] by removing vertices
from S requires a vertex cover of Kn, that is, n − 1 vertices. This would yield an identifying code of size
|V (K∗

n)| − 1, which is not interesting.
Hence, in order to overcome this problem, we show in this subsection how to build an (L(M), R(M))-

quasi-identifying code of bounded size. We first deal with the special case where all vertices of R(M) have
degree exactly 2 (note that by Definition 4 they must have degree at least 2).

Lemma 11. Let G be an identifiable (not necessarily connected) triangle-free graph having a strong induced
matching M where L = L(M), R = R(M), and all vertices of R have degree exactly 2. Then, there is an
(L,R)-quasi-identifying code C of G having the following properties:

1. |C| ≤ |L|+ |R|
2 .

2. No vertex of R is C-isolated.

3. At least half of the vertices of L belong to C.

Proof. In order to simplify its construction, let us first define the multigraph GL,R = (L,E) with vertex set
L and in which there is an edge between two vertices l1 and l2 if and only if there exist two vertices r1, r2
of R, such that l1, r1, r2, l2 is a 3-path in G. In other words, we contract every path of length 3 of G[L ∪R]
having both endpoints in L, into one edge. There can be multiple edges in GL,R (but no loops), since several
disjoint 3-paths may join l1 to l2.

From GL,R we will build an oriented multigraph
−→
GL,R. Given an orientation of

−→
GL,R, we define the

subset S(
−→
GL,R) of vertices of L ∪ R in the following way: all the vertices of L belong to S(

−→
GL,R), and
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for each arc
−→
l1l2 of

−→
GL,R corresponding to the path l1r1r2l2 in G, r2 belongs to S(

−→
GL,R). Note that

|S(
−→
GL,R)| = |L|+

|R|
2 . An illustration is given in Figure 2, where the gray vertices belong to S(

−→
GL,R). Our

aim is to construct an orientation of
−→
GL,R for which S(

−→
GL,R) is the desired (L,R)-quasi-identifying code

of G.

l0

l1

l2

r2

r1

r3

r4

r5

r6

l0

l1

l2

Figure 2: Correspondance between a special subset of L ∪ R and
−→
GL,R

We start by orienting the arcs of
−→
GL,R in an arbitrary way. Note that S(

−→
GL,R) fulfills all three required

properties of the statement of the lemma. Hence, if S(
−→
GL,R) is an (L,R)-quasi-identifying code of G, we

are done. So suppose this is not the case. Note that S(
−→
GL,R) also fulfills conditions number 1 and 3 of

Definition 6. Hence, there are pairs of vertices of L∪R which are not separated by S(
−→
GL,R). The only case

where a pair l, r is not separated by S(
−→
GL,R), is when l ∈ L, r ∈ R, and both belong to S(

−→
GL,R), but they

are only dominated by each other and themselves. This is equivalent to the case where l is of in-degree 1 in
−→
GL,R (see Figure 3 for an illustration). In this case, in order to fix this problem, we modify the orientation

of
−→
GL,R in possibly two steps.

l

l2

r

r2

r3

r4

..
. ......

l

l2

Figure 3: Vertices l and r are not separated

Let us describe the first step. Consider a connected component
−→
G1 of

−→
GL,R, and construct an arbitrary

spanning tree
−→
T 1 of

−→
G1, rooted in some vertex l. Now, go through all vertices of

−→
T 1, level by level in a

bottom-up order from the leaves up to the root. Whenever the in-degree of the current vertex, v, is equal

to 1, swap the orientation of the arc joining v to its parent in
−→
T 1. Doing so, the in-degree of v in

−→
G1

becomes different from 1, and the in-degree of its parent is either incremented or decremented by 1. Note

that except for the root l, all vertices of
−→
G1 have now an in-degree different from 1. This process is repeated

for all connected components of
−→
GL,R.

Let C = S(
−→
GL,R) be the new set corresponding to the new orientation. If C is an (L,R)-quasi-identifying

code of G, we are done. Otherwise, as observed earlier, it means that some roots of the spanning trees we

built, have in-degree 1 in
−→
GL,R. Let l be such a root with in-degree 1. Observe that l has a unique neighbour

in C ∩ R, say r. Let r2 be the neighbour of r in R. It is sufficient to take out l from C and to replace
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it by r2 in order to separate l from r in G[L ∪ R] (see Figure 4 for an illustration), without changing the
cardinality of C. Moreover, all neighbours of l are still separated from the other vertices because they are
all in R\C and therefore have a neighbour in R∩C, which itself has at least one neighbour in L∩C. Hence
C is now an (L,R)-quasi-identifying code of G. Since the process did not change the cardinality of C, we
get property number 1 of the claim of the lemma.

l

l2

r

r2

r3

r4

..
.

l

l2

r

r2

r3

r4

..
.

Figure 4: Local modification of the constructed code

Notice that there are at most |L|
2 connected components in G[L∪R] since each of them contains at least

two vertices of L. Thus property number 3 of the claim of the lemma follows.
Property number 2 is fulfilled by the construction of C since in each pair of adjacent vertices of R, either

it has a code vertex in L as a neighbour if there was no modification done, or in R if a switch of two elements
of L and R was necessary. Moreover, for each such pair, at least one of its elements belongs to the code.
This shows that C is an (L,R)-quasi-identifying code and completes the proof.

We now deal with the general case, where the vertices of R(M) have degree at least 2 as required in
Definition 4.

Lemma 12. Let G be an identifiable (not necessarily connected) triangle-free graph having a strong induced

matching M , with L = L(M) and R = R(M). There exists a set L′ of vertices of L∪R such that |L′| ≥ |L|
3 ,

and C = (L ∪R) \ L′ is an (L,R)-quasi-identifying code of G having no C-isolated vertices.

Proof. Let us first divide sets L and R into the following subsets: let R1 ⊆ R be such that r ∈ R1 if both r
and its unique neighbour in R are of degree 2. Let L1 ⊆ L be the set of all neighbours of vertices of R1, let
R2 = R \R1, and let L2 = L \ L1 (see Figure 5 for an illustration).

We can use Lemma 11 to construct an (L1, R1)-quasi-identifying code C1 of G such that the three
properties described in the statement of Lemma 11 are fulfilled. Let C1 be such a code, in particular we

have |C1| ≤ |L1|+
|R1|
2 . Let us now describe the construction of two distinct (L,R)-quasi-identifying codes

Ca and Cb.

• Construction of code Ca.

We construct Ca such that |Ca| ≤ |L1|+
|R1|
2 + |L2|+

|R2|
2 +min

{

|L1|
2 , |R2|

2

}

, as follows.

1. Put C1 into Ca.

2. Put L2 into Ca.

3. For each pair r, r′ of adjacent vertices of R2, let r
∗ be one of them having at least two neighbours

in L (by definition of R2 either r or r′ has this property). Put r∗ into Ca.

4. For each pair r, r′ of adjacent vertices of R2, let r∗ be the one which was put into Ca in the
previous step. Check if r∗ has less than two neighbours within Ca ∩ L (this may happen if some
of its neighbours are in L1, and they do not belong to C1). If this is the case, pick an additional
neighbour of r∗ — which exists since r has at least two neighbours in L — and put it into Ca.

Note that this is done at most |R2|
2 times. Moreover, at most |L1|

2 new vertices from L1 are put

into Ca in such a way since by property number 3 of Lemma 11, there are at most |L1|
2 vertices

of L1 not in C1.

9



L1

L2

R1

R2

Figure 5: Illustration of sets L1, L2, R1, and R2

5. Finally, consider each Ca-isolated vertex l of L, take it out of Ca and put an arbitrary neighbour
of l into Ca (this operation does not affect the size of Ca).

• Construction of code Cb.

We construct Cb such that |Cb| ≤ |L1|+
|R1|
2 + 3 |R2|

2 , as follows.

1. Put C1 into Cb.

2. Put R2 into Cb.

3. For each pair r, r′ of adjacent vertices of R2, one arbitrary neighbour in L of either r or r′ is put
into Cb.

4. Finally, in the same way as for the construction of Ca, we get rid of each Cb-isolated vertex l of
L by taking l out of Cb and putting an arbitrary neighbour of l into Cb instead.

Let us now prove that Ca and Cb are (L,R)-quasi-identifying codes without Ca-isolated or Cb-isolated
vertices. First note that in both constructions, the final step consists in replacing some Ca-isolated vertices
from Ca (resp. Cb). In order to simplify the proof, let C∗

a (resp. C∗
b ) be the code as it is before this

last step. We first prove that C∗
a (resp. C∗

b ) have all desired properties except that there remain C∗
a-

isolated (resp. C∗
b -isolated) vertices in L. We then prove that performing the last step transforms it into an

(L,R)-quasi-identifying code with all required properties.
It can first be noticed that both C∗

a and C∗
b are dominating sets, so point number 1 of Definition 6 holds.

Let us now show point number 2 of Definition 6 (the separation condition). In both codes, the vertices
of all pairs u, v of vertices of L1 ∪ R1 are separated from each other, since C1, which is an (L1, R1)-quasi-
identifying code, is a subset of both C∗

a and C∗
b .

Now, suppose that u ∈ R1 and v ∈ L2 ∪ R2. By definition of R1, no vertex of R1 is adjacent to any
vertex of L2 ∪R2. Therefore, by condition number 3 of Definition 6, either u or its neighbour in R1 belong
to C1, hence u and v are separated.

Thus, it remains to check if u and v are separated when u ∈ L1 and v ∈ L2 ∪R2, and when both u and
v belong to L2 ∪R2. We deal with C∗

a and C∗
b separately.

10



Code C∗
a .

• Suppose u ∈ L1 and v ∈ L2 ∪ R2. Note that u is dominated by some vertex x within L1 ∪ R1 since
C1 ⊆ C∗

a . If v ∈ L2, u and v are separated by x since no vertex of L2 is adjacent to any vertex of
L1 ∪R1. If v ∈ R2 and v /∈ C∗

a , then u and v are separated by the neighbour of v in R2, which belongs
to C∗

a . Similarly, if u has a neighbour in R1 belonging to C1, we are done. Otherwise, it means that
v ∈ C∗

a and u ∈ C1 (otherwise u would not be dominated by C1). Hence v has another neighbour in
L, u′, belonging to C∗

a , and u′ separates u from v. Indeed, at step 4 of the construction of Ca, either
v already had at least two neighbours in L ∩ C∗

a , or an additional one has been added.

• Now, suppose both u and v belong to L2 ∪R2.

If both u and v ∈ L2, they are separated since the whole set L2 belongs to C∗
a and L2 is an independent

set.

If both u and v belong to R2 and they are not adjacent, they are separated since either themselves or
their respective neighbours in R2 belong to C∗

a by step 3 of its construction. Otherwise, for the same
reason one of them (say u) belongs to the code. It is ensured in step 4 that at least one neighbour of
u in L belongs to C∗

a , therefore u and v are separated by this neighbour.

If u ∈ L2 and v ∈ R2 and they are not adjacent, they are separated by u since the whole set L2 belongs
to C∗

a . Otherwise, if v /∈ C∗
a , they are separated by the neighbour of v in R2. Otherwise, again by

step 4 of the construction v has a second neighbour in L ∩ C∗
a , separating them.

Code C∗
b .

• If u ∈ L1 and v ∈ L2 ∪R2, u and v are separated by a neighbour of v belonging to R2 since the whole
set R2 is in C∗

b .

• Now, suppose u, v ∈ L2 ∪R2.

If both u, v belong to L2, and they have the same set of neighbours within R, we are done since they
do not need to be separated (point number 2 of Definition 6). Otherwise, they are separated since all
their neighbours within L ∪R belong to R2, and R2 ⊆ C∗

b .

If both u, v belong to R2, u and v are separated by themselves if they are not adjacent. Otherwise,
they are separated by a neighbour of one of them in L ∩ C∗

b , added at step 3 of the construction.

Finally, if u ∈ R2 and v ∈ L2, then u and v are either separated by u if u and v are not adjacent, or
by the neighbour of u in R2 otherwise.

Let us now check point number 3 of Definition 6, i.e. that for each pair of adjacent vertices in R, at least
one of them belongs to the code. This is true for vertices of R1 since C1 is an (L1, R1)-quasi-identifying
code and therefore fulfills this condition. This is also ensured for vertices of R2 at step 3 of the construction
of Ca and at step 2 of the construction of Cb.

Hence, we have shown that both C∗
a and C∗

b are (L,R)-quasi-identifying codes.
Moreover, there are no C∗

a -isolated (resp. C∗
b -isolated) vertices in R: there are no such vertices in R1 by

Lemma 11, and no such vertices in R2 for C∗
a by step 4 of its construction, and for C∗

b as well since R2 ⊆ C∗
b .

As announced previously, we now have to deal with the last step of the constructions of both Ca and
Cb. Note that this step does not affect the domination property of both codes. Indeed, on the one hand
the isolated vertices themselves are now dominated by some neighbour. On the other hand, each neighbour
u of a Ca-isolated or Cb-isolated vertex belongs to R, and since Ca and Cb are (L,R)-quasi-identifying the
neighbour of u in R belongs to the code.

Let us prove that the separation condition is still satisfied by Ca and Cb. Let Cx (x ∈ {a, b}) be the
considered code and let l ∈ L be a Cx-isolated vertex which gets replaced in Cx by one of its neighbours.
The only vertices which might be affected by the modification, are vertices which were previously dominated
by l, i.e. vertices of B(l).
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First, by contradiction suppose some neighbour r ∈ R of l is not separated anymore from some other
vertex, s. Since r does not belong to the code, its neighbour, r′, does. If s = r′, observe that for Cx = Ca

and Cx = Cb, Cx has no Cx-isolated vertices in R. Hence r′ has a neighbour in Cx ∩ L and r and r′ are
separated, a contradiction. If s is a neighbour of r in L, r and s are separated by r′, a contradiction.
Finally, suppose r and s are not adjacent. Then s must be a neighbour of r′ in L, and both r and s are only
dominated by r′. Hence r /∈ R1, since otherwise r′ would have degree 2 and hence, would be Cx-isolated,
a contradiction. Hence r ∈ R2. Moreover, then s /∈ L1, because otherwise s would be dominated within
L1 ∪ R1 since C1 ⊆ Cx. Hence s ∈ L2. Now, if Cx = Ca, by construction of Ca, s ∈ Ca, a contradiction.
Hence, Cx = Cb. But then by construction of Cb, r ∈ Cb, a contradiction again.

Now, suppose that l itself is not separated from some other vertex anymore. By the previous case, vertex
l is separated from all its neighbours, as well as from all other vertices of R since they either belong to the
code or their neighbour does, and l is adjacent to only one vertex of C∗

x . Thus, suppose that l
′ is a vertex of

L and l and l′ are no longer separated by Cx. Since l was C
∗
x-isolated, r did not belong to C∗

x. But since C
∗
x

was dominating, l′ was dominated. Moreover l′ was not dominated by a neighbour, since otherwise l and l′

would be separated by this neighbour in Cx. Hence, l
′ was also C∗

x-isolated. But then, in the last step of the
construction of Cx, one of them, say l, has been considered first and replaced by r. If r is not a neighbour
of l′, they are separated and we are done. Otherwise, after the modification, l′ was no longer Cx-isolated
and l′ still belongs to Cx, and l, l′ are separated by l′. This completes the proof of the separation property.

Moreover, note that point number 3 of Definition 6 remains verified as no vertex of R is removed from
neither Ca or Cb in the last step of their construction.

Finally, observe that thanks to the last step of the constructions, there are no Cx-isolated (x ∈ {a, b})
vertices in L anymore. Moreover, this step has not created any Cx-isolated vertices in R. Indeed, the vertices
which are added, did not belong to C∗

x, and hence their neighbour in R did.
This completes the proof of the validity of both constructions Ca and Cb.
Let us now determine a lower bound on the cardinality of (L ∪ R) \ Cx, for x ∈ {a, b}. Taking into

account that |L1| ≤ |R1|, we obtain:

|(L ∪R) \ Ca| ≥ |L1|+ |L2|+ |R1|+ |R2| − |Ca|

≥
|R1|

2
+
|R2|

2
−min

{

|L1|

2
,
|R2|

2

}

Thus, both following equations hold:

|(L ∪R) \ Ca| ≥
|R1|

2
+
|R2|

2
−
|L1|

2
≥
|R2|

2
(1)

|(L ∪R) \ Ca| ≥
|R1|

2
+
|R2|

2
−
|R2|

2
=
|R1|

2
≥
|L1|

2
(2)

Similarly,

|(L ∪R) \ Cb| ≥ |L1|+ |L2|+ |R1|+ |R2| − |Cb|

≥ |L2|+
|R1|

2
−
|R2|

2

≥ |L2|+
|L1|

2
−
|R2|

2

= |L| −
|L1|

2
−
|R2|

2

(3)

Hence intuitively, the previous equations show that our two codes fit to two different situations: Ca is
useful when either |L1| or |R2| is large enough compared to |L|, whereas Cb is useful when |L1| + |R2| is
small enough compared to |L|. Let C ∈ {Ca, Cb} be the code having the minimum cardinality. Then, using

inequalities (1), (2) and (3) and denoting b =
max

{

|L1|,|R2|
}

|L| we get:
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u v

..
.

..
.

Figure 6: Vertices u, v with (N(u) ∪N(v)) \ {u, v} ⊆ S

|(L ∪R) \ C| ≥ max

{

|L1|

2
,
|R2|

2
, |L| −

|L1|

2
−
|R2|

2

}

=
|L|

2
·max

{

|L1|

|L|
,
|R2|

|L|
, 2−

|L1|+ |R2|

|L|

}

≥
|L|

2
·max

{

max {|L1|, |R2|}

|L|
, 2−

2 ·max {|L1|, |R2|}

|L|

}

=
|L|

2
·max {b, 2− 2b}

≥
|L|

2
·min
b≥0
{max {b, 2− 2b}}

Note that min
b≥0
{max {b, 2− 2b}} = 2

3 . Hence, we get:

|(L ∪R) \ C| ≥
|L|

2
·
2

3
=
|L|

3

Note that equality in the previous inequality is achieved when |L1| = |R1| = |R2| = 2|L2|.
Putting L′ = (L ∪R) \ C, we obtain the claim of the lemma.

2.5. The main result

We are now ready to prove the main theorem of this paper. The proof has been sketched in Algorithm 1,
we now provide all the details.

Theorem 13. Let G be a connected identifiable triangle-free graph on n vertices with maximum degree ∆ ≥
3. Then γID(G) ≤ n− n

∆+
3∆

ln∆−1

= n− n
∆+o(∆) .

Proof. Let F = {F1, . . . , F|F|} be the set of all nontrivial equivalence classes over the false twin relation ≡

over V (G). Let X = ∪
|F|
i=1Fi and Y = V (G) \X . We distinguish two cases.

Case 1: |Y | ≥ 3n
ln∆+2 .

In this case, let S be an independent set of G[Y ] given by Lemma 10: we have |S| ≥ ln∆−1
∆ |Y | ≥ 3n(ln∆−1)

∆(ln∆+2) .

Consider all pairs u, v of vertices of G such that u and v are adjacent, both u and v have degree at least 2,
and all the vertices of N(u)∪N(v)\{u, v} belong to S (see Figure 6 for an illustration). Since all neighbours
of u and v (except u and v themselves) are in S, these neighbours form an independent set. Let M be the
set of all edges uv such that u and v form such a pair. By the previous remark, M is a strong induced
matching of G. Let us denote L = L(M) and R = R(M). Note that we have L(M) ⊆ S. Also note that M
might be empty if there are no such pairs of vertices.

Let us now partition V (G) into two subsets of vertices: L∪R on the one hand, and V (G)\ (L∪R) on the
other hand. Such a partition is illustrated in Figure 7. Note that G[L ∪R] is identifiable by Observation 5.
Let us show that G[V (G) \ (L ∪R)] is also identifiable. By contradiction, suppose it is not the case and let
u, v be a pair of vertices such that BG[V (G)\(L∪R)](u) = BG[V (G)\(L∪R)](v). Vertices u and v are therefore

13



L RV (G) \ (L ∪R)

G

Figure 7: Partition of V (G)

adjacent, and since G is triangle-free, neither u nor v has other neighbours within G[V (G)\(L∪R)]. Since G
is identifiable, at least one of them has a neighbour in L. Suppose they both have a neighbour in L. Then by
construction of S, u and v both do not belong to S. But then u and v should belong to R, a contradiction.
Thus, one of them, say u, has degree 1 in G, and all neighbours of v belong to L ⊆ S. But by the first
property of S in Lemma 10, at least one vertex at distance 2 of u does not belong to S, a contradiction.

We will now build two subsets C1 ⊆ L ∪ R and C2 ⊆ V (G) \ (L ∪ R) such that C = C1 ∪ C2 is an
identifying code of G.

• Building C1 ⊆ L ∪R.

If L ∪ R = ∅ we take C1 = ∅. Otherwise, we build C1 using Lemma 12: applying it to G and M , we
know that there exists an (L,R)-quasi-identifying code C1 of G without C1-isolated vertices. From

Lemma 12 we also know that |L′| ≥ |L|
3 , where L′ = (L ∪R) \ C1.

• Building C2 ⊆ V (G) \ (L ∪R).
Again if V (G) \ (L ∪R) = ∅ we take C2 = ∅.

Otherwise, we take C2 to be the complement of S in V (G) \ (L ∪R): C2 = (V (G) \ (L ∪R)) \ S. Let
us show that C2 is a

(

V (G) \ (L ∪R)
)

-identifying code of G.

First, recall that G′ = G[V (G) \ (L ∪ R)] is identifiable. Note that S does not contain any vertex v
which is isolated in G′. Indeed, G does not contain any isolated vertex, hence if v is isolated in G′, v
has a neighbour in L. But since L ⊆ S, S would not be independent, a contradiction. We also claim
that for each vertex v of degree 1 in G′, there is a vertex at distance 2 of v in G′ not belonging to S.
Let w be the unique neighbour of v in G′. If v is also of degree 1 in G, since G′ has no pair of twins,
by the first property of S in Lemma 10, w must have a neighbour x not in S. Vertex x cannot belong
to L, hence it belongs to G′ and we are done. Now, if v is not of degree 1 in G, all its neighbours in
G other than w belong to L. But since G′ is identifiable, w has at least one neighbour other than v,
belonging to G′ but not to S, since otherwise v and w would belong to set R. Finally, by construction
of G′, there are no isolated edges in G[V (G′) \ S].

Under these conditions we can apply Proposition 2 on G′ and set S restricted to V (G′), which shows
that C2 is a

(

V (G) \ (L ∪R)
)

-identifying code of G.

We now have an (L,R)-quasi-identifying code C1 of G without C1-isolated vertices, and showed that
C2 is a (V (G) \ (L ∪ R))-identifying code of G. Moreover, S does not contain any pair of false twins.
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Furthermore, since C2 is the complement of S in G[V (G)\ (L∪R)], all neighbours of L in G[V (G)\ (L∪R)]
belong to C2. Therefore, we can apply Proposition 7 and C = C1 ∪C2 is an identifying code of G.

Let us now upper-bound the size of C. To this end, we lower-bound the size of its complement. From
the construction of C1 and C2, we have V (G) \ C = (S \ L) ∪ L′.

Since L ⊆ S and |L′| ≥ |L|
3 , we have |(S \ L) ∪ L′| ≥ |S|

3 .
Hence, we get:

|V (G) \ C| ≥ |S|
3

≥ ln∆−1
∆(ln∆+2)n

= n

∆
ln∆+2
ln∆−1

= n

∆+
3∆

ln∆−1

Hence, |C| ≤ n− n

∆+
3∆

ln∆−1

.

Case 2: |Y | ≤ 3n
ln∆+2 .

Then, |X | ≥ n− 3n
ln∆+2 . Since each set of F has size at most ∆, we have:

|F| ≥ |X|
∆

≥ ln∆−1
∆(ln∆+2)n

= n

∆+
3∆

ln∆−1

Since ∆ ≥ 3, G is not isomorphic to C4 and we can apply Proposition 3: G has an identifying code of size
at most n− |F| ≤ n− n

∆+
3∆

ln∆−1

.

It can be noted that the value of the bound of Theorem 13 heavily relies on the corollary of J. Shearer’s
bound (Corollary 9). For large values of ∆, this bound is nearly optimal [24]. However, directly using the
slightly stronger bound of J. Shearer (Theorem 8) or a stronger bound holding for some particular class
of graphs, one could obtain a strengthened result as follows. Let G be a nontrivial connected identifiable
triangle-free graph on n vertices having maximum degree ∆. Suppose each subgraph H of G has an in-
dependent set of size at least f(∆)|V (H)|, where f(∆) ≤ 1

3 . Then, the value ln∆−1
∆ in Lemma 10 can be

replaced by f(∆), and the condition for applying Case 1 in the proof of Theorem 13 can be replaced by
|Y | ≥ 3n

∆f(∆)+3 . We then get the following theorem:

Theorem 14. Let G be a connected identifiable triangle-free graph on n vertices with maximum degree ∆
such that each subgraph H of G has an independent set of size at least f(∆)|V (H)|, where f(∆) ≤ 1

3 . Then
γID(G) ≤ n− n

∆+
3

f(∆)

.

3. Concluding remarks

We conclude this paper by the following remarks.

Remark 1. LetG be a triangle-free graph without any pair of false twins. By considering Case 1 of the proof
of Theorem 13, we have Y = V (G) and hence G has an identifying code of size at most n− n

3∆
ln∆−1

= n− n
o(∆) .

Hence any class of connected triangle-free graphs of maximum degree ∆ having its minimum identifying
code of size at least n− n

Θ(∆) should contain false twins. Note that this is the case of the complete (∆− 1)-

ary tree already mentioned in the introduction (all its leaves are false twins), and of the classes of graphs
described in [10] (which are built using copies of small complete bipartite graphs K∆,∆ joined to each other,
and therefore contain many false twins).
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Remark 2. We note that our proofs provide a polynomial-time algorithm to compute the identifying codes
of Theorem 13. Indeed, their constructions are based on the codes computed in Lemmas 11, and 12, and
the independent set of Lemma 10 for the first code, and on the construction of Proposition 3 for the second
code. All these constructions are described in the corresponding proofs and can be done in polynomial time.
Let us give an explicit complexity bound.

We observe that the running time of the constructions is at most of the order O(n2 lnn). Indeed, the
most difficult step is to compute and compare the neighbourhoods of the vertices in order to build the false
twin equivalence classes in the proof of Theorem 13. To do this one can represent each neighbourhood
as a binary word of length n. Bitwise comparing two of them requires O(n) operations, hence a classical
sorting algorithm can sort them all in time O(n2 lnn). Comparing them takes O(n2) time. Moreover,
the construction of the independent set of Lemma 10 is based on Theorem 8 given in [24]. There, the
author gives a randomized linear-time algorithm for computing the independent set. Note that the random
(constant-time) step of this algorithm can be turned into a deterministic linear-time computation, which
leads to an O(n2) algorithm. All other steps and constructions can also be done in time O(n2). Hence, we
have the following theorem.

Theorem 15. Let G be a connected identifiable triangle-free graph on n vertices with maximum degree ∆ ≥
3. Then, an identifying code of G having cardinality at most n − n

∆+
3∆

ln∆−1

can be computed in time

O(n2 lnn).

Remark 3. In this paper, we have considered triangle-free graphs, that is, graphs of girth at least 4. It is
natural to ask whether much stronger bounds on parameter γID hold for graphs of larger girth. However
note that the answer to this question is negative because of the complete (∆− 1)-ary tree on n vertices T ,
which has infinite girth and was already mentioned in the introduction. This graph has infinite girth and
γID(T ) = ⌈n− n

∆−1+1/∆⌉ [4].

However, with an additional condition on the minimum degree of the graph, the question was answered
in the positive in [10] and very recently in [13], where the following bounds are given.

Theorem 16 ([10]). Let G be a connected identifiable graph on n vertices having minimum degree at least 2
and girth at least 5. Then γID(G) ≤ 7n

8 + 1.

Theorem 17 ([13]). Let G be an identifiable graph on n vertices having minimum degree δ ≥ 1 and girth at
least 5. Then γID(G) ≤ (32 + oδ(1))

ln δ
δ n, where oδ(1) is a function of δ tending to 0 when δ tends to infinity.

Note that these two bounds are much stronger than any bound of the form n− n
Θ(∆) , such as the one of

Conjecture 1. They are best possible in the sense that relaxing either the condition on girth 5 or minimum
degree 2, there are graphs which have much larger identifying codes. If one drops the minimum degree 2
condition, such a graph is the complete (∆ − 1)-ary tree. If one drops the girth 5 condition, there are
∆-regular graphs (∆ ≥ 2) having girth 4 and their minimum identifying code of size n − n

Θ(∆) [10]. We

would like to refer the interested reader to [13], where this question is studied in more detail.
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