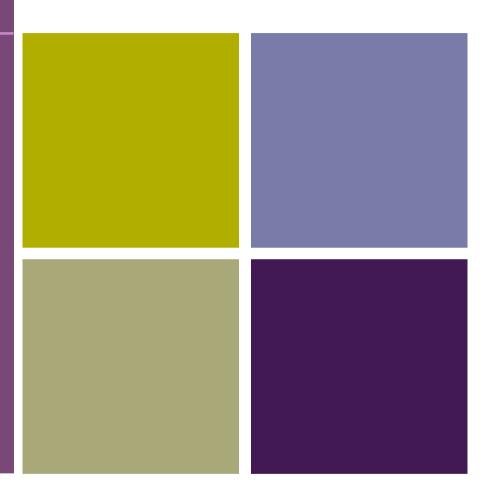


Assembling coordinate free representations for the calculation of geometric variations

Guillaume Mandil ^{1,2} Alain Desrochers ¹ Philippe Serré ² Alain Rivière ²



1 : Université de Sherbrooke, Québec, Canada.

2: LISMMA / Supméca, Paris.

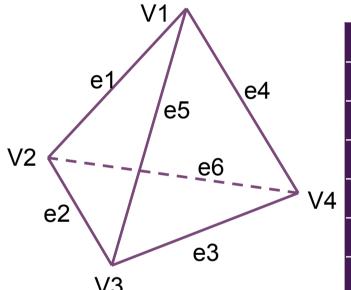
Introduction

- ■Parts within mechanisms are generally specified for the assembly stage of their life cycle;
- ■Functional Requirement are translated as Geometrical Requirements;
- Useful values of Geometrical Requirements are usually defined under operating conditions (at higher temperature and strains...).
- Challenge: How to study Geometrical Requirement evolution during the product life cycle?

+ Context

- ■Computation of the geometrical requirements along the product life cycle at the early phases of product design.
- ■Use of simplified 3D representations of the product.
- ■Use of a coordinate free approach to represent geometries.

Coordinate Free:



	C	Vl	V2	V3	V4
	el	-1	1	0	0
	e2	0	-1	1	0
	e 3	0	0	-1	1
-	e4	1	0	0	-1
	e 5	-1	0	1	0
	e 6	0	-1	0	1

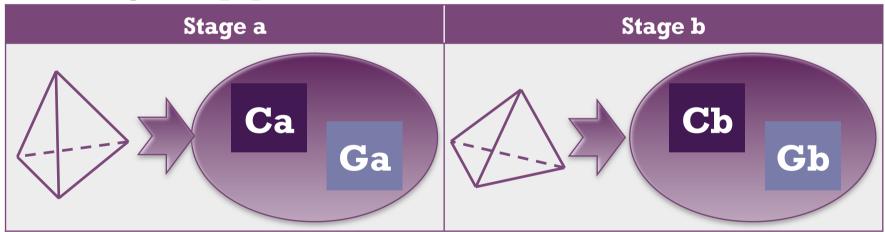
G	el	e2	еЗ	e4	e5	e 6
el						
e2						
еЗ						
e4		Sym				
e 5		-				
e6						

Each object is represented by 2 elements:

- Topology: Connection between vertices and edges (**C**)
- Geometry: Orientation and length of edges (**G**)

Hypothesis

■There exists a geometrical (coordinate free) representation of the product at two stages of its life-cycle. [1]



■The topology of the product is to remain unchanged: **Ca** = **Cb**.

[1] Mandil, Serré, Desrochers, Clément, Rivière:
Coordinate Free Approach for the Calculation of Geometrical Requirement Variations
Proceedings of 20th CIRP Design, 2010, Nantes

+ Objectives

- Association of 2 objects in a single and common representation
- ■Calculation of the evolution of a geometrical requirement (or parameter) between the 2 objects that have been associated before.

Why a coordinate free approach?

- Ability to specify intrinsic geometric properties of a part or component into a compact mathematical model;
- Availability of a coordinate free geometrical solver at LISMMA based on Gram matrices;
- ■Declaration of the association of two configurations of a single part that do not exist at the same time (hidden with a Cartesian approach).

+

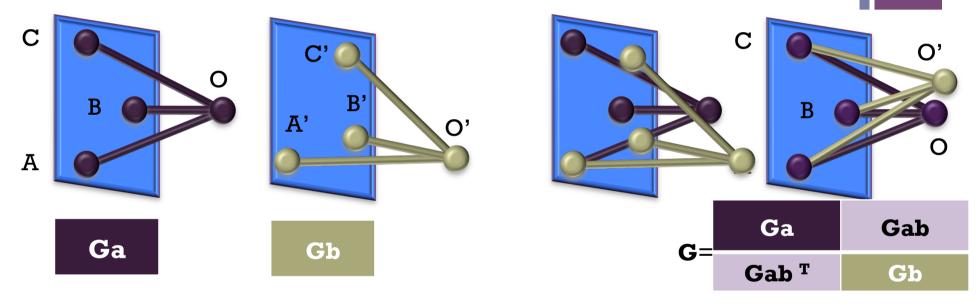
Tools: Gram matrices

■ Calculated from a set of vectors.

OA, OB, OC, AB, AC, BC

G	OA	ОВ	ос	AB	AC	ВС
OA	<oa,oa></oa,oa>	<oa,ob></oa,ob>	<oa,oc></oa,oc>	<oa,ab></oa,ab>	<oa,ac></oa,ac>	<oa,bc></oa,bc>
ОВ	<ob,oa></ob,oa>	<ob,ob></ob,ob>	<ob,oc></ob,oc>	<ob,ab></ob,ab>	<ob,ac></ob,ac>	<ob,bc></ob,bc>
oc	<oc,oa></oc,oa>	<oc,ob></oc,ob>	<oc,oc></oc,oc>	<oc,ab></oc,ab>	<oc,ac></oc,ac>	<oc,bc></oc,bc>
AB	<ab,oa></ab,oa>	<ab,ob></ab,ob>	<ab,oc></ab,oc>	<ab,ab></ab,ab>	<ab,ac></ab,ac>	<ab,bc></ab,bc>
AC	<ac,oa></ac,oa>	<ac,ob></ac,ob>	<ac,oc></ac,oc>	<ac,ab></ac,ab>	<ac,ac></ac,ac>	<ac,bc></ac,bc>
вс	<bc,oa></bc,oa>	<bc,ob></bc,ob>	<bc,oc></bc,oc>	<bc,ab></bc,ab>	<bc,ac></bc,ac>	<bc,bc></bc,bc>

Strategy for the declaration of the association.



- Definition of a common reference point (topology)
- Definition of a common 3D orientation (vectors)
- Calculation of the Global Gram Matrix.

Definition of the common orientation.

- ■Use of usual matrix factorization techniques for the definition of an orthogonal reference frame form the Gram matrix of each configuration. (dependent of the user declaration)
- ■Coincidence of the two reference frames.
- ■Calculation of the orientation matrix (**Fa** and **Fb**) of each configuration in the previously defined reference frame.

Calculation of relative orientation matrix

From matrix factorization (Cholesky, SVD) we have :

- \blacksquare Ga = Fa^T \otimes Fa
- $Gb = Fb^T \otimes Fb$

From there it's deduced that:

■Gab =
$$Fa^T \otimes Fb$$

Calculation of geometrical requirements [1]

- ■Once the global **G** Gram matrix of the 2 configuration is obtained, it become possible to calculate the evolution of geometrical requirements.
- A geometrical requirement (noted *grn*) can be viewed as a combination of elements from **G**.

$$grn = \beta_l G_{lm} \gamma_m$$

In a matricial point of view:

$$grn = \beta \cdot G \cdot \gamma^{T}$$

Conclusion

- ■Calculation of the deviation possible with a generic coordinate free method
- ■Validation with a Cartesian method on an example.
- ■From there it become possible
 - To determinate the zone in which the vertex O' is.
 - To adjust the initial lengths of the bars to keep the vertex O' in the specified zone.

Feedback: advantages of coordinate free method

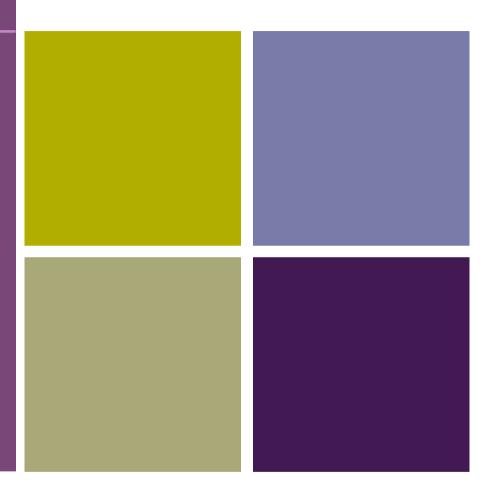
- ■The two configurations never exists at the same time.
- ■The user has to declare how to associate the references frames of the two configurations

On going work

- ■This technique is to be used on simplified representations of the product such as used for preliminary design.
- ■Definition of a 3D physical & geometrical model for preliminary design.
- Definition of acceptable geometrical variations for the detailed 3D model.

Assembling coordinate free representations for the calculation of geometric variations

Guillaume Mandil ^{1,2} Alain Desrochers ¹ Philippe Serré ² Alain Rivière ²



1 : Université de Sherbrooke, Québec, Canada.

2: LISMMA / Supméca, Paris.