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Abstract: This paper proposes to investigate the use of a 
coordinate free approach for the mapping of geometrical 
requirements along the product life cycle. The geometry of the 
studied assembly is represented using a Gram matrix that is 
derived from a parametric model constituted of points and 
vectors. This parametric model is updated for all the relevant 
phases of the product life cycle. More precisely, this paper 
demonstrates how to combine two Gram matrices used as 
coordinate free representations for two states of an assembly 
into a global one in order to map the geometrical requirement 
evolution. This association is carried out using the Cholesky 
factorization technique. The application presented in this paper 
is constituted of a simple 2D case. 
Keywords : Geometrical requirement; Life Cycle ; Metric 
tensor ; Gram matrices ; Non-Cartesian geometry. 

1 - Introduction 
In most cases, a mechanical product is subjected to 
dimensional variations along its life cycle due to mechanical 
strains. These variations can affect the value of the functional 
or geometrical requirements for the product functionalities. 
Generally there exist several useful values of a requirement. 
For instance, the value of a requirement taken under operating 
condition and at the assembly stage of its life-cycle is useful 
for the designer to fulfill the expected product functionalities. 
As a matter of fact, considering the designer point of view, 
several problems appear: “Does the chosen dimension allow 
meeting the requirements under operating conditions?” or 
“Which dimensions must be specified on the drawing to ensure 
a given value of the functional requirement in operation?” 

In order to compare the geometric configuration of a product at 
two distinct stages of its life-cycle, this paper proposes a 
technique to combine the coordinate free representation of the 
two states in a unique representation using Gram matrices 
[W1]. It is assumed that a Gram matrix representation of the 
two configurations to be compared already exists. 

This paper will introduce the coordinate free model used in 
this research. The advantages and limitations will be lightly 
exposed and then an application case will be detailed. 

2 - Mathematical Tools 

The great majority of the concepts presented here have been 
introduced in a previous research by the authors [MS1]. They 
will be more detailed in the following sections. 

2.1 - Notations 
This paper will use the following conventions: 

- Matrices will be noted with capital bold letters: M ; 
- Vectors will be noted with bold letters: u ; 
- Scalar number will be noted with italic letters: x. 

2.2 - Coordinate free representation 
This paper investigates the use of a coordinate free approach 
for the calculations. With the proposed approach, a given 
geometry described in two different coordinate systems 
would have a common, unique description if a coordinate 
free system were used. From there it becomes possible for 
the designer to describe intrinsic geometric properties of a 
part (or a component) using a compact mathematical model 
without paying attention to the coordinate system in which 
the object is described. 

This choice has been motivated by the existence of generic 
constraints specification techniques (as in [S1]) and solvers 
(cf. in [M1]) to resolve these constraints. Authors decided to 
use a Gram matrix as the mathematical representation of 
choice for the mechanism. 

As this approach is vector space based, it then becomes 
necessary to obtain vectors to represent the product model. 
There exists several possible ways to obtain such vectors. 
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Among these possibilities, it is conceivable to use the 
TTRS/MGRE model [D1] to obtain the relative position of the 
technological surfaces. From there it becomes possible to 
extract one or several vectors to represent the relative positions 
of two surfaces, parts or components. Moreover, during the 
early stages of the design of a product, there often exists a 
simple geometrical representation of the product such as a 
skeleton from which positioning vector parameters should be 
extracted 

2.3 - Gram matrices 
The following definition is found in [W1] : «the Gram matrix 
G (or Gramian matrix or Gramian) of a set of vectors 
{x1, x2, …, xk} in an inner product space is the Hermitian 
matrix of inner products, whose entries are given by equation 
(1)». Glm represents the term of the row l and column m of the 
G matrix. In this paper the names of all Gram matrices start 
with a capital “G”. 

 Glm = <xl,xm> (1) 

A metric tensor is a particular case of a Gram matrix which has 
its rank equal to its dimension. For example, in the 3D 
Euclidian space, a 3 by 3 Gram matrix which has a nonzero 
determinant (which is equivalent to being constituted of 3 
independent vectors) is called a metric tensor. In this paper, the 
names of all the metric tensors start with a capital “M”. 

2.4 - Application to assemblies 
In any case, this paper supposes that a vectorial representation 
of the assembly already exists. The vectors included in this 
representation will be noted unl where n represents the current 
life-cycle stage and l is an index used to count the vectors. For 
example, at the assembly stage noted n of the product life 
cycle, the set of k vectors is noted: Sun = {un1 , un2 , … , unl , 
… , unk}. 

From this set of vector Sun, and for each configuration of the 
product, the assembly is represented by its associated Gram 
matrix which will be noted Gn where n represents the current 
life-cycle stage. 

2.5 - Geometrical requirement calculation 
Functional requirements are expressed as an algebraic relation 
between the vectors (or combination of vectors) used in the 
Gram matrix. Basically, from the Gram matrices it is 
immediately possible to obtain the scalar product between two 
vectors. From there, it is easy to deduce the norm of a vector 
(||x||=

! 

< x, x > ) and the angle between two vectors 
( cos(x,y) = <x,y> / (||x|| • ||y||) ).  

More generally, the geometrical requirement (noted grn at 
stage n) might be expressed thanks to linear combinations of 
scalar products between vectors included in the set used for the 
Gram matrix definition. Based on the set Sun presented above, 
equation (2) introduces !l and "m which represent the weights 
of <unl,unm> in grn. 

 grn = <!l unl , "m unm>  

 grn = !l Gnlm "m (2) 

Equation (2) yields to the definition of two vectors !  and "  
that represent the weights of Gn in grn.  From there, the 
relation (3) is obtained. 

 grn = !  • Gn • "T (3) 

2.6 - Comparison between configurations 
Two Gram matrices Gi and Gf representing the initial and 
final geometrical configurations are first computed using a 
coordinate free solver [M1]. Gi stand for Gram matrix 
corresponding to the initial stage and Sui  = {ui1 , …, uik} is 
its associated set of k vectors. In the same way, Gf stand for 
Gram matrix corresponding to the final stage and  
Suf  = {uf1 , …, ufk} is its associated set of vectors.  

In order to map the evolution of the geometrical requirement 
along the life cycle from an initial stage i to a final stage f, it 
becomes necessary to calculate the scalar products between 
vectors from both configurations such as <ui1,uf4>.  To 
perform such calculations it is necessary to propose a way to 
superpose (or to link) the two relevant configurations and to 
calculate a relative orientation matrix Oif as defined by 
equation (4). 

 Oiflm = <uil,ufm> (4) 

From there it become possible to build a global Gram matrix 
G, expressed in equation (6), including all the vectors from 
the two configurations that uses vectors of the set Suif which 
is the concatenation of the sets Sui and Suf as expressed in 
equation (5). 

 Suif = {ui1, … uik,uf1, … , ufk} 
 Suif = {uif1, uif2, … , uifm} (5) 

 Glm = <uifl,uifm> (6) 

Moreover, in order to calculate a point deviation it is 
necessary to associate the configuration in an affine way. 
This association basically consists in assuming that a point in 
the two configurations has a known deviation (that could be 
null) during the shift from stage i to stage f. 

2.7 - Vectors association of two configurations 
The previous section pointed to the necessity to carry out the 
calculation of “relative orientation matrix” described in 
equation (4). As the Gram matrix approach is coordinate 
free, the coordinates of the vectors included in the sets Sui 
and Suf are not directly available. Consequently, the direct 
application of equation (4) is impossible. 

Therefore, the relative orientation has to be calculated using 
another technique. Authors propose to use matrix 
factorization techniques to express any Gi and Gf as the 
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product specified in equation (7) where Id stands for the 
identity matrix. 

 Gi = FiT • Fi = FiT • Id • Fi and 
 Gf = FfT • Ff = FfT • Id • Ff  (7) 

Relation (7) is equivalent to (8) using Einstein’s convention.  

 Gilm = Fipl • Fipm = Fipl • !pq • Fiqm and
 Gflm = Ffpl • Ffpm = Ffpl • !pq • Ffqm  (8) 

In equation (7), Id can be viewed as the metric tensor of an 
ortho-normal reference frame {e1,e2,e3} (3 vectors in 3D 
Euclidian space). From there FiT and FfT can be viewed as the 
transformation matrix defined in (9). As Gi and Gf are Gram 
matrices that are positive, semidefinite, the terms of Fi and Ff 
remain real numbers. 

 unl = Fnlq • eq with n=i or n=f (9) 

The application of relation (9) on the terms of relation (4) Sui 
and Suf gives the expression (10) that allows the calculation of 
Oif.  

 Oiflm = <Filp•ep,Ffqm•eq> = Filp • Ffmq <ep,eq> 
 Oiflm= Filp • Ffmq• !pq = Filp • Ffmp (10) 

Finally, equation (10) is simplified as equation (11): 

 Oif = FiT • Ff (11) 

Currently, authors have looked into the use of two factorization 
techniques to determine the terms of equation (11) :  

- A singular value decomposition 
- A Cholesky based factorization (see in [W2]) 

The affine association consists simply in the appropriate choice 
of a point to connect a path from the initial to the final 
configuration. The application to the case presented in an 
upcoming section will clearly explicit this. 

3 - Use of the Cholesky factorization 
For the association of two configurations of the same model, 
the Cholesky factorization appears to be appropriate because 
the user can choose the vectors for building the identification 
orthonormal reference frame. Consequently, by choosing the 
appropriate vectors, the designer is able to set the desired 
association conditions. 

However, the Cholesky factorization has a limitation. This 
method is only available for square matrices that have a non-
zero determinant. This means that the matrix to be factorized 
has to be a metric tensor and so its size has to be equal to the 
dimension of the Euclidian space. In the general case, Gram 
matrices sizes are bigger than the dimension of the Euclidian 
space. Consequently, for the application of the Cholesky 
factorization, it first becomes necessary to be able to obtain the 
metric tensors from the Gram matrices and secondly to rebuilt 
the original Gram matrix from the metric tensor. 

3.1 - From Gram matrix to metric tensor. 
The first conversion is obvious: it is simply necessary to 
choose a subset of independent vectors in the set Sun (Sui   
and Suf) and extract the corresponding columns and rows of 
the Gram matrix to obtain the resulting metric tensor. For the 
initial configuration, Mi is extracted from Gi. The same rows 
and columns are used in the final configuration to extract Mf 
from Gf. Afterwards, the metric tensors Mi and Mf are 
factorized with the Cholesky technique and the relative 
orientation matrix Oif is calculated using relation (11). From 
there the relative orientations of the initial and final 
independent vectors are deduced using the GOif Gram 
matrix given by (12). 

 

 

 

3.2 - From metric tensor to Gram matrix  

3.2.1 - Mathematical tools 
This sub-section will present the two concepts of covariant 
and contravariant coordinates used in the conversion for 
metric tensor to Gram matrix [W3].  The covariant 
coordinates noted uk of a vector u on the reference frame {e1, 
… , el} are defined by the scalar products of equation (13). 
These coordinates are those that are commonly used in 
engineering and science. One can notice that Gram matrices 
are constituted of covariant coordinates. 

 uk = < u , ek > (13) 

Moreover the covariant coordinates lead to the definition of 
the metric tensor Me for the reference frame {e1, … , el}.  
The term Melm of the row l and column m of Me is defined 
by (14). Me is invertible and its inverse matrix is noted M-e 

 Melm = < el , em > (14) 

The contravariant coordinates define the uk coefficients used 
to obtain a vector u as a unique linear combination of the 
vectors {e1, … , el} defining the reference frame (15). 

 u =  up ep (15) 

The conversion from covariant to contravariant coordinates 
is achieved through a combination of relations (13), (14) and 
(15) and the application of Einstein’s convention.  From 
there, it is easy to deduce equations (16) and (17) . 

 um = up Memp (16) 

 up = um M-emp (17) 

3.2.2 - Principle 
The metric tensor Mn of the reference frame {e1, … , el} is 
given with two vectors u and v defined by their contravariant 

Mi Oif 
GOif = 

OifT Mf 
(12) 
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coordinates (15) . The calculation of <u,v>, that leads to the 
calculation of any term of the Gram matrix, is given by 
equation (18) that uses Einstein’s convention. 

 <u,v>=<umem,vpep> 
 <u,v>=um <em,ep> vp 
 <u,v>=um Mnmp vp (18) 

Using equation (18), it becomes easy to calculate the terms of 
the Gif gram matrix as defined by equation (4). 

3.2.3 - Contravariant coordinates of vectors 
The contravariant coordinates of the vectors for the initial 
configuration will be calculated using relation (17). The 
inverse matrix of the Mi metric tensor is to be computed and 
the covariant coordinates of the vectors in the set Sui are to be 
extracted from the appropriate elements in the Gi Gram matrix. 
Contravariant coordinates of the final vectors included in the 
set Suf are computed using the same technique using the Mf 
and Gf matrices. 

From there, the global Gram matrix including all vectors from 
the set Suif is computed and the evaluation of the geometrical 
requirement evolution becomes possible using relation (3). The 
procedure for this calculation is detailed in [MS1]. 

4 - Application case. 

4.1 - Geometry and vectorization. 
This section will illustrate the comparison of two 
configurations of the same mechanism at two different stages 
of its life-cyle on a simple 2D representation of a piston - 
connecting rod – crank shaft assembly presented in figure 1. 

Figure 1 : piston - connecting rod – crank shaft assembly and its 
vectorization. 

The following conditions are used to obtain the initial 
geometrical coordinate free representation with the solver 
[M1]: 

- ||ui1|| = 11  
- ||ui2|| = 4 

- ||ui3|| = 7 
- ||ui4|| = 3 
- cos(ui1,ui4) = -1 
- ui1 + ui2 + ui3 + ui4 = 0 

From there, the coordinate free solver gives the Gi Gram 
matrix for the initial configuration presented in table 1. 

Gi ui1 ui2 ui3 ui4 
ui1 121 -21,3125 66,6875 -33 
ui2 -21,3125 16 0,5 5,8125 
ui3 66,6875 0,5 49 -18,1875 
ui4 -33 5,8125 -18,1875 9 

Table 1 : Initial Gram matrix Gi 

4.2 - Dimensional evolution along the life cycle. 
It has been arbitrarily decided by the authors that the 
geometrical conditions at the final stage are :  

- ||uf1|| = 11 
- ||uf2|| = 4,02 
- ||uf3|| = 7,2 
- ||uf4|| = 3,01 
- cos(uf1,uf4) = -1 
- uf1 + uf2 + uf3 + uf4 = 0 

For this final configuration, the coordinate free solver gives 
the Gf Gram matrix presented in table 2. 

Gf uf1 uf2 uf3 uf4 
uf1 121 -19,3846 68,5054 -33,11 
uf2 -19,3846 16,1604 2,0801 5,3043 
uf3 68,5054 2,0801 51,84 -18,7456 
uf4 -33,11 5,3043 -18,7456 9,0601 

Table 2 : Final Gram matrix Gf 

Moreover, it is also assumed that the vector u1 is not varying 
along the life-cycle, meaning that ui1 = uf1. 

4.3 - Cholesky Association. 
As explained in section 3, the user must choose a set of 2 
independent vectors (the problem is in 2D) in the set 
{u1,u2,u3,u4} in order to perform the Cholesky 
factorization. In order to satisfy the condition ui1=uf1, the 
sets {ui1,ui2} and {uf1,uf2} are arbitrarily chosen (other 
combinations would also qualify such as {ui1,ui3} and 
{uf1,uf3}). 

In accordance with section 3.2, the Mi and Mf metric tensors 
(see table 3 and table 4) are extracted from the two first rows 
and columns of Gi and Gf. These two tensors are factorized 
with the Cholesky technique to obtain the Fi and Ff matrices 
(see table 5 and table 6). 

Mi ui1 ui2 
ui1 121 -21,3125 
ui2 -21,3125 16 

Table 3 : Mi metric tensor 

Mf uf1 uf2 
uf1 121 -19,3846 
uf2 -19,3846 16,1604 

Table 4 : Mf metric Tensor 

u1 

u2 

u3 

u4 
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Fi   
 11,0000 -1,9375 
 0,0000 3,4994 

Table 5 : Fi matrix 

Ff   
 11,0000 -1,7622 
 0,0000 3,6132 

Table 6 : Ff Matrix 

Finally the Oif matrix (table 7) is calculated using equation 
(11) 

Oif uf1 uf2 
ui1 121,0000 -19,3846 
ui2 -21,3125 16,0584 

Table 7 :Oif orientation matrix 

Then with (17) the GOif matrix (table 8) is assembled. 

GOif ui1 ui2 uf1 uf2 
ui1 121,0000 -21,3125 121,0000 -19,3846 
ui2 -21,3125 16,0000 -21,3125 16,0584 
uf1 121,0000 -21,3125 121,0000 -19,3846 
uf2 -19,3846 16,0584 -19,3846 16,1604 

Table 8 : GOif Gram matrix of relative positions. 

4.4 - Contravariant coordinates of vectors 
The computation of the contravariant coordinates is performed 
on the {ui1,ui2} reference frame for the initial configuration 
and on the {uf1,uf2} reference frame for the final one. The 
metric tensors of these reference frame Mi and Mf are already 
available and the covariant coordinates (see table 9) of the 
others vectors are to be read from the two firsts columns of the 
Gi and Gf Gram matrices. According to section 3.2.2 and 
relation (17), the contravariant coordinates presented in table 
10 are finally obtained. 

 ui1 ui2   uf1 uf2 
ui1 121,0000 -21,3125  uf1 121,0000 -19,3846 
ui2 -21,3125 16,0000  uf2 -19,3846 16,1604 
ui3 66,6875 0,5000  uf3 68,5054 2,0801 
ui4 -33,0000 5,8125  uf4 -33,1100 5,3043 

 
Table 9 : covariant coordinates of the vectors in their Cholesky 

reference frame 

 

 

 

 

 

 

 

 ui1 ui2   uf1 uf2 
ui1 1,0000 0  uf1 1,0000 0 
ui2 0,0000 1  uf2 0,0000 1 
ui3 0,7273 1  uf3 0,7263 1 
ui4 -0,2727 0  uf4 -0,2736 0 
Table 10 : contravariant coordinates of the vectors in their 

Cholesky reference frame 

From table 10, the contravariant coordinates of the vectors 
{ui1,ui2,ui3,ui4,uf1,uf2,uf3,uf4} are expressed in the 
reference frame {ui1,ui2,uf1,uf2}. As contravariant 
coordinates expressed are the coefficient for expressing any 
vector as a linear combination of a given reference frame, the 
initial vectors have null contravariant coordinates on the final 
reference frame. In the same way final vectors have null 
contravariant coordinates on the initial reference frame. From 
there, the matrix of contravariant coordinates C is deducted 
(see table 11). The application of relation (18) on each line of 
the C matrix lead to the calculation of the scalar products 
between all the vectors of the set 
{ui1,ui2,ui3,ui4,uf1,uf2,uf3,uf4}. It then becomes possible 
to compute the global Gram matrix G (see table 12) for the 
whole set {ui1,ui2,ui3,ui4,uf1,uf2,uf3,uf4} using relation 
(19) and table 11. 

 G = C # GOif # CT (19) 

C ui1 ui2 uf1 uf2 
ui1 1,0000 0,0000 0,0000 0,0000 
ui2 0,0000 1,0000 0,0000 0,0000 
ui3 0,7273 1,0000 0,0000 0,0000 
ui4 -0,2727 0,0000 0,0000 0,0000 
uf1 0,0000 0,0000 1,0000 0,0000 
uf2 0,0000 0,0000 0,0000 1,0000 
uf3 0,0000 0,0000 0,7263 1,0000 
uf4 0,0000 0,0000 -0,2736 0,0000 

Table 11 : contravariant coordinate of 
{ui1,ui2,ui3,ui4,uf1,uf2,uf3,uf4} in the {ui1,ui2,uf1,uf2} frame. 

4.5 - Geometrical requirement evolution 
Once the global G Gram matrix of the two configurations is 
obtained, the techniques presented in [MS1] are applied in 
order to calculate the geometrical requirement evolution 
along the corresponding stages of the assembly life-cycle. 

 

Table 12 : Global G Gram matrix 

G ui1 ui2 ui3 ui4 uf1 uf2 uf3 uf4 
ui1 121,0000 -21,3125 66,6875 -33,0000 121,0000 -19,3846 68,5054 -33,1100 
ui2 -21,3125 16,0000 0,5000 5,8125 -21,3125 16,0584 0,5777 5,8319 
ui3 66,6875 0,5000 49,0000 -18,1875 66,6875 1,9605 50,3999 -18,2481 
ui4 -33,0000 5,8125 -18,1875 9,0000 -33,0000 5,2867 -18,6833 9,0300 
uf1 121,0000 -21,3125 66,6875 -33,0000 121,0000 -19,3846 68,5054 -33,11 
uf2 -19,3846 16,0586 1,9605 5,2867 -19,3846 16,1604 2,0806 5,3043 
uf3 68,5054 0,5777 50,3999 -18,6833 68,5054 2,0806 51,8400 -18,7456 
uf4 -33,1100 5,8319 -18,2481 9,0300 -33,1100 5,3043 -18,7456 9,0601 
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5 - Conclusion and perspectives 
This paper has first presented some mathematical models and 
tools for a coordinate free approach applied to mechanisms. 
This model describes how to represent the mechanism in the 
proposed coordinate free model, and how to calculate the value 
of a geometrical requirement at a given stage of the product 
life-cyle. This research also shows how to link two 
configurations in order to map the evolution of a geometrical 
requirement using the Cholesky factorization technique. An 
application of this coordinate free approach on a simple 2D 
example has been carried out. However this generic 
methodology is also applicable on 3D cases. 

Globally, this paper has demonstrated that a generic coordinate 
free approach is suitable for the association of two 
configurations of a mechanism. From there the coordinate free 
approach has been shown to be applicable to the analysis of the 
evolution of a geometrical requirement along the product life 
cycle. 

As the approach is generic, the authors propose to go beyond 
this first validation with the application of the method on more 
complicated cases such as mobile mechanisms and hyperstatic 
mechanisms or structures. 
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