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We suggest an approach for the enumeration of minimal permutations having d descents which uses skew Young
tableaux. We succeed in finding a general expression for the number of such permutations in terms of (several) sums
of determinants. We then generalize the class of skew Young tableaux under consideration; this allows in particular
to recover a formula for Eulerian numbers which is a direct consequence of a result of MacMahon.
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1 Introduction
This article deals with minimal permutations with d descents (also called d-minimal permutations

here). This family of permutations has been introduced in [BoRo] in the study of the whole genome
duplication-random loss model of genome rearrangement. In this context, genomes are represented by
permutations, and minimal permutations with d = 2p descents are the basis of excluded patterns that
describes the class of permutations that can be obtained from the identity with cost at most p.

In order to describe properties of this class of permutations, its basis has been studied, and the first
natural question to address is to count how many excluded patterns it contains. In [BP] some partial
results on the enumeration of minimal permutations with d descents have been obtained: namely, minimal
permutations with d descents and of size n have been enumerated by closed formulas, for n = d+1, d+2
and 2d (d+1 and 2d being lower and upper bounds for the size of a minimal permutation with d descents
– see [BP]). In [MY], further results on the enumeration of minimal permutations with d descents have
been obtained using multivariate generating functions, allowing in particular to derive a closed formula
enumerating those of size 2d− 1 as well as some asymptotic results.

In this work we offer an alternative approach for the enumeration of minimal permutations with d
descents, making extensive use of a bijection between these permutations and a family of skew Young
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tableaux. This gives a general formula for the number pd+k,d of minimal permutations with d descents
and of size d+ k, as a sum of determinants of matrices (Theorem 4.2). Its specialization for k = 1, 2 and
d allows to recover the expressions of pd+1,d, pd+2,d and p2d,d given in [BP]. When specializing it for
k = 3, we also obtain a closed formula for pd+3,d (Theorem 4.4). Moreover, an analysis of the general
form of the formula for pd+k,d allows us to find an explicit expression also in the case k = 4. Finally, the
family of skew Young tableaux under consideration has a natural generalization which is investigated in
Section 5.

In closing this introduction, we remark that the interest in d-minimal permutations is very lively
nowadays, as witnessed by the contemporary research paper [CGM], in which the authors consider the
problem of enumerating d-minimal permutations in connection with skew Young tableaux. We wish to
point out that our work partially overlaps with [CGM], where the authors independently prove one of the
main theorem of our work.

2 Preliminary definitions and results
For any integer n, Sn denotes the set of permutations of [n] = {1, 2, . . . , n}. A permutation σ ∈ Sn

will be represented either by the word σ(1) . . . σ(n) or by the n × n grid, where a cell contains a dot if
and only if it is at coordinates (i, σ(i)) for some i ∈ [n].

The pattern containment order on permutations [P] is defined as follows. A permutation π ∈ Sk is
contained in (or is a pattern of) σ ∈ Sn when there exist integers 1 ≤ i1 < . . . < ik ≤ n such that π and
σ(i1) . . . σ(ik) are order-isomorphic sequences, i.e. they are such that π(`) < π(m) ⇔ σ(i`) < σ(im)
for all `,m ∈ [k].

A descent in a permutation σ ∈ Sn is an integer i ∈ [n− 1] such that σ(i) > σ(i+ 1). Similarly, an
ascent is an integer i ∈ [n− 1] such that σ(i) < σ(i+ 1).

A minimal permutation with d descents, or d-minimal permutation, of length n is a permutation of
Sn that is minimal in the sense of the pattern-containment relation for the property of having d descents.
In other words, it is a permutation with d descents such that, when removing any of its entries and suitably
renaming the remaining elements, the resulting permutation of Sn−1 has d−1 descents. For instance (see
Figure 1), the permutation σ = 14 12 9 3 13 5 15 10 6 2 1 11 8 7 4 is minimal with 11 descents, as it has
exactly 11 descents and every permutation it contains as a pattern has at most 10 descents.

In [BP], minimal permutations with d descents have been characterized as follows:

Theorem 2.1 A permutation σ is minimal with d descents if and only if it has exactly d descents and its
ascents i satisfy the “diamond property”, i.e. are such that 2 ≤ i ≤ n−2 and σ(i−1)σ(i)σ(i+1)σ(i+2)
forms an occurrence of either the pattern 2143 or the pattern 3142.

As explained in [BP], this characterization allows to represent d-minimal permutations by means of
certain labelled posets. These posets, labelled with the integers from 1 to n, are made of chains somehow
linked by diamond-shaped structures (corresponding to the ascents of the permutation). Figure 1 shows
an example of this one-to-one correspondence. Notice that each of these labelled posets represents a
unique d-minimal permutation, whereas the underlying unlabelled poset can be seen as representing a set
of d-minimal permutations (those that are in correspondence with a legal labelling of the poset).

Posets and labelled posets in these families are in one-to-one correspondence with skew Ferrers dia-
grams and skew Young tableaux having special properties. These combinatorial objects have been widely
studied in the literature, in particular from an enumerative point of view (see, for instance, the recent
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Fig. 1: The 11-minimal permutation σ = 14 12 9 3 13 5 15 10 6 2 1 11 8 7 4, and the corresponding poset.

paper [BaRo]). In the following sections, we explicitly describe the correspondence between unlabelled
(resp. labelled) posets and skew Ferrers diagrams (resp. skew Young tableaux), as well as some enumer-
ative results on these objects, and how they can be used for our purposes.

3 Connection with skew Young tableaux
In order to explain how the poset representation of d-minimal permutations described in the previ-

ous section can be conveniently interpreted by using skew Young tableaux, we first need to recall some
definitions.

A partition of an integer n is a sequence of positive integers λ = (λ1, . . . , λk) such that λi ≥ λi+1

for 1 ≤ i ≤ k−1 and
∑k
i=1 λi = n. The integer n is called the size of the partition, and we write n = |λ|.

The number of parts k will be denoted by k = `(λ) (this is also called the length of λ).
A partition λ = (λ1, . . . , λk) can be represented by its Ferrers diagram, which is obtained by draw-

ing k rows of contiguous unit cells, from top to bottom, such that row i contains λi cells, and with the first
cells of these k rows vertically aligned. An example is shown in Figure 2. We will also denote by λ the
Ferrers diagram associated with the partition λ. The size |λ| obviously corresponds to the number of cells
of the Ferrers diagram, and the number of rows is given by `(λ).

For our purposes, a Young tableau is a filling of a Ferrers diagram λ using distinct positive integers
from 1 to n = |λ|, with the property that the values are (strictly) decreasing along each row and each col-
umn of the Ferrers shape. This constitutes a slight deviation from the classical definition, which requires
the word “increasing” instead of the word “decreasing”. However, it is clear that all the properties and
results on (classical) Young tableaux can be translated into our setting by simply replacing the total order
“≤” by the total order “≥” on N. In Figure 2, a Young tableau of shape λ = (8, 6, 3, 3, 2, 1) is shown. As
for Ferrers diagrams, the size of a Young tableau is given by the number of its cells.
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Fig. 2: The Ferrers diagram associated with the partition λ = (8, 6, 3, 3, 2, 1), and a Young tableau on this shape.

The main definition we need in our work is that of a skew Young tableau. The definition can be given
exactly as for a Young tableau, with the only difference that the underlying shape consists of a Ferrers
diagram λ with a Ferrers diagram µ removed (starting from the top-left corner). Such a skew shape
is usually denoted λ/µ. We refer the reader to [St] for the formal definition and some important facts
concerning the enumeration of skew Young tableaux. In Figure 3 a skew Young tableau of skew shape
(8, 6, 3, 3, 2, 1)/(3, 2, 2, 1) is depicted. As before, the size of a skew Young tableau denotes its number of
cells.

14 11 6 4 2

15 12 9 5

13

8 3

10 7

1

Fig. 3: The skew shape (8, 6, 3, 3, 2, 1)/(3, 2, 2, 1), and a skew Young tableau on this shape.

As announced at the beginning of the present section, we can translate the poset representation of a
d-minimal permutation into a suitable skew Young tableau.

Proposition 3.1 The set of d-minimal permutations of length d + k is in bijection with the set of skew
Young tableaux whose skew shapes λ/µ satisfy |λ/µ| = d+ k and have k rows such that two consecutive
rows have precisely two columns in common.

Proof: A d-minimal permutation of length d+k consists of k descending runs and, denoting with a, b, c, d
four consecutive elements such that a, b and c, d belong to different descending runs, then necessarily
a > b, c > d, a < c and b < d (see Theorem 2.1). Then, starting from a d-minimal permutation π of
length d+k, one can construct a skew Young tableau as follows: starting from the bottom, the i-th row of
the tableau consists of the elements of the i-th descending run of π; moreover two consecutive rows are
required to have exactly two columns in common. The resulting tableau is a skew Young due to the above
recalled diamond property of d-minimal permutations. 2
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In Figure 4 the skew Young tableau determined by the permutation whose poset representation is
given in Figure 1 is shown.

11 8 7 4

15 10 6 2 1

13 5

14 12 9 3

Fig. 4: The skew shape corresponding to the underlying unlabelled poset of Figure 1, and the skew Young tableau
corresponding to the permutation σ of Figure 1.

Example. For k = 2 and d = 4, the set of 4-minimal permutations of length 6 is in bijection with the set
consisting of all skew Young tableaux of one of the following skew shapes:

• (4, 2)/∅, i.e. ,

• (4, 3)/(1), i.e. ,

• (4, 4)/(2), i.e. .

There are 9, 14 and 9 skew Young tableaux of these shapes, respectively, giving a total of 32 4-
minimal permutations of length 6.

Remarks. Let π be a d-minimal permutation and suppose it has k descending runs. Obviously this means
that π has k − 1 ascents and that |π| = d + k. Moreover, suppose that λ/µ is the skew shape associated
with π. Recall that `(λ) and `(µ) denote the number of rows of λ and µ respectively. Finally, let `i be the
length of the i-th descending run of π. Some straightforward consequences of the above bijection are the
following:

1. The skew shape associated with π is connected.

2. `(λ) = k.

3. Set λ = (λ1, λ2, . . . λk). Then λi =
∑k−i+1
j=1 `j − 2(k − i).

4. `(µ) < `(λ) and, more precisely, `(µ) = (`(λ)−1)−#(starting descending runs of length 2 in π).

5. Set µ = (µ1, µ2, . . . µk). Then µi = λi+1 − 2.
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4 Some enumerative results
The main goal of the present section is to enumerate d-minimal permutations of length n, with

d + 1 ≤ n ≤ 2d. A general result in this direction can be obtained by considering the above described
bijection with skew Young tableaux. In particular, a classical result due to Aitken is our starting point.

Theorem 4.1 ([A]) Let λ/µ be a skew shape, with |λ/µ| = N and `(λ) = n. Then, the number fλ/µ of
skew Young tableaux of shape λ/µ is

fλ/µ = N ! det

(
1

(λi − µj − i+ j)!

)
i,j=1..n

. (1)

Formula (1) can be deduced from the well known Jacobi-Trudi identity, as shown, for instance,
in [St2]. Moreover, in such a formula the entry (i, j) of the considered matrix is intended to be 0 if the
expression λi − µj − i+ j is negative.

The main result of this section is essentially a corollary of Theorem 4.1, in the case in which the
skew shape λ/µ has the properties of Proposition 3.1.

Theorem 4.2 Denote by pd+k,d the number of d-minimal permutations of length d+ k (so that 1 ≤ k ≤
d). Then

pd+k,d =
∑

a1,a2,...,ak≥2
a1+a2+···+ak=d+k

(d+ k)! · det(A(a1, . . . , ak)),

where A(a1, . . . , ak) is the following matrix:

1
a1!

1
(a1+a2−1)!

1
(a1+a2+a3−2)! · · · · · · · · · 1

(a1+···+ak−k+1)!

1 1
a2!

1
(a2+a3−1)! · · · · · · · · · 1

(a2+···+ak−k+2)!

χa2=2 1 1
a3!

. . .
...

0 χa3=2 1
. . .

...

0 0 χa4=2
. . .

...
...

. . . 0
. . .

...
...

. . .
...

... 1
(ak−2+ak−1+ak−2)!

...
. . .

. . .
. . .

. . . 1
(ak−1+ak−1)!

0 · · · · · · 0 χak−1=2 1 1
ak!



.

Here χP denotes the characteristic function of the property P (i.e., χP = 1 when P is true and χP = 0
otherwise). In other words, A(a1, . . . , ak) is the k × k matrix whose entries ai,j obey the following
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equalities:

ai,j =
1

(ai + · · ·+ aj + i− j)!
, when i ≤ j,

ai,i−1 = 1,

ai,i−2 = χai−1=2,

ai,j = 0, when i > j + 2.

Proof: Theorem 4.1 ensures that

pd+k,d =
∑
λ/µ

(d+ k)! det

(
1

(λi − µj − i+ j)!

)
where the sum is over all skew shapes λ/µ of size d + k having k rows and such that two consecutive
rows have exactly two columns in common.

For such a skew shape λ/µ, let us define the sequence a = (a1, a2, . . . , ak) by ai = λi − µi,
1 ≤ i ≤ k. The sequence a is such that a1, a2, . . . , ak ≥ 2 and a1 + a2 + · · · + ak = d + k. From
the remark at the end of the previous section, we additionally have that µk = 0 (point 4.) and that
µi = λi+1 − 2 for all 1 ≤ i ≤ k − 1 (point 5.). It is now a trivial matter to check that the sequence
a = (a1, a2, . . . , ak) completely and uniquely determines λ/µ. Hence, the sum in the above formula can
be taken over sequences a = (a1, a2, . . . , ak) such that a1, a2, . . . , ak ≥ 2 and a1+a2+ · · ·+ak = d+k.

In what follows, we give expressions for the entries ai,j = 1
(λi−µj−i+j)! in terms of (a1, a2, . . . , ak).

If i ≤ j, then, by Theorem 4.1, ai,j = 1
(λi−µj−i+j)! . Due to the remarks stated at the end of the

previous section, we have:

ai + ai+1 + . . .+ aj = (λi − µi) + (λi+1 − µi+1) + . . . (λj − µj) = λi − µj + 2(j − i).

This yields for the denominator of the above fraction the following expression (leaving aside the
factorial):

λi − µj − i+ j = ai + ai+1 + . . .+ aj + i− j,

as desired.
If j = i− 1, then we have immediately:

ai,i−1 =
1

(λi − µi−1 − 1)!
=

1

(2− 1)!
= 1.

Concerning the case j = i−2, since µi−1 = λi−2 and µi−2 ≥ µi−1, we observe that λi−µi−2 ≤ 2,
and that the equality holds precisely when µi−1 = µi−2, i.e. when ai = λi−1 − µi−1 = 2. Thus we get:

ai,i−2 =
1

(λi − µi−2 − i+ i− 2)!
= χai−1=2.

Finally, if i > j + 2, then the denominator of ai,j is easily seen to be negative, hence ai,j = 0. 2

From a theoretical point of view, Theorem 4.2 completely solves the problem of the enumeration of
d-minimal permutations with respect to their length, giving a formula for pd+k,d. Unfortunately, it is clear
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that such a formula is very difficult to use in concrete cases, due to its intrinsic complexity. However, using
our result we are able to recover some known cases (namely k = 1, 2, d), as well as to get a formula for
the case k = 3 (that is, d-minimal permutations of length d+3), which was first discovered in [MY] with
different methods in terms of generating functions. Moreover, essentially by inspection of the formula
found in Theorem 4.2, we also describe the general form of a formula for pd+k,d and specialize it to a
closed form when k = 4.

We start by collecting in a single theorem the known cases k = 1, 2, d, showing how they can be
derived from Theorem 4.2.

Theorem 4.3 ([BP]) The following equalities hold:

pd+1,d = 1,

pd+2,d = 2d+2 − (d+ 1)(d+ 2)− 2,

p2d,d = Cd,

where we denote by Cd = 1
d+1

(
2d
d

)
the d-th Catalan number.

Proof: When k = 1, the formula of Theorem 4.2 becomes completely trivial:

pd+1,d = (d+ 1)! ·
∣∣∣∣ 1

(d+ 1)!

∣∣∣∣ = 1.

In the case k = 2, we have a single sum where a 2× 2 determinant appears:

pd+2,d =
∑

a1,a2≥2
a1+a2=d+2

(d+ 2)! ·
∣∣∣∣ 1
a1!

1
(d+1)!

1 1
a2!

∣∣∣∣ = d∑
a=2

((
d+ 2

a

)
− (d+ 2)

)
= 2d+2 − 2(d+ 3)− (d− 1)(d+ 2) = 2d+2 − 2− (d+ 1)(d+ 2).

If k = d, the formula of Theorem 4.2 gives a determinantal expression of p2d,d:

p2d,d = (2d)! ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2!

1
3!

1
4!

1
5!

1
6! · · · 1

(d+1)!

1 1
2!

1
3!

1
4!

1
5! · · · 1

d!
1 1 1

2!
1
3!

1
4! · · · 1

(d−1)!

0 1 1 1
2!

1
3! · · · 1

(d−2)!

0 0 1 1 1
2! · · · 1

(d−3)!

...
...

...
...

...
. . .

...
0 0 0 0 0 · · · 1

2!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

From Theorem 4.1, it can be seen that this determinant counts Young tableaux of rectangular shape having
d rows and 2 columns, which are counted by Catalan numbers (see [St2]). 2

Notice that there are several ways to recover the equality p2d,d = Cd. Indeed, the fact that p2d,d
counts Young tableaux of rectangular shape having d rows and 2 columns is also clear from Proposi-
tion 3.1, and another combinatorial proof of p2d,d = Cd is given in [BP]. Also, as pointed out to the
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authors by Krattenthaler, the equality between the determinant in the proof of Theorem 4.3 and the d-th
Catalan number can be obtained by letting q tend to 1, A tend to ∞ and Li = 2 − i in formula (3.12)
of [K].

We next proceed with the evaluation of pd+3,d.

Theorem 4.4 The following equality holds:

pd+3,d = 3d+3 − (d2 + 4d+ 7) · 2d+2 +
1

2
d4 +

5

2
d3 + 5d2 + 6d+ 1.

Proof: Applying Theorem 4.2 in the case k = 3, we obtain:

pd+3,d =
∑

a,b,c≥2
a+b+c=d+3

(d+ 3)! ·

∣∣∣∣∣∣
1
a!

1
(a+b−1)!

1
(d+1)!

1 1
b!

1
(b+c−1)!

χb=2 1 1
c!

∣∣∣∣∣∣ .
Expanding the determinant and grouping the terms where χb=2 appears, we then obtain:

pd+3,d =
∑

a,b,c≥2
a+b+c=d+3

(
(d+ 3)!

a!b!c!
+ (d+ 2)(d+ 3)− (d+ 3)!

a!(b+ c− 1)!
− (d+ 3)!

c!(a+ b− 1)!

)

+
∑
a,c≥2

a+c=d+1

(
(d+ 3)!

(a+ 1)!(c+ 1)!
− (d+ 2)(d+ 3)

2

)
,

and we compute a closed form for each of the six sums appearing above.
It is readily checked that ∑

a,b,c≥2
a+b+c=d+3

(d+ 2)(d+ 3) =
(d+ 2)(d+ 3)(d− 1)(d− 2)

2

and
∑
a,c≥2

a+c=d+1

(d+ 2)(d+ 3)

2
=
(d+ 2)(d+ 3)(d− 2)

2
.

For the terms
∑

a,b,c≥2
a+b+c=d+3

(d+3)!
a!(b+c−1)! =

∑
a,b,c≥2

a+b+c=d+3

(d+3)!
c!(a+b−1)! , we may write:

∑
a,b,c≥2

a+b+c=d+3

(d+ 3)!

a!(b+ c− 1)!
=

d−1∑
a=2

d+1−a∑
b=2

(d+ 3)!

a!(d+ 2− a)!
=

d−1∑
a=2

(d− a)
(d+ 3)!

a!(d+ 2− a)!

= d(d+ 3)

d−1∑
a=2

(d+ 2)!

a!(d+ 2− a)!
− (d+ 2)(d+ 3)

d−1∑
a=2

(d+ 1)!

(a− 1)!(d+ 1− (a− 1))!

= d(d+ 3)

(
2d+2 − 2− 2(d+ 2)− (d+ 2)(d+ 1)

2

)
− (d+ 2)(d+ 3)

(
2d+1 − 2− (d+ 1)− d(d+ 1)

2

)
= (d+ 3)

(
2d+1(d− 2)− d(d+ 1) + 6

)
.
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The two remaining sums are handled using the fact that binomial (resp. trinomial) coefficients count set
partitions of a set into 2 (resp. 3) disjoint subsets. Namely, denoting the disjoint union by ], we have:

∑
a,c≥2

a+c=d+1

(d+ 3)!

(a+ 1)!(c+ 1)!
=

∑
a,c≥3

a+c=d+3

(d+ 3)!

a!c!

=
∑

I]J=[d+3]

χ|I|≥3 · χ|J|≥3

=
∑

I]J=[d+3]

(1− χ|I|<3) · (1− χ|J|<3)

=
∑

I]J=[d+3]

1 − 2
∑

I]J=[d+3]

χ|I|<3 +
∑

I]J=[d+3]

χ|I|<3 · χ|J|<3

= 2d+3 − 2

(
1 + (d+ 3) +

(d+ 3)(d+ 2)

2

)
as soon as d ≥ 1

and

∑
a,b,c≥2

a+b+c=d+3

(d+ 3)!

a!b!c!
=

∑
I]J]K=[d+3]

(1− χ|I|<2) · (1− χ|J|<2) · (1− χ|K|<2)

=
∑

I]J]K=[d+3]

1 − 3
∑

I]J]K=[d+3]

χ|I|<2

+ 3
∑

I]J]K=[d+3]

χ|I|<2 · χ|J|<2 −
∑

I]J]K=[d+3]

χ|I|<2 · χ|J|<2 · χ|K|<2

= 3d+3 − 3

 ∑
J]K=[d+3]

1 + (d+ 3) ·
∑

J]K=[d+2]

1


+ 3

(
1 + 2(d+ 3) + (d+ 3)(d+ 2)

)
since d ≥ 0

= 3d+3 − 3
(
2d+3 + (d+ 3)2d+2

)
+ 3
(
1 + (d+ 3)(d+ 4)

)
.

The closed formula for pd+3,d is then simply obtained by summing up the contributions of these 6
terms. 2

Table 1 shows the first few terms of the sequence (pd+3,d)d.

d 3 4 5 6 7 8 9
pd+3,d 5 84 686 3936 18387 75372 283052

Tab. 1: The first few terms of the sequence (pd+3,d)d
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We close the section with the evaluation of pd+4,d.
We start by observing that the formula in Theorem 4.2 suggests that pd+k,d is a linear combination

of suitable powers of i, for i = 1, . . . k, with polynomial coefficients. Specifically, we have an expression
of the form

pd+k,d = kd+k + P
(k)
1 (d) · (k − 1)d+k + P

(k)
2 (d) · (k − 2)d+k + · · ·+ P

(k)
k−1(d) · 1

d+k, (2)

where the P (k)
i (d)’s are polynomials of suitable degrees. In particular, when k = 4, we get

pd+4,d = 4d+4 + P
(4)
1 (d) · 3d+4 + P

(4)
2 (d) · 2d+4 + P

(4)
3 (d) · 1d+4.

In this case we can be more precise: we expand the generic determinant in Theorem 4.2 and find
an upper bound on the contribution of each term to the degrees of the P (4)

i (d)’s, namely degP
(4)
1 (d) ≤

2,degP
(4)
2 (d) ≤ 4,degP

(4)
3 (d) ≤ 6. Thus, using our formula (and suitable software, such as Maple) to

compute the first values of pd+4,d, we can write a linear system whose indeterminates are the coefficients
of the P (4)

i (d)’s. Solving such a system (again using Maple), we finally obtain the following:

Theorem 4.5 For all d ≥ 1,

pd+4,d = 4d+4 − (d2 + 5d+ 10)3d+3 +

(
1

2
d4 +

7

2
d3 + 10d2 + 16d+ 4

)
2d+2

−
(
1

6
d6 + d5 +

4

3
d4 +

1

3
d3 − 1

2
d2 − 19

3
d+ 4

)
.

Our analysis of the case k = 4 should clearly show that an analogous derivation of the term pd+5,d,
and of all the subsequent ones, could be carried on, at least in principle. The problem of suitably organiz-
ing the many expressions arising actually prevents from doing it in practice.

5 A generalization
The main motivation of the present paper is the study of d-minimal permutations and, in particular,

their enumeration. Our approach is based on a bijection between the set of d-minimal permutations and a
special class of skew Young tableaux, namely those in which every pair of consecutive rows has precisely
two columns in common. Denote by SkY T2(n, k) this set of tableaux, n being the number of cells and k
the number of rows. We can generalize this setting in a very natural way, by defining the set SkY Th(n, k)
of skew Young tableaux having n cells and k rows such that any two consecutive rows have precisely
h ≥ 1 columns in common. In this final section we wish to relate these tableaux with some families of
permutations, as well as to describe some enumerative results for low values of h.

Our first result is a generalization of Theorem 3.1.

Theorem 5.1 The set SkY Th(d + k, k) is in bijection with the set of permutations π of length d + k
having exactly d descents and satisfying the following property (call it DESh(π)):

DESh(π)


for every i ≤ h− 1, by deleting i elements of π
and renaming the remaining ones in the usual way,
the resulting permutation τ has precisely d− i descents.
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Proof: Denote by S(h)
d+k(d) the set of permutations π of length d + k having precisely d descents and

satisfying DESh(π). Define a map f : S
(h)
d+k(d) → SkY Th(d + k, k) by suitably generalizing the one

given in Proposition 3.1: starting from the bottom, the i-th row of the tableau consists of the elements of
the i-th descending run of π, and two consecutive rows are required to have exactly h columns in common.
We claim that this map is well-defined. Indeed suppose, by way of contradiction, that in f(π) there is a
column in which a is above b and a < b. Without loss of generality, we can assume that a is in the cell
immediately above b. Then, removing the h−1 entries of π preceding a, following b and belonging to the
columns common to the rows of a and b, we obtain a permutation τ having d− h+ 2 descents, as shown
in Figure 5. Hence, π does not satisfy DESh(π). The fact that f is injective and surjective is trivial, and
follows directly from its definition. 2

b

a

h cells

h− 1 points

b

a

Fig. 5: Proof of Theorem 5.1. The gray area corresponds to the h− 1 points removed in the proof.

It is clear that, when h = 2, we get precisely Theorem 3.1, since the resulting class of permutations
is that of d-minimal permutations.

We also have a characterization of the above classes of permutations in terms of patterns, which
follows quite easily from the above theorem, and so will be stated without proof.

Theorem 5.2 A permutation σ belongs to S(h)
d+k(d), for some k, if and only if it has exactly d descents

and its ascents occur in the middle of a consecutive pattern of the form π = π1π2, where π1 and π2 are
words of the same length h, both decreasing and π1 < π2 componentwise.

Having introduced this generalized setting, it is natural to ask what happens when h < 2.
If h = 1, what we obtain is the class of permutations having exactly d descents. It is well known

that the number of permutations of length n having d descents is given by the Eulerian number An,d (se-
quence A008292 in [Sl]). Using our approach, we find the following determinant expression for Eulerian
numbers:

Ad+k,d =
∑

a1,a2,...,ak≥1
a1+a2+···+ak=d+k

(d+ k)! · det(B(a1, . . . , ak)),
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where B(a1, . . . , ak) is the following matrix:

1
a1!

1
(a1+a2)!

1
(a1+a2+a3)!

· · · 1
(a1+···+ak−1)!

1
(a1+···+ak)!

1 1
a2!

1
(a2+a3)!

· · · 1
(a2+···+ak−1)!

1
(a2+···+ak)!

0 1 1
a3!

· · · 1
(a3+···+ak−1)!

1
(a3+···+ak)!

...
... 1

. . .
...

...

0 0 · · ·
. . . 1

ak−1!
1

(ak−1+ak)!

0 0 0 · · · 1 1
ak!


.

In other words, B(a1, . . . , ak) is the k × k matrix whose entries bi,j obey the following equalities:

bi,j =
1

(ai + · · ·+ aj)!
, when i ≤ j,

bi,i−1 = 1,

bi,j = 0, when i ≥ j + 2.

The above formula for Eulerian numbers comes as no surprise. Indeed, it can be seen as a conse-
quence of Example 2.2.4 in [St1], where it is shown that each of the above summands counts permutations
of length d+ k having specified descent set. This result is attributed to MacMahon by Stanley.

We point out that the determinant of the matrix B(a1, . . . , ak) has a very neat recursive expression,
from which a closed formula can be deduced.

Proposition 5.1 Set D(a1, . . . , ak) = det(B(a1, . . . , ak)). Then

D(a1, a2, . . . , ak) =
1

a1!
·D(a2, a3, . . . , ak)−D(a1 + a2, a3, . . . , ak).

Proof: Just expand D(a1, . . . , ak) with respect to its first column. 2

Corollary 5.1 The following formula holds:

D(a1, . . . , ak) =

k∑
i=1

(−1)k−i ·
∑

α=(α1,...,αi)

α∈PL(a1,··· ,ak)

1

|α1|! · . . . · |αi|!
, (3)

where PL(a1, · · · , ak) denotes the set of linear partitions of the totally ordered set {a1, . . . , ak} and |αi|
is the sum of the elements of the block αi.

Proof: We start by observing that, when k = 1, the outer sum of the r.h.s of (3) reduces to a single
summand (for i = 1), as well as the inner sum, which has the unique summand 1

a1!
. Moreover, when

k = 2, the r.h.s. of (3) consists of two summands, which are (−1) · 1
(a1+a2)!

(for i = 1) and 1
a1!
· 1
a2!

(for
i = 2), and this coincides with the expression of D(a1, a2).

We can now conclude our proof using an inductive argument. The set PL(a1, · · · , ak) can be parti-
tioned into two subsets, namely the linear partitions in which a1 occurs as a singleton (call this subset X)
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and the linear partitions in which a1 occurs in a block of cardinality at least 2 (call this subset Y ). Using
this partition of PL(a1, · · · , ak) we can split the sum in the r.h.s of (3) into two sums, the first taking into
account the contribution of X and the second taking into account the contribution of Y . We thus obtain
the following equalities:

∑
α=(α1,...,αi)

α∈PL(a1,··· ,ak)

1

|α1|! · . . . · |αi|!
=

1

a1!
·

∑
β=(β1,...,βj)

β∈PL(a2,··· ,ak)

1

|β1|! · . . . · |βj |!

+
∑

γ=(γ1,...,γt)

γ∈PL({a1,a2},a3,··· ,ak)

1

|γ1|! · . . . · |γt|!
,

whence, using the induction hypothesis and the above proposition:

k∑
i=1

(−1)k−i ·
∑

α=(α1,...,αi)

α∈PL(a1,··· ,ak)

1

|α1|! · . . . · |αi|!

=
1

a1!
·D(a2, . . . , ak)−D(a1 + a2, a3, . . . , ak) = D(a1, . . . , ak),

as desired. 2

Remark. An alternative approach to the case h = 1 could be done via the notion of Hessenberg
matrix. An (upper) Hessenberg matrix is a square matrix having zero entries below the first subdiagonal.
Hessenberg matrices prove their usefulness especially in numerical analysis and computer programming,
being a sort of normal form to which any square matrix can be reduced in a finite number of steps. There
are also some papers in the literature concerning the evaluation of the determinant of certain Hessenberg
matrices having special form (see for instance [BS] and [LCT]). In [T], the determinant of Hessenberg
matrices having all the elements of the first subdiagonal equal to 1 is considered (this is precisely the kind
of matrices we meet in the determinant formula for Eulerian numbers).

Theorem 5.1 does not have any meaning when h = 0. The corresponding set SkY T0(n, k) consists
of all skew Young tableaux having n cells and k rows such that any two consecutive rows only have the
corners of two cells in common. In this case, it is immediate to see that SkY T0(n, k) is in bijection
with all surjective functions from an n-set to a k-set: just interpret the elements of a tableau as balls and
the rows of a tableau as boxes. Thus we get immediately that |SkY T0(n, k)| = k! · S(n, k), where the
S(n, k)’s are the Stirling numbers of the second kind. We can also use Theorem 4.1 to get an analog of
Theorem 4.2; indeed, we can derive the following formula:

|SkY T0(d+ k, k)| =
∑

a1,a2,...,ak≥1
a1+a2+···+ak=d+k

(d+ k)! · det(C(a1, . . . , ak)),
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where C(a1, . . . , ak) is the following triangular matrix:

1
a1!

1
(a1+a2+1)!

1
(a1+a2+a3+2)! · · · 1

(a1+···+ak−1+k−2)!
1

(a1+···+ak+k−1)!

0 1
a2!

1
(a2+a3+1)! · · · 1

(a2+···+ak−1+k−3)!
1

(a2+···+ak+k−2)!

0 0 1
a3!

· · · 1
(a3+···+ak−1+k−4)!

1
(a3+···+ak+k−3)!

...
...

. . . . . .
...

...
0 0 · · · 0 1

ak−1!
1

(ak−1+ak+1)!

0 0 0 · · · 0 1
ak!


.

From here it is then immediate to obtain |SkY T0(d + k, k)| =
∑

a1,a2,...,ak≥1
a1+a2+···+ak=d+k

(
d+k

a1,...ak

)
which

is known to be the number of surjective functions from an (d + k)-set to a k-set, as already shown a few
lines above.

6 Further work
Even if our approach to the enumeration of d-minimal permutations allows us to completely solve the

problem from a purely theoretical point of view, it is doubtless that its application to concrete cases leads
to some technical difficulties. This is of course due to the intrinsic complexity of the sums of determinants
appearing in Theorem 4.2. However, it seems plausible that at least a few more cases than those we deal
with in the present paper can be managed by means of our technique. A major difficulty is to find (an
upper bound on) the degrees of the polynomials of formula (2). In the case k = 4 we proved our bounds
with a case by case analysis, but we have not been able to find similar bounds for general k.

Another interesting problem that remains untouched concerns the study of the structure of the poset
determined by a minimal permutation with d descents, defined in [BP] and recalled here in Section 2. For
instance, one can observe that a d-minimal permutation corresponds to a linear extension of the associated
poset. Moreover, an interesting (and classical) line of research could be the investigation of the properties
of the distributive lattice of the sup-irreducibles of these posets.
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