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Abstract: In this paper, a distributed and networked control system architecture based on independent
Model Predictive Control/Kalman-Filter (MPC/KF) architectures, is proposed. Interconnected sub-
systems, possibly located at different sites, exchange information through the digital communication
network. For the partial local state measurement, the key component for realistic Distributed Predictive
Model Control (DMPC) formulation is the state estimations. These state estimations are generated by
Kalman filters. In this distributed framework, MPC and KF algorithms may require information from
other sub-controllers to achieve their task in a cooperative way. The given distributed and cooperative
control system architecture may be suitable for Fault Tolerant Control (FTC) in a network of distributed
subsystems. The proposed approach is used to implement a Fault Tolerant Control system under actuator
faults within the distributed architecture.

1. INTRODUCTION

Production processes of modern industries are generally com-
posed by different subsystems, which are interconnected and
characterized by significant interactions. At the same time, due
to the high performance requirements, modern control systems
are becoming more and more complex. For these processes,
different control solutions can be developed. A centralized
control solution, where all the interactions are considered, and
provide better performance, which in turn suffer from potential
problems associated with computations and maintenance due to
their size, and their higher risk of failure due to their centralized
nature. A decentralized control structure still remains the most
widely used control structure in the process industries, the rea-
sons for this control choice solution are many, the prominent
being its ability to effectively solve problem of dimensionality,
uncertainty and information structure constraints (Siljak et al.
[2005]). The vast body of existing literature on the decen-
tralized control of large and interconnected systems has been
reviewed in a number of survey papers and books (Ikeda et al.
[1986], Zecevic et al. [2005]). Most decentralized controller
design approaches approximate or ignore the interactions be-
tween the various subsystems (Lunze [1992]). However, the
effectiveness of the decentralized controllers depends on the
magnitude of inherent process interaction (Bristol [1966]). In
the presence of strong process interactions, decentralized con-
trollers can lead to performance deterioration or even instability
(Cui et al. [2002]). An alternative to both decentralized and
full multivariable (centralized) controllers, is the distributed
controllers. This class has a structure that lies in between the
preceding two extreme control structures. Consequently, it is an
attractive option for the situations where the global objective,
such as closed-loop stability and performance requirements,
cannot be met by decentralized controllers while the complexity
in the design and high cost in the installation of centralized
controllers are to be avoided. In order to fulfil the global objec-

tive for the global system, cooperation between the controllers
through a digital communication network might be necessary.
Thanks to the digital network, the required cooperation can be
achieved by means of a proper information exchange between
the controllers. From the control algorithms standpoint, it is
well known that the Model Predictive Control algorithm allows
to deal with complex, multivariable, nonlinear and constrained
systems (Jia et al. [2001]). The MPC strategy is based on an
on-line optimization problem and uses a process model to pre-
dict the effect of potential control action on the evolving state
of the plant. Typically, MPC is implemented in a centralized
fashion. The complete system is modeled and all the control
inputs are computed in one optimization problem. However, for
large and interconnected systems, it may be necessary to have
a distributed control scheme as mentionned above, where lo-
cal control inputs are computed using local measurements and
small order models of the local dynamics. But with information
exchange between the controllers, the objective is to achieve
some degree of cooperation between sub-controllers that are
solving MPC problem with locally relevant variables, costs and
constraints.

Previous works on distributed MPC are reported in (Ventak
et al. [2006a], Mercangoz et al. [2007], Venkat et al. [2005],
Patton et al. [2005], Vaccarini et al. [2006]). A preliminary
analysis of control performance of distributed MPC has been
performed in Vaccarini et al. [2006]. In Ventak et al. [2006a] a
distributed state estimation strategy is developed for supporting
distributed output feedback MPC of large-scale and intercon-
nected systems. Mercangoz et al. [2007] propose a Distributed
Model Predictive Control (DMPC) architecture, based on the
fully decentralized estimation and control structure, where at
each node linear model and local measurements are used to
estimate the plant states. In Venkat et al. [2005], two approaches
to realize a coordination between sub-controllers are proposed:
the so-called communication and cooperation based MPC. In
the cooperation based MPC, each sub-controller knows the



global objective in order to improve optimality and stability and
makes the decentralized strategy very close to the centralized
one. When only the local objectives are known, a hierarchical
decentralized control architecture uses a supervisor to compute
the global optimum and to coordinate the sub-controllers, this
is called communication based MPC (Patton et al. [2005]).

In this paper, we deal with the unconstrained distributed model
predictive control of complex and interconnected systems and
provide an extension of the work of Vaccarini et al. [2009] to
achieve global performance based on the use of a cooperative
strategy between sub-controllers. Here, a local state feedback
is designed based on the distributed MPC scheme. However,
not all the states are measured, and the control input is com-
puted based on the state estimations provided by Distributed
Kalman Filters (DKF). Thanks to the flexibility and the on-
line optimization process inherent to MPC algorithms, we ap-
ply DMPC/DKF to a Fault Tolerant Control (FTC) problem
in a distributed framework. It is worth stressing that the FTC
problem is becoming an important subject in modern control
theory and practice (Aubrun et al. [2003], Patton [1997], Sun
et al. [2008], Maciejowski [1999]). That is to say, an FTC
structure has the ability to continue operating to fulfill specified
objectives despite of the occurrence faults in systems.

2. REVIEW OF MODELING FOR INTEGRATING MPC

Let the centralized model for the overall system be represented
as a discrete, linear time-invariant (LTI) model has the form

S≡
{

x(k +1) = Ax(k)+Bu(k)
y(k) = Cx(k)

(1)

where x(k) ∈ Rnx , u(k) ∈ Rnu and y(k) ∈ Rny are state, control
input and output, respectively with corresponding dimensions,
nx, nu, ny.
In the decentralized modeling framework, it is assumed that the
subsystem-subsystem interactions have a negligible effect on
system variables, i.e, we suppose the previous overall model
S is composed of N subsystems Sii, each of the subsystem is
represented by the following state space equations

Sii ≡
{

xi(k +1) = Aiixi(k)+Biiui(k)
yi(k) = Ciixi(k) i = 1,2, ...,N

(2)

where xi(k) ∈ Rnxi , u(k) ∈ Rnui and y(k) ∈ Rnyi are the local
state, control input and output, respectively and nx = ∑i nxi ,
nu = ∑i nui and ny = ∑i nyi . Frequently, components of the inter-
connected system are tightly coupled due the material/energy
and/or information flow between them. In such cases, the de-
centralized assumption leads to a loss in achievable control
performance. It is natural to view the previous overall model S
composed of N subsystems Si which are interacting with each
other through linear interconnections. Each of the subsystem is
represented by the following state space equations

Si ≡
{

xi(k +1) = Aiixi(k)+Biiui(k)+wi(k)
yi(k) = Ciixi(k)+ vi(k) i = 1,2, ...,N

(3)

where the state and output interaction vectors wi and vi are
given by

wi(k) ,
N

∑
j=1; j 6=i

Ai jx j(k)+
N

∑
j=1
j 6=i

Bi ju j(k)

vi(k) ,
N

∑
j=1; j 6=i

Ci jx j(k)

(4)

These vectors represent the interaction of subsystem j 6= i on
subsystem i. The proposed distributed control architecture fos-
ters implementation of cooperation-based strategy for several
interacting processes (3), (4) in order to get closer on the bene-
fits achievable with centralized control.
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Fig. 1. A schematic representation of: A) Centralized control,
B) Decentralized control C) Distributed control.

3. PROBLEM FORMULATION

By means of (3) and (4), the future state and output prediction
over horizon p are given by

x̂i(k + l|k) = Al
iix̂i(k|k)+

l

∑
s=1

As−1
ii

[
Biiui(k + l− s|k)

+ ŵi(k + l− s|k−1)
]

(5)

ŷi(k + l|k) = Ciix̂i(k + l|k)+ v̂i(k + l|k−1) for l = 1,2, ...., p
Given overall system S composed by N interactive subsystems
Si, i = 1,2, ...,N, the unconstrained Distributed Model Predic-
tive Control problem with prediction horizon pi > 0 and control
horizon mi > 0 two integer values, with mi < pi consists of
finding, at time k, a set of independent sub-controllers Ci such
that each Ci minimizes its local cost function Ji

Ji =
p

∑
l=1
‖ ŷi(k + l|k)− yd

i (k + l|k) ‖2
Qi

+
m

∑
l=1
‖ ∆ui(k + l−1|k) ‖2

Ri

(6)

subject to
{

predictive model constraints given by(5)
initial condition : x̂i(k|k) = x̂i(k)

where
‖ χ ‖2

Λ , χT Λχ .
yd

i (k + l|k): the desired output.
∆ui(k+ l−1|k): future control increment at time k, with ui(k) =
ui(k−1)+∆ui(k|k).
Qi : symmetric and positive semi definite (SPSD) matrix of
appropriate dimension (Qi º 0).
Ri : symmetric and positive definite (SPD) matrix of appropriate
dimension (Ri Â 0).

4. COOPERATION BASED DISTRIBUTED MPC
PROBLEM

In order to find an explicit solution to the DMPC problem, each
sub-controller Ci is decomposed in three connected function



blocks: an optimizer, a state predictor and an interaction pre-
dictor. In the sequel of this paper, the following assumptions
are made
• the prediction and control horizons are the same for each

sub-controller, i.e, mi = m j = m, pi = p j = p, ∀i, j =
1,2, ...,N, j 6= i;

• the sub-controllers are synchronous;
• the sub-controllers communicate only once within a sam-

pling interval;
• the communication channel introduces a delay of one

sampling period.

To simplify the mathematical expressions, some notations are
adopted in following. Given the scalar numbers a, b∈ N.

• 0a×b is the a×b null matrix;
• 0a is the a×a null matrix;
• Ia×b is the a×b identity matrix;
• Ia is the a×a identity matrix;
• diaga{A } is a diagonal block matrix made by a blocks

equal to A ;

Interaction prediction : Under the assumptions, at step k, the
predictions of the interaction vectors are given by

Ŵi(k, p|k−1) = ÃiX̂(k, p|k−1)+ B̃iΓ̃iU(k−1,m|k−1)
V̂i(k, p|k−1) = C̃iX̂(k, p|k−1)

(7)

Ãi , [diagp{Ai,1}....diagp{Ai,i−1} 0nxi
diagp{Ai,i+1}

...diagp{Ai,N}]
B̃i , [diagp{Bi,1}....diagp{Bi,i−1} 0nxi

diagp{Bi,i+1}
...diagp{Bi,N}]

C̃i , [diagp{Ci,1}....diagp{Ci,i−1} 0nxi
diagp{Ci,i+1}

...diagp{Ci,N}]

Where

X̂i(k, p|k) ,




x̂i(k|k)
x̂i(k +1|k)

...
x̂i(k + p−1|k)


 , X̂(k, p|k) ,




X̂1(k, p|k)
X̂2(k, p|k)

...
X̂N(k, p|k)




Ui(k,m|k) ,




ui(k|k)
ui(k +1|k)

...
ui(k +m−1|k)


 , U(k,m|k) ,




U1(k,m|k)
U2(k,m|k)

...
UN(k,m|k)




Γ̃i ,




0(m−1)nui×nui
I(m−1)nui

0nui×(m−1)nui
Inui

0nui×(m−1)nui
Inui

...
...

0nui×(m−1)nui
Inui




State predictor : Under the assumptions, at step k, the local
state prediction for the sub-controller Ci is expressed by

X̂i(k+1, p|k) = L̄ix̂i(k|k)+M̄iUi(k,m|k)+ S̄iŴi(k, p|k−1)
(8)

S̄i ,




A0
ii . . . 0nxi
...

. . .
...

Ap−1
ii . . . A0

ii


 , L̄i , S̄i

[
Aii

0pnxi×nxi

]

M̄i , S̄i




diagm{Bii}
0nui

...... 0nui
Bii

...
. . .

...
...

0nui
...... 0nui

Bii




Optimal Control Sequence : Under the assumptions, at step
k, the optimal control sequence Ui(k,m|k) is

Ui(k,m|k) = Γ′iui(k−1)+ Γ̄iK̄i[(Y d
i (k+1, p|k)−Miui(k−1)

−C̄iL̄ix̂i(k|k)−C̄iS̄iŴi(k, p|k−1)]−TiV̂i(k, p|k−1) (9)

C̄i , diagp{Cii},Hi ,
l

∑
s=1

CiiAs−1
ii Bii

Mi ,




H 1
i

...
H p

i


 , Γ′i

(m blocs)
,




Inui
...

Inui


 , Γ̄i
(m×m blocs)

,




Inui
. . . 0

...
. . .

...
Inui

. . .Inui




Ti ,
[

0(p−1)nyi×nyi
I(p−1)nyi

0nyi×(p−1)nyi
Inyi

]

the explicit form of the control action applied by the Ci of the
subsystem Si is given by

ui(k) = ui(k−1)+Ki

[
(Y d

i (k +1, p|k)−Miui(k−1)

−C̄iL̄ix̂i(k|k)−C̄iS̄iŴi(k, p|k−1)
]
−TiV̂i(k, p|k−1) (10)

Γi , [Inui
0nui×(m−1)nui

], K̄i = [NT
i Q̄iNi + R̄i]−1NT

i Q̄i,Ki , ΓiK̄i

Q̄i , diagp{Q̄i}, R̄i , diagp{R̄i},Ni = C̄iS̄iB̄iΓ̄i

We refer to Vaccarini et al. [2009] for more details. In the next
section, we review the distributed Kalman-filtering algorithm to
generate the optimal states estimation, in order to use it in state
feedback distributed MPC law.

5. DISTRIBUTED STATE ESTIMATION WITH
MEASUREMENTS EXCHANGE

For large, networked systems, organizational and geographic
constraints may preclude the use of centralized estimation
strategies. The Kalman filter addresses the problem of estimat-
ing the state of a linear discrete-time for each subsystem (3)
augmented with gaussian white noises, given by

xi(k +1) = Aiixi(k)+Biiui(k)+wi(k)+Giωbxi

yi(k) = Ciixi(k)+ vi(k)+νbi i = 1,2, ...,N
(11)

The conditional density of the subsystem state xi, given the set
of measurements yi, i = 1,2, ...,N, is assumed to be normally
distributed. For each subsystem i, the vectors ωbxi ∈ Rnwi and
νbi ∈Rnyi denote the disturbances on the subsystem model state
equation and output equation respectively, and are modeled as
uncorrelated, zero mean, white sequences with corresponding
covariance matrices Qxi and Rvi respectively. The matrices, Qxi

and Rvi are considered to be block diagonal and Gi ∈ Rni×nwi

denotes the shaping matrix for the state disturbance ωbxi . Based
on (3) and (4), the observer predictor equation for subsystem i
is written as



x̂i(k+1|k)= Aiix̂i(k|k−1)+Biiui(k)+
N

∑
j=1, j 6=i

[
Ai j x̂ j(k|k−1)+Bi ju j(k)

]

+Lii

[
yi(k)−Ciix̂i(k|k−1)

]
+

N

∑
j=1, j 6=i

Li j

[
y j(k)−Ci j x̂ j(k|k−1)

]
(12)

The objective is to design distributed observers consisting of
N separate communicating observers which minimize the lo-
cal state estimation error covariance matrix. Let (Aii,Cii) be
detectable for each i = 1,2, ...,N, then, it is possible to con-
struct a local observer of the form (12) for subsystem Si. The
Kalman gain Lii(k) can be computed at every step k so that it
minimizes the estimation error covariance matrix Pii(k). Then,
assuming that at step k− 1, the prediction error covariance
matrix is Pii(k−1), the estimation error covariance matrix and
the Kalman gain at step k are expressed by

Pii(k)=
(

I−Lii(k)Cii

)(
AiiPii(k−1)AT

ii +
N

∑
j=1, j 6=i

Ai jPj j(k−1)AT
i j+

GiQxiG
T
i

)
×

(
I−Lii(k)Cii

)T
+Lii(k)RviL

T
ii (k)+

N

∑
j=1, j 6=i

Lii(k)Ci jPj j(k−1)
(
Lii(k)Ci j

)T
(13)

Lii(k)=
(

Cii(AiiPii(k−1)AT
ii+

N

∑
j=1, j 6=i

Ai jPj j(k−1)AT
i j +GiQxiG

T
i

)T
×

[(
Cii

(
AiiPii(k−1)AT

ii +
N

∑
j=1
j 6=i

Ai jPj j(k−1)AT
i j +GiQxi G

T
i

)
CT

ii+Rvi

+
N

∑
j=1; j 6=i

Ci jPj j(k−1)CT
i j

)−1]T

(14)

The following lemma establishes a design procedure for dis-
tributed estimation.
Lemma(Ventak et al. [2006a]): Let the couple (A,C) of the
overall system (1) be detectable and let (Aii,Cii) also be de-
tectable for each i = 1,2, ...,N. The set of subsystem-based
distributed observers is given by (12) with

• Lii from (14)
• Li j = Ai jCT

j j(C j jCT
j j)
−1

In order to implement the distributed Kalman filter, we proceed
by the following two steps

• Prediction

x̂i(k|k−1) = Aiix̂i(k−1|k−1)+Biiui(k−1)+
N

∑
j=1; j 6=i

[
Ai j x̂ j(k−1|k−1)+Bi ju j(k−1)

]
(15)

Pii(k|k−1) = AiiPii(k−1|k−1)AT
ii +

N

∑
j=1; j 6=i

[
Ai jPj j(k−1|k−1)AT

i j

]
+GiQxi G

T
i (16)

At each site, this prediction steps are performed locally
prior to information exchange between the different sites.

• Estimation (update or correction):

x̂i(k +1) = x̂i(k|k−1)+Lii

[
yi(k)−Ciix̂i(k|k−1)

]
+

N

∑
j=1; j 6=i

Li j

[
y j(k)−Ci j x̂ j(k|k−1)

]
(17)

Pii(k) =
(

I−Lii(k)Cii

)(
Pii(k|k−1)

)(
I−Lii(k)Cii

)T
+

Lii(k)RviL
T
ii (k)+

N

∑
j=1; j 6=i

Lii(k)Ci jPj j(k|k−1)
(

Lii(k)Ci j

)T
(18)

For the ith sub-controller Ci, the algorithm is described as
follows. The desired output Y d

i (k + l|k) for sub-controller Ci is
provided by a proper reference generator. Each sub-controller
Ci implements the following steps
(1) Set k = 1
(2) Acquire by network the predicted future state trajectories

X̂ j(k, p|k− 1) and control inputs U j(k− 1,m|k− 1) from
sub-controllers C j.

(3) Build X̂(k, p|k− 1) and U(k− 1,m|k− 1) by combining
the local state trajectory X̂i(k, p|k− 1) and control input
Ui(k−1,m|k−1) with the acquired information, and com-
pute the corresponding predictions of the interactions see
(7).

(4) Get state estimations x̂i(k) from the local Kalman filter
and the desired trajectory Y d

i (k + l|k) over the horizon p.
(5) Compute the optimal control sequence and broadcast it by

network to sub-controllers C j, see (9).
(6) Apply the first element ui(k) = ui(k|k) = ΓiUi(k,m|k) of

the optimal sequence Ui(k,m|k) as control input to Si.
(7) Compute the future state trajectory of subsystem Si over

the horizon p and broadcast it by network to sub-
controllers C j see (8).

(8) Increment the sample time index k← k +1 and go to step
2.

A diagram which represents the structure of the DMPC con-
troller is presented in Fig. 1
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Fig. 2. Internal structure of the ith MPC sub-controller Ci.

6. NUMERICAL EXAMPLE AND APPLICATION TO AN
FTC ISSUES

In this section we illustrate the DMPC/DKF on a nominal
model and apply it also to an FTC problem through an example.
Component failures such as actuator, sensor and even network
failure are inevitable during process runtime. Such faults may
change the dynamics of system, lead to performance degrada-
tion, and even result in instability. In this section, we illustrate
the fault tolerance capability of the DMPC/DKF to handle
failures on controlled system trough simulation. Consider the
following randomly generated discrete-time system

6.1 Nominal case



x(k +1) =


0.52 0.028 0 0.1 0 0
0 0.772 0.002 0 0 0.2
0 0 0.0407 0.05 0 0
0 0 0 0.107 0 0

0.02 0 0.02 0 0.21 0.034
0 0 0.02 0.02 0 0.99




x(k)

+




0 0
0.001 0
0.787 0

0 0.787
0 0
0 0.001



u(k)

+




0.1 0 0 0 0 0
0 0.1 0 0 0 0
0 0 0.1 0 0 0
0 0 0 0.1 0 0
0 0 0 0 0.10
0 0 0 0 00.1



ωb(k)

y(k) =
[

1 1 0 0 0 0
0 0 0 1 1 0

]
(19)

The nominal control objective is to keep the output at specified
desired values in the face of states and output disturbance. The
examination of the process model leads to decomposition into
two interconnected subsystems S1 and S2 of the form (3) with
state-space realization.

A11 =

[ 0.52 0.028 0
0 0.772 0.02
0 0 0.0407

]
, A12 =

[ 0.1 0 0
0 0 0.2

0.05 0 0

]

A22 =

[ 0.107 0 0
0 0.21 0.034

0.02 0 0.99

]
, A21 =

[ 0 0 0
0.02 0 0.02

0 0 0.02

]

B11 =

[ 0
0.001
0.787

]
, B22 =

[ 0.787
0

0.001

]

C11 =
[

1 1 0
]
, C22 =

[
1 1 0

]

Based on the decomposition, the DMPC/DFK sub-controllers
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Fig. 3. Output responses with controllers implementing the
proposed distributed MPC/KF coordination strategy.

C1 and C2 of Fig.2 are computed and implemented on the
subsystems. The simulation result illustrated in Fig.3 shows
clearly that the proposed DMPC/DFK algorithm performs quite
very well. Here each MPC needs his local KF to estimate the
relevant state from noisy measurement and input disturbance
model to eliminate steady-state offset.

6.2 Fault case

In the context of the set-point tracking problem, we consider
partial actuator failure as evidenced by a reduction of control
effectiveness. When the ith actuator fails, such fault can be
expressed by

u f
i =

(
Inui

+ γi(k)
)
ui (20)

where −1 ≤ γi(k) ≤ 0, i = 1,2, ...,N are control effectiveness
factors. The two extreme cases γi(k) = 0 and γi(k) = −1
relates to the faulty-free case and to the complete actuator
failure case respectively. However, the system should be remain
controllable under actuator fault and thus excludes (de facto)
the case γi(k) = −1 for all i = 1,2, ...,N. The state equation
with partial actuator failures reads as

xi(k +1) = Aiixi(k)+Bii
(
Iuyi

+ γi(k)
)
ui(k)+wi(k)+Giωbxi

yi(k) = Ciixi(k)+ vi(k)+νbi i = 1, ....,N
(21)

We assume knowledge of the evolution and the estimation of
the control effectiveness factors γi(k) which might be provided
by local FDI modules. This fault information is passed on-line
to the sub-controller to yield the internal faulty model (21) in
the place of the fault free model given by (11). The internal
faulty model matches therefore the actual plant dynamics for
the MPC formulation.
For the plant (19), we consider a partial actuator failure with
γ2=30% occurring at time t = 80s, and we assume that at time
t = 100s the fault is detected and isolated by a FDI module.
Using the updated on-line local faulty model, the DMPC/DKF
strategy is illustrated in Fig. 4 where it is shown that the
proposed cooperative-based algorithm has the ability to cope
with actuator failure in interconnected system.
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Fig. 4. Fault accommodation effect.

7. CONCLUSIONS AND FUTURE WORKS

7.1 Conclusions

In this present study, a formulation of distributed state pre-
diction and model predictive control for linear interconnected
process is presented. The solution is based on local Kalman
filters that provides state estimations, which are used in MPC
formulation when the states are unmeasurable. The methodol-
ogy is demonstrated on an example and track the set-point with-
out error. Furthermore, a fault tolerant DMPC/DFK scheme
is shown to be easily implementable under actuator failure in
some part of the overall system.



7.2 Future Works

The challenge posed by distributed control systems is autonomy
in the presence of faults. This implies that the system should
be renconfigurable and fail-safe. Thus it is necessary to define
a suitable robust observers scheme for diagnosis issues to
generate the fault information. This information provided by
a local FDI module is used to update the on-line model of the
MPC formulation. The future work will focus on the distributed
FDI/FTC design based on DMPC formulation.
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