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Distributed state estimation and model predictive control of linear interconnected system : Application to fault tolerant control

In this paper, a distributed and networked control system architecture based on independent Model Predictive Control/Kalman-Filter (MPC/KF) architectures, is proposed. Interconnected subsystems, possibly located at different sites, exchange information through the digital communication network. For the partial local state measurement, the key component for realistic Distributed Predictive Model Control (DMPC) formulation is the state estimations. These state estimations are generated by Kalman filters. In this distributed framework, MPC and KF algorithms may require information from other sub-controllers to achieve their task in a cooperative way. The given distributed and cooperative control system architecture may be suitable for Fault Tolerant Control (FTC) in a network of distributed subsystems. The proposed approach is used to implement a Fault Tolerant Control system under actuator faults within the distributed architecture.

INTRODUCTION

Production processes of modern industries are generally composed by different subsystems, which are interconnected and characterized by significant interactions. At the same time, due to the high performance requirements, modern control systems are becoming more and more complex. For these processes, different control solutions can be developed. A centralized control solution, where all the interactions are considered, and provide better performance, which in turn suffer from potential problems associated with computations and maintenance due to their size, and their higher risk of failure due to their centralized nature. A decentralized control structure still remains the most widely used control structure in the process industries, the reasons for this control choice solution are many, the prominent being its ability to effectively solve problem of dimensionality, uncertainty and information structure constraints [START_REF] Siljak | Control of Large-Scale Systems: Beyond Decentralized Feedback[END_REF]). The vast body of existing literature on the decentralized control of large and interconnected systems has been reviewed in a number of survey papers and books [START_REF] Ikeda | Overlapping Decentralized Control with Input State and Output Inclusion[END_REF], [START_REF] Zecevic | A New Approach to Control Design with Overlapping Information Structure Constraints[END_REF]). Most decentralized controller design approaches approximate or ignore the interactions between the various subsystems [START_REF] Lunze | Feedback Control of Large Scale Systems[END_REF]). However, the effectiveness of the decentralized controllers depends on the magnitude of inherent process interaction [START_REF] Bristol | On a New Mesure of Interaction for Multivariable Process Control[END_REF]). In the presence of strong process interactions, decentralized controllers can lead to performance deterioration or even instability [START_REF] Cui | Performance Limitation in Decentralized Control[END_REF]). An alternative to both decentralized and full multivariable (centralized) controllers, is the distributed controllers. This class has a structure that lies in between the preceding two extreme control structures. Consequently, it is an attractive option for the situations where the global objective, such as closed-loop stability and performance requirements, cannot be met by decentralized controllers while the complexity in the design and high cost in the installation of centralized controllers are to be avoided. In order to fulfil the global objec-tive for the global system, cooperation between the controllers through a digital communication network might be necessary. Thanks to the digital network, the required cooperation can be achieved by means of a proper information exchange between the controllers. From the control algorithms standpoint, it is well known that the Model Predictive Control algorithm allows to deal with complex, multivariable, nonlinear and constrained systems [START_REF] Jia | Distributed Model Predictive Control[END_REF]). The MPC strategy is based on an on-line optimization problem and uses a process model to predict the effect of potential control action on the evolving state of the plant. Typically, MPC is implemented in a centralized fashion. The complete system is modeled and all the control inputs are computed in one optimization problem. However, for large and interconnected systems, it may be necessary to have a distributed control scheme as mentionned above, where local control inputs are computed using local measurements and small order models of the local dynamics. But with information exchange between the controllers, the objective is to achieve some degree of cooperation between sub-controllers that are solving MPC problem with locally relevant variables, costs and constraints.

Previous works on distributed MPC are reported in (Ventak et al. [2006a], [START_REF] Mercangoz | Distributed Model Predictive Control of an Experimental Four-Tank System[END_REF], [START_REF] Venkat | Stability and Optimality of Distributed Model Predictive Control[END_REF], [START_REF] Patton | Challenges of networked control systems:Autonomy, Reconfiguration and Plug and Play[END_REF], [START_REF] Vaccarini | State Space Analysis of Unconstrained Decentralized Model Predictive Control Systems[END_REF]). A preliminary analysis of control performance of distributed MPC has been performed in [START_REF] Vaccarini | State Space Analysis of Unconstrained Decentralized Model Predictive Control Systems[END_REF]. In Ventak et al. [2006a] a distributed state estimation strategy is developed for supporting distributed output feedback MPC of large-scale and interconnected systems. [START_REF] Mercangoz | Distributed Model Predictive Control of an Experimental Four-Tank System[END_REF] propose a Distributed Model Predictive Control (DMPC) architecture, based on the fully decentralized estimation and control structure, where at each node linear model and local measurements are used to estimate the plant states. In [START_REF] Venkat | Stability and Optimality of Distributed Model Predictive Control[END_REF], two approaches to realize a coordination between sub-controllers are proposed: the so-called communication and cooperation based MPC. In the cooperation based MPC, each sub-controller knows the global objective in order to improve optimality and stability and makes the decentralized strategy very close to the centralized one. When only the local objectives are known, a hierarchical decentralized control architecture uses a supervisor to compute the global optimum and to coordinate the sub-controllers, this is called communication based MPC [START_REF] Patton | Challenges of networked control systems:Autonomy, Reconfiguration and Plug and Play[END_REF]).

In this paper, we deal with the unconstrained distributed model predictive control of complex and interconnected systems and provide an extension of the work of [START_REF] Vaccarini | Unconstrained Networked Decentralized Model Predictive Control[END_REF] to achieve global performance based on the use of a cooperative strategy between sub-controllers. Here, a local state feedback is designed based on the distributed MPC scheme. However, not all the states are measured, and the control input is computed based on the state estimations provided by Distributed Kalman Filters (DKF). Thanks to the flexibility and the online optimization process inherent to MPC algorithms, we apply DMPC/DKF to a Fault Tolerant Control (FTC) problem in a distributed framework. It is worth stressing that the FTC problem is becoming an important subject in modern control theory and practice [START_REF] Aubrun | Design of supervised control system for a waste water treatment process[END_REF], [START_REF] Patton | Fault Tolerant Control System: the 1997 situation[END_REF], [START_REF] Sun | Fault-Tolerant Control for Constrained Linear Systems Based on MPC and FDI[END_REF], [START_REF] Maciejowski | Fault Tolerant Aspects of MPC[END_REF]). That is to say, an FTC structure has the ability to continue operating to fulfill specified objectives despite of the occurrence faults in systems.

REVIEW OF MODELING FOR INTEGRATING MPC

Let the centralized model for the overall system be represented as a discrete, linear time-invariant (LTI) model has the form

S ≡ x(k + 1) = Ax(k) + Bu(k) y(k) = Cx(k) (1)
where x(k) ∈ R n x , u(k) ∈ R n u and y(k) ∈ R n y are state, control input and output, respectively with corresponding dimensions, n x , n u , n y .

In the decentralized modeling framework, it is assumed that the subsystem-subsystem interactions have a negligible effect on system variables, i.e, we suppose the previous overall model S is composed of N subsystems S ii , each of the subsystem is represented by the following state space equations

S ii ≡ x i (k + 1) = A ii x i (k) + B ii u i (k) y i (k) = C ii x i (k) i = 1, 2, ..., N (2) 
where

x i (k) ∈ R n x i , u(k) ∈ R n u i
and y(k) ∈ R n y i are the local state, control input and output, respectively and n x = ∑ i n x i , n u = ∑ i n u i and n y = ∑ i n y i . Frequently, components of the interconnected system are tightly coupled due the material/energy and/or information flow between them. In such cases, the decentralized assumption leads to a loss in achievable control performance. It is natural to view the previous overall model S composed of N subsystems S i which are interacting with each other through linear interconnections. Each of the subsystem is represented by the following state space equations

S i ≡ x i (k + 1) = A ii x i (k) + B ii u i (k) + w i (k) y i (k) = C ii x i (k) + v i (k) i = 1, 2, ..., N (3) 
where the state and output interaction vectors w i and v i are given by

w i (k) N ∑ j=1; j =i A i j x j (k) + N ∑ j=1 j =i B i j u j (k) v i (k) N ∑ j=1; j =i C i j x j (k) (4) 
These vectors represent the interaction of subsystem j = i on subsystem i. The proposed distributed control architecture fosters implementation of cooperation-based strategy for several interacting processes (3), ( 4) in order to get closer on the benefits achievable with centralized control.
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PROBLEM FORMULATION

By means of ( 3) and ( 4), the future state and output prediction over horizon p are given by 

xi (k + l|k) = A l ii xi (k|k) + l ∑ s=1 A s-1 ii B ii u i (k + l -s|k) + ŵi (k + l -s|k -1) (5) ŷi (k + l|k) = C ii xi (k + l|k) + vi (k + l|k -1) for l = 1,
J i = p ∑ l=1 ŷi (k + l|k) -y d i (k + l|k) 2 Q i + m ∑ l=1 ∆u i (k + l -1|k) 2 R i (6)
subject to predictive model constraints given by( 5)

initial condition : xi (k|k) = xi (k) where χ 2 Λ χ T Λχ. y d i (k + l|k): the desired output. ∆u i (k +l -1|k): future control increment at time k, with u i (k) = u i (k -1) + ∆u i (k|k).
Q i : symmetric and positive semi definite (SPSD) matrix of appropriate dimension (Q i 0). R i : symmetric and positive definite (SPD) matrix of appropriate dimension (R i 0).

COOPERATION BASED DISTRIBUTED MPC PROBLEM

In order to find an explicit solution to the DMPC problem, each sub-controller C i is decomposed in three connected function blocks: an optimizer, a state predictor and an interaction predictor. In the sequel of this paper, the following assumptions are made • the prediction and control horizons are the same for each sub-controller, i.e, m i = m j = m, p i = p j = p, ∀i, j = 1, 2, ..., N, j = i; • the sub-controllers are synchronous;

• the sub-controllers communicate only once within a sampling interval; • the communication channel introduces a delay of one sampling period.

To simplify the mathematical expressions, some notations are adopted in following. Given the scalar numbers a, b∈ N.

• 0 a×b is the a × b null matrix;

• 0 a is the a × a null matrix;

• I a×b is the a × b identity matrix;

• I a is the a × a identity matrix;

• diag a {A } is a diagonal block matrix made by a blocks equal to A ;

Interaction prediction : Under the assumptions, at step k, the predictions of the interaction vectors are given by

Ŵi (k, p|k -1) = Ãi X(k, p|k -1) + Bi Γi U(k -1, m|k -1) Vi (k, p|k -1) = Ci X(k, p|k -1) (7) Ãi [diag p {A i,1 }....diag p {A i,i-1 } 0 n x i diag p {A i,i+1 } ...diag p {A i,N }] Bi [diag p {B i,1 }....diag p {B i,i-1 } 0 n x i diag p {B i,i+1 } ...diag p {B i,N }] Ci [diag p {C i,1 }....diag p {C i,i-1 } 0 n x i diag p {C i,i+1 } ...diag p {C i,N }] Where Xi (k, p|k)     xi (k|k) xi (k + 1|k) . . . xi (k + p -1|k)     , X(k, p|k)      X1 (k, p|k) X2 (k, p|k) . . . XN (k, p|k)      U i (k, m|k)     u i (k|k) u i (k + 1|k)
. . .

u i (k + m -1|k)     , U(k, m|k)     U 1 (k, m|k) U 2 (k, m|k) . . . U N (k, m|k)     Γi        0 (m-1)n u i ×n u i I (m-1)n u i 0 n u i ×(m-1)n u i I n u i 0 n u i ×(m-1)n u i I n u i . . . . . . 0 n u i ×(m-1)n u i I n u i       
State predictor : Under the assumptions, at step k, the local state prediction for the sub-controller C i is expressed by

Xi (k + 1, p|k) = Li xi (k|k) + Mi U i (k, m|k) + Si Ŵi (k, p|k -1) (8) Si    A 0 ii . . . 0 n x i . . . . . . . . . A p-1 ii . . . A 0 ii    , Li Si A ii 0 pn x i ×n x i Mi Si      diag m {B ii } 0 n u i ...... 0 n u i B ii . . . . . . . . . . . . 0 n u i ...... 0 n u i B ii     
Optimal Control Sequence : Under the assumptions, at step k, the optimal control sequence U i (k, m|k) is

U i (k, m|k) = Γ i u i (k -1) + Γi Ki [(Y d i (k + 1, p|k) -M i u i (k -1) -Ci Li xi (k|k) -Ci Si Ŵi (k, p|k -1)] -T i Vi (k, p|k -1) (9) Ci diag p {C ii }, H i l ∑ s=1 C ii A s-1 ii B ii M i    H 1 i . . . H p i    , Γ i (m blocs)    I n u i . . . I n u i    , Γi (m×m blocs)    I n u i . . . 0 . . . . . . . . . I n u i . . .I n u i    T i 0 (p-1)n y i ×n y i I (p-1)n y i 0 n y i ×(p-1)n y i I n y i
the explicit form of the control action applied by the C i of the subsystem S i is given by

u i (k) = u i (k -1) + K i (Y d i (k + 1, p|k) -M i u i (k -1) -Ci Li xi (k|k) -Ci Si Ŵi (k, p|k -1) -T i Vi (k, p|k -1) (10) Γ i [I n u i 0 n u i ×(m-1)n u i ], Ki = [N T i Qi N i + Ri ] -1 N T i Qi , K i Γ i Ki Qi diag p { Qi }, Ri diag p { Ri }, N i = Ci Si Bi Γi
We refer to [START_REF] Vaccarini | Unconstrained Networked Decentralized Model Predictive Control[END_REF] for more details. In the next section, we review the distributed Kalman-filtering algorithm to generate the optimal states estimation, in order to use it in state feedback distributed MPC law.

DISTRIBUTED STATE ESTIMATION WITH MEASUREMENTS EXCHANGE

For large, networked systems, organizational and geographic constraints may preclude the use of centralized estimation strategies. The Kalman filter addresses the problem of estimating the state of a linear discrete-time for each subsystem (3) augmented with gaussian white noises, given by

x i (k + 1) = A ii x i (k) + B ii u i (k) + w i (k) + G i ωb x i y i (k) = C ii x i (k) + v i (k) + νb i i = 1, 2, ..., N (11) 
The conditional density of the subsystem state x i , given the set of measurements y i , i = 1, 2, ..., N, is assumed to be normally distributed. For each subsystem i, the vectors ωb x i ∈ R n w i and νb i ∈ R n y i denote the disturbances on the subsystem model state equation and output equation respectively, and are modeled as uncorrelated, zero mean, white sequences with corresponding covariance matrices Q x i and R v i respectively. The matrices, Q x i and R v i are considered to be block diagonal and G i ∈ R n i ×n w i denotes the shaping matrix for the state disturbance ωb x i . Based on (3) and ( 4), the observer predictor equation for subsystem i is written as

xi (k + 1|k)= A ii xi (k|k -1)+B ii u i (k) + N ∑ j=1, j =i A i j x j (k|k -1)+B i j u j (k) + L ii y i (k)-C ii xi (k|k -1) + N ∑ j=1, j =i L i j y j (k)-C i j x j (k|k -1) (12)
The objective is to design distributed observers consisting of N separate communicating observers which minimize the local state estimation error covariance matrix. Let (A ii ,C ii ) be detectable for each i = 1, 2, ..., N, then, it is possible to construct a local observer of the form (12) for subsystem S i . The Kalman gain L ii (k) can be computed at every step k so that it minimizes the estimation error covariance matrix P ii (k). Then, assuming that at step k -1, the prediction error covariance matrix is P ii (k -1), the estimation error covariance matrix and the Kalman gain at step k are expressed by

P ii (k)= I-L ii (k)C ii A ii P ii (k -1)A T ii + N ∑ j=1, j =i A i j P j j (k -1)A T i j + G i Q x i G T i × I-L ii (k)C ii T + L ii (k)R v i L T ii (k)+ N ∑ j=1, j =i L ii (k)C i j P j j (k -1) L ii (k)C i j T (13) L ii (k)= C ii (A ii P ii (k -1)A T ii + N ∑ j=1, j =i A i j P j j (k -1)A T i j + G i Q x i G T i T × C ii A ii P ii (k -1)A T ii + N ∑ j=1 j =i A i j P j j (k -1)A T i j + G i Q x i G T i C T ii + R v i + N ∑ j=1; j =i C i j P j j (k -1)C T i j -1 T (14)
The following lemma establishes a design procedure for distributed estimation.

Lemma (Ventak et al. [2006a]): Let the couple (A,C) of the overall system (1) be detectable and let (A ii ,C ii ) also be detectable for each i = 1, 2, ..., N. The set of subsystem-based distributed observers is given by ( 12) with

• L ii from ( 14)

• L i j = A i j C T j j (C j j C T j j ) -1
In order to implement the distributed Kalman filter, we proceed by the following two steps

• Prediction xi (k|k -1) = A ii xi (k -1|k -1) + B ii u i (k -1)+ N ∑ j=1; j =i A i j x j (k -1|k -1) + B i j u j (k -1) (15) P ii (k|k -1) = A ii P ii (k -1|k -1)A T ii + N ∑ j=1; j =i A i j P j j (k -1|k -1)A T i j + G i Q x i G T i ( 16 
)
At each site, this prediction steps are performed locally prior to information exchange between the different sites. • Estimation (update or correction):

xi (k + 1) = xi (k|k -1) + L ii y i (k) -C ii xi (k|k -1) + N ∑ j=1; j =i L i j y j (k) -C i j x j (k|k -1) (17) P ii (k) = I -L ii (k)C ii P ii (k|k -1) I -L ii (k)C ii T + L ii (k)R v i L T ii (k) + N ∑ j=1; j =i L ii (k)C i j P j j (k|k -1) L ii (k)C i j T (18)
For the ith sub-controller C i , the algorithm is described as follows. The desired output Y d i (k + l|k) for sub-controller C i is provided by a proper reference generator. Each sub-controller C i implements the following steps

(1) Set k = 1 (2) Acquire by network the predicted future state trajectories Xj (k, p|k -1) and control inputs U j (k -1, m|k -1) from sub-controllers C j .

(3) Build X(k, p|k -1) and U(k -1, m|k -1) by combining the local state trajectory Xi (k, p|k -1) and control input U i (k -1, m|k -1) with the acquired information, and compute the corresponding predictions of the interactions see ( 7). ( 4) Get state estimations xi (k) from the local Kalman filter and the desired trajectory Y d i (k + l|k) over the horizon p. (5) Compute the optimal control sequence and broadcast it by network to sub-controllers C j , see ( 9). ( 6) Apply the first element u i (k) = u i (k|k) = Γ i U i (k, m|k) of the optimal sequence U i (k, m|k) as control input to S i . ( 7) Compute the future state trajectory of subsystem S i over the horizon p and broadcast it by network to subcontrollers C j see ( 8). ( 8) Increment the sample time index k ← k + 1 and go to step 2.

A diagram which represents the structure of the DMPC controller is presented in Fig. 1 Interaction 

Predictor State Predictor Optimizer Prediction Correction ) 1 , ( ˆ-k p k X j Network Interconnections ) 1 , ( ˆ-k p k Vi ) 1 , ( ˆ-k p k Wi ) , 1 ( ˆk p k Xi + ) , ( k m k Ui ) 1 ( - Ρ k jj ) (k Pii ) , 1 ( k p k Y d i + i S ) (k ui ) (k yi ) ( ˆk xi Local Kalman Filtrer ) (k Yj ) ( ) ( ˆk P k x ii i ) 1 ( ˆ-k k xi ) 1 ( - k k Pii ) 1 , 1 ( - - k m k U j

NUMERICAL EXAMPLE AND APPLICATION TO AN FTC ISSUES

In this section we illustrate the DMPC/DKF on a nominal model and apply it also to an FTC problem through an example.

Component failures such as actuator, sensor and even network failure are inevitable during process runtime. Such faults may change the dynamics of system, lead to performance degradation, and even result in instability. In this section, we illustrate the fault tolerance capability of the DMPC/DKF to handle failures on controlled system trough simulation. Consider the following randomly generated discrete-time system

6.1 Nominal case x(k + 1) =       
0.52 0.028 0 0.1 0 0 0 0.772 0.002 0 0 0.2 0 0 0.0407 0.05 0 0 0 0 0 0.107 0 0 0.02 0 0.02 0 0.21 0.034 0 0 0.02 0.02 0 0.99

       x(k) +        0 0 0.001 0 0.787 0 0 0.787 0 0 0 0.001        u(k) +       
0.1 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0.10 0 0 0 0 00.1

       ωb(k) y(k) = 1 1 0 0 0 0 0 0 0 1 1 0 (19)
The nominal control objective is to keep the output at specified desired values in the face of states and output disturbance. The examination of the process model leads to decomposition into two interconnected subsystems S 1 and S 2 of the form (3) with state-space realization. C 1 and C 2 of Fig. 2 are computed and implemented on the subsystems. The simulation result illustrated in Fig. 3 shows clearly that the proposed DMPC/DFK algorithm performs quite very well. Here each MPC needs his local KF to estimate the relevant state from noisy measurement and input disturbance model to eliminate steady-state offset.

Fault case

In the context of the set-point tracking problem, we consider partial actuator failure as evidenced by a reduction of control effectiveness. When the ith actuator fails, such fault can be expressed by

u f i = I n u i + γ i (k) u i (20)
where -1 ≤ γ i (k) ≤ 0, i = 1, 2, ..., N are control effectiveness factors. The two extreme cases γ i (k) = 0 and γ i (k) = -1 relates to the faulty-free case and to the complete actuator failure case respectively. However, the system should be remain controllable under actuator fault and thus excludes (de facto) the case γ i (k) = -1 for all i = 1, 2, ..., N. The state equation with partial actuator failures reads as

x i (k + 1) = A ii x i (k) + B ii I u y i + γ i (k) u i (k) + w i (k) + G i ωb x i y i (k) = C ii x i (k) + v i (k) + νb i i = 1, ...., N (21) 
We assume knowledge of the evolution and the estimation of the control effectiveness factors γ i (k) which might be provided by local FDI modules. This fault information is passed on-line to the sub-controller to yield the internal faulty model ( 21) in the place of the fault free model given by ( 11). The internal faulty model matches therefore the actual plant dynamics for the MPC formulation. For the plant (19), we consider a partial actuator failure with γ 2 =30% occurring at time t = 80s, and we assume that at time t = 100s the fault is detected and isolated by a FDI module. Using the updated on-line local faulty model, the DMPC/DKF strategy is illustrated in Fig. 4 where it is shown that the proposed cooperative-based algorithm has the ability to cope with actuator failure in interconnected system. 

CONCLUSIONS AND FUTURE WORKS

Conclusions

In this present study, a formulation of distributed state prediction and model predictive control for linear interconnected process is presented. The solution is based on local Kalman filters that provides state estimations, which are used in MPC formulation when the states are unmeasurable. The methodology is demonstrated on an example and track the set-point without error. Furthermore, a fault tolerant DMPC/DFK scheme is shown to be easily implementable under actuator failure in some part of the overall system.

Future Works

The challenge posed by distributed control systems is autonomy in the presence of faults. This implies that the system should be renconfigurable and fail-safe. Thus it is necessary to define a suitable robust observers scheme for diagnosis issues to generate the fault information. This information provided by a local FDI module is used to update the on-line model of the MPC formulation. The future work will focus on the distributed FDI/FTC design based on DMPC formulation.
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Fig. 3 .

 3 Fig. 3. Output responses with controllers implementing the proposed distributed MPC/KF coordination strategy.
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