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Remarks on the existence of a
Kazantzis-Kravaris/Luenberger observer

Vincent Andrieu and Laurent Praly

Abstract We state sufficient conditions for the existence,
on a given open set, of the extension, to non linear systems, of
the Luenberger observer as it has been proposed by Kazantzis
and Kravaris. To weaken these conditions, the observer is
modified in a way which induces a time rescaling and which
follows from a forward unboundedness observability property.
Also, we state it is sufficient to choose the dimension of the
dynamic system, giving the observer, less than or equal to 2
+ twice the dimension of the state to be observed. Finally we
show how approximation is allowed and we establish a link
with high gain observers.

I. INTRODUCTION

In a seminal paper [11], Kazantzis and Kravaris have
proposed to extend to the nonlinear case the primary ob-
server introduced by Luenberger in [17] for linear systems.
Following this suggestion, for the system :

ẋ = f(x) , y = h(x) (1)

with state x in R
n and output y in R

p, the estimate x̂ of x
is obtained as the output of the dynamical system :






ż = Az + B(y) ,

x̂ = T ∗(z) ,
(2)

with state z in C
m and where A is a complex Hurwitz

matrix and B and T ∗ are sufficiently smooth functions.
In this context the main difficulty is in the choice of the
function T ∗ which appears to depend very strongly on the
other observer data A, B and m.

In the following we state sufficient conditions on f and
h such that we can find A, B and m for which there exists
T ∗ guaranteeing the convergence of x̂ to x.

This communication is an extended abstract of [3] where
the reader can find all the technical details and the complete
proofs of the results only claimed here.

II. SUFfICIENT CONDITION FOR THE EXISTENCE OF A
KAZANTZIS- KRAVARIS/LUENBERGER OBSERVER

In [11], m, the dimension of z, is chosen equal to n
and T ∗ is the inverse T−1 of a function T , solution of the
following partial differential equation :

∂T

∂x
(x) f(x) = AT (x) + B(h(x)) . (3)
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The rationale for this equation, as more emphasized in [13]
and [14] (see also [16] and [19]), is that, if T is a diffeo-
morphism satisfying (3), then the change of coordinates :

ζ = T (x) (4)

allows us to rewrite the dynamics (1) as :

ζ̇ = Aζ + B(h(T−1(ζ))) , y = h(T−1(ζ)) . (5)

We then have :

˙︷ ︷
z − ζ = A (z − ζ) . (6)

A being Hurwitz, z in (2) is an asymptotically convergent
observer of ζ = T (x). Then, if the function T ∗ = T−1

is uniformly continuous, x̂ = T ∗(z) is an asymptotically
convergent observer of :

x = T ∗(ζ) = T ∗(T (x)) . (7)

This equality says that the function T must be left invertible
and therefore injective. This explains why, in general, m
should be chosen larger or equal to n.

This way of finding the function T ∗ has motivated active
research on the problem of existence of an analytic and
invertible solution to (3) (see [11], [13], [14] for instance).
These works establish a link between analyticity and non
resonance conditions, and between invertibility and observ-
ability.

But, it turns out that having a (weak) solution to (3)
which is only uniformly injective is already sufficient. This
is made precise as follows :
We assume the functions f and h in (1) are C1. So, for
each x in R

n there exists a unique solution X(x, t) to (1)
with initial condition x. Given an open set O of R

n, for
each x in O, we denote by (σ−

O(x), σ+
O(x)) the maximal

interval of definition of the solution X(x, t) conditioned to
take values in O. Also for a set S, we denote by cl(S) its
closure and by S + δ the open set :

S + δ = {x ∈ R
n : ∃X ∈ S : |x − X | < δ} , (8)

=
⋃

x∈S

B(x, δ) . (9)

We have :
Theorem 1: (Sufficient condition of existence of an ob-

server) :
Assume :



1) The system1 (1) is forward unboundedness observable
conditioned to O, i.e., there exists a proper and C1

function Vf : R
n → R+ and a continuous function

γf : R
p → R+ such that (see [2])2 :

LfVf (x) ≤ Vf (x) + γf (h(x)) ∀x ∈ O . (10)

2) There exist an integer m, a complex Hurwitz matrix A in
C

m×m and functions T : cl(O) → C
m×p, continuous,

B : R
p → C

m×p, continuous, γ : R
p → R+, C1, ρ, of

class K∞, satisfying :

LfT (x) = γ(h(x))(AT (x) +B(h(x))) ∀x ∈ O , (11)

γ(h(x)) ≥ 1 + γf (h(x)) ∀x ∈ cl(O) , (12)

|x1−x2| ≤ ρ(|T (x1)−T (x2)|) ∀x1, x2 ∈ cl(O) (13)

Under these conditions, there exists a function T ∗ :
C

m×p → cl(O) such that, for each x in O and z in C
m×p

the (unique) solution (X(x, t), Z(x, z, t)) of :





ẋ = f(x) ,

ż = γ(h(x)) (Az + B(h(x)))
(14)

is right maximally defined on [0, σ+
Rn(x)). Moreover, if we

have3 :
σ+
O(x) = σ+

Rn(x) , (15)

then we get :

lim
t→σ+

Rn(x)
|T ∗(Z(x, z, t)) − X(x, t)| = 0 . (16)

Remarks :
1) To be specific, the observer is :






ż = γ(h(x)) (Az + B(h(x))) ,

x̂ = T ∗(z) .
(17)

The presence of γ is a key modification compared with
the original Kazantzis-Kravaris/Luenberger observer (2).
As written in (16), it allows us to get convergence
to zero of the observation error within the domain of
definition of the solution X(x, t), even if it escapes to
infinity, inside O, in finite time. This modification of
the time scale, as induced by γ, is one of the important
contributions of [4]. For this modification to be possible,
we need a forward unboundedness observability property.
As already remarked in [4], this property is necessary for
the existence of an observer satisfying (16).

2) Under the stringent assumption of existence of a function
C : R

p → C
m×p×q such that we have the factorization :

LgT (x) = γ(h(x))C(h(x)) ∀x ∈ O , (18)

1When O is bounded, forward unboundedness observability conditioned
to O is necessarily satisfied with γf = 0.

2Here Lf V denotes the Lie derivative of V along f , i.e. Lf V (x) =

limh→0
V (X(x,h))−V (x)

h
.

3This is a compact way for expressing that the only way the solution
X(x, t) can exit O is by escaping at infinity.

Theorem 1 extends readily to the case where the system
is :

ẋ = f(x) + g(x)u , y = h(x) , (19)

where u : R → U ⊂ R
q is in L∞

loc . Moreover, in this
case the unboundedness observability property has to be
modified in :

Lf+guVf (x) ≤ Vf (x) + γf (h(x)) + ω(u) ∀x ∈ O
(20)

where ω is a continuous function satisfying, for some
real number k,

ω(u) ≤ k(1 + Vf (x) + γ(h(x))), ∀(x, u) ∈ O × U .
(21)

Assuming we have a continuous function T satisfying
(11), to implement the observer, we have to find a uniformly
continuous function T ∗ satisfying (see (7)) :

T ∗(T (x)) = x ∀x ∈ O. (22)

If the restriction that O be bounded is acceptable, i.e. we
are happy with a local result, then the existence of such
a function T ∗ is guaranteed as soon as T is injective.
But, if we need a global result, a necessary condition for
the existence of T ∗ is that T be uniformly injective as
prescribed by (13). This uniform injectivity of T is the
corner stone of the contribution of Kreisselmeier and Engel
in [12].

In conclusion, a Kazantzis-Kravaris/Luenberger observer
exists mainly if we can find a continuous function T solving
(11) and uniformly injective in the sense of (13).

III. EXISTENCE OF T SOLVING (11)

To exhibit conditions guaranteeing the existence of a
function T solution of (11), we abandon the interpretation
above of a change of coordinates (see (4)) and come back to
the original idea in [17] (see also [11] and [4]) of dynamic
extension. Namely, we consider the augmented system (14).
Because of its triangular structure and the fact that A
is Hurwitz, we may expect this system to have, at least
may be only locally, an exponentially attractive invariant
manifold in the augmented (x, z) space which could even
be described as the graph of a function as :

{(x, z) ∈ R
n × R

m : z = T (x)} .

In this case, the function T must satisfy the following
identity, for all t in the domain of definition of the solution
(X(x, t), Z((x, z), t)) of (14) issued from (x, z) (compare
with [19, Definition 5]),

T (X(x, t)) = Z((x, T (x)), t) . (23)

But, with such an identity, we get readily :

lim
t→0

T (X(x, t)) − T (x)
t

= lim
t→0

Z((x, T (x)), t) − T (x)
t

.

(24)



It follows that T has a Lie derivative LfT satisfying (11)
which can be usefully rewritten :

d

γ dt
T = AT + B(y) . (25)

Moreover, since we need (11) to hold only on O, from (25),
it is sufficient that T satisfies :

T (x) = exp(−At)T (X̆(x, t)) (26)

−
∫ t

0

exp(−As)B(h(X̆(x, s)))ds

where X̆(x, s) is a solution of :

ẋ =
f(x)χ(x)
γ(h(x))

(27)

where χ : R
n → R is an arbitrary locally Lipschitz function

satisfying :





χ(x) = 1 if x ∈ O ,

= 0 if x /∈ O + δu ,
(28)

for some positive real number δu . So, as standard in
the literature on invariant manifold (see [6, (2.3.4)] for
instance), by letting t go to −∞, we get the following
candidate expression for T (compare with [12] and [15]) :

T (x) =
∫ 0

−∞
exp(−As)B(h(X̆ (x, s)))ds . (29)

The above non rigorous reasoning can be made correct as
follows :

Theorem 2 (Existence of T ): Assume the existence of a
strictly positive real number δu such that the system (1) is
backward unboundedness observable conditioned to O+δu ,
i.e., there exists a proper and C1 function Vb : R

n → R+

and a continuous function γb : R
p → R+ such that :

LfVb(x) ≥ −Vb(x) − γb(h(x)) ∀x ∈ O+δu . (30)

Then, for each complex Hurwitz matrix A in C
m×p and for

each C1 function γ : R
p → R satisfying :

γ(h(x)) ≥ 1 + γb(h(x)) ∀x ∈ O + δu , (31)

we can find a C1 function B : R
p → R

m×p such that the
function T : cl(O) → C

m×p, given by (29), satisfies (11).

Remark : For the next Theorem to come, it is important to
stress here that the function B : R

p → R
m×p, given by

the proof of this statement, is injective and such that the
function t 	→ | exp(−At)B(h(X̆(x, t)))| is exponentially
decaying with t going to −∞. So in particular when cl(O)
is bounded, B can be chosen simply as a linear function.

Approaching the problem from another perspective, Kre-
isselmeier and Engel have introduced in [12] this same
expression (29) (but with X instead of X̆ and B the identity
function) and interpreted each of the m components of

T (x) as a coefficient of a decomposition of the past output
path t 	→ h(X(x, t)) on a particular time functions basis.
Namely, (29) is compressing the whole past output path into
m real numbers. Another link between [11] and [12] has
been established in [15].

IV. T INJECTIVE

Assuming now we have at our disposal the continuous
function T , we need to make sure that it is injective, if
not uniformly injective as specified by (13). Here is where
observability enters the game. Following [17], in [11], [13],
[14], observability of the first order approximation at an
equilibrium together with an appropriate choice of A and
B is shown to imply injectivity of the solution T of the
PDE (3) in a neighborhood of this equilibrium when m =
n. In [12], uniform injectivity of T is obtained under the
following two assumptions:
1) The past output path t 	→ h(X(x, t)) is injective in x in
an L2 sense, i.e. for some negative real number 	 and class
K∞ function ρ, we have :

ρ

(∫ 0

−∞
exp(−2	s)|h(X(x1 , s)) − h(X(x2, s))|2ds

)

(32)

≥ |x1 − x2| ∀x1, x2 ∈ O .

2) The system (1) has finite complexity, i.e. there exists a
finite number M of piecewise continuous function φi in
L2(R−; R

p) and a strictly positive real number δ such that
we have :

M∑

i=1

[∫ 0

−∞
exp(−	s)φi(s)T [h(X(x1, s)) − h(X(x2, s))]ds

]2

≥ δ

∫ 0

−∞
exp(−2	s)|h(X(x1 , s)) − h(X(x2, s))|2ds

∀x1, x2 ∈ O . (33)

We state below, that, with the only assumption that the past
output path t 	→ h(X(x, t)) is (may be non uniformly in t)
injective in x, it is sufficient to choose m = n + 1 generic
complex eigen values for A to get T injective. However
this guarantees only injectivity, not uniform injectivity. As
already mentioned, if O is bounded, the former implies the
latter. But, to get a global result, it is not clear at this point
what are the minimum conditions we need to obtain this
stronger injectivity property.

The precise injectivity condition on the past output path
we need is :

Definition 1 (Backward O-distinguishability): There ex-
ists a strictly positive real number δd such that, for each pair
of distinct points x1 and x2 in O, there exists a negative
time t, satisfying :

max{σ−
O+δd

(x1), σ−
O+δd

(x2)} < t , (34)

such that we have :

h(X(x1, t)) 
= h(X(x2, t)) . (35)



This distinguishability assumption says that the present state
x can be distinguished from other states by looking at
the past output path restricted to the negative time interval
where the solution X(x, t) is in O + δd.

Theorem 3: Assume :

1) The system (1) is backward unboundedness observable
conditioned to O + δu.

2) The system (1) is backward O-distinguishable with some
positive real number δd in (0, δu).

3) There exist an injective C1 function b : R
p → R

p,
a C1 function γ : R

p → R+, a continuous function
M : cl(O) → R

+, and a negative real number 	
such that, for each x in cl(O), the two functions t 	→
exp(−	t)b(h(X̆(x, t))) and t 	→ exp(−	t)∂b◦h◦X̆

∂x (x, t)
satisfy, for all t in (σ̆ −

O+δu
(x), 0],

| exp(−	t)b(h(X̆(x, t)))| ≤ M(x) (36)

| exp(−	t)
∂b ◦ h ◦ X̆

∂x
(x, t)| ≤ M(x) (37)

where as above X̆ is a solution of (27), but this time
with the function χ satisfying :






χ(x) = 1 if x ∈ O + δd ,

= 0 if x /∈ O + δu .
(38)

Under these conditions, there exists a subset S of C
n+1 of

zero Lebesgue measure such that the function T : cl(O) →
C

(n+1)×p defined by :

T (x) =
∫ 0

−∞
exp(−As)






1
...
1




 b(h(X̆(x, s)))ds , (39)

is injective provided A is the diagonal matrix :

A = diag(λ1, . . . , λn+1) (40)

where the n+1 complex numbers λi are arbitrarily chosen
in C

n+1 \ S but with real part strictly smaller than 	.

This theorem states that, if we choose n + 1 complex
generic eigenvalues for the matrix A, then the function T
given by (39) (or equivalently (29)) is injective. This says
that the (real) dimension of z is m = 2n + 2. It is a
well known fact in observer theory that it is generically
sufficient to extract m = 2n+1 pieces of information from
the output path to observe a state of dimension n (see for
instance [1], [21], [8], [7], [20]). It can be understood from
the adage that, the relation T (x1) = T (x2) between the
two states x1 and x2 in R

n, i.e. for 2n unknowns, has
generically the unique trivial solution x1 = x2 if we have
strictly more than 2n equations, i.e. T (x) has strictly more
than 2n components.

To be able to prove Theorem 3 we require the condition
(37) in order to guarantee that T is a C1 function. A simple
case where this condition holds is when the data f , h, γ and

b have bounded derivative on cl(O) (see [15] for instance).
But this is a severe restriction. Actually, we conjecture that,
with the help of techniques of maximal monotone operators,
such as those presented in [5], we should be able to prove
that a weaker sufficient condition on f and γ for instance
is :
∂fγ

∂x
(x)Q +

∂fγ

∂x
(x)T Q ≥ −q Q ∀x ∈ cl(O) (41)

for some positive definite matrix Q and real number q and
with the notation :

fγ(x) =
f(x)

γ(h(x))
. (42)

V. INJECTIVITY IN THE CASE OF COMPLETE
OBSERVABILITY

Another setup where injectivity can be obtained is when
we have complete observability. Namely we can find a
dimension m, a function b : y ∈ R

p 	→ b(y) =
(b1(y), . . . , bp(y)) ∈ R

p, and a strictly positive function
γ : R

p → R+∗ , so that the following function H : R
n →

R
m×p is injective :

H(x) =







b1(h(x)) . . . bp(h(x))
Lfγ b1(h(x)) . . . Lfγ bp(h(x))
. . . . . . . . .
Lm−1

fγ
b1(h(x)) . . . Lm−1

fγ
bp(h(x))







(43)
for each x in R

n and where Li
fh denotes the ith iterate Lie

derivative, i.e. Li+1
f h = Lf(Li

fh). Of course, for this to
make sense, the functions b, f , h and γ must be sufficiently
smooth. This setup has been popularized and studied in
deep details by Gauthier and his coworkers (see [10] and
the references therein, see also [19]). In particular, again it
is known (see [8] for instance) that, generically we have
m = 2n + 1.

With a Taylor expansion of the output path at t = 0,
we see that the injectivity of H implies that the function
which associates the initial condition x to the output path,
restricted to a very small time interval, is injective. This
property is nicely exploited by observers with very fast
dynamics as high gain observers (see [9]). Specifically, we
have :

Theorem 4: (Injectivity in the case of complete observ-
ability) : Assume there exist functions b : R

p → R
p and

γ : R
p → R+ such that :

1) there exists a positive real number L such that, for each
x1 and x2 in cl(O), we have :

|Lm
fγ

b(h(x1)−Lm
fγ

b(h(x2))| ≤ L|H(x1)−H(x2)| (44)

2) there exists a class K∞ function ρ such that, for each x1

and x2 in cl(O), the function H satisfies :

ρ(|H(x1) − H(x2)|) ≥ |x1 − x2| . (45)

Then, for any diagonal complex Hurwitz matrix A in
C

m×m, there exists a real number k∗ such that, for any
k larger than k∗, there exists a function T : O → C

m×p



which is uniformly injective and satisfies :

LfT (x) = γ(h(x))




kAT (x) +






1
...
1




 b(h(x))




 (46)

∀x ∈ O .

VI. APPROXIMATION

Fortunately the problem of finding an expression for T
can be simplified. Indeed a function T satisfying (11) only
approximately is allowed. But, in this case, we have to
modify the observer dynamics.

Theorem 5 (Approximation): Assume the system (1) is
forward unboundedness observable conditioned to O, i.e.
(10) holds. Assume also the existence of an integer m, a
complex Hurwitz matrix A in C

m×m and functions Ta :
cl(O) → C

m×p, B : R
p → C

m×p continuous, γ : R
p →

R+, C1, and ρ of class K∞, such that :

1) we have :

γ(h(x)) ≥ 1 + γf (h(x)) ∀x ∈ cl(O) , (47)

|x1 − x2| ≤ ρ(|Ta(x1) − Ta(x2)|) (48)

∀x1, x2 ∈ cl(O) .

2) the function Lfγ Ta is well defined on O and the function
E : cl(O) → C

m×p de ned by :

E(x) = Lfγ Ta(x)− [ATa(x)+B(h(x))] ∀x ∈ O (49)

satis es :

|E(x1) − E(x2)| ≤ L (|Ta(x1) − Ta(x2)|) (50)

∀x1, x2 ∈ cl(O) ,

where L is a positive real number satisfying :

2Lλmax(P ) < 1 , (51)

with λmax(P ) the largest eigenvalue of the Hermitian
matrix P solution of :

A
�

P + PA = −I . (52)

Under these conditions, there exists a function T ∗
a :

C
m×p → cl(O) and a locally Lipschitz function F :

C
m×p → C

m×p such that, for each x in O and z in C
m×p

each solution (X(x, t), Z(x, z, t)) of :





ẋ = f(x) ,

ż = γ(h(x)) (Az + F(z) + B(h(x)))
(53)

is right maximally defined on [0, σ+
Rn(x)). Moreover, if we

have :
σ+
O(x) = σ+

Rn(x) , (54)

then we get :

lim
t→σ+

Rn(x)
|T ∗

a (Z(x, z, t)) − X(x, t)| = 0 . (55)

Remarks :

1) In (49), E represents the error given by the approximation
Ta of T . This error should not be too large in an
incremental sense as specified by (50) and (51). This
indicates that one way to approximate T is to look for
Ta in a set of functions minimizing the L∞ norm on
cl(O) of the gradient of the associated error E.

2) The function F in the observer (53) is in fact a Lipschitz
extension of E(T ∗

a ) outside Ta(cl(O)). This is very
similar to what is done in [19] where a constructive
procedure for this extension is proposed. Fortunately, this
Lipschitz extension is not needed in the case where the
function E satisfies :

|E(x1)−E(x2)| ≤
L

4
ρ−1(|x1−x2|) ∀x1, x2 ∈ cl(O) .

(56)
In this case we take simply :

F(z) = E(T ∗
a (z)) ∀z ∈ C

m×p. (57)

3) As for Theorem 1, we can extend Theorem 5 to the case
with input. Then the function E should satisfy :

E(x, u) = Lfγ+gγ uTa(x) (58)

−[ATa(x) + B(h(x)) + C(h(x))u]

where gγ(x) = g(x)
γ(x) . In this expression, the function

C : R
p → C

m×p×q, and the set U ⊂ R
q of admissible

u’s are to be chosen, if possible, so that we have (20),
(21) and :

|E(x1, u)− E(x2, u)| ≤ L(|Ta(x1) − Ta(x2)|) (59)

∀x1, x2 ∈ cl(O) , ∀u ∈ U .

Theorem 5 gives us a new insight in the classical high
gain observer of order m as studied in [8] or [19] for
instance.

Corollary 1 (Classical high gain Observer): Assume :

1) The system (1) is forward unboundedness observable
conditioned to O, i.e. (10) holds.

2) With the function γ satisfying (12), there exist a
sufficiently smooth function b : R

p → R
p, a class K∞

function ρ and a positive real number L such that (44)
and (45) hold.

Under these conditions, for any diagonal complex Hurwitz
matrix A in C

m×m, there exist a matrix B and a real
number k∗ such that, for any k larger than k∗, there
exists a function T ∗

a : R
m×p → cl(O) and a function

F : R
m×p → R

m×p such that, for each x in O and z
in R

m×p each solution (X(x, t), Z(x, z, t)) of :





ẋ = f(x) ,

ż = γ(h(x)) (kAz + F(z) + Bb(h(x)))
(60)



is right maximally defined on [0, σ+
Rn(x)). Moreover, if we

have :
σ+
O(x) = σ+

Rn(x) , (61)

then we get :

lim
t→σ+

Rn(x)
|T ∗

a (Z(x, z, t)) − X(x, t)| = 0 . (62)

Remark : When O is bounded and H is injective, uniform
injectivity (45) and forward unboundedness observability
conditioned to O hold necessarily. Thus, in this case, we
recover [19, Lemma 1].

VII. CONCLUSION

We have stated sufficient conditions under which the
extension to non linear systems of the Luenberger observer,
as it has been proposed by Kazantzis and Kravaris in [11],
can be used as long as the state to be observed remains
in a given open set. In doing so, we have exploited the
fact, already mentioned in [15], that the observer proposed
by Kreisselmeier and Engel in [12] is a possible way of
implementing the Kazantzis-Kravaris/Luenberger observer.

To get as less restrictive sufficient conditions as possible
we have found useful to modify the observer in a way which
induces a time rescaling as already suggested in [4].

We have also claimed that a sufficient dimension of
the dynamic system giving the observer is 2 + twice the
dimension of the state to be observed. This is in agreement
with many other results known on the generic number of
pieces of information to be extracted from the output paths
to be able to reconstruct the state.

Finally, we have shown that it is sufficient to know
only an approximation of a solution of a partial differential
equation which we need to solve to implement the observer.
In this way, we have been able to make a connection with
high gains observers.

At this stage, our results are mainly of theoretical na-
ture. They are concerned with existence. Several problems
of prime importance for practice remain to be addressed
like type and speed of convergence. In these regards, the
contribution of Rapaport and Maloum [19] is an important
starting point.

Even, about existence, we have to note that the conditions
we have given can be strongly relaxed if an estimation of the
norm of the state is available. This idea has been exploited
in [4] where a truly global observer has been proposed
under the assumption of global complete observability and
unboundedness observability.
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