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come    

that unique continuation does not hold in general for a C 0,α Hölder regularity of the coefficient with 0 < α < 1 [START_REF] Pliś | On non-uniqueness in Cauchy problem for an elliptic second order differential equation[END_REF][START_REF] Miller | Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint divergence form with Hölder continuous coefficients[END_REF], which ruins any hope to prove a Carleman estimate.

In the present article, we consider coefficients that are discontinuous across a smooth interface, yet regular on each side. This question was first addressed in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] for a parabolic operator P = ∂ t -∇ x (c(x)∇ x ), with a monotonicity assumption: the observation takes place in the region where the diffusion coefficient c is the 'lowest'. In the one-dimensional case, the monotonicity assumption was relaxed for general piecewise C 1 coefficients [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF]Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications to controllability and an inverse problem[END_REF], and for coefficients with bounded variations [START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF]. Simultaneously to these results, a controllability result for linear parabolic equations with c ∈ L ∞ was proven in [START_REF] Alessandrini | Null-controllability of one-dimensional parabolic equations[END_REF] in the one-dimensional case without Carleman estimate. This controllability result does not cover more general semi-linear equations. An earlier result was that of [START_REF]On the null controllability of the one-dimensional heat equation with BV coefficients[END_REF] where the controllability of a linear parabolic equations was proven in one dimension with c ∈ BV through D. Russel's method.

The case of an arbitrary dimension without any monotonicity condition in the elliptic case was solved in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] and in the parabolic case in [START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]. In [START_REF] Rousseau | Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF][START_REF]Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF] the case of a discontinuous anisotropic matrix coefficients is treated and a sharp condition on the weight function is provided for the Carleman estimate to hold.

The methods used in [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF][START_REF] Rousseau | Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF][START_REF]Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF] focus on a neighborhood of a point at the interface where the interface can be given by {x n = 0} for an appropriate choice of coordinates x = (x ′ , x n ), x ′ ∈ R n-1 , x n ∈ R. Then, through microlocal techniques (Calderón projector or first-order factorization), a local Carleman estimate is proven. However, these methods require strong regularity for the coefficients and for the interface. Moreover, they fall short if the interface crosses the boundary. This configuration is typical in bounded stratified media such as those we consider below.

In stratified media, a controllability result for a linear parabolic equation in arbitrary dimension was obtained in [START_REF]On the controllability of linear parabolic equations with an arbitrary control location for stratified media[END_REF]. The approach was based on the 1D Carleman estimates of [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications[END_REF][START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF] in the parabolic case and a spectral inequality as in [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Lebeau | Null-controllability of a system of linear thermoelasticity[END_REF][START_REF] Jerison | Chicago Lectures in Mathematics, ch. Nodal sets of sums of eigenfunctions[END_REF] for the transverse elliptic operator, whose coefficients are smooth. The precise definition of such stratified media is given below.

The controllability result obtained in [START_REF]On the controllability of linear parabolic equations with an arbitrary control location for stratified media[END_REF] left the question of deriving a Carleman estimate open for stratified media in dimension greater than two in both the elliptic and the parabolic cases. This result is achieved here. One of the consequences of this result in the parabolic case is the null-controllability of classes of semi-linear parabolic equations. We refer to [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] for these developments.

Remark 1.1. The following observation also provides hints that Carleman estimates can be derived for stratified media [START_REF] Poisson | Personnal communication[END_REF]. As we shall assume below interfaces cross the boundary transversely. Pick a point at the intersection of an interface and the boundary and choose local coordinates such that the interface is orthogonal to the boundary. Assume that the coefficients associated with the transverse part of the operator are flat at the boundary. Then, by reflection at the boundary, the system under consideration can be turned into a problem with a smooth interface away from any boundary which permits to use the results of [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF][START_REF] Rousseau | Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF][START_REF]Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF]. This situation is however not general.

We finish this introductory presentation by pointing out the difficulty that arises when deriving a Carleman estimate for the operator A = -∇ x (c(x)∇ x ) or P = ∂ t -∇ x (c(t, x)∇ x ) in dimension greater than two, in the presence of an interface S . In fact, the standard Carleman derivation method leads to interface terms involving 1. trace of the function u |S . Zero-and first-order operators in the tangent direction act on u |S .

2. traces of its normal derivative ∂ x n u |S ± , on both sides of S . This interface contribution can be interpreted as a quadratic form (see [START_REF] Benabdallah | Carleman estimates for the one-dimensional heat equation with a discontinuous coefficient and applications[END_REF]). In [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] the authors show that this quadratic form is only non-negative for low (tangential) frequencies. Here we shall recover this behavior where the tangential Fourier transform is replaced by Fourier series, built on a basis of eigenfunctions of the transverse part of the elliptic operator. For high (tangential) frequencies, the tangential derivative term (i.e., the action of a the first-order operator on u |S ) yields a negative contribution, unless a monotonicity assumption on the coefficient c is made as in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF]. In [START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF][START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF] the authors have used microlocal methods in the high frequency regime to solve this difficulty, and more recently in [START_REF]Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF][START_REF] Rousseau | Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF]. Here, because of the intersection of the interface with the boundary, and because of the little regularity required for the diffusion coefficients, such methods cannot be used directly. However, the separated-variable assumption made on the diffusion coefficients allows us to use Fourier series and similar ideas can be developed: low frequencies and high frequencies are treated differently. In the parabolic case the separation we make between the two frequency regimes is time dependent. Here, the separated-variable assumption yields explicit computations, which reveals the behavior of the solution in each frequency regime.

In the present article, a particular class of anisotropic coefficients is treated. The question of deriving Carleman estimates for more general coefficients in the neighborhood of the intersection of an interface, where the coefficients jump, with the boundary is left open.

Setting and notation

We let

Ω be an open subset in R n , with Ω = Ω ′ × (-H, H), where Ω ′ is a nonempty bounded open subset of R n-1 with C 1 boundary 2 .
We shall use the notation x = (x ′ , x n ) ∈ Ω ′ × (-H, H). We set S = Ω ′ × {0}, that will be understood as an interface where coefficients and functions may jump. For a function f = f (x) we define by [ f ] S its jump at S , i.e.,

[ f ] S (x ′ ) = f (x)| x n =0 + -f (x)| x n =0 -.
For a function u defined on both sides of S , we set

u |S ± = u |Ω ± |S , with Ω + = Ω ′ × (0, H) and Ω -= Ω ′ × (-H, 0).
Let B(t, x), t ∈ (0, T ) and x ∈ Ω, be with values in M n (R), the space of square matrices with real coefficients of order n. We make the following assumption.

Assumption 1.2. The matrix diffusion coefficient B(t, x

′ , x n ) has the following block diagonal form B(t, x ′ , x n ) = c 1 (t, x n )C 1 (x ′ ) 0 0 c 2 (t, x n )
where the functions c i , i = 1, 2, are3 in C 1 ((0, T ) × Ω ± ) with a possible jump at x n = 0. We assume

C 1 ∈ W 1,∞ (Ω ′ , M n-1 (R))
and that C 1 (x ′ ) is hermitian. We further assume uniform ellipticity

0 < c min ≤ c i (t, x n ) ≤ c max < ∞, (t, x n ) ∈ (0, T ) × (-H, H) and i = 1, 2, 0 < c min Id n-1 ≤ C 1 (x ′ ) ≤ c max Id n-1 , x ′ ∈ Ω ′ .
To lighten notation we shall often write c i-:= c i|x n =0 -and c i+ := c i|x n =0 + for i = 1, 2.

Remark 1.3. Here, the matrix coefficient B is chosen time dependent in preparation for the Carleman estimate in the parabolic case. We shall also prove such an estimate in the elliptic case: see Theorem 1.4 below and its proof in Section 3. For this theorem we shall of course use B independent of time.

For the proof of Theorem 1.4 (elliptic case) we shall further assume c 1 = c 2 . In fact, this simplification allows us to provide a fairly simple proof of the Carleman estimates that shows the different treatment of two frequency regimes. These frequency regimes are connected to the microlocal regions used in [START_REF] Rousseau | Carleman estimate for elliptic operators with coefficents with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations[END_REF] and [START_REF] Rousseau | Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF][START_REF]Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and sharp geometric conditions[END_REF]. Note however that the case c 1 c 2 can also be treated in the elliptic case. The proof is then closer to that of the parabolic case of Theorem 1.5 in Section 4. We have omitted this proof for the sake of the clarity of the exposition.

Let T > 0. For each t ∈ [0, T ], we consider the symmetric bilinear H 1 0 -coercive form [START_REF] Dautray | Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques[END_REF], p. 1211). In the elliptic case, we shall denote by • L 2 (Ω) the L 2 norm over Ω and by | • | L 2 (S ) the L 2 norm over the interface S of codimension 1.

a t (u, v) = ∫ Ω (B(t, •)∇ x u) • ∇ x vdx, with domain D(a t ) = H 1 0 (Ω). It defines a selfadjoint operator A t = -∇ x • (B(t, •)∇ x ) in L 2 (Ω) with compact resolvent and with domain D(A t ) = {u ∈ H 1 0 (Ω); ∇ x • (B(t, •)∇ x u) ∈ L 2 (Ω)} (see e.g.
We set Q T = (0, T )×Ω, S T = (0, T )×S . We shall also consider the following parabolic operator P = ∂ t + A t on Q T . In the parabolic case, we shall denote by

• L 2 (Q T ) the L 2 norm over Q T and by | • | L 2 (S T ) the L 2 norm over the interface S T of codimension 1.
In this article, when the constant C is used, it refers to a constant that is independent all the parameters. Its value may however change from one line to another. We shall use the notation a b if we have a ≤ Cb for such a constant. If we want to keep track of the value of a constant we shall use another letter.

Statements of the main results

We consider ω, a nonempty open subset of Ω. For a function β in C 0 (Ω) we set ϕ(x) = e λβ(x) , λ > 0, to be used as weight function. We consider first a matrix coefficient independent of the parameter t. A proper choice of the function β, with respect to the operator A, ω and Ω (see Assumption 2.1 and Assumption 3.2), yields the following Carleman estimate for the elliptic operator A.

Theorem 1.4 (Elliptic case).

There exist C > 0, λ 0 and s 0 > 0 such that

sλ 2 e sϕ ϕ 1 2 ∇u 2 L 2 (Ω) + s 3 λ 4 e sϕ ϕ 3 2 u 2 L 2 (Ω) + sλ |e sϕ ϕ 1 2 ∇ τ u |S | 2 L 2 (S ) + |e sϕ ϕ 1 2 ∂ n u |S | 2 L 2 (S ) + s 3 λ 3 |e sϕ ϕ 3 2 u |S | 2 L 2 (S ) ≤ C e sϕ Au 2 L 2 (Ω) + s 3 λ 4 e sϕ ϕ 3 2 u 2 L 2 (ω) ,
for all u ∈ D(A), λ ≥ λ 0 , and s ≥ s 0 .

Here, ∇ τ is the tangential gradient on the interface S . Note that belonging to the domain D(A) implies some constraints on the function u at the interface S , namely u ∈ H 1 and B∇ x u ∈ H(div, Ω). We shall first prove the result for piecewise smooth functions satisfying

u |S -= u |S + , (c∂ x n u) |S -= (c∂ x n u) |S + ,

and then use their density in D(A).

With a function β > 0 that satisfies Assumption 2.1 below, we introduce β = β + m β ∞ where m > 1. For λ > 0 we define the following weight functions ϕ(x) = e λβ(x) , η(x) = e λβ(x)e λβ , a(t) = t(Tt) -1 , with β = 2m β ∞ (see [START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF]). For β satisfying some additional requirements (Assumption 4.2), that will be provided in Section 4, we prove the following Carleman estimate for the parabolic operator P.

Theorem 1.5 (Parabolic case).

There exist C > 0, λ 0 and s 0 > 0 such that s -1 e saη (aϕ)

-1 2 ∂ t u 2 L 2 (Q T ) + e saη (aϕ) -1 2 A t u 2 L 2 (Q T ) + sλ 2 e saη (aϕ) 1 2 ∇u 2 L 2 (Q T ) + s 3 λ 4 e saη (aϕ) 3 2 u 2 L 2 (Q T ) + sλ |e saη (aϕ) 1 2 ∇ τ u |S T | 2 L 2 (S T ) + |e saη (aϕ) 1 2 ∂ n u |S T | 2 L 2 (S T ) + s 3 λ 3 |e saη (aϕ) 3 2 u |S T | 2 L 2 (S T ) ≤ C e saη Pu 2 L 2 (Q T ) + s 3 λ 4 e saη (aϕ) 3 2 u 2 L 2 ((0,T )×ω) , for all u ∈ C 2 ((0, T ) × Ω ± ) such that u |S - T = u |S + T , (c 2 ∂ x n u) |S - T = (c 2 ∂ x n u) |S + T , λ ≥ λ 0 , and s ≥ s 0 (T + T 2 ).
By a density argument, we can extend this estimate to functions in

∫ ⊕ [0,T ] D(A t ) dt∩H 1 (0, T ; L 2 (Ω)).
Larger function spaces, with rougher behaviors can also be handled such as explosion at times t = 0 and t = T if they are compensated by the rapidly vanishing weight function e saη . The r.h.s. of the estimate can be used to define a norm. The larger the parameters s and λ, the bigger the associated spaces will be. Such choices can be driven by applications.

Outline

In Section 2, we provide some spectral properties of operator A, which yields a Hilbert direct decomposition of L 2 (Ω) = ⊕ k∈N * H k that reduces A. We also provide the precise assumptions made on the weight function. In Section 3, we prove the Carleman estimate for the elliptic case. In Section 4 we prove the Carleman estimate for a parabolic case. Some intermediate and technical results are collected in the appendices.

Spectral properties and weight function

Similarly to A t = -∇ x • (B(t, x)∇ x ), one can define the time independent selfadjoint transverse operator on L 2 (Ω ′ )

A ′ = -∇ x ′ • (C 1 ∇ x ′ ), D(A ′ ) = {u ∈ H 1 0 (Ω ′ ); ∇ x ′ • (C 1 ∇ x ′ u) ∈ L 2 (Ω ′ )}.
We consider an orthonormal basis of L 2 (Ω ′ ), composed of eigenfunctions (φ k ) k≥1 , associated with the eigenvalues, with finite multiplicities, 0

< µ 2 1 ≤ µ 2 2 ≤ • • • ≤ µ 2 k ≤ µ 2 k+1 ≤ • • • , with µ k → ∞. With this basis (φ k ) k≥1 , we build an unitary transform F : L 2 (Ω) → ∞ ⊕ k=1 L 2 (-H, H) defined by (F u)(k, x n ) := ∫ Ω ′ φ k (x ′ )u(x ′ , x n ) dx ′ , (2.1) 
with the following properties (recall that here

∇ x ′ = ∇ τ ) v(x ′ , x n ) = ∞ k=1 (v(., x n ), φ k ) L 2 (Ω ′ ) φ k (x ′ ) = ∞ k=1 v(k, x n )φ k (x ′ ), ∇ x ′ v(x ′ , x n ) = ∞ k=1 v(k, x n )∇ x ′ φ k (x ′ ).
We shall often write vk = v(k, .).

As the family (C 1/2 1 ∇φ k ) k is orthogonal in L 2 (Ω ′ ) (C 1 is a positive definite matrix) we have

C 1/2 1 ∇ x ′ v(., x n ) 2 L 2 (Ω ′ ) = ∞ k=1 |v(k, x n )| 2 C 1/2 1 ∇ x ′ φ k 2 L 2 (Ω ′ ) = ∞ k=1 |v(k, x n )| 2 µ 2 k , which gives (c max ) -1 ∞ k=1 µ 2 k v(k, x n ) 2 ≤ ∇ τ v(., x n ) 2 L 2 (Ω ′ ) ≤ (c min ) -1 ∞ k=1 µ 2 k v(k, x n ) 2 . (2.2)
We choose a weight function β that satisfies the following properties.

Assumption 2.1. The function β ∈ C 0 (Ω), and

β |Ω ± ∈ C 2 (Ω ± ) and β ≥ C > 0, |∇ x β| ≥ C > 0 in Ω \ ω, β = Cst on Ω ′ × {-H} and β = Cst on Ω ′ × {H}. ∇ x ′ β = 0 on ∂Ω ′ × (-H, H), ∂ x n β > 0 on Ω ′ × {-H}, and ∂ x n β < 0 on Ω ′ × {H}.
There exists a neighborhood V of S in Ω of the form V = Ω ′ × (-δ, δ) in which β solely depends on x n and is a piecewise affine function of x n .

In particular β |S is constant. As the open set ω can be shrunk if necessary, we further assume that ω ∩ Ω ′ × (-δ, δ) = ∅.

Such a weight function β can be obtained by first designing a function that satisfies the proper properties at the boundaries and at the interface and then construct β by means of Morse functions following the method introduced in [START_REF] Fursikov | Controllability of evolution equations[END_REF].

Here, in addition we assume that ∂ x n β = β ′ > 0 on S + and S -, which means that the observation region ω is chosen in Ω ′ ×(0, H), i.e., where x n ≥ 0. There is no loss in generality as we can change x n into -x n to treat the case of an observation ω ⊂ Ω ′ × (-H, 0). Note that Assumption 2.1 will be completed below by Assumption 3.2 in the elliptic case and Assumption 4.2 in the parabolic case respectively.

The elliptic case: proof of Theorem 1.4

As mentioned in the introductory section, we have consider only the case c 1 = c 2 = c in this proof. The case c 1 c 2 can be treated following the lines of the proof of Theorem 1.5 in Section 4.

Local Carleman estimates can be stitched together to form a global estimate of the form presented in Theorem 1.4 (see e.g. [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators[END_REF][START_REF]Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces[END_REF]). Such local estimates are classical away from the interface (see [START_REF] Lebeau | Contrôle exact de l'équation de la chaleur[END_REF][START_REF] Fursikov | Controllability of evolution equations[END_REF][START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators[END_REF]). To prove the elliptic Carleman estimate of Theorem 1.4 it thus remains to prove such a local estimate at the interface S , for functions u ∈ D(A) with support near the interface. We shall thus assume that supp(u) ⊂ Ω ′ × (-δ, δ), where the weight function β depends only on x n and is piecewise affine.

Piecewise smooth functions that satisfy the transmission conditions

u |S -= u |S + , (c∂ x n u) |S -= (c∂ x n u) |S + , (3.1) 
are dense in D(A). We may thus restrict our analysis to such functions. Because of these transmission conditions we shall write u |S and (c∂

x n u) |S in place of u |S ± and (c∂ x n u) |S ± respectively.
Applying the unitary transform of Section 2, the equation Au = f can be written

(-∂ x n c∂ x n + cµ 2 k )û k (x n ) = fk (x n ), x n ∈ (-δ, 0) ∪ (0, δ),
with supp ûk ⊂ (-δ, δ).

Our starting point is the following proposition.

Proposition 3.1. Let the weight function β satisfy Assumption 2.1. There exist C, C

′ , C ′′ > 0, λ 0 > 0, s 0 > 0 such that C sλ 2 ϕ 1 2 ∂ x n vk 2 L 2 (-δ,δ) + sλ 2 ϕ 1 2 µ k vk 2 L 2 (-δ,δ) + s 3 λ 4 ϕ 3 2 vk 2 L 2 (-δ,δ) + sλϕ |S [c 2 β ′ |∂ x n vk | 2 ] S + |sλϕv k|S | 2 [c 2 β ′3 ] S -|µ k vk|S | 2 [c 2 β ′ ] S ≤ C ′ e sϕ fk 2 L 2 (-δ,δ) + Z, (3.2) for all k ∈ N * , vk = e sϕ ûk , λ ≥ λ 0 and s ≥ s 0 , with Z = -C ′′ sλ 2 ϕ |S Re[c 2 β ′2 ∂ x n vk ] S vk|S .
We emphasize that the constants are uniform with respect to the transverse-mode index k. Such a result can be obtained by adapting the derivations in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] for instance. We provide a short proof in Appendix A.1. In particular we have

|Z| ≤ Csλ 2 ϕ |S |∂ x n vk|S -| + |∂ x n vk|S + | |v k|S |. (3.3)
Moreover, in addition to Assumption 2.1, we shall consider the following particular form of β Assumption 3.2. For K = c - c + and some r ≥ 0, we have

L = β ′ |S + β ′ |S - =              2 if K = 1, K if K > 1, (r + 1) -rK if K < 1. (3.4) Remark 3.3.
1. With this assumption we note that we have L > 1 and

L → 1 as K → 1, K 1.
Here we choose L = 2 if K = 1, to preserve interface terms in the Carleman estimates even for this case that corresponds to coefficients with no jump.

2. The value r = 3 is admissible in (3.4) (see Lemma 3.6 and its proof). In the spirit of what is done in [START_REF] Rousseau | Carleman estimates and controllability results for the one-dimensional heat equation with BV coefficients[END_REF] one may wish to control the jump of the slope of the weight function by choosing other values for r.

3. To construct the weight function β we first choose its slopes on both sides of the interface satisfying Assumption 3.2. Here the slopes are positive as we wish to observe the solution in {x n > 0}. We may then extend the function β on both sides of the interface. The additional requirements of Assumption 2.1 only concern the behavior of the β away from the interface. The two assumptions are compatible.

We now set

B(v) = sλϕ |S [c 2 β ′ |∂ x n v| 2 ] S + |sλϕv |S | 2 [c 2 β ′3 ] S .
Lemma 3.4. We have

B(v k ) = sλϕ |S e 2sϕ |S B 1 |γ(û k )| 2 + B 2 |sλϕû k|S | 2 , γ(û k ) = c∂ x n ûk|S + c + β ′ |S - L 2 -K L -1 (sλϕû k ) |S , with B 1 = β ′ |S -(L -1) > 0, and 
B 2 = c 2 + (β ′ |S -) 3 2(L 3 -K 2 ) - L 2 -K 2 L -1 . (3.5)
For a proof see Appendix A.2. Note that L > 1 by Assumption 3.2.

We shall consider two cases: K > 1 and 0 < K ≤ 1.

Case K > 1. Then L = K and -[c 2 β ′ ] S = -c 2 + β ′ |S -(L -K 2 ) > 0, B 1 > 0, B 2 = c 2 + (β ′ |S -) 3 K 2 (K -1) > 0.
The trace terms in (3.2) thus yield a positive contribution. We have

B(v k ) -sλϕ |S |µ k vk|S | 2 [c 2 β ′ ] S sλϕ |S 3 e 2sϕ |û k|S | 2 + sλϕ |S e 2sϕ |γ(û k )| 2 + |µ k ûk|S | 2 sλϕ |S 3 e 2sϕ |û k|S | 2 + sλϕ |S e 2sϕ |∂ x n ûk|S | 2 + |µ k ûk|S | 2 .
In particular for s sufficiently large the remainder term Z estimated in (3.3) can be 'absorbed'. We thus obtain

sλ 2 ϕ 1 2 ∂ x n vk 2 L 2 (-δ,δ) + sλ 2 ϕ 1 2 µ k vk 2 L 2 (-δ,δ) + s 3 λ 4 ϕ 3 2 vk 2 L 2 (-δ,δ) + sλϕ |S 3 e 2sϕ |û k|S | 2 + sλϕ |S e 2sϕ |∂ x n ûk|S | 2 + |µ k ûk|S | 2 e sϕ fk 2 L 2 (-δ,δ) , (3.6) 
for all k ∈ N * . Summing over k, using (2.2) we obtain the sought local Carleman estimate in the case K > 1

sλ 2 ϕ 1 2 ∇v 2 L 2 (Ω ′ ×(-δ,δ)) + s 3 λ 4 ϕ 3 2 v 2 L 2 (Ω ′ ×(-δ,δ)) + sλϕ |S 3 e 2sϕ |S |u |S | 2 L 2 (S ) + sλϕ |S e 2sϕ |S |∇u |S | 2 L 2 (S ) e sϕ f 2 L 2 (Ω ′ ×(-δ,δ)) . (3.7)
The Carleman estimate of Theorem 1.4 can then be deduced classically. This case, K > 1 is the case originally covered by [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF].

Case 0 < K ≤ 1. Then, either L = (r + 1) -rK > 1 or L = 2, which gives B 1 > 0. Lemma 3.6 below implies that B 2 > 0. Hence, for s sufficiently large the remainder term Z estimated in (3.3) can be 'absorbed'. We now aim to estimate the tangential term in (3.2).

Proposition 3.5.

There exists C > 0, and ε > 0 such that for all k ∈ N we have

sλϕ |S [c 2 β ′ ] S |µ k vk|S | 2 ≤ 1 1 + ε sλϕ |S B 2 sλ(ϕv k ) |S 2 (3.8) + C e sϕ fk 2 L 2 (-δ,δ) + s 2 λ 2 ϕv k 2 L 2 (-δ,δ) + ∂ x n vk 2 L 2 (-δ,δ) .
Proof. Let 0 < ε < 1. The value of ε will be determined below. We treat low and high values of µ k differently.

Low frequencies.

Set k 1 as the largest integer such that (1

+ ε) [c 2 β ′ ] S µ 2 k < B 2 (sλϕ) 2 |S , that is (1 + ε)µ 2 k < (β ′ |S -) 2 (sλϕ) 2 |S 1 |L -K 2 | 2(L 3 -K 2 ) - L 2 -K 2 L -1 . (3.9) 
We then have

(1 + ε)sλϕ |S [c 2 β ′ ] S |µ k vk|S | 2 < sλϕ |S B 2 sλ(ϕv k ) |S 2 , k ≤ k 1 . (3.10)
High frequencies. Here we consider frequencies µ k that satisfy

(1 -ε)µ k ≥ s|∂ x n ϕ |S -| = sλϕ |S β ′ |S -. (3.11)
We denote by k 2 the smallest integer that satisfies (3.11).

We write

(∂ 2 x n -µ 2 k )û k = - fk c - ∂ x n c c ∂ x n ûk = -ĝ k .
As ûk (-δ) = ûk (δ) = 0, with the transmission conditions (3.1), the computations4 of Appendix A.3 yield

µ k ûk | x n =0 + = 1 (c + + c -) δ ∫ 0 sinh µ k (δ -x n ) cosh(µ k δ) c + ĝk (x n ) + c -ĝk (-x n ) dx n . (3.12)
We have

sinh µ k (δ -x n ) cosh(µ k δ) = e µ k (δ-x n ) -e -(µ k (δ-x n )) e µ k δ + e -(µ k δ) ≤ e -µ k x n . (3.13)
We note that

ϕ(0) -ϕ(-x n ) = x n 1 ∫ 0 ϕ ′ (-x n + σx n ) dσ = x n λβ ′ |S - 1 ∫ 0 ϕ(-x n + σx n ) dσ,
as the weight function β = β(x n ) is affine in (-δ, 0). Since β ′ > 0, the function ϕ increases with x n and we have ϕ(0

) ≤ ϕ(-x n ) + x n λϕ(0)β ′ |S -, if x n > 0.
As we have assumed (3.11) here we obtain

sϕ(0) -µ k x n ≤ sϕ(-x n ) -εµ k x n , x n > 0. (3.14) 
We also have

sϕ(0) -µ k x n ≤ sϕ(x n ) -εµ k x n , x n > 0. (3.15) 
From (3.12) we thus obtain

µ 3 2 k e sϕ| S |û k|S | ≤ 1 (c + + c -) δ ∫ 0 e sϕ(-x n ) |c -ĝk (-x n )| + e sϕ(x n ) |c + ĝk (x n )| µ 1 2 k e -εµ k x n dx n e sϕ ĝk L 2 (-δ,0) + e sϕ ĝk L 2 (0,δ) δ ∫ 0 µ k e -2εµ k x n dx n 1 2 ε -1 2 e sϕ ĝk L 2 (-δ,δ) ε -1 2 e sϕ fk L 2 (-δ,δ) + sλ ϕv k L 2 (-δ,δ) + ∂ x n vk L 2 (-δ,δ) , which leads to, for k ≥ k 2 , sλϕ |S [c 2 β ′ ] S |µ k vk|S | 2 (1 -ε)|β ′ -| -1 [c 2 β ′ ] S µ 3 k |v k|S | 2 (1 -ε)ε -1 |β ′ -| -1 [c 2 β ′ ] S e sϕ fk 2 L 2 (-δ,δ) + s 2 λ 2 ϕv k 2 L 2 (-δ,δ) + ∂ x n vk 2 L 2 (-δ,δ) .
We have thus seen that low frequencies in (3.8) are estimated by boundary terms and high frequencies are estimated by the r.h.s. of (3.2) and "absorbable" terms. It remains to prove that we cover the whole spectrum with the two estimates we have obtained. A sufficient condition is then

(1 -ε) -2 (sλϕ |S ) 2 (β ′ |S -) 2 ≤ 1 1 + ε (β ′ |S -) 2 (sλϕ) 2 |S 1 |L -K 2 | 2(L 3 -K 2 ) - L 2 -K 2 L -1 ,
that is

P(K, L) := -|L -K 2 |(L -1) + (1 -ε) 2 1 + ε 2(L 3 -K 2 )(L -1) -L 2 -K 2 ≥ 0. (3.16)
We recall that L = (r + 1) -rK if 0 < K < 1. The following lemma provides a positive answer (see Appendix 3.6 for a proof).

Lemma 3.6.

There exists ε 0 > 0 such that for 0 < ε < ε 0 ,

• P(K, L) ≥ 0 if K = 1,
• there exists r ≥ 1 such that P(K, L) ≥ 0 for K ∈ (0, 1). In particular the value r = 3 is admissible.

In particular we have B 2 > 0.

This concludes the proof of Proposition 3.5.

Arguing as we did for (3.7) in the case K > 1, we now obtain

sλ 2 ϕ 1 2 ∇v 2 L 2 (Ω ′ ×(-δ,δ)) + s 3 λ 4 ϕ 3 2 v 2 L 2 (Ω ′ ×(-δ,δ)) + sλϕ |S 3 e 2sϕ |S |u |S | 2 L 2 (S ) + sλϕ |S e 2sϕ |S |∇u |S | 2 L 2 (S ) e sϕ f 2 L 2 (Ω ′ ×(-δ,δ)) + s 2 λ 2 ϕv 2 L 2 (Ω ′ ×(-δ,δ)) + ∂ x n v 2 L 2 (Ω ′ ×(-δ,δ)) . (3.17) 
The last two terms on the r.h.s. can be "absorbed" by the l.h.s. by choosing s sufficiently large. This concludes the case 0 < K ≤ 1 and the proof of Theorem 1.4. 4 The parabolic case: proof of Theorem 1.5

Here, the matrix coefficient B is assumed to be time dependent as stated in Assumption 1.2. The coefficients c 1 (t, x n ) and c 2 (t, x n ) can be different.

We choose a function β > 0 that satisfies the requirements of Assumption 2.1 and we introduce β = β + m β ∞ where m > 1. Observe that β also satisfies Assumption 2.1.

For T > 0 and λ > 0 we define the following weight functions

ϕ(x) = e λβ(x) , η(x) = e λβ(x) -e λβ , x ∈ Ω, a(t) = t(T -t) -1 , t ∈ (0, T ), (4.1) 
with β = 2m β ∞ (see [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF]). Note that η < 0. As in the previous sections we choose β ′ > 0 on S + and S -, which means that the observation region ω is chosen in Ω ′ × (0, H), i.e., where x n ≥ 0. It suffices to prove a local Carleman estimate at the interface S , i.e., for functions u with support near the interface, supp(u) ⊂ [0, T ] × Ω ′ × (-δ, δ), where the weight function β depends only on x n and is piecewise affine.

We assume moreover that u satisfies the transmission conditions

u |S - T = u |S + T , (c 2 ∂ x n u) |S - T = (c 2 ∂ x n u) |S + T . (4.2)
Applying the unitary transform of Section 2, the equation ∂ t u + Au = f can be written

(∂ t -∂ x n c 2 ∂ x n + c 1 µ 2 k )û k (t, x n ) = fk (t, x n ), t ∈ (0, T ), x n ∈ (-δ, 0) ∪ (0, δ), k ≥ 1, with supp(û k ) ⊂ [0, T ] × (-δ, δ).
Setting q T,δ = (0, T ) × (-δ, δ), our starting point is the following proposition.

Proposition 4.1. Let T > 0. There exist C, C ′ > 0, λ 0 > 0, s 0 > 0 such that C s -1 (aϕ) -1 2 ∂ t vk 2 L 2 (q T,δ ) + sλ 2 (aϕ) 1 2 ∂ x n vk 2 L 2 (q T,δ ) + sλ 2 (aϕ) 1 2 µ k vk 2 L 2 (q T,δ ) + s 3 λ 4 (aϕ) 3 2 vk 2 L 2 (q T,δ ) + sλ T ∫ 0 aϕ |S [c 2 2 β ′ |∂ x n vk | 2 ] S + |sλa(ϕv k ) |S | 2 [c 2 2 β ′3 ] S dt ≤ C ′ e saη fk 2 L 2 (q T,δ ) + sλ T ∫ 0 aϕ |S |µ k vk|S T | 2 [c 1 c 2 β ′ ] S dt + Z, (4.3)
for all k ∈ N * , vk = e saη ûk , λ ≥ λ 0 and s ≥ s 0 (T + T 2 ), with

|Z| s 1 2 λT T ∫ 0 aϕ |S |∂ x n vk | 2 |S - T + |∂ x n vk | 2 |S + T dt + s(T 3 + T 4 )λ + s 3 2 T 3 λ 3 T ∫ 0 a 3 ϕ |S |v k | 2 |S T dt. ( 4.4) 
We emphasize that the constants are uniform with respect to the transverse-mode index k. Such a result can be obtained by adapting the derivations in [START_REF] Doubova | Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients[END_REF] for instance. We provide a short proof in Appendix A.5.

As in Section 3, we set

B p (v k ) = sλaϕ |S [c 2 2 β ′ |∂ x n vk | 2 ] S + |sλaϕv k|S T | 2 [c 2 2 β ′3 ] S , L = β ′ |S + β ′ |S - , K i (t) = c i-(t) c i+ (t) , K i = inf t∈[0,T ] K i (t), K i = sup t∈[0,T ] K i (t), i = 1, 2. (4.5) 
and

B = B(L) = inf t∈[0,T ] (c 2 2+ (t) ) (β ′ |S -) 3 K 2 2 + L 3 (L -L) L -1 , with L = max{K 2 , 2}, (4.6) 
and finally

D = D(L) = sup t∈[0,T ] (c 1+ c 2+ )(t) β ′ |S -(L + K 1 K 2 ) > 0. (4.7)
We make the following assumption on the weight function in addition to Assumption 2.1.

Assumption 4.2. The weight function β is chosen such that

L ≥ L = max{K 2 , 2} and 
1 2 ≥ max 2 D B , 4β ′ -|S σ D B , σ = inf t,x n c 1 (t, x n ) c 2 (t, x n ) 1 2 , ( 4.8) 
The coefficients c 1 , c 2 being fixed, the forms of the coefficients D and B show that this can be achieved by first choosing the value of β ′ |S -> 0 and then picking a sufficiently large value for L.

Remark 4.3. To construct the weight function β we first choose its slopes on both sides of the interface satisfying Assumption 4.2. Here the slopes are positive as we wish to observe the solution in {x n > 0}. We may then extend the function β on both sides of the interface. The additional requirements of Assumption 2.1 only concern the behavior of the β away from the interface. The two assumptions are compatible.

Lemma 4.4. We have

B p (v k ) = sλaϕ |S e 2saϕ |S B 1 |γ(û k )| 2 + B 2 |sλa(ϕû k ) |S | 2 , with γ(û k ) = (c 2 ∂ x n ûk ) |S + c 2+ β ′ |S - L 2 -K 2
L-1 (sλaϕû k ) |S and where

B 1 = β ′ |S -(L -1), B 2 (t) = c 2 2+ (t)(β ′ |S -) 3 2(L 3 -K 2 2 (t)) - L 2 -K 2 (t) 2 L -1 .
If β Assumption 4.2 we have B 1 > 0 and B 2 ≥ B, with B defined in (4.6).

Proof. The proof of Lemma 3.4 in Appendix A.2 can be directly adapted and gives the first part of the lemma. As L ≥ 1 we have

B 1 > 0. A direct computation yields B 2 (t) = c 2 2+ (t)(β ′ |S -) 3 P p (L,K 2 (t))
L-1

with

P p (L, Y) = Y 2 (1 -2L) + 2Y L 2 + L 4 -2L 3 = L 3 (L -L) + L 3 (L -2) + 2LY(L -Y) + Y 2 .
As L ≥ 2, and L ≥ K 2 ≥ K 2 (t) ≥ K 2 > 0, we thus obtain P p (L, K 2 (t)) ≥ K 2 2 + L 3 (L -L). We now prove the following key result, providing an estimate of the tangential derivative of v, i.e., µ k vk , in the Fourier decomposition. Proposition 4.5. For a weight function β that satisfies Assumptions 2.1 and 4.2 there exists C > 0 such that for all k ∈ N * we have sλ

T ∫ 0 aϕ |S |[c 1 c 2 β ′ ] S | |µ k vk|S | 2 dt ≤ B 4 (sλ) 3 |(aϕ |S ) 3 2 vk ) |S | 2 L 2 ((0,T )) + C e saη fk 2 L 2 (q T,δ ) + s 3 λ 3 (aϕ) 3 2 vk 2 L 2 (q T,δ ) + sλ (aϕ) 1 2 ∂ x n vk 2 L 2 (q T,δ ) + sλ (aϕ) 1 2 µ k vk 2 L 2 (q T,δ ) . (4.9)
for λ and s/(T + T 2 ) both sufficiently large.

Proof. We fix k ≥ 1 and we shall keep track of the dependency of the constants on k.

We have If µ k > µ s,λ , there exists t k := t k (s, λ) ∈ (0, T/2) such that

[c 1 c 2 β ′ ] S ≤ (c 1+ c 2+ )(t) β ′ |S -(L + K 1 K 2 (t)) ≤ D,
T t 0 Φ t k T -t k T 2 µ s,λ I k I k µ k
µ k = Φ(t k ; s, λ) = Φ(T -t k ; s, λ). (4.11) 
For µ k ≥ µ s,λ , we set

I k := (0, t k ) ∪ (T -t k , T ), J k := (0, T ) \ I k = (t k , T -t k ), Jk := t k 2 , T - t k 2 .
For µ k < µ s,λ , we set I k := (0, T ).

We then introduce

I(k; s, λ) := sλD ∫ I k a(t)ϕ |S µ 2 k |v k|S | 2 dt, (4.12) J(k; s, λ) := sλD ∫ J k a(t)ϕ |S µ 2 k |v k|S | 2 dt, ( 4.13) 
so that the term on the l.h.s. of (4.9) is less than the sum of the two previous quantities.

The first term, I(k; s, λ), involving time t close to 0 or , will be estimated by a trace term. The second term, J(k; s, involving time t away from 0 and T , will be estimated by volume terms.

Step 1: µ k ≤ µ s,λ or t ∈ I k In the (t, µ k ) plane presented in Figure 1 this corresponds to the shaded region. We thus treat low (tangential) frequencies here. Lemma 4.6. For all k ≥ 1 we have

D|µ k vk|S | 2 ≤ B 4 sλa(t)(ϕv k ) |S 2 ,
with B as defined in (4.6), if either (1) µ k ≤ µ s,λ or (2) µ k > µ s,λ and t ∈ I k .

Proof. The first point follows from the definition of µ s,λ . The second point is a direct consequence of the definition of t k in (4.11) as the function t → a(t) decreases on (0, T/2).

For all k ∈ N * , we thus obtain

I(k; s, λ) ≤ B 4 (sλ) 3 |(aϕ |S ) 3 2 vk ) |S | 2 L 2 ((0,T )) .
Step 2: µ k > µ s,λ and t in a neighborhood of J k , preliminary result. In each open set (0, T ) × (-δ, 0) and (0, T ) × (0, δ), the function ûk satisfies the following equation We consider a cutoff function (0, T ) ∋ t → χ k (t), such that

-∂ 2 x n ûk + c 1 c 2 µ k ûk + 1 c 2 ∂ t ûk = fk c 2 + ∂ x n c 2 c 2 ∂ x n ûk . ( 4 
χ k ≡ 1 on J k , 0 ≤ χ k ≤ 1, supp(χ k ) ⊂ Jk and χ ′ k ∞ ≤ C/t k ,
and we introduce

w = w(t, k, x n ; s, λ) = 1 2 χ k (t)p(t; s, λ)|û k (t, x n )| 2 . (4.16)
Note that χ k depends on the index k. Yet, as this dependency will only appear below through the estimate of χ ′ k ∞ we shall write χ in place of χ k for concision. Observe that w ≥ 0 and that it satisfies the same transmission conditions (4.2) as u. The function w satisfies

∂ 2 x n w - c 1 c 2 (2 -γ)µ 2 k - p ′ c 1 p w = -g, (4.17) 
with 0 < γ < 1 and

g = -χp|∂ x n ûk | 2 - 1 c 2 ∂ t w + χ 1 c 2 p Re fk ûk - c 1 c 2 µ 2 k γ 2 χp|û k | 2 + χp ∂ x n c 2 c 2 Re ûk ∂ x n ûk + χ ′ 2c 2 p|û k | 2 .

Lemma 4.7.

There exist s 0 > 0, λ 0 > 0, depending on L and γ, such that

(2 -γ)µ 2 k - p ′ c 1 p ≥ µ 2 k if t k 2 < t < T - t k 2 , x n ∈ (-δ, δ), (4.18)
for s > s 0 (T + T 2 ) and λ > λ 0 .

See Appendix A.6 for a proof.

Step 3: µ k > µ s,λ and t in a neighborhood of J k , conclusion. For t ∈ Jk we begin by replacing the time-space dependent coefficient c 1 c 2 (2-γ)µ 2 k -p ′ c 1 p by σ 2 µ 2 k on the l.h.s. of (4.17) (the constant σ is introduced in (4.8)). This will allow us to argue as in the elliptic case, viz. solving an ordinary differential equation with constant coefficients.

We set q(t, x n ; k, s, λ)

:= -σ 2 µ 2 k + c 1 c 2 (2 -γ)µ 2 k - p ′ c 1 p .
We have

∂ 2 x n w -σ 2 µ 2 k w = -g, (4.19) 
with

g := -qw -χp|∂ x n ûk | 2 - 1 c 2 ∂ t w + χ 1 c 2 p Re fk ûk - c 1 c 2 χ γ 2 pµ 2 k |û k | 2 + χp ∂ x n c 2 c 2 Re ûk ∂ x n ûk + χ ′ 2c 2 p|û k | 2 .
Observe that Lemma 4.7 gives

q(t, x n ; k, s, λ) ≥ 0, t k 2 < t < T - t k 2 , x n ∈ (-δ, δ), s > s 0 , λ > λ 0 .
From (4.19) and Appendix A.3 we obtain

J(k; s, λ) ≤ 2 ∫ Jk µ 2 k w |S dt = 2µ k σ ∫ Jk δ ∫ 0 sinh σµ k (δ -x n ) (c 2+ + c 2-) cosh(σµ k δ) c 2+ g(t, x n ) + c 2-g(t, -x n ) dx n dt. (4.20)
Note that the introduction of Jk , instead of J k , is due to the cut-off function χ. Substituting g in (4.20) we obtain seven terms. We shall provide the details for the contribution of c 2+ g(t, x n ). For the contribution c 2-g(t, -x n ) details are given if difference occurs. As in the elliptic case, we shall use that the kernel e -2sa(t)η |S sinh(σµ k (δ-x n )) cosh(σµ k δ)

be estimated by the weight e 2saη .

1. We have

δ ∫ 0 sinh(σµ k (δ -x n )) cosh(σµ k δ) -qw -χp|∂ x n ûk | 2 dx n ≤ 0. (4.21)
The negative sign is fortunate as the absolute value of this term cannot be reasonably bounded, i.e., by a term that can be "absorbed" by the l.h.s. of (4.3). 

(a)

∫ Jk δ ∫ 0 sinh(σµ k (δ -x n )) (c 2+ + c 2-) cosh(σµ k δ) - c 2± c 2 ∂ t w(t, ±x n ) dx n dt = ∫ Jk δ ∫ 0 sinh(σµ k (δ -x n )) cosh(σµ k δ) ∂ t c 2± (c 2+ + c 2-)c 2 w(t, ±x n ) dx n dt,
and, by (3.13), we have

µ k ∫ Jk δ ∫ 0 sinh(σµ k (δ -x n )) (c 2+ + c 2-) cosh(σµ k δ) - c 2± c 2 ∂ t w(t, ±x n ) dx n dt sλD ∫ Jk δ ∫ 0 a(t)ϕ |S e -σµ k x n e 2sa(t)η |S µ k |û k (t, ±x n )| 2 dx n dt.
We shall thus obtain an estimate of this term by the r.h.s. of (4.9) if we prove

-σµ k x n + 2sa(t)η |S ≤ 2sa(t)η(±x n ), ∀(t, x n ) ∈ Jk × (0, δ). (4.22)
This is clear for the case

+ since η |S ≤ η(x n ).
The argument is different for the case -. Using that β is a piecewise affine, we have

η(-x n ) -η |S = ϕ(-x n ) -ϕ |S ≥ -x n λ β ′ -ϕ |S , x n ∈ (0, δ).
Therefore, (4.22) will be satisfied if

σµ k ≥ 2sa(t)λ β ′ -ϕ |S , ∀t ∈ Jk ,
which, by the definition of Φ in (4.10), can be written as

σµ k ≥ 4β ′ -|S D B Φ(t; s, λ), ∀t ∈ Jk .
As max t∈ Jk Φ(t; s, λ) = Φ t k 2 ; s, λ , it suffices to have

σµ k = σΦ(t k ; s, λ) ≥ 4β ′ -|S D B Φ t k 2 ; s, λ , ∀t ∈ Jk .
This holds if we have

a(t k ) a( t k 2 ) ≥ 4β ′ -|S σ D B . (4.23) 
Observing that a(t k ) a(t k /2) ≥ 1 2 , we find that (4.23) is fulfilled by Assumption 4.2.

(b) Term χ( 1 c 2 p Re f ûk - c 1 c 2 γ 2 pµ 2 k | ûk | 2 ).
We shall prove that the associated term in (4.20) is estimated by e saη f 2 L 2 (q T,δ ) . Applying the Young inequality, we obtain

µ k p Re fk ûk c 2 ≤ D 2γ inf t∈[0,T ] (c 1 c 2 ) |e saη |S fk | 2 + c 1 c 2 γsλaϕ |S pµ 2 k |û k | 2 2 . (4.24) 
Observe that

µ k ≥ sλa(t)ϕ |S , t ∈ Jk ⇔ µ k ≥ 2 D B Φ(t; s, λ), t ∈ Jk .
Arguing as above this will be fulfilled if

a(t k ) a( t k 2 ) ≥ 2 D B
, which holds by Assumption 4.2. We thus find, for t ∈ Jk ,

µ k δ ∫ 0 sinh(σµ k (δ -x n )) cosh(σµ k δ) χ( 1 c 2 p Re fk ûk - c 1 γ 2c 2 pµ 2 k |û k | 2 ) dx n ≤ δ ∫ 0 De -2( σµ k 2 x n -saη |S ) 2γ inf t∈[0,T ] (c 1 c 2 ) | fk | 2 dx n ,
and proceeding as in 2.(a) we find

µ k ∫ Jk δ ∫ 0 sinh(σµ k (δ -x n )) (c 2-+ c 2+ ) cosh(σµ k δ) c 2+ χ 1 c 2 p Re fk ûk - c 1 γ 2c 2 pµ 2 k |û k | 2 dx n dt e saη fk 2 L 2 (q T,δ ) . (c) Term χp ∂ xn c 2 c 2 Re ûk ∂ x n ûk . With the Young inequality we find µ k χp Re ûk ∂ x n ûk ≤ 1 2 p|∂ x n ûk | 2 + µ 2 k 1 2 p|û k | 2 . With (4.

22), arguing as above we obtain

µ k ∫ Jk δ ∫ 0 sinh σµ k (δ -x n ) (c 2+ + c 2-) cosh(σµ k δ) c 2+ χp ∂ x n c 2 c 2 Re ûk ∂ x n ûk dx n dt sλ (aϕ) 1 2 e saη ∂ x n ûk 2 L 2 (q T,δ ) + sλ (aϕ) 1 2 µ k vk 2 L 2 (q T,δ ) sλ (aϕ) 1 2 ∂ x n vk 2 L 2 (q T,δ ) + s 3 λ 3 (aϕ) 3 2 vk 2 L 2 (q T,δ ) + sλ (aϕ) 1 2 µ k vk 2 L 2 (q T,δ ) . (d) Term χ ′ 2c 2 p| ûk | 2 . As we have χ ′ ∞ ≤ C/t k we get χ ′ ∞ T a(t k ) T Φ(t k ; s, λ) sλϕ |S D B T µ k sλϕ |S D B .
We thus find

µ k δ ∫ 0 sinh σµ k (δ -x n ) cosh(σµ k δ) χ ′ 2c 2 p|û k | 2 dx n µ 2 k T a(t) D 3 B δ ∫ 0 sinh σµ k (δ -x n ) cosh(σµ k δ) e 2saη |S |û k | 2 dx n .
Arguing as above with (4.22) we obtain

µ k ∫ Jk δ ∫ 0 sinh σµ k (δ -x n ) (c 2+ + c 2-) cosh(σµ k δ) c 2+ χ ′ 2σc 2 p|û k | 2 dx n dt T a 1 2 µ k vk 2 L 2 (q T,δ ) sλ (aϕ) 1 2 µ k vk 2 L 2 (q T,δ ) , if s ≥ s 0 T , with s 0 > 0, and λ ≥ λ 0 > 0.
Collecting all the estimates we have obtained we conclude the proof of the Proposition 4.5.

End of the proof of Theorem 1.5.

With Proposition 4.1, estimate (4.4), Lemma 4.4 and Proposition 4.5, for λ and s/(T + T 2 ) sufficiently large, we obtain, for all k ∈ N * ,

s -1 (aϕ) -1 2 ∂ t vk 2 L 2 (q T,δ ) + sλ 2 (aϕ) 1 2 ∂ x n vk 2 L 2 (q T,δ ) + (aϕ) 1 2 µ k vk 2 L 2 (q T,δ ) + s 3 λ 4 (aϕ) 3 2 vk 2 L 2 (q T,δ ) + sλ |(aϕ |S ) 1 2 ∂ x n vk | 2 L 2 ((0,T )) + |(aϕ |S ) 1 2 µ k vk | 2 L 2 ((0,T )) + s 3 λ 3 |(aϕ |S ) 3 2 vk | 2 L 2 ((0,T )) e saη fk 2 L 2 (q T,δ ) . (4.25) 
Summing over k, using (2.2) we obtain

s -1 (aϕ) -1 2 ∂ t v 2 L 2 (Q T ) + sλ 2 (aϕ) 1 2 ∂ x n v 2 L 2 (Q T ) + (aϕ) 1 2 µ k v 2 L 2 (Q T ) + s 3 λ 4 (aϕ) 3 2 v 2 L 2 (Q T ) + sλ |(aϕ |S ) 1 2 ∂ x n v| 2 L 2 (S T ) + |(aϕ |S ) 1 2 µ k v| 2 L 2 (S T ) + s 3 λ 3 |(aϕ |S ) 3 2 v| 2 L 2 (S T ) e saη f 2 L 2 (Q T ) . (4.26)
The remainder of the proof of the Carleman estimate is now classical (see e.g. [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators[END_REF]).

Remark 4.8. It is important to note that Proposition 4.5 is not a trace result, otherwise a stronger Sobolev norm would appear on the r.h.s. of (4.9). The L 2 -norm of the trace of the tangential derivative is estimated by an L 2 ((0, T ); H 1 (Ω))-norm, but this is valid only for solutions of Pu = f . This result appears to us as an expression of the parabolic regularization effect.

Observe that the estimate of Proposition 4.5 is also valid in the case where c 1 and c 2 are smooth if the weight function β is chosen with a discontinuous derivative across S according to Assumptions 2.1 and 4.2.

A Proof of some intermediate results

A.1 Proof of Proposition 3.1

For later use of this proof in Section 4 we consider the case c 1 c 2 here. The inequality we prove is uniform w.r.t. k. We shall thus remove the Fourier notation ûk and simply write (-∂ x n c 2 ∂ x n + c 1 µ 2 )u = f . We introduce v = e sϕ u and g = e sϕ f and we obtain

-∂ x n c 2 ∂ x n -c 2 (sϕ ′ ) 2 + c 1 µ 2 + 2sc 2 ϕ ′ ∂ x n + s∂ x n (c 2 ϕ ′ ) v = g,
which, following [START_REF] Fursikov | Controllability of evolution equations[END_REF], we write

M 1 v + M 2 v = g, with M 1 = -∂ x n c 2 ∂ x n -c 2 (sϕ ′ ) 2 + c 1 µ 2 , M 2 = 2sc 2 ϕ ′ ∂ x n + spc 2 ϕ ′′ , g = g + (p -1)sc 2 ϕ ′′ v -s(∂ x n c 2 )ϕ ′ v, 1 < p < 3.
The introduction of the parameter p is for instance explained in [START_REF] Rousseau | On Carleman estimates for elliptic and parabolic operators[END_REF]. Following the classical method to prove Carleman estimates we compute

g 2 L 2 (R + ) = M 1 v 2 L 2 (R + ) + M 2 v 2 L 2 (R + ) + 2 Re(M 1 v, M 2 v) L 2 (R + ) , (A.1)
considering only the region {x n > 0} for now. We focus on the computation of the third term which we write as sum of 4 terms I i j , 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, where I i j is the inner product of the i th term in the expression of M 1 v and the j th term in the expression of M 2 v above.

Term I 11 . With an integration by parts we have

I 11 = -2 Re ∫ x n >0 sϕ ′ ∂ x n c 2 ∂ x n v c 2 ∂ x n v dx n = -∫ x n >0 sϕ ′ ∂ x n |c 2 ∂ x n v| 2 dx n = sϕ ′ |c 2 ∂ x n v| 2 |x n =0 + + ∫ x n >0 sϕ ′′ |c 2 ∂ x n v| 2 dx n .
Term I 21 . Similarly we find

I 21 = Re ∫ x n >0 -c 2 (sϕ ′ ) 3 + sc 1 µ 2 ϕ ′ c 2 ∂ x n |v| 2 dx n = c 2 (sϕ ′ ) 3 -sc 1 µ 2 ϕ ′ c 2 |v| 2 |x n =0 + + ∫ x n >0 c 2 3s 3 c 2 (ϕ ′ ) 2 ϕ ′′ -sc 1 µ 2 ϕ ′′ |v| 2 dx n + ∫ x n >0 2c 2 ∂ x n c 2 (sϕ ′ ) 3 -(c 1 ∂ x n c 2 + c 2 ∂ x n c 1 )sµ 2 ϕ ′ |v| 2 dx n .
Term I 12 . We have

I 12 = -sp Re ∫ x n >0 (∂ x n c 2 ∂ x n v)c 2 ϕ ′′ v dx n = sp ∫ x n >0 ϕ ′′ |c 2 ∂ x n v| 2 dx n + spϕ ′′ Re(c 2 ∂ x n v)c 2 v |x n =0 + + sp Re ∫ x n >0 ∂ x n (c 2 ϕ ′′ )(c 2 ∂ x n v)v dx n .
Term I 22 . We directly find

I 22 = sp ∫ x n >0 c 2 -c 2 (sϕ ′ ) 2 + c 1 µ 2 ϕ ′′ |v| 2 dx n .
Collecting together the different terms we have obtained we find

1 2 g 2 L 2 (R + ) ≥ ∫ x n >0 α 0 |v| 2 dx n + ∫ x n >0 α 1 |c 2 ∂ x n v| 2 dx n + γ 0 |v| 2 |x n =0 + + γ 1 |c 2 ∂ x n v| 2 |x n =0 + + X + Y, with α 0 = s(p -1)c 1 c 2 µ 2 ϕ ′′ + (3 -p)s 3 (c 2 ϕ ′ ) 2 ϕ ′′ , α 1 = s(p + 1)ϕ ′′ , γ 0 = c 2 2 (sϕ ′ ) 3 |x n =0 + -c 1 c 2 sµ 2 ϕ ′ |x n =0 + , γ 1 = sϕ ′ , X = sp Re ∫ x n >0 ∂ x n (c 2 ϕ ′′ )(c 2 ∂ x n v)v dx n + ∫ x n >0 2c 2 ∂ x n c 2 (sϕ ′ ) 3 -(c 1 ∂ x n c 2 + c 2 ∂ x n c 1 )µ 2 sϕ ′ |v| 2 dx n , Y = spc 2 ϕ ′′ Re(∂ x n v)v |x n =0 + .
Because of the form of ϕ, a direct computation shows that α 0 sλ 2 µ 2 ϕ + s 3 λ 4 ϕ 3 , α 1 Csλ 2 ϕ, for λ chosen sufficiently large. Recalling that β is affine in the region we consider we find

X = sp Re ∫ x n >0 c 2 2 λ 3 β ′3 + c 2 (∂ x n c 2 )λ 2 β ′2 ϕ(∂ x n v)v dx n + ∫ x n >0 2c 2 ∂ x n c 2 (sλβ ′ ϕ) 3 -(c 1 ∂ x n c 2 + c 2 ∂ x n c 1 )µ 2 sλβ ′ ϕ |v| 2 dx n , and 
g 2 L 2 (R + ) g 2 L 2 (R + ) + s 2 (λ 4 + λ 2 ) ∫ x n >0 ϕ 2 |v| 2 .
Choosing s and λ sufficiently large, with the Young inequality, we obtain

C g 2 L 2 (R + ) ≥ C ′ ∫ x n >0 sλ 2 µ 2 ϕ + s 3 λ 4 ϕ 3 |v| 2 dx n + C ′ ∫ x n >0 sλ 2 ϕ|∂ x n v| 2 dx n + γ 0 |v| 2 |x n =0 + + γ 1 |c 2 ∂ x n v| 2 |x n =0 + + Y. (A.2)
The same type of estimate can be obtained in the region {x n < 0} with opposite signs for the trace terms. The sum of (A.2) from both sides yields the result.

A.2 Proof of Lemma 3.4

Here we drop the vk notation and simply write v. It follows that

c∂ x n v = e sϕ (c∂ x n u + cs(∂ x n ϕ)u) = e sϕ c∂ x n u + cβ ′ (sλϕu) .
We set a = c∂ x n u and b = sλϕu. We then have

|c∂ x n v| 2 β ′ S = e 2sϕ [β ′ ] S |a| 2 + [c 2 (β ′ ) 3 ] S |b| 2 + 2[c(β ′ ) 2 ] Re ab .
We thus obtain

B(v) = sλϕ |S e 2sϕ Aw, w),
with w = (a, b) t and where A is the following symmetric matrix

A = [β ′ ] S [c(β ′ ) 2 ] S [c(β ′ ) 2 ] 2[c 2 (β ′ ) 3 ] S = β ′ - (L -1) c + β ′ -(L 2 -K) c + β ′ -(L 2 -K) 2(c + β ′ -) 2 (L 3 -K 2 )
.

We then see that

(Aw, w) = β ′ -(L -1) a + c + β ′ - L 2 -K L -1 b 2 + β ′ -2(c + β ′ -) 2 (L 3 -K 2 ) -(c + β ′ -) 2 L 2 -K 2 L -1 |b| 2 .
which gives the result.

A.3 Traces of the solution

We consider the following ODEs

v ′′ -µ 2 v = F, s ∈ (-δ, 0) ∪ (0, δ), (A.3) v(-δ) = v(δ) = 0, v |s=0 -= v |s=0 + , cv ′ |s=0 -= cv ′ |s=0 + . (A.4)
Here µ > 0. The solutions of (A.3) can be written as

v(s) = A ± cosh(µs) + B ± sinh(µs) + µ -1 s ∫ 0 sinh µ(s -σ) F(σ) dσ, s ∈ (-δ, 0) ∪ (0, δ).
We then have

A ± = v |s=0 ± , µB ± = v |s=0 ± and v(±δ) = µ -1 cosh(µδ) µA ± + µB ± tanh(±µδ) + ±δ ∫ 0 sinh µ(±δ -σ) cosh(µδ) F(σ) dσ .
The boundary conditions (A.4) then yield

µ tanh(µδ) µ -c + c -tanh(µδ) v + (0) v ′ + (0) =                - δ ∫ 0 sinh µ(δ-σ) cosh(µδ) F(σ) dσ - -δ ∫ 0 sinh µ(-δ-σ) cosh(µδ) F(σ) dσ                .
We observe that the determinant of this system,

D = -c -1 -tanh(µδ)µ(c + + c -), is non zero as µ > 0. It thus follows that v -(0) = v + (0) = - c + µ δ ∫ 0 sinh µ(δ -σ) (c + + c -) cosh(µδ) F(σ) dσ - c - µ -δ ∫ 0 sinh µ(-δ -σ) (c + + c -) cosh(µδ) F(σ) dσ.
A.4 Proof of Lemma 3.6

We first consider the case K = 1. Then L = 2 and P(K, L) = -(1 + ε) + 5(1ε) 2 . The result is clear for ε sufficiently small.

We now consider the case 0 < K < 1. Then L > 1; we have L -K 2 > 0 and thus

P(K, L) = -(L -K 2 )(L -1) + (1 -ε) 2 1 + ε 2(L 3 -K 2 )(L -1) -L 2 -K 2 .
For convenience we write (1ε) 2 /(1 + ε) = 1α with 0 < α < 1. We then find

Q(K) = P(K, (r + 1) -rK) = -(K -1) 2 S (K), S (K) = aK 2 + bK + c, with a = -(1 -α)r 4 < 0, b = 2(1 -α)(r 4 + r 3 -r 2 ) -(1 -2α)r, c = -(1 -α)(r 4 + 2r 3 -1) + r 2 + (3 -2α)r.
As S is a concave quadratic polynomial it suffices to prove that S (1) ≤ 0 and S ′ (1) ≥ 0. We find

S (1) = (2α -1)r 2 + 2r + 1 -α, S ′ (1) = r 2(1 -al)r 2 -2(1 -α)r -(1 -2α) .
We see that S (1) < 0 and S ′ (1) > 0 if α = 0 and r = 3. It thus remains true for α sufficiently small.

A.5 Proof of Proposition 4.1

The inequality we prove is uniform w.r.t. k. We shall thus remove the Fourier notation ûk and simply write (∂ t -∂ x n c 2 ∂ x n + c 1 µ 2 )u = f . We introduce v = e saη u and g = e saη f and we obtain

∂ t -∂ x n c 2 ∂ x n -c 2 (saη ′ ) 2 + c 1 µ 2 + 2sc 2 aη ′ ∂ x n + sa∂ x n (c 2 η ′ ) -sa ′ η v = g, which we write M 1 v + M 2 v = g, with M 1 = -∂ x n c 2 ∂ x n + [-c 2 (saη ′ ) 2 + c 1 µ 2 ] -sa ′ η, M 2 = 2sc 2 aη ′ ∂ x n + spc 2 aη ′′ + ∂ t , (A.5) g = g + (p -1)sc 2 aη ′′ v -s(∂ x n c 2 )aη ′ v, 1 < p < 3.
In preparation for what follows we observe that

1 T 2 a, |a ′ | T a 2 , |a ′′ | T 2 a 3 , |η| ϕ 2 .
We have

g 2 L 2 ((0,T )×R + ) g 2 L 2 ((0,T )×R + ) + s 2 (λ 4 + λ 2 )T 2 a 3 2 ϕ 1 2 v 2 L 2 ((0,T )×R + ) .
We compute

g 2 L 2 ((0,T )×R + ) = M 1 v 2 L 2 ((0,T )×R + ) + M 2 v 2 L 2 ((0,T )×R + ) + 2 Re(M 1 v, M 2 v) L 2 ((0,T )×R + ) , (A.6) 
considering only the region {x n > 0} for now. For the computation of the last term in (A.6), we set I i j , 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, where I i j is the inner product of the i th term in the expression of M 1 v and the j th term in the expression of M 2 v above. For the computations of I 11 , I 12 , I 21 and I 22 we refer to the computations performed in Appendix A.1 (simply replacing ϕ by aϕ and integrating in time).

Term I 13 . By integration by parts we find

I 13 = Re T ∫ 0 ∫ x n >0 -(∂ x n c 2 ∂ x n v)∂ t v dx n dt = 1 2 T ∫ 0 ∫ x n >0 c 2 ∂ t |∂ x n v| 2 dx n dt + Re T ∫ 0 (c 2 ∂ x n v)∂ t v |x n =0 + dt = - 1 2 T ∫ 0 ∫ x n >0 (∂ t c 2 )|∂ x n v| 2 dx n dt + Re T ∫ 0 (c 2 ∂ x n v)∂ t v |x n =0 + dt.
We have

1 2 T ∫ 0 ∫ x n >0 (∂ t c 2 )|∂ x n v| 2 dx n dt T 2 T ∫ 0 ∫ x n >0
a|∂ x n v| 2 dx n dt.

Term I 23 . By integration by parts we have

I 23 = 1 2 T ∫ 0 ∫ x n >0 -c 2 (saη ′ ) 2 + c 1 µ 2 ∂ t |v| 2 dx n dt = s 2 T ∫ 0 ∫ x n >0 c 2 aa ′ η ′2 |v| 2 dx n dt + 1 2 T ∫ 0 ∫ x n >0 [(∂ t c 2 )(saη ′ ) 2 -(∂ t c 1 )µ 2 ]|v| 2 dx n dt
We thus find

|I 23 | (T + T 2 )s 2 λ 2 T ∫ 0 ∫ x n >0 a 3 ϕ 2 |v| 2 dx n dt + T 2 T ∫ 0 ∫ x n >0
aµ 2 |v| 2 dx n dt.

Term I 33 . By integration by parts we find

I 33 = - s 2 T ∫ 0 ∫ x n >0 a ′ η∂ t |v| 2 dx n dt = s 2 T ∫ 0 ∫ x n >0
a ′′ η|v| 2 dx n dt.

This yields

|I 33 | T 2 s T ∫ 0 ∫ x n >0 a 3 ϕ 2 |v| 2 dx n dt.
Terms I 31 and I 32 . We have

I 31 = -s 2 T ∫ 0 ∫ x n >0 c 2 aa ′ ηη ′ ∂ x n |v| 2 dx n dt = s 2 T ∫ 0 ∫ x n >0 aa ′ ∂ x n (c 2 ηη ′ )|v| 2 dx n dt.
We find directly

I 32 = -ps 2 ∫ T 0 ∫ x n >0 c 2 aa ′ ηη ′′ |v| 2 dx n dt.
We then obtain

|I 31 | + |I 32 | T s 2 (λ + λ 2 ) T ∫ 0 ∫ x n >0 a 3 ϕ 3 |v| 2 dx n dt.
With the computations of Appendix A.1 we find, for λ and sa s/T 2 sufficiently large, The same type of estimate can be obtained in the region {x n < 0} with opposite signs for the trace terms. The sum of (A.7) from both sides yields C sλ 2 (aϕ) A. With the definition of Φ, this reads

- η |S ϕ 2 |S ≤ c1 32T (1 -γ) B D sλ 2
or equivalently

e λ( β-2β |S ) -e -λβ |S ≤ c1 32T (1 -γ) B D sλ 2 .
As β < 2β |S by construction of β (see the beginning of Section 4), this will hold for λ and s/T sufficiently large.

Remark 3 . 7 .

 37 Here, the weight function does not depend on x ′ . Observe that the local Carleman estimate that we obtain in Ω ′ × (-δ, δ) does not require any regularity for the boundary of the open set Ω ′ . The minimal regularity of the boundary ∂Ω to achieve a Carleman estimate remains an open question to our knowledge.

Figure 1 :
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Term 1 c 2 ∂ t w.

  Because of the cut-off function χ we have w |t=t k /2 = w |t=T -t k /2 = 0 and we get

  ′ |∂ x n v| 2 ] S + |sλaϕv |S T | 2 [c 2 2 β ′3 ] S dt + Ỹ ≤ C e saη f 2 L 2 (Q T,δ ) + sλ |S |µv |S T | 2 [c 1 c 2 β ′ ] S dt, (A.8) aϕ |S Re c 2 2 β ′2 ∂ x n v S v |S T dt,

	1 2 ∂ x n v	2 L 2 (Q T,δ ) + sλ 2 (aϕ)	1 2 µv	2 L 2 (Q T,δ ) + s 3 λ 4 (aϕ)	3 2 v	2 L 2 (Q T,δ )
	+ 2 β with Ỹ = Ỹ1 + Ỹ2 , where 1 2 M 2 v 2 L 2 ((0,T )×R * ) + sλ T ∫ 0 aϕ |S [c 2	
		Ỹ1 = spλ 2	T ∫		
				0		
	and					
		Ỹ2 = Re		

T ∫ 0 aϕ

  6 Proof of Lemma 4.7 Computing p ′(t) = sλe 2sa(t)η |S a ′ (t)ϕ |S [1 + 2sη |S a(t)]D, we have ≤ t < T -t k2 , because of the form of η in (4.1) we find p ′ p ≤ 0, for sa(t) s/T 2 and λ both sufficiently large. This implies that inequality (4.18) holds for these values of t.We now consider the case t k 2 < t < T 2 . Note that p ′ p is nonnegative, for s/T 2 and λ large, as here a ′ (t) < 0. Setting c1 = inf t,x n c 1 (t, x n ), and using the definition of t k in (4.11), it suffices to prove

							p ′ p	(t) =	a ′ a	(t)[1 + 2sa(t)η |S ],
	If T 2 p ′ (t) c1 p(t)	≤ (1 -γ)Φ 2 (t k ; s, λ),	t k 2	< t <	T 2	.
	For all s, λ, we have									
	p ′ (t) p(t) [2sη As we have = 2t -T t(T -t) 1 2 <		Φ(t k ; s, λ) Φ(t k /2; s, λ)	=	a(t k ) a(t k /2)	<	3 4	,	(A.10)
	it is sufficient to prove							
	-	2T c1	sη |S a 2 (t) ≤	1 4	(1 -γ)Φ 2 t k /2; s, λ ,	t k 2	< t <	T 2	.	(A.11)
	As the function Φ decreases on (0, T/2), (A.11) holds if we have
	-	2T c1	sη |S a 2 (t) ≤	1 4	(1 -γ)Φ 2 (t; s, λ),	t k 2	< t <	T 2	.

|S a(t) + 1] ≤ 2t -T t(Tt) 2sη |S a(t) ≤ -2T sη |S a 2 (t).

a b stands for a ≤ Cb for some constant C > 0.

Note that the derivation of a Carleman estimate in the case of singular domains can be achieved (see[START_REF] Belghazi | Carleman inequalities for the heat equation in singular domains[END_REF]). Addressing the more general case of Lipschitz boundary is an open question to our knowledge.

Concerning the regularity of the coefficients c i , an inspection of the proof of the Carleman estimate in the parabolic case shows that the time derivative of the trace of c 2 at x n = 0 needs to make sense (see above (A.9) in Appendix A.[START_REF] Bellassoued | Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization[END_REF]). An alternative regularity is then W 1,∞ (0, T ; W 1,∞ (Ω)).

This is the precise point where c 1 = c 2 is used. In the case c 1 c 2 the result of Appendix A.3 cannot be used and we have to proceed as in Section 4.
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