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Abstract

We consider anisotropic elliptic and parabolic operators in a bounded stratified media in Rn

characterized by discontinuties of the coefficients in one direction. The surfaces of disconti-

nuities cross the boundary of the domain. We prove Carleman estimates for these operators
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1 Introduction, notation and main results

Consider a bounded open set Ω ⊂ Rn. For an second-order elliptic operator, say A = −∆x,

Carleman estimates take the form1

s3‖esϕu‖2
L2(Ω)

+ s‖esϕ∇xu‖2
L2(Ω)

. ‖esϕAu‖2
L2(Ω)
, u ∈ C

∞
c (Ω), s ≥ s0,

for a properly chosen weight function ϕ(x) and s0 sufficiently large (see e.g. [17]). It is common

to use a weight function of the form ϕ(x) = eλβ(x), with β such that |β′| , 0 and λ sufficiently large.

Including a second large parameter (see [16]), the Carleman estimate then takes the form

s3λ4‖ϕ
3
2 esϕu‖

2

L2(Ω) + sλ2‖ϕ
1
2 esϕ∇xu‖

2

L2(Ω) . ‖e
sϕAu‖2

L2(Ω)
, u ∈ C

∞
c (Ω), s ≥ s0, λ ≥ λ0.

For a parabolic operator, say P = ∂t + ∆x on Q = (0,T ) × Ω, Carleman estimates can be derived

[16] in the following form

s3λ4‖(aϕ)
3
2 esaηu‖

2

L2(Q) + sλ2‖(aϕ)
1
2 esaη∇xu‖

2

L2(Q) . ‖e
saηPu‖2

L2(Q)
,

u ∈ C
∞(Q), supp(u(t, .)) ⋐ Ω, s ≥ s0, λ ≥ λ0,

for a(t) =
(

t(T − t)
)−1

, ϕ(x) = eλβ(x), with β such that |β′| , 0 and η(x) = eλβ(x) − eλβ < 0. In

this later case the weight function a(t)η(x) is singular at time t = 0 and t = T . For a review of

Carleman estimates for elliptic and parabolic operators we refer to [13, 24].

The estimates we have presented are said to be local, as they apply for compactly supported

functions in Ω. So-called global Carleman estimates can be derived (see e.g. [16]). They concern

functions defined on the whole Ω with prescribed boundary conditions, e.g. homogeneous Dirich-

let, Neumann. They are also characterized by the presence of an observation term on ω ⊂ Ω on

the r.h.s. of the estimate, e.g., for the elliptic operator A = −∆,

s3λ4‖ϕ
3
2 esϕu‖

2

L2(Ω) + sλ2‖ϕ
1
2 esϕ∇xu‖

2

L2(Ω) . ‖e
sϕAu‖2

L2(Ω)
+ s3λ4‖ϕ

3
2 esϕu‖

2

L2(ω), s ≥ s0, λ ≥ λ0,

for u ∈ C∞(Ω), and u|∂Ω = 0.

Note also that Carleman estimates can be patched together (see e.g. [17, 24]). If local estimates

are obtained at the boundary ∂Ω, then one can deduce global estimates from the local ones.

Carleman have many applications. In 1939, T. Carleman introduced these estimates to prove

a uniqueness result for some elliptic partial differential equations (PDE) with smooth coefficients

in dimension two [10]. This result was later generalized (see e.g. [17, Chapter 8], [18, Chapter

28], [34]). In more recent years, the field of applications of Carleman estimates has gone beyond

the original domain. They are also used in the study of inverse problems (see e.g. [9, 20, 19,

22]) and control theory for PDEs. Through unique continuation properties, they are used for the

exact controllability of hyperbolic equations [3]. They also yield the null controllability of linear

parabolic equations [29] and the null controllability of classes of semi-linear parabolic equations

[16, 2, 14].

Difficulties arise for the derivation of Carleman estimates in the case of non-smooth coefficients

in the principal part of the operator, i.e., for a regularity lower that Lipschitz. In fact, it is known

1a . b stands for a ≤ Cb for some constant C > 0.
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that unique continuation does not hold in general for a C 0,α Hölder regularity of the coefficient

with 0 < α < 1 [32, 31], which ruins any hope to prove a Carleman estimate.

In the present article, we consider coefficients that are discontinuous across a smooth inter-

face, yet regular on each side. This question was first addressed in [12] for a parabolic operator

P = ∂t − ∇x(c(x)∇x), with a monotonicity assumption: the observation takes place in the region

where the diffusion coefficient c is the ‘lowest’. In the one-dimensional case2, the monotonic-

ity assumption was relaxed for general piecewise C 1 coefficients [6, 7], and for coefficients with

bounded variations [23]. The case of an arbitrary dimension without any monotonicity condition

in the elliptic case was solved in [5, 27] and in the parabolic case in [28]. In [25, 26] the case

of a discontinuous anisotropic matrix coefficients is treated and a sharp condition on the weight

function is provided for the Carleman estimate to hold.

The methods used in [5, 27, 28, 25, 26] focus on a neighborhood of a point at the interface

where the interface can be given by {xn = 0} for an appropriate choice of coordinates x = (x′, xn),

x′ ∈ Rn−1, xn ∈ R. Then, through microlocal techniques (Calderón projector or first-order factor-

ization), a local Carleman estimate is proven. However, these methods require strong regularity

for the coefficients and for the interface. Moreover, they fall short if the interface crosses the

boundary. This configuration is typical in bounded stratified media such as those we consider

below.

In stratified media, a controllability result for a linear parabolic equation in arbitrary dimension

was obtained in [8]. The approach was based on the 1D Carleman estimates of [6, 23] and a

spectral inequality as in [29, 30, 21] for the transverse elliptic operator, whose coefficients are

smooth. The precise definition of such stratified media is given below.

The controllability result obtained in [8] left the question of deriving a Carleman estimate open

for stratified media. This result is achieved here. One of the consequences of this result is the

null-controllability of classes of semi-linear parabolic equations. We refer to [12] for these devel-

opments.

Remark 1.1. The following observation also provides hints that Carleman estimates can be de-

rived for stratified media [33]. As we shall assume below interfaces crosses the boundary trans-

versely. Pick a point at the intersection of an interface and the boundary and choose local coordi-

nates such that the interface is orthogonal to the boundary. Assume that the coefficients associated

with the transverse part of the operator are flat at the boundary. Then, by reflection at the boundary,

the system under consideration can be turned into a problem with a smooth interface away from

any boundary which permits to use the results of [27, 28, 25, 26]. This situation is however not

general.

We finish this introductory presentation by pointing out the difficulty that arises when deriving a

Carleman estimate for the operator A = −∇x(c(x)∇x) or P = ∂t−∇x(c(t, x)∇x) in dimension greater

than two, in the presence of an interface S . In fact, the standard Carleman derivation method leads

to interface terms involving

2Simultaneously to these results, a controllability result for linear parabolic equations with c ∈ L∞ was proven in

[1] in the one-dimensional case without Carleman estimate. This controllability result does not cover more general

semi-linear equations. An earlier result was that of [15] where the controllability of a linear parabolic equations was

proven in one dimension with c ∈ BV through D. Russel’s method.
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1. trace of the function u|S . A zero- and first-order operators in the tangent direction acts on

u|S .

2. traces of its normal derivative ∂xn
u|S ± , on both sides of S .

This interface contribution can be interpreted as a quadratic form (see [6]). In [27, 28] the authors

show that this quadratic form is only non-negative for low (tangential) frequencies. Here we shall

recover this behavior where the tangential Fourier transform is replaced by Fourier series, built on

a basis of eigenfunctions of the transverse part of the elliptic operator. For high (tangential) fre-

quencies, the tangential derivative term (i.e., the action of a the first-order operator on u|S ) yields

a negative contribution, unless a monotonicity assumption on the coefficient c is made as in [12].

In [5, 27, 28] the authors have used microlocal methods in the high frequency regime to solve this

difficulty, and more recently in [26, 25]. Here, because of the intersection of the interface with the

boundary, and because of the little regularity required for the diffusion coefficients, such methods

cannot be used directly. However, the separated-variable assumption made on the diffusion coef-

ficients allows us to use Fourier series and similar ideas can be developed: low frequencies and

high frequencies are treated differently. In the parabolic case the separation we make between the

two frequency regimes is time dependent. Here, the separated-variable assumption yields explicit

computations, which reveals the behavior of the solution in each frequency regime.

In the present article, a particular class of anisotropic coefficients is treated. The question of

deriving Carleman estimates for more general coefficients in the neighborhood of the intersection

of an interface, where the coefficients jump, with the boundary is left open.

1.1 Setting and notation

We let Ω be an open subset in Rn, with Ω = Ω′ × (−H,H), where Ω′ is a nonempty bounded open

subset of Rn−1 with C 1 boundary3.

We shall use the notation x = (x′, xn) ∈ Ω′ × (−H,H). We set S = Ω′ × {0}, that will be

understood as an interface where coefficients and functions may jump. For a function f = f (x) we

define by [ f ]S its jump at S , i.e.,

[ f ]S (x′) = f (x)|xn=0+ − f (x)|xn=0− .

For a function u defined on both sides of S , we set

u|S ± =
(

u|Ω±
)

|S ,

with Ω+ = Ω
′ × (0,H) and Ω− = Ω

′ × (−H, 0).

Let B(t, x), t ∈ (0,T ) and x ∈ Ω, be with values in Mn(R), the space of square matrices with real

coefficients of order n. We make the following assumption.

Assumption 1.2. The matrix diffusion coefficient B(t, x′, xn) has the following block diagonal form

B(t, x′, xn) =

(

c1(t, xn)C1(x′) 0

0 c2(t, xn)

)

3Note that the derivation of a Carleman estimate in the case of singular domains can be achieved (see [4]). Address-

ing the more general case of Lipschitz boundary is an open question to our knowledge.
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where the functions ci , i = 1, 2, are4 in C 1((0,T )×Ω±) with a possible jump at xn = 0. We assume

C1 ∈ W1,∞(Ω′,Mn−1(R)) and that C1(x′) is hermitian. We further assume uniform ellipticity

0 < cmin ≤ ci(t, xn) ≤ cmax < ∞, (t, xn) ∈ (0,T ) × (−H,H) and i = 1, 2,

0 < cmin Idn−1 ≤ C1(x′) ≤ cmax Idn−1, x′ ∈ Ω′.

To lighten notation we shall often write ci− := ci |xn=0+ and ci+ := ci |xn=0− for i = 1, 2.

Remark 1.3. Here, the matrix coefficient B is chosen time dependent in preparation for the Car-

leman estimate in the parabolic case. We shall also prove such an estimate in the elliptic case:

see Theorem 1.4 below and its proof in Section 3. For this theorem we shall of course use B

independent of time.

For the proof of Theorem 1.4 we shall further assume c1 = c2. In fact, this simplification allows

us to provide a fairly simple proof of the Carleman estimates that shows the different treatment of

two frequency regimes. These frequency regimes are connected to the microlocal regions used in

[27] and [25, 26]. Note however that the case c1 , c2 can also be treated in the elliptic case. The

proof is then closer to that of the parabolic case of Theorem 1.5 in Section 4. We have omitted this

proof for the sake of the clarity of the exposition.

Let T > 0. For each t ∈ [0,T ], we consider the symmetric bilinear H1
0
-coercive form

at(u, v) = ∫
Ω

(B(t, ·)∇xu) · ∇xvdx,

with domain D(at) = H1
0
(Ω). It defines a selfadjoint operator At = −∇x · (B(t, ·)∇x) in L2(Ω) with

compact resolvent and with domain D(At) = {u ∈ H1
0
(Ω);∇x · (B(t, ·)∇xu) ∈ L2(Ω)} (see e.g. [11],

p. 1211). In the elliptic case, we shall denote by ‖ · ‖L2(Ω) the L2 norm over Ω and by | · |L2(S ) the

L2 norm over the interface S of codimension 1.

We set QT = (0,T )×Ω, S T = (0,T )×S . We shall also consider the following parabolic operator

P = ∂t + At on QT . In the parabolic case, we shall denote by ‖ · ‖L2(QT ) the L2 norm over QT and

by | · |L2(S T ) the L2 norm over the interface S T of codimension 1.

In this article, when the constant C is used, it refers to a constant that is independent all the

parameters. Its value may however change from one line to another. We shall use the notation

a . b if we have a ≤ Cb for such a constant. If we want to keep track of the value of a constant

we shall use another letter.

1.2 Statements of the main results

We consider ω, a nonempty open subset of Ω. For a function β in C 0(Ω) we set

ϕ(x) = eλβ(x), λ > 0,

to be used as weight function. We consider first a matrix coefficient independent of the parameter

t. A proper choice of the function β, with respect to the operator A, ω and Ω (see Assumption 2.1

and Assumption 3.2), yields the following Carleman estimate for the elliptic operator A.

4Concerning the regularity of the coefficients ci, an inspection of the proof of the Carleman estimate in the parabolic

case shows that the time derivative of the trace of c2 at xn = 0 needs to make sense (see above (A.9) in Appendix A.5).

An alternative regularity is then W1,∞(0,T ; W1,∞(Ω)).
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Theorem 1.4 (Elliptic case). There exist C > 0, λ0 and s0 > 0 such that

sλ2‖esϕϕ
1
2∇u‖

2

L2(Ω) + s3λ4‖esϕϕ
3
2 u‖

2

L2(Ω) + sλ
(

|esϕϕ
1
2∇τu|S |

2

L2(S ) + |e
sϕϕ

1
2 ∂nu|S |

2

L2(S )

)

+ s3λ3|esϕϕ
3
2 u|S |

2

L2(S ) ≤ C
(

‖esϕAu‖2
L2(Ω)

+ s3λ4‖esϕϕ
3
2 u‖

2

L2(ω)

)

,

for all u ∈ D(A), λ ≥ λ0, and s ≥ s0.

Here, ∇τ is the tangential gradient on the interface S .

With a function β̃ > 0 that satisfies Assumption 2.1 below, we introduce β = β̃ + m‖β̃‖∞ where

m > 1. For λ > 0 we define the following weight functions

ϕ(x) = eλβ(x), η(x) = eλβ(x) − eλβ, a(t) =
(

t(T − t)
)−1
,

with β = 2m‖β̃‖∞ (see [16, 12]). For β̃ satisfying some additional requirements, that will be

provided in Section 4, we prove the following Carleman estimate for the parabolic operator P.

Theorem 1.5 (Parabolic case). There exist C > 0, λ0 and s0 > 0 such that

s−1
(

‖esaη(aϕ)−
1
2 ∂tu‖

2

L2(QT ) + ‖e
saη(aϕ)−

1
2 Atu‖

2

L2(QT )

)

+ sλ2‖esaη(aϕ)
1
2∇u‖

2

L2(QT )

+ s3λ4‖esaη(aϕ)
3
2 u‖

2

L2(QT ) + sλ
(

|esaη(aϕ)
1
2∇τu|S T

|
2

L2(S T ) + |e
saη(aϕ)

1
2 ∂nu|S T

|
2

L2(S T )

)

+ s3λ3|esaη(aϕ)
3
2 u|S T

|
2

L2(S T ) ≤ C
(

‖esaηPu‖2
L2(QT )

+ s3λ4‖esaη(aϕ)
3
2 u‖

2

L2((0,T )×ω)

)

,

for all u ∈ C2((0,T ) × Ω±) such that u|S −
T
= u|S +

T
, (c2∂xn

u)|S −
T
= (c2∂xn

u)|S +
T
, λ ≥ λ0, and s ≥

s0(T + T 2).

By density argument, we can extend this estimate to functions in ∫
⊕

[0,T ]

D(At) dt∩H1(0,T ; L2(Ω)).

1.3 Outline

In Section 2, we provide some spectral properties of operator A, which yields a Hilbert direct

decomposition of L2(Ω) = ⊕k∈N∗Hk that reduces A. We also provide the precise assumptions made

on the weight function. In Section 3, we prove the Carleman estimate for the elliptic case. In

Section 4 we prove the Carleman estimate for a parabolic case. Some intermediate and technical

results are collected in the appendices.

2 Spectral properties and weight function

Similarly to At = −∇x · (B(t, x)∇x), one can define the time independent selfadjoint transverse

operator on L2(Ω′)

A′ = −∇x′ · (C1∇x′), D(A′) = {u ∈ H1
0(Ω′);∇x′ · (C1∇x′u) ∈ L2(Ω′)}.

We consider an orthonormal basis of L2(Ω′), composed of eigenfunctions (φk)k≥1, associated with

the eigenvalues, with finite multiplicities, 0 < µ2
1
≤ µ2

2
≤ · · · ≤ µ2

k
≤ µ2

k+1
≤ · · · , with µk → ∞.
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With this basis (φk)k≥1, we build an unitary transform F : L2(Ω) 7→
∞
⊕

k=1
L2(−H,H) defined by

(F u)(k, xn) := ∫
Ω′
φk(x′)u(x′, xn) dx′, (2.1)

with the following properties (recall that here ∇x′ = ∇τ)

v(x′, xn) =
∞
∑

k=1

(v(., xn), φk)L2(Ω′)φk(x′) =
∞
∑

k=1

v̂(k, xn)φk(x′),

∇x′v(x′, xn) =
∞
∑

k=1

v̂(k, xn)∇x′φk(x′).

We shall often write v̂k = v̂(k, .).

As the family (C
1/2

1
∇φk)k is orthogonal in L2(Ω′) (C1 is a positive definite matrix) we have

‖C1/2

1
∇x′v(., xn)‖

2

L2(Ω′)
=

∞
∑

k=1

|v̂(k, xn)|2 ‖C1/2

1
∇x′φk‖

2

L2(Ω′)
=

∞
∑

k=1

|v̂(k, xn)|2 µ2
k ,

which gives

(cmax)−1
∞
∑

k=1

µ2
k

∣

∣

∣v̂(k, xn)
∣

∣

∣

2
≤ ‖∇τv(., xn)‖2

L2(Ω′)
≤ (cmin)−1

∞
∑

k=1

µ2
k

∣

∣

∣v̂(k, xn)
∣

∣

∣

2
. (2.2)

We choose a weight function β that satisfies the following properties.

Assumption 2.1. The function β ∈ C 0(Ω), and β|Ω± ∈ C 2(Ω±) and

|∇xβ| ≥ C > 0 in Ω \ ω,

β = Cst on Ω′ × {−H} and β = Cst on Ω′ × {H}.

∇x′β = 0 on ∂Ω′ × (−H,H),

∂xn
β > 0 on Ω′ × {−H}, and ∂xn

β < 0 on Ω′ × {H}.

There exists a neighborhood V of S in Ω of the form V = Ω′ × (−δ, δ) in which β solely depends

on xn and is a piecewise affine function of xn.

In particular β|S is constant. As the open set ω can be shrunk if necessary, we further assume

that ω ∩
(

Ω
′ × (−δ, δ)

)

= ∅.

Such a weight function β can be obtained by first designing a function that satisfies the proper

properties at the boundaries and at the interface and then construct β by means of Morse functions

following the method introduced in [16].

Here, in addition we assume that β′ > 0 on S + and S −, which means that the observation region

ω is chosen in Ω′ × (0,H), i.e., where xn ≥ 0. There is no loss in generality as we can change xn

into −xn to treat the case of an observation ω ⊂ Ω′ × (−H, 0).

Note that Assumption 2.1 will be complete below by Assumption 3.2 in the elliptic case and

Assumption 4.2 in the parabolic case respectively.
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3 The Elliptic case: proof of Theorem 1.4

As mentioned in the introductory section, we have consider only the case c1 = c2 = c in this proof.

The case c1 , c2 can be treated following the lines of the proof of Theorem 1.5 in Section 4.

Local Carleman estimates can be stitched together to form a global estimate of the form pre-

sented in Theorem 1.4 (see e.g. [24, 28]). Such local estimates are classical away from the interface

(see [29, 16, 24]). To prove the elliptic Carleman estimate of Theorem 1.4 it thus remains to prove

such a local estimate at the interface S , for functions u ∈ D(A) with support near the interface. We

shall thus assume that supp(u) ⊂ Ω′ × (−δ, δ), where the weight function β depends only on xn and

is piecewise affine.

Piecewise smooth functions that satisfy the transmission conditions

u|S − = u|S + , (c∂xn
u)|S − = (c∂xn

u)|S + , (3.1)

are dense in D(A). We may thus restrict our analysis to such functions. Because of these transmis-

sion conditions we shall write u|S and (c∂xn
u)|S in place of u|S ± and (c∂xn

u)|S ± respectively.

Applying the unitary transform of Section 2, the equation Au = f can be written

(−∂xn
c∂xn
+ cµ2

k)ûk(xn) = f̂k(xn), xn ∈ (−δ, 0) ∪ (0, δ),

with supp ûk ⊂ (−δ, δ).

Our starting point is the following proposition.

Proposition 3.1. Let v̂k = esϕûk. There exist C,C′,C′′ > 0, λ0 > 0, s0 > 0 such that

C
(

sλ2‖ϕ
1
2 ∂xn

v̂k‖
2

L2(−δ,δ) + sλ2‖ϕ
1
2µkv̂k‖

2

L2(−δ,δ) + s3λ4‖ϕ
3
2 v̂k‖

2

L2(−δ,δ)

)

+ sλϕ|S
(

[c2β′|∂xn
v̂k|

2]S + |sλϕv̂k |S |
2[c2β′3]S − |µkv̂k |S |

2[c2β′]S

)

+ Z ≤ C′‖esϕ f̂k‖
2

L2(−δ,δ), (3.2)

for all k ∈ N∗, λ ≥ λ0 and s ≥ s0, with Z = C′′sλ2ϕ|S Re[c2β′2∂xn
v̂k]S v̂k |S .

Such a result can be obtained by adapting the derivations in [12] for instance. We provide a

short proof in Appendix A.1. In particular we have

Z ≤ Csλ2ϕ|S
(

|∂xn
v̂k |S − | + |∂xn

v̂k |S + |
)

|v̂k |S |. (3.3)

Moreover, in addition to Assumption 2.1, we shall consider the following particular form of β

Assumption 3.2. For K =
c−
c+

and some r ≥ 0, we have

L =
β′|S +

β′|S −

=



























2 if K = 1,

K if K > 1,

(r + 1) − rK if K < 1.

(3.4)

Remark 3.3. With this assumption we note that we have L > 1 and L → 1 as K → 1, K , 1.

Here we choose L = 2 if K = 1, to preserve interface terms in the Carleman estimates even for

this case that corresponds to coefficients with no jump.

The value r = 3 is admissible in (3.4) (see Lemma 3.6 and its proof).
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We now set B(v) = sλϕ|S
(

[c2β′|∂xn
v|2]S + |sλϕv|S |2[c2β′3]S

)

.

Lemma 3.4. We have

B(v̂k) = sλϕ|S e2sϕ|S
(

B1|γ(ûk)|2 + B2|sλϕûk |S |
2
)

, γ(ûk) = c∂xn
ûk |S + c+β

′
|S −

L2 − K

L − 1
(sλϕûk)|S ,

with B1 = β
′
|S −

(L − 1) > 0, and

B2 = c2
+(β′|S −)

3
(

2(L3 − K2) −

(

L2 − K
)2

L − 1

)

. (3.5)

For a proof see Appendix A.2. Note that L > 1 by Assumption 3.2.

Assume that K > 1. Then L = K and

−[c2β′]S = −c2
+β
′
|S −

(L − K2) > 0, B1 > 0, B2 = c2
+(β′|S −)

3K2(K − 1) > 0.

The trace terms in (3.2) thus yield a positive contribution. We have

B(v̂k) − sλϕ|S |µkv̂k |S |
2[c2β′]S &

(

sλϕ|S
)3

e2sϕ|ûk |S |
2
+ sλϕ|S e2sϕ

(

|γ(ûk)|2 + |µkûk |S |
2
)

&
(

sλϕ|S
)3

e2sϕ|ûk |S |
2
+ sλϕ|S e2sϕ

(

|∂xn
ûk |S |

2
+ |µkûk |S |

2
)

.

In particular for s sufficiently large the remainder term Z estimated in (3.3) can be ’absorbed’. We

thus obtain

sλ2‖ϕ
1
2 ∂xn

v̂k‖
2

L2(−δ,δ) + sλ2‖ϕ
1
2µkv̂k‖

2

L2(−δ,δ) + s3λ4‖ϕ
3
2 v̂k‖

2

L2(−δ,δ)

+
(

sλϕ|S
)3

e2sϕ|ûk |S |
2
+ sλϕ|S e2sϕ

(

|∂xn
ûk |S |

2
+ |µkûk |S |

2
)

. ‖esϕ f̂k‖
2

L2(−δ,δ), (3.6)

for all k ∈ N∗. Summing over k, using (2.2) we obtain the sought local Carleman estimate in the

case K > 1

sλ2‖ϕ
1
2∇v‖

2

L2(Ω′×(−δ,δ)) + s3λ4‖ϕ
3
2 v‖

2

L2(Ω′×(−δ,δ))

+
(

sλϕ|S
)3

e2sϕ|S |u|S |
2
L2(S )
+ sλϕ|S e2sϕ|S |∇u|S |

2
L2(S )

. ‖esϕ f ‖2
L2(Ω′×(−δ,δ)). (3.7)

The Carleman estimate of Theorem 1.4 can then be deduced classically. This case, K > 1 is the

case originally covered by [12].

We shall now consider the case 0 < K ≤ 1. Then, either L = (r + 1) − rK > 1 or L = 2, which

gives B1 > 0. The result of Lemma 3.6 below implies that B2 > 0. Hence, for s sufficiently large

the remainder term Z estimated in (3.3) can be ’absorbed’. We now aim to estimate the tangential

term in (3.2).

Proposition 3.5. There exists C > 0, and ε > 0 such that for all k ∈ N we have

∣

∣

∣

∣

sλϕ|S [c2β′]S |µkv̂k |S |
2
∣

∣

∣

∣

≤
1

1 + ε
sλϕ|S B2

∣

∣

∣sλ(ϕv̂k)|S
∣

∣

∣

2
(3.8)

+C
(

‖esϕ f̂k‖
2

L2(−δ,δ) + s2λ2‖v̂k‖
2
L2(−δ,δ)

+ ‖∂xn
v̂k‖

2
L2(−δ,δ)

)

.

Proof. Let 0 < ε < 1. The value of ε will be determined below. We treat low and high values of

µk differently.
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Low frequencies. Set k1 as the largest integer such that (1 + ε)
∣

∣

∣[c2β′]S

∣

∣

∣µ2
k
< B2(sλϕ)2

|S , that is

(1 + ε)µ2
k < (β′|S −)

2(sλϕ)2
|S

1

|L − K2|

(

2(L3 − K2) −

(

L2 − K
)2

L − 1

)

. (3.9)

We then have

(1 + ε)sλϕ|S
∣

∣

∣[c2β′]S

∣

∣

∣ |µkv̂k |S |
2 < sλϕ|S B2

∣

∣

∣sλ(ϕv̂k)|S
∣

∣

∣

2
, k ≤ k1. (3.10)

High frequencies. Here we consider frequencies µk that satisfy

(1 − ε)µk ≥ s|∂xn
ϕ|S − | = sλϕ|S β

′
|S −
. (3.11)

We denote by k2 the smallest integer that satisfies (3.11).

We write

(∂2
xn
− µ2

k)ûk = −
f̂k

c
−
∂xn

c

c
∂xn

ûk = −ĝk.

As ûk(−δ) = ûk(δ) = 0, with the transmission conditions (3.1), the computations5 of Ap-

pendix A.3 yield

µkûk|xn=0+ =
1

(c+ + c−)

δ

∫
0

sinh
(

µk(δ − xn)
)

cosh(µkδ)

(

c+ĝk(xn) + c−ĝk(−xn)
)

dxn. (3.12)

We have

sinh
(

µk(δ − xn)
)

cosh(µkδ)
=

eµk(δ−xn) − e−(µk(δ−xn))

eµkδ + e−(µkδ)
≤ e−µk xn . (3.13)

We note that

ϕ(0) − ϕ(−xn) = xn

1

∫
0

ϕ′(−xn + σxn) dσ = xnλβ
′
|S −

1

∫
0

ϕ(−xn + σxn) dσ,

as the weight function β = β(xn) is affine in (−δ, 0). Since β′ > 0, the function ϕ increases with xn

and we have ϕ(0) ≤ ϕ(−xn) + xnλϕ(0)β′|S −
, if xn > 0. As we have assumed (3.11) here we obtain

sϕ(0) − µk xn ≤ sϕ(−xn) − εµk xn, xn > 0. (3.14)

We also have

sϕ(0) − µk xn ≤ sϕ(xn) − εµk xn, xn > 0. (3.15)

From (3.12) we thus obtain

µ
3
2

k
esϕ|S |ûk |S | ≤

1

(c+ + c−)

δ

∫
0

(

esϕ(−xn)|c−ĝk(−xn)| + esϕ(xn)|c+ĝk(xn)|
)

µ
1
2

k
e−εµk xn dxn

.

(

‖esϕĝk‖L2(−δ,0) + ‖e
sϕĝk‖L2(0,δ)

)( δ

∫
0

µke−2εµk xn dxn

)
1
2

. ε−
1
2 ‖esϕĝk‖L2(−δ,δ) . ε

− 1
2

(

‖esϕ f̂k‖L2(−δ,δ) + sλ‖v̂k‖L2(−δ,δ) + ‖∂xn
v̂k‖L2(−δ,δ)

)

,

5This is the precise point where c1 = c2 is used. In the case c1 , c2 the result of Appendix A.3 cannot be used and

we have to proceed as in Section 4.
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which leads to, for k2 ≤ k,

sλϕ|S
∣

∣

∣[c2β′]S

∣

∣

∣ |µkv̂k |S |
2

. (1 − ε)|β′−|
−1

∣

∣

∣[c2β′]S

∣

∣

∣µ3
k |v̂k |S |

2

. (1 − ε)ε−1|β′−|
−1

∣

∣

∣[c2β′]S

∣

∣

∣

(

‖esϕ f̂k‖
2

L2(−δ,δ) + s2λ2‖v̂k‖
2
L2(−δ,δ)

+ ‖∂xn
v̂k‖

2
L2(−δ,δ)

)

.

We have thus seen that low frequencies in (3.8) are estimated by boundary terms and high

frequencies are estimated by the r.h.s. of (3.2) and ”absorbable” terms. It remains to prove that we

cover the whole spectrum with the two estimates we have obtained. A sufficient condition is then

(1 − ε)−2(sλϕ|S )2(β′|S −)
2 ≤

1

1 + ε
(β′|S −)

2(sλϕ)2
|S

1

|L − K2|

(

2(L3 − K2) −

(

L2 − K
)2

L − 1

)

,

that is

P(K, L) := −|L − K2|(L − 1) +
(1 − ε)2

1 + ε

(

2(L3 − K2)(L − 1) −
(

L2 − K
)2
)

≥ 0. (3.16)

We recall that L = (r + 1) − rK if 0 < K < 1. The following lemma provides a positive answer

(see Appendix 3.6 for a proof).

Lemma 3.6. There exists ε0 > 0 such that for 0 < ε < ε0,

• P(K, L) ≥ 0 if K = 1,

• there exists r ≥ 1 such that P(K, L) ≥ 0 for K ∈ (0, 1). In particular the value r = 3 is

admissible.

This concludes the proof of Proposition 3.5. �

Arguing as we did for (3.7) in the case K > 1, we now obtain

sλ2‖ϕ
1
2∇v‖

2

L2(Ω′×(−δ,δ)) + s3λ4‖ϕ
3
2 v‖

2

L2(Ω′×(−δ,δ)) +
(

sλϕ|S
)3

e2sϕ|S |u|S |
2
L2(S )

+ sλϕ|S e2sϕ|S |∇u|S |
2
L2(S )

. ‖esϕ f ‖2
L2(Ω′×(−δ,δ)) + s2λ2‖v‖2

L2(Ω′×(−δ,δ))
+ ‖∂xn

v‖2
L2(Ω′×(−δ,δ))

. (3.17)

The last two terms on the r.h.s. can be “absorbed” by the l.h.s. by choosing s sufficiently large.

This conclude the proof of Theorem 1.4.

Remark 3.7. Observe that the local Carleman estimate that we obtain in Ω′ × (−δ, δ) does not

require any regularity for the boundary of the open set Ω′. Here, the weight function does not

depend on x′. The minimal regularity of the boundary to achieve a Carleman estimate remains an

open question to our knowledge.
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4 The parabolic case: proof of Theorem 1.5

Here, the matrix coefficient B is assumed to be time dependent as stated in Assumption 1.2. The

coefficients c1(t, xn) and c2(t, xn) can be different.

We choose a function β̃ > 0 that satisfies the requirements of Assumption 2.1 and we introduce

β = β̃ + m‖β̃‖∞ where m > 1. Observe that β also satisfies Assumption 2.1.

For T > 0 and λ > 0 we define the following weight functions

ϕ(x) = eλβ(x), η(x) = eλβ(x) − eλβ, x ∈ Ω, a(t) =
(

t(T − t)
)−1
, t ∈ (0,T ), (4.1)

with β = 2m‖β̃‖∞ (see [12]). As in the previous sections we choose β′ > 0 on S + and S − , which

means that the observation region ω is chosen in Ω′× (0,H), i.e., where xn ≥ 0. It suffices to prove

a local Carleman estimate at the interface S , i.e., for functions u with support near the interface,

supp(u) ⊂ [0,T ] × Ω′ × (−δ, δ), where the weight function β depends only on xn and is piecewise

affine.

We assume moreover that u satisfies the transmission conditions

u|S −
T
= u|S +

T
, (c2∂xn

u)|S −
T
= (c2∂xn

u)|S +
T
. (4.2)

Applying the unitary transform of Section 2, the equation ∂tu + Au = f can be written

(∂t − ∂xn
c2∂xn

+ c1µ
2
k)ûk(t, xn) = f̂k(t, xn), t ∈ (0,T ), xn ∈ (−δ, 0) ∪ (0, δ), k ≥ 1,

with supp(ûk) ⊂ [0,T ] × (−δ, δ). Setting qT,δ = (0,T ) × (−δ, δ), our starting point is the following

proposition.

Proposition 4.1. Let T > 0. Let v̂k = esaηûk. There exist C,C′ > 0, λ0 > 0, s0 > 0 such that

C
(

s−1‖(aϕ)−
1
2 ∂tv̂k‖

2

L2(qT,δ)
+ sλ2‖(aϕ)

1
2 ∂xn

v̂k‖
2

L2(qT,δ)
+ sλ2‖(aϕ)

1
2µkv̂k‖

2

L2(qT,δ)

+ s3λ4‖(aϕ)
3
2 v̂k‖

2

L2(qT,δ)

)

+ sλ
T

∫
0

aϕ|S
(

[c2
2β
′|∂xn

v̂k|
2]S + |sλa(ϕv̂k)|S |

2[c2
2β
′3]S

)

dt

≤ C′‖esaη f̂k‖
2

L2(qT,δ)
+ sλ

T

∫
0

aϕ|S |µkv̂k |S T
|2[c1c2β

′]S dt + Z, (4.3)

for all k ∈ N∗, λ ≥ λ0 and s ≥ s0(T + T 2), with

|Z| . s
1
2λT

T

∫
0

aϕ|S
(

|∂xn
v̂k|

2
|S −

T

+ |∂xn
v̂k|

2
|S +

T

)

dt +
(

s(T 3
+ T 4)λ + s

3
2 T 3λ3

) T

∫
0

a3ϕ|S |v̂k|
2
|S T

dt. (4.4)

Such a result can be obtained by adapting the derivations in [12] for instance. We provide a

short proof in Appendix A.5.

As in Section 3, we set

Bp(v̂k) = sλaϕ|S
(

[c2
2β
′|∂xn

v̂k|
2]S + |sλaϕv̂k |S T

|2[c2
2β
′3]S

)

,

L =
β′|S +

β′|S −

, Ki(t) =
ci−(t)

ci+(t)
, Ki = inf

t∈[0,T ]
Ki(t), Ki = sup

t∈[0,T ]

Ki(t), i = 1, 2. (4.5)
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and

B = B(L) = inf
t∈[0,T ]

(c2
2+(t) ) (β′|S −)

3
K2

2
+ L3(L − L)

L − 1
, with L = max{K2, 2}, (4.6)

and finally

D = D(L) = sup
t∈[0,T ]

(c1+c2+ )(t) β′|S −(L + K1 K2) > 0. (4.7)

We make the following assumption on the weight function in addition to Assumption 2.1.

Assumption 4.2. The weight function β is chosen such that L ≥ L = max{K2, 2} and

1

2
≥ max

{

2

√

D

B
,

4β′−|S

σ

√

D

B

}

, σ =

(

inf
t,xn

c1(t, xn)

c2(t, xn)

)
1
2

, (4.8)

The coefficients c1, c2 being fixed, the forms of the coefficients D and B show that this can be

achieved by first choosing the value of β′|S −
> 0 and then picking a sufficiently large value for L.

Lemma 4.3. We have

Bp(v̂k) = sλaϕ|S e2saϕ|S
(

B1|γ(ûk)|2 + B2|sλa(ϕûk)|S |
2
)

,

with γ(ûk) = (c2∂xn
ûk)|S + c2+β

′
|S −

L2−K2

L−1
(sλaϕûk)|S and where

B1 = β
′
|S −

(L − 1), B2(t) = c2
2+(t)(β′|S −)

3
(

2(L3 − K2
2 (t)) −

(

L2 − K2(t)
)2

L − 1

)

.

If β satisfies Assumption 4.2 we have B1 > 0 and B2(t) ≥ B, with B defined in (4.6).

Proof. The proof of Lemma 3.4 in Appendix A.2 can be directly adapted and gives the first part of

the lemma. As L ≥ 1 we have B1 > 0. A direct computation yields B2(t) = c2
2+

(t)(β′|S −
)3 Pp(L,K2(t))

L−1

with

Pp(L,Y) = Y2(1 − 2L) + 2YL2
+ L4 − 2L3

= L3(L − L) + L3(L − 2) + 2LY(L − Y) + Y2.

As L ≥ 2, and L ≥ K2 ≥ K2(t) ≥ K2 > 0, we thus obtain Pp(L,K2(t)) ≥ K2
2
+ L3(L − L). �

We now prove the following key result, providing an estimate of the tangential derivative of v,

i.e., µkv̂k, in the Fourier decomposition.

Proposition 4.4. For a weight function β that satisfies Assumptions 2.1 and 4.2 there exists C > 0

such that for all k ∈ N∗ we have

sλ
T

∫
0

aϕ|S |[c1c2β
′]S | |µkv̂k |S |

2dt ≤
B

4
(sλ)3|(aϕ|S )

3
2 v̂k)|S |

2

L2((0,T )) +C
(

‖esaη f̂k‖
2

L2(qT,δ)

+ s3λ3‖(aϕ)
3
2 v̂k‖

2

L2(qT,δ)
+ sλ‖(aϕ)

1
2 ∂xn

v̂k‖
2

L2(qT,δ)
+ sλ‖(aϕ)

1
2µkv̂k‖

2

L2(qT,δ)

)

. (4.9)

for λ and s/(T + T 2) both sufficiently large.
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T t0

Φ

tk T − tk
T
2

µs,λ

Ik Ik

µk

Figure 1: The function Φ. The shaded region is treated in the first step of the proof.

Proof. We fix k ≥ 1 and we shall keep track of the dependency of the constants on k.

We have
∣

∣

∣[c1c2β
′]S

∣

∣

∣ ≤ (c1+c2+)(t) β′|S −(L + K1K2(t)) ≤ D,

with D as defined in (4.7). We set

Φ(t; s, λ) :=
1

2
sλa(t)ϕ|S

√

B

D
and µs,λ := Φ

(T

2
; s, λ

)

= min
t∈(0,T )

Φ(t; s, λ). (4.10)

If µk > µs,λ, there exists tk := tk(s, λ) ∈ (0,T/2) such that

µk = Φ(tk; s, λ) = Φ(T − tk; s, λ). (4.11)

For µk ≥ µs,λ, we set

Ik := (0, tk) ∪ (T − tk,T ), Jk := (0,T ) \ Ik = (tk,T − tk), J̃k :=
( tk

2
,T −

tk

2

)

.

For µk < µs,λ, we set

Ik := (0,T ).

We then introduce

I(k; s, λ) := sλD ∫
Ik

a(t)ϕ|Sµ
2
k |v̂k |S |

2 dt, (4.12)

J(k; s, λ) := sλD ∫
Jk

a(t)ϕ|Sµ
2
k |v̂k |S |

2 dt, (4.13)

so that the term on the l.h.s. of (4.9) is less than the sum of the two previous quantities.

The first term, I(k; s, λ), involving time t close to 0 or T , will be estimated by a trace term. The

second term, J(k; s, λ), involving time t away from 0 and T , will be estimated by volume terms.
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Step 1: µk ≤ µs,λ or t ∈ Ik In the (t, µk) plane presented in Figure 1 this corresponds to the

shaded region. We thus treat low (tangential) frequencies here.

Lemma 4.5. For all k ≥ 1 we have

D|µkv̂k |S |
2 ≤

B

4

∣

∣

∣sλa(t)(ϕv̂k)|S
∣

∣

∣

2
,

with B as defined in (4.6), if either (1) µk ≤ µs,λ or (2) µk > µs,λ and t ∈ Ik.

Proof. The first point follows from the definition of µs,λ. The second point is a direct consequence

of the definition of tk in (4.11) as the function t 7→ a(t) decreases on (0,T/2). �

For all k ∈ N∗, we thus obtain

I(k; s, λ) ≤
B

4
(sλ)3|(aϕ|S )

3
2 v̂k)|S |

2

L2((0,T )).

Step 2: µk > µs,λ and t in a neighborhood of Jk, preliminary result. In each open set (0,T )×
(−δ, 0) and (0,T ) × (0, δ), the function ûk satisfies the following equation

−∂2
xn

ûk +
c1

c2

µ2
k ûk +

1

c2

∂tûk =
f̂k

c2

+
∂xn

c2

c2

∂xn
ûk. (4.14)

Because of the form of (4.13) we set

p(t; s, λ) := sλDa(t)ϕ|S e2sa(t)η|S . (4.15)

We consider a cutoff function (0,T ) ∋ t → χ(t), such that

χ ≡ 1 on Jk, 0 ≤ χ ≤ 1, supp(χ) ⊂ J̃k and ‖χ′‖∞ ≤ C/tk,

and we introduce

w = w(t, k, xn; s, λ) =
1

2
χ(t)p(t; s, λ)|ûk(t, xn)|2. (4.16)

Observe that w ≥ 0 and that it satisfies the same transmission conditions (4.2) as u. The function

w satisfies

∂2
xn

w −
c1

c2

(

(2 − γ)µ2
k −

p′

c1 p

)

w = −g, (4.17)

with 0 < γ < 1 and

g = −χp|∂xn
ûk|

2 −
1

c2

∂tw + χ
1

c2

p Re f̂kûk −
c1

c2

µ2
k

γ

2
χp|ûk|

2
+ χp

∂xn
c2

c2

Re ûk∂xn
ûk +

χ′

2c2

p|ûk|
2.

Lemma 4.6. There exist s0 > 0, λ0 > 0, depending on L and γ, such that

(2 − γ)µ2
k −

p′

c1 p
≥ µ2

k if
tk

2
< t < T −

tk

2
, xn ∈ (−δ, δ), (4.18)

for s > s0(T + T 2) and λ > λ0.

See Appendix A.6 for a proof.
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Step 3: µk > µs,λ and t in a neighborhood of Jk, conclusion. For t ∈ J̃k we begin by replacing

the time-space dependent coefficient c1

c2

(

(2−γ)µ2
k
− p′

c1 p

)

by σ2µ2
k

on the l.h.s. of (4.17) (the constant

σ is introduced in (4.8)). This will allow us to argue as in the elliptic case, viz. solving an ordinary

differential equation with constant coefficients.

We set

q(t, xn; k, s, λ) := −σ2µ2
k +

c1

c2

(

(2 − γ)µ2
k −

p′

c1 p

)

.

We have

∂2
xn

w − σ2µ2
kw = −g̃, (4.19)

with

g̃ := −qw−χp|∂xn
ûk|

2 −
1

c2

∂tw+χ
1

c2

p Re f̂kûk −
c1

c2

χ
γ

2
pµ2

k |ûk|
2
+χp

∂xn
c2

c2

Re ûk∂xn
ûk +

χ′

2c2

p|ûk|
2.

Observe that Lemma 4.6 gives

q(t, xn; k, s, λ) ≥ 0,
tk

2
< t < T −

tk

2
, xn ∈ (−δ, δ), s > s0, λ > λ0.

From (4.19) and Appendix A.3 we obtain

J(k; s, λ) ≤ 2 ∫
J̃k

µ2
kw|S dt

=
2µk

σ
∫
J̃k

δ

∫
0

sinh
(

σµk(δ − xn)
)

(c2+ + c2−) cosh(σµkδ)

(

c2+g̃(t, xn) + c2−g̃(t,−xn)
)

dxndt. (4.20)

Note that the introduction of J̃k, instead of Jk, is due to the cut-off function χ. Substituting g̃ in

(4.20) we obtain seven terms. We shall provide the details for the contribution of c2+g̃(t, xn). For

the contribution c2−g̃(t,−xn) details are given if difference occurs. As in the elliptic case, we shall

use that the kernel e−2sa(t)η|S sinh(σµk(δ−xn))

cosh(σµkδ)
be estimated by the weight e2saη.

1. We have
δ

∫
0

sinh(σµk(δ − xn))

cosh(σµkδ)

(

− qw − χp|∂xn
ûk|

2) dxn ≤ 0. (4.21)

The negative sign is fortunate as the absolute value of this term cannot be reasonably

bounded, i.e., by a term that can be “absorbed” by the l.h.s. of (4.3).

2. (a) Term 1
c2
∂tw. Because of the cut-off function χ we have w|t=tk/2 = w|t=T−tk/2 = 0 and

we get

∫
J̃k

δ

∫
0

sinh(σµk(δ − xn))

(c2+ + c2−) cosh(σµkδ)

(

−
c2±

c2

∂tw(t,±xn)
)

dxn dt

= ∫
J̃k

δ

∫
0

sinh(σµk(δ − xn))

cosh(σµkδ)
∂t

( c2±

(c2+ + c2−)c2

)

w(t,±xn) dxn dt,
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and, by (3.13), we have

∣

∣

∣

∣

µk ∫
J̃k

δ

∫
0

sinh(σµk(δ − xn))

(c2+ + c2−) cosh(σµkδ)

(

−
c2±

c2

∂tw(t,±xn)
)

dxn dt
∣

∣

∣

∣

. sλD ∫
J̃k

δ

∫
0

a(t)ϕ|S e−σµk xne2sa(t)η|S µk|ûk(t,±xn)|2 dxn dt.

We shall thus obtain an estimate of this term by the r.h.s. of (4.9) if we prove

−σµk xn + 2sa(t)η|S ≤ 2sa(t)η(±xn), ∀(t, xn) ∈ J̃k × (0, δ). (4.22)

This is clear for the case + since η|S ≤ η(xn).

The argument is different for the case −. Using that β is a piecewise affine, we have

η(−xn) − η|S = ϕ(−xn) − ϕ|S ≥ −xnλ
(

β′−ϕ
)

|S , xn ∈ (0, δ).

Therefore, (4.22) will be satisfied if

σµk ≥ 2sa(t)λ
(

β′−ϕ
)

|S , ∀t ∈ J̃k,

which, by the definition of Φ in (4.10), can be written as

σµk ≥ 4β′−|S

√

D

B
Φ(t; s, λ), ∀t ∈ J̃k.

As maxt∈J̃k
Φ(t; s, λ) = Φ

(

tk
2

; s, λ
)

, it suffices to have

σµk = σΦ(tk; s, λ) ≥ 4β′−|S

√

D

B
Φ

( tk

2
; s, λ

)

, ∀t ∈ J̃k.

This holds if we have

a(tk)

a(
tk
2

)
≥

4β′−|S

σ

√

D

B
. (4.23)

Observing that
a(tk)

a(tk/2)
≥ 1

2
, we find that (4.23) is fulfilled by Assumption 4.2.

(b) Term χ( 1
c2

p Re f̂ ûk −
c1

c2

γ

2
pµ2

k
|ûk|

2).

We shall prove that the associated term in (4.20) is estimated by ‖esaη f ‖2
L2(qT,δ)

. Apply-

ing the Young inequality, we obtain

µk p Re f̂kûk

c2

≤
D

2γ inft∈[0,T ] (c1c2)
|esaη|S f̂k|

2
+

c1

c2

γsλaϕ|S pµ2
k
|ûk|2

2
. (4.24)

Observe that

µk ≥ sλa(t)ϕ|S , t ∈ J̃k ⇔ µk ≥ 2

√

D

B
Φ(t; s, λ), t ∈ J̃k.

17



Arguing as above this will be fulfilled if

a(tk)

a(
tk
2

)
≥ 2

√

D

B
,

which holds by Assumption 4.2. We thus find, for t ∈ J̃k,

µk

δ

∫
0

sinh(σµk(δ − xn))

cosh(σµkδ)
χ(

1

c2

p Re f̂kûk −
c1γ

2c2

pµ2
k |ûk|

2) dxn ≤
δ

∫
0

De−2(
σµk

2
xn−saη|S )

2γ inft∈[0,T ] (c1c2)
| f̂k|

2 dxn,

and proceeding as in 2.(a) we find

µk ∫
J̃k

δ

∫
0

sinh(σµk(δ − xn))

(c2− + c2+) cosh(σµkδ)
c2+χ

( 1

c2

p Re f̂kûk −
c1γ

2c2

pµ2
k |ûk|

2
)

dxn dt . ‖esaη f̂k‖
2

L2(qT,δ)
.

(c) Term χp
∂xn c2

c2
Re ûk∂xn

ûk.

With the Young inequality we find µkχp Re ûk∂xn
ûk ≤

1
2

p|∂xn
ûk|2 + µ2

k
1
2

p|ûk|2. With

(4.22), arguing as above we obtain

µk ∫
J̃k

δ

∫
0

sinh
(

σµk(δ − xn)
)

(c2+ + c2−) cosh(σµkδ)
c2+χp

∂xn
c2

c2

Re ûk∂xn
ûkdxndt

. sλ‖(aϕ)
1
2 esaη∂xn

ûk‖
2

L2(qT,δ)
+ sλ‖(aϕ)

1
2µkv̂k‖

2

L2(qT,δ)

. sλ‖(aϕ)
1
2 ∂xn

v̂k‖
2

L2(qT,δ)
+ s3λ3‖(aϕ)

3
2 v̂k‖

2

L2(qT,δ)
+ sλ‖(aϕ)

1
2µkv̂k‖

2

L2(qT,δ)
.

(d) Term
χ′

2c2
p|ûk|

2.

As we have ‖χ′‖∞ ≤ C/tk we get

‖χ′‖∞ . Ta(tk) .
TΦ(tk; s, λ)

sλϕ|S

√

D

B
.

Tµk

sλϕ|S

√

D

B
.

We thus find

µk

δ

∫
0

sinh
(

σµk(δ − xn)
)

cosh(σµkδ)

χ′

2c2

p|ûk|
2 dxn . µ

2
kTa(t)

√

D3

B

δ

∫
0

sinh
(

σµk(δ − xn)
)

cosh(σµkδ)
e2saη|S |ûk|

2 dxn.

Arguing as above with (4.22) we obtain

µk ∫
J̃k

δ

∫
0

sinh
(

σµk(δ − xn)
)

(c2+ + c2−) cosh(σµkδ)
c2+

χ′

2σc2

p|ûk|
2 dxn dt . T‖a

1
2µkv̂k‖

2

L2(qT,δ)

. sλ‖(aϕ)
1
2µkv̂k‖

2

L2(qT,δ)
,

if s ≥ s0T , with s0 > 0, and λ ≥ λ0 > 0.
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Collecting all the estimates we have obtained we conclude the proof of the Proposition 4.4. �

End of the proof of Theorem 1.5.

With Proposition 4.1, estimate (4.4), Lemma 4.3 and Proposition 4.4, for λ and s/(T + T 2)

sufficiently large, we obtain, for all k ∈ N∗,

s−1‖(aϕ)−
1
2 ∂tv̂k‖

2

L2(qT,δ)
+ sλ2

(

‖(aϕ)
1
2 ∂xn

v̂k‖
2

L2(qT,δ)
+ ‖(aϕ)

1
2µkv̂k‖

2

L2(qT,δ)

)

+ s3λ4‖(aϕ)
3
2 v̂k‖

2

L2(qT,δ)

+ sλ
(

|(aϕ|S )
1
2 ∂xn

v̂k|
2

L2((0,T )) + |(aϕ|S )
1
2µkv̂k|

2

L2((0,T ))

)

+ s3λ3|(aϕ|S )
3
2 v̂k|

2

L2((0,T )) . ‖e
saη f̂k‖

2

L2(qT,δ)
.

(4.25)

Summing over k, using (2.2) we obtain

s−1‖(aϕ)−
1
2 ∂tv‖

2

L2(QT ) + sλ2
(

‖(aϕ)
1
2 ∂xn

v‖
2

L2(QT ) + ‖(aϕ)
1
2µkv‖

2

L2(QT )

)

+ s3λ4‖(aϕ)
3
2 v‖

2

L2(QT )

+ sλ
(

|(aϕ|S )
1
2 ∂xn

v|
2

L2(S T ) + |(aϕ|S )
1
2µkv|

2

L2(S T )

)

+ s3λ3|(aϕ|S )
3
2 v|

2

L2(S T ) . ‖e
saη f ‖2

L2(QT )
. (4.26)

The remainder of the proof of the Carleman estimate is now classical (see e.g. [24]).

Remark 4.7. It is important to note that Proposition 4.4 is not a trace result, otherwise we stronger

Sobolev norm would appear on the r.h.s. of (4.9). The L2-norm of the trace of the tangential

derivative is estimated by an L2((0,T ); H1(Ω))-norm, but this is valid only for solutions of Pu = f .

This result appears to us as an expression of the parabolic regularization effect.

Observe that the estimate of Proposition 4.4 is also valid in the case where c1 and c2 are smooth

if the weight function β is chosen with a discontinuous derivative across S according to Assump-

tions 2.1 and 4.2.

A Proof of some intermediate results

A.1 Proof of Proposition 3.1

For later use of this proof in Section 4 we consider the case c1 , c2 here. The inequality we prove

is uniform w.r.t. k. We shall thus remove the Fourier notation ûk and simply write (−∂xn
c2∂xn

+1

µ2)u = f . We introduce v = esϕu and g = esϕ f and we obtain

(

− ∂xn
c2∂xn

− c2(sϕ′)2
+ c1µ

2
+ 2sc2ϕ

′∂xn
+ s∂xn

(c2ϕ
′)
)

v = g,

which, following [16], we write M1v + M2v = g̃, with

M1 = −∂xn
c2∂xn

− c2(sϕ′)2
+ c1µ

2, M2 = 2sc2ϕ
′∂xn
+ spc2ϕ

′′,

g̃ = g + (p − 1)sc2ϕ
′′v − s(∂xn

c2)ϕ′v, 1 < p < 3.

The introduction of the parameter p is for instance explained in [24]. Following the classical

method to prove Carleman estimates we compute

‖g̃‖2
L2(R+)

= ‖M1v‖2
L2(R+)

+ ‖M2v‖2
L2(R+)

+ 2 Re(M1v,M2v)L2(R+), (A.1)
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considering only the region {xn > 0} for now. We focus on the computation of the third term which

we write as sum of 4 terms Ii j, 1 ≤ i ≤ 2, 1 ≤ j ≤ 2, where Ii j is the inner product of the ith term

in the expression of M1v and the jth term in the expression of M2v above.

Term I11. With an integration by parts we have

I11 = −2 Re ∫
xn>0

sϕ′
(

∂xn
c2∂xn

v
)

c2∂xn
v dxn = − ∫

xn>0

sϕ′∂xn
|c2∂xn

v|2 dxn

= sϕ′|c2∂xn
v|2|xn=0+ + ∫

xn>0

sϕ′′|c2∂xn
v|2 dxn.

Term I21. Similarly we find

I21 = Re ∫
xn>0

(

− c2(sϕ′)3
+ sc1µ

2ϕ′
)

c2∂xn
|v|2 dxn

=
(

c2(sϕ′)3 − sc1µ
2ϕ′

)

c2|v|
2
|xn=0+ + ∫

xn>0

c2

(

3s3c2(ϕ′)2ϕ′′ − sc1µ
2ϕ′′

)

|v|2 dxn

+ ∫
xn>0

(

2c2∂xn
c2(sϕ′)3 − (c1∂xn

c2 + c2∂xn
c1)sµ2ϕ′

)

|v|2 dxn.

Term I12. We have

I12 = −sp Re ∫
xn>0

(∂xn
c2∂xn

v)c2ϕ
′′v dxn

= sp ∫
xn>0

ϕ′′|c2∂xn
v|2 dxn + spϕ′′ Re(c2∂xn

v)c2v|xn=0+ + sp Re ∫
xn>0

∂xn
(c2ϕ

′′)(c2∂xn
v)v dxn.

Term I22. We directly find I22 = sp ∫xn>0 c2

(

− c2(sϕ′)2
+ c1µ

2)ϕ′′|v|2 dxn.

Collecting together the different terms we have obtained we find

1

2
‖g̃‖2

L2(R+)
≥ ∫

xn>0

α0|v|
2 dxn + ∫

xn>0

α1|c2∂xn
v|2 dxn + γ0|v|

2
|xn=0+ + γ1|c2∂xn

v|2|xn=0+ + X + Y,

with

α0 = s(p − 1)c1c2µ
2ϕ′′ + (3 − p)s3(c2ϕ

′)2ϕ′′, α1 = s(p + 1)ϕ′′,

γ0 = c2
2(sϕ′)3

|xn=0+ − c1c2sµ2ϕ′|xn=0+ , γ1 = sϕ′,

X = sp Re ∫
xn>0

∂xn
(c2ϕ

′′)(c2∂xn
v)v dxn

+ ∫
xn>0

(

2c2∂xn
c2(sϕ′)3 − (c1∂xn

c2 + c2∂xn
c1)µ2sϕ′

)

|v|2 dxn,

Y = spc2ϕ′′ Re(∂xn
v)v|xn=0+ .

Because of the form of ϕ, a direct computation shows that

α0 & sλ2µ2ϕ + s3λ4ϕ3, α1 & Csλ2ϕ,

for λ chosen sufficiently large. Recalling that β is affine in the region we consider we find

X = sp Re ∫
xn>0

(

c2
2λ

3β′3 + c2(∂xn
c2)λ2β′2

)

ϕ(∂xn
v)v dxn

+ ∫
xn>0

(

2c2∂xn
c2(sλβ′ϕ)3 − (c1∂xn

c2 + c2∂xn
c1)µ2sλβ′ϕ

)

|v|2 dxn,
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and

‖g̃‖2
L2(R+)

. ‖g‖2
L2(R+)

+ s2(λ4
+ λ2) ∫

xn>0

ϕ2|v|2.

Choosing s and λ sufficiently large, with the Young inequality, we obtain

C‖g‖2
L2(R+)

≥ C′ ∫
xn>0

(

sλ2µ2ϕ + s3λ4ϕ3)|v|2 dxn +C′ ∫
xn>0

sλ2ϕ|∂xn
v|2 dxn

+ γ0|v|
2
|xn=0+ + γ1|c2∂xn

v|2|xn=0+ + Y. (A.2)

The same type of estimate can be obtained in the region {xn < 0} with opposite signs for the trace

terms. The sum of (A.2) from both sides yields the result. �

A.2 Proof of Lemma 3.4

Here we drop the v̂k notation and simply write v. It follows that

c∂xn
v = esϕ(c∂xn

u + cs(∂xn
ϕ)u) = esϕ(c∂xn

u + cβ′(sλϕu)
)

.

We set a = c∂xn
u and b = sλϕu. We then have

[

|c∂xn
v|2β′

]

S = e2sϕ
(

[β′]S |a|
2
+ [c2(β′)3]S |b|

2
+ 2[c(β′)2] Re ab

)

.

We thus obtain

B(v) = sλϕ|S e2sϕ(Aw,w),

with w = (a, b)t and where A is the following symmetric matrix

A =

(

[β′]S [c(β′)2]S

[c(β′)2] 2[c2(β′)3]S

)

= β′−

(

(L − 1) c+β
′
−(L2 − K)

c+β
′
−(L2 − K) 2(c+β

′
−)2(L3 − K2)

)

.

We then see that

(Aw,w) = β′−(L − 1)
∣

∣

∣

∣

a + c+β
′
−

L2 − K

L − 1
b
∣

∣

∣

∣

2
+ β′−

(

2(c+β
′
−)2(L3 − K2) − (c+β

′
−)2

(

L2 − K
)2

L − 1

)

|b|2.

which gives the result. �

A.3 Traces of the solution

We consider the following ODEs

v′′ − µ2v = F, s ∈ (−δ, 0) ∪ (0, δ), (A.3)

v(−δ) = v(δ) = 0, v|s=0− = v|s=0+ , cv′|s=0− = cv′|s=0+ . (A.4)

Here µ > 0. The solutions of (A.3) can be written as

v(s) = A± cosh(µs) + B± sinh(µs) + µ−1
s

∫
0

sinh
(

µ(s − σ)
)

F(σ) dσ, s ∈ (−δ, 0) ∪ (0, δ).
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We then have A± = v|s=0± , µB± = v|s=0± and

v(±δ) = µ−1 cosh(µδ)
(

µA± + µB± tanh(±µδ) +
±δ

∫
0

sinh
(

µ(±δ − σ)
)

cosh(µδ)
F(σ) dσ

)

.

The boundary conditions (A.4) then yield

(

µ tanh(µδ)

µ − c+
c−

tanh(µδ)

) (

v+(0)

v′+(0)

)

=































−
δ

∫
0

sinh
(

µ(δ−σ)
)

cosh(µδ)
F(σ) dσ

−
−δ

∫
0

sinh
(

µ(−δ−σ)
)

cosh(µδ)
F(σ) dσ































.

We observe that the determinant of this system,

D = −c−1
− tanh(µδ)µ(c+ + c−),

is non zero as µ > 0. It thus follows that

v−(0) = v+(0) = −
c+

µ

δ

∫
0

sinh
(

µ(δ − σ)
)

(c+ + c−) cosh(µδ)
F(σ) dσ −

c−

µ

−δ

∫
0

sinh
(

µ(−δ − σ)
)

(c+ + c−) cosh(µδ)
F(σ) dσ.

A.4 Proof of Lemma 3.6

We first consider the case K = 1. Then L = 2 and P(K, L) = −(1 + ε) + 5(1 − ε)2. The result is

clear for ε sufficiently small.

We now consider the case 0 < K < 1. Then L > 1; we have L − K2 > 0 and thus

P(K, L) = −(1 + ε)(L − K2)(L − 1) + (1 − ε)2
(

2(L3 − K2)(L − 1) −
(

L2 − K
)2
)

.

For convenience we write (1 − ε)2/(1 + ε) = 1 − α with 0 < α < 1. We then find

Q(K) = P(K, (r + 1) − rK) = −(K − 1)2S (K), S (K) = aK2
+ bK + c,

with

a = −(1 − α)r4 < 0, b = 2(1 − α)(r4
+ r3 − r2) − (1 − 2α)r,

c = −(1 − α)(r4
+ 2r3 − 1) + r2

+ (3 − 2α)r.

It thus remains to prove that S (1) ≤ 0 and S ′(1) ≥ 0. We find

S (1) = (2α − 1)r2
+ 2r + 1 − α, S ′(1) = r

(

2(1 − al)r2 − 2(1 − α)r − (1 − 2α)
)

.

We see that S (1) < 0 and S ′(1) > 0 if α = 0 and r = 3. It thus remains true for α sufficiently

small. �
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A.5 Proof of Proposition 4.1

The inequality we prove is uniform w.r.t. k. We shall thus remove the Fourier notation ûk and

simply write (∂t − ∂xn
c2∂xn

+ c1µ
2)u = f . We introduce v = esaηu and g = esaη f and we obtain

(

∂t − ∂xn
c2∂xn

− c2(saη′)2
+ c1µ

2
+ 2sc2aη′∂xn

+ sa∂xn
(c2η

′) − sa′η
)

v = g,

which we write M1v + M2v = g̃, with

M1 = −∂xn
c2∂xn

+ [−c2(saη′)2
+ c1µ

2] − sa′η, M2 = 2sc2aη′∂xn
+ spc2aη′′ + ∂t, (A.5)

g̃ = g + (p − 1)sc2aη′′v − s(∂xn
c2)aη′v, 1 < p < 3.

In preparation for what follows we observe that

1 . T 2a, |a′| . Ta2, |a′′| . T 2a3, |η| . ϕ2.

We have

‖g̃‖2
L2((0,T )×R+)

. ‖g‖2
L2((0,T )×R+)

+ s2(λ4
+ λ2)T 2‖a

3
2ϕ

1
2 v‖

2

L2((0,T )×R+).

We compute

‖g̃‖2
L2((0,T )×R+)

= ‖M1v‖2
L2((0,T )×R+)

+ ‖M2v‖2
L2((0,T )×R+)

+ 2 Re(M1v,M2v)L2((0,T )×R+), (A.6)

considering only the region {xn > 0} for now. For the computation of the last term in (A.6), we set

Ii j, 1 ≤ i ≤ 3, 1 ≤ j ≤ 3, where Ii j is the inner product of the ith term in the expression of M1v

and the jth term in the expression of M2v above. For the computations of I11, I12, I21 and I22 we

refer to the computations performed in Appendix A.1 (simply replacing ϕ by aϕ and integrating

in time).

Term I13. By integration by parts we find

I13 = Re
T

∫
0
∫

xn>0

−(∂xn
c2∂xn

v)∂tv dxndt

=
1

2

T

∫
0
∫

xn>0

c2∂t|∂xn
v|2 dxndt + Re

T

∫
0

(

(c2∂xn
v)∂tv

)

|xn=0+ dt

= −
1

2

T

∫
0
∫

xn>0

(∂tc2)|∂xn
v|2 dxndt + Re

T

∫
0

(

(c2∂xn
v)∂tv

)

|xn=0+ dt.

We have

∣

∣

∣

∣

1

2

T

∫
0
∫

xn>0

(∂tc2)|∂xn
v|2 dxndt

∣

∣

∣

∣

. T 2
T

∫
0
∫

xn>0

a|∂xn
v|2 dxndt.

Term I23. By integration by parts we have

I23 =
1

2

T

∫
0
∫

xn>0

(

− c2(saη′)2
+ c1µ

2)∂t|v|
2 dxndt = s2

T

∫
0
∫

xn>0

c2aa′η′2|v|2 dxndt

+
1

2

T

∫
0
∫

xn>0

[(∂tc2)(saη′)2 − (∂tc1)µ2]|v|2 dxndt
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We thus find

|I23| . (T + T 2)s2λ2
T

∫
0
∫

xn>0

a3ϕ2|v|2 dxndt + T 2
T

∫
0
∫

xn>0

aµ2|v|2 dxndt.

Term I33. By integration by parts we find

I33 = −
s

2

T

∫
0
∫

xn>0

a′η∂t|v|
2 dxndt =

s

2

T

∫
0
∫

xn>0

a′′η|v|2 dxndt.

This yields

|I33| . T 2s
T

∫
0
∫

xn>0

a3ϕ2|v|2 dxndt.

Terms I31 and I32. We have

I31 = −s2
T

∫
0
∫

xn>0

c2aa′ηη′∂xn
|v|2 dxndt = s2

T

∫
0
∫

xn>0

aa′∂xn
(c2ηη

′)|v|2 dxndt.

We find directly I32 = −ps2 ∫
T

0 ∫xn>0 c2aa′ηη′′|v|2 dxndt. We then obtain

|I31| + |I32| . T s2(λ + λ2)
T

∫
0
∫

xn>0

a3ϕ3|v|2 dxndt.

With the computations of Appendix A.1 we find, for λ and sa & s/T 2 sufficiently large,

C‖g‖2
L2((0,T )×R+)

≥ C′
T

∫
0
∫

xn>0

(

sλ2µ2aϕ + s3λ4(aϕ)3)|v|2 dxndt +C′
T

∫
0
∫

xn>0

sλ2aϕ|∂xn
v|2 dxndt

+
1

2
‖M2v‖2

L2((0,T )×R+)
+

T

∫
0

(

γ0|v|
2
|xn=0+ + γ1|c∂xn

v|2|xn=0+
)

dt + X + Y + I13 + I23 + I33 + I31 + I32,

with

γ0 = c2
2(saϕ′)3

|xn=0+ − c1c2sµ2aϕ′|xn=0+ , γ1 = saϕ′,

X = sp Re
T

∫
0
∫

xn>0

a∂xn
(c2ϕ

′′)(c2∂xn
v)v dxndt

+

T

∫
0
∫

xn>0

[2c2(∂xn
c2)(saϕ′)3 − ∂xn

(c1c2)µ2saϕ′]|v|2 dxndt,

Y = sp
T

∫
0

c2
2aϕ′′ Re(∂xn

v)v|xn=0+ dt.

For λ and s/(T + T 2) sufficiently large, the estimations we found above yield,

C‖g‖2
L2((0,T )×R+)

≥ C′
T

∫
0
∫

xn>0

(

sλ2µ2aϕ + s3λ4(aϕ)3)|v|2 dxndt +C′
T

∫
0
∫

xn>0

sλ2aϕ|∂xn
v|2 dxndt

+
1

2
‖M2v‖2

L2((0,T )×R+)
+

T

∫
0

(

γ0|v|
2
|xn=0+ + γ1|c2∂xn

v|2|xn=0+
)

dt + Y ′, (A.7)
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with

Y ′ = sp
T

∫
0

c2
2aϕ′′ Re(∂xn

v)v|xn=0+ dt + Re
T

∫
0

(

(c2∂xn
v)∂tv|xn=0+ dt.

The same type of estimate can be obtained in the region {xn < 0} with opposite signs for the trace

terms. The sum of (A.7) from both sides yields

C
(

sλ2‖(aϕ)
1
2 ∂xn

v‖
2

L2(QT,δ)
+ sλ2‖(aϕ)

1
2µv‖

2

L2(QT,δ)
+ s3λ4‖(aϕ)

3
2 v‖

2

L2(QT,δ)

)

+
1

2
‖M2v‖2

L2((0,T )×R∗)
+ sλ

T

∫
0

aϕ|S
(

[c2
2β
′|∂xn

v|2]S + |sλaϕv|S T
|2[c2

2β
′3]S

)

dt + Y”

≤ C‖esaη f ‖2
L2(QT,δ)

+ sλ
T

∫
0

aϕ|S |µv|S T
|2[c1c2β

′]S dt, (A.8)

with Y ′′ = Y ′′
1
+ Y ′′

2
, where

Y ′′1 = spλ2
T

∫
0

aϕ|S Re
[

c2
2β
′2∂xn

v
]

S v|S T
dt,

and

Y ′′2 = Re
T

∫
0

[

c2∂xn
v
]

S ∂tv|S T
dt.

We have

|Y ′′1 | . s
1
2λ

T

∫
0

a
1
2ϕ|S

(

|∂xn
v|2|S −

T

+ |∂xn
v|2|S +

T

)

dt + s
3
2λ3

T

∫
0

a
3
2ϕ|S |v|

2
|S T

dt

. s
1
2λT

T

∫
0

aϕ|S
(

|∂xn
v|2|S −

T

+ |∂xn
v|2|S +

T

)

dt + s
3
2λ3T 3

T

∫
0

a3ϕ|S |v|
2
|S T

dt.

As u = e−saηv we have c∂xn
u = c2(∂xn

v − sa(η′)v)e−saη and thus

[

c2∂xn
v
]

S = sa
[

c2η
′]

S v|S T
= sλa

[

c2β
′]

S (vϕ)|S T
.

By integration by parts, we thus have

Y ′′2 =
1

2
sλ

T

∫
0

a
[

c2∂xn
β
]

Sϕ|S ∂t|v|
2
|S T

dt = −
1

2
sλ

T

∫
0

[

∂t(ac2)∂xn
β
]

Sϕ|S |v|
2
|S T

dt.

We thus obtain

|Y ′′2 | . s(T 3
+ T 4)λ

T

∫
0

a3ϕ|S |v|
2
|S T

dt. (A.9)

Finally, from the form of M2 in (A.5), we have

‖(saϕ)−
1
2 ∂tv‖

2

L2((0,T )×R∗) . ‖(saϕ)−
1
2 M2v‖

2

L2((0,T )×R∗) + ‖(saϕ)
1
2λ∂xn

v‖
2

L2(QT,δ)
+ ‖(saϕ)

1
2λ2v‖

2

L2(QT,δ)

. ‖M2v‖2
L2((0,T )×R∗)

+ sλ2‖(aϕ)
1
2 ∂xn

v‖
2

L2(QT,δ)
+ sλ4‖(aϕ)

1
2 v‖

2

L2(QT,δ)

. ‖M2v‖2
L2((0,T )×R∗)

+ sλ2‖(aϕ)
1
2 ∂xn

v‖
2

L2(QT,δ)
+ s3λ4‖(aϕ)

3
2 v‖

2

L2(QT,δ)
,

as here sa & s/T 2 ≥ s0, for some s0 > 0 and ϕ ≥ 1. �
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A.6 Proof of Lemma 4.6

Computing p′(t) = sλe2sa(t)η|S a′(t)ϕ|S [1 + 2sη|S a(t)]D, we have

p′

p
(t) =

a′

a
(t)[1 + 2sa(t)η|S ],

If T
2
≤ t < T − tk

2
, because of the form of η in (4.1) we find

p′

p
≤ 0, for sa(t) & s/T 2 and λ both

sufficiently large. This implies that inequality (4.18) holds for these values of t.

We now consider the case
tk
2
< t < T

2
. Note that

p′

p
is nonnegative, for s/T 2 and λ large, as here

a′(t) < 0. Setting c̃1 = inft,xn
c1(t, xn), and using the definition of tk in (4.11), it suffices to prove

p′(t)

c̃1 p(t)
≤ (1 − γ)Φ2(tk; s, λ),

tk

2
< t <

T

2
.

For all s, λ, we have

p′(t)

p(t)
=

2t − T

t(T − t)
[2sη|S a(t) + 1] ≤

2t − T

t(T − t)
2sη|S a(t) ≤ −2T sη|S a2(t).

As we have
1

2
<
Φ(tk; s, λ)

Φ(tk/2; s, λ)
=

a(tk)

a(tk/2)
<

3

4
, (A.10)

it is sufficient to prove

−
2T

c̃1

sη|S a2(t) ≤
1

4
(1 − γ)Φ2(tk/2; s, λ

)

,
tk

2
< t <

T

2
. (A.11)

As the function Φ decreases on (0,T/2), (A.11) holds if we have

−
2T

c̃1

sη|S a2(t) ≤
1

4
(1 − γ)Φ2(t; s, λ),

tk

2
< t <

T

2
.

With the definition of Φ, this reads

−
η|S

ϕ2
|S

≤
c̃1

32T
(1 − γ)

B

D
sλ2

or equivalently

eλ(β̄−2β|S ) − e−λβ|S ≤
c̃1

32T
(1 − γ)

B

D
sλ2.

As β̄ < 2β|S by construction of β (see the beginning of Section 4), this will hold for λ and s/T

sufficiently large. �
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Port d’Albret.

[26] , Carleman estimates for elliptic operators with jumps at an interface: Anisotropic case and

sharp geometric conditions, Preprint (2010).

[27] J. Le Rousseau and L. Robbiano, Carleman estimate for elliptic operators with coefficents with jumps

at an interface in arbitrary dimension and application to the null controllability of linear parabolic

equations, Arch. Rational Mech. Anal. 105 (2010), 953–990.

[28] , Local and global Carleman estimates for parabolic operators with coefficients with jumps at

interfaces, Invent. Math., to appear (2010).

[29] G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur, Comm. Partial Differential

Equations 20 (1995), 335–356.

[30] G. Lebeau and E. Zuazua, Null-controllability of a system of linear thermoelasticity, Arch. Rational

Mech. Anal. 141 (1998), 297–329.

[31] K. Miller, Nonunique continuation for uniformly parabolic and elliptic equations in self-adjoint di-
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