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Abstract

This paper considers Bayesian regression with normal and double-

exponential priors as forecasting methods based on large panels of time

series. We show that, empirically, these forecasts are highly correlated

with principal component forecasts and that they perform equally well

for a wide range of prior choices. Moreover, we study conditions for con-

sistency of the forecast based on Bayesian regression as the cross-section

and the sample size become large. This analysis serves as a guide to

establish a criterion for setting parameters in a large cross-section.
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1 Introduction

Many problems in economics require the exploitation of large panels of time

series. Recent literature has shown the “value” of large information for signal

extraction and forecasting, and new methods have been proposed to handle the

large-dimensionality problem (Forni, Hallin, Lippi, and Reichlin, 2005; Gian-

none, Reichlin, and Sala, 2004; Stock and Watson, 2002a,b).

A related literature has explored the performance of Bayesian model aver-

aging for forecasting (Koop and Potter, 2003; Stock and Watson, 2006, 2005a;

Wright, 2003) but, surprisingly, few papers explore the performance of Bayesian

regression in forecasting with high-dimensional data. Exceptions are Stock and

Watson (2005a) who consider normal Bayes estimators for orthonormal regres-

sors and Giacomini and White (2006) who provide an empirical example in

which a Bayesian regression with a large number of predictors is compared with

principal component regression (PCR).

Bayesian methods are part of the traditional econometrician toolbox and of-

fer a natural solution to overcome the curse of dimensionality problem by shrink-

ing the parameters via the imposition of priors. In particular, the Bayesian VAR

has been advocated as a device for forecasting macroeconomic data (Doan, Lit-

terman, and Sims, 1984; Litterman, 1986). It is then surprising that, in most

applications, these methods have been applied to relatively small systems and

that their empirical and theoretical properties for large panels have not been

given more attention in the literature.

This paper is a first step towards filling this gap. We analyze Bayesian regres-

sion methods under Gaussian and double-exponential prior and study their fore-

casting performance on the standard “large” macroeconomic dataset that has

been used to establish properties of principal-component-based forecast (Stock

and Watson, 2002a,b). Moreover, we analyze the asymptotic properties of Gaus-
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sian Bayesian regression for n, the size of the cross-section, and T , the sample

size, going to infinity. The aim is to establish a connection between Bayesian

regression and the classical literature on forecasting with large panels based on

principal components.

Our two choices for the prior correspond to two interesting cases: variable

aggregation and variable selection. Under Gaussian prior, the posterior mode

solution is such that all variables in the panel are given non-zero coefficients.

Regressors, as in PCR, are linear combinations of all variables in the panel, but

while the Gaussian prior gives decreasing weight to the ordered eigenvalues of

the covariance matrix of the data, principal components imply unit weight to

the dominant ones and zero to the others. The double-exponential prior, on

the other hand, favors sparse models since it puts more mass near zero and in

the tails which induces a tendency of the coefficients maximizing the posterior

density to be either large or zero. As a result, it favors the recovery of few large

coefficients instead of many small ones and truly zero rather than small values.

This case is interesting because it results in variable selection rather than in

variable aggregation and, in principle, this should give results that are more

interpretable from the economic point of view.

Under a Gaussian prior, it is easy to compute the maximizer of the posterior

density. Under such prior with independent and identically distributed (i.i.d.)

regression coefficients, the solution amounts to solving a penalized least-squares

problem with a penalty proportional to the sum of the squares of the coefficients,

i.e. to a so-called Ridge regression problem. Under a double-exponential prior,

however, there is no analytical form for the maximizer of the posterior density,

but we can exploit the fact that, under such prior with i.i.d. coefficients, the

solution amounts to a Lasso regression problem, i.e. to penalized least-squares

with a penalty proportional to the sum of the absolute values of the coefficients.
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Several algorithms have been proposed for Lasso regression. In our empirical

study, we have used two algorithms recently proposed which work without limi-

tations of dimensionality: LARS (Least Angle Regression) developed by Efron,

Hastie, Johnstone, and Tibshirani (2004) and the Iterative Landweber scheme

with soft-thresholding at each iteration developed by De Mol and Defrise (2002)

and Daubechies, Defrise, and De Mol (2004).

An interesting feature of Lasso regression is that it combines variable se-

lection and parameter estimation. The estimator depends in a nonlinear way

on the variable to be predicted and this may have advantages in some empir-

ical situations. The availability of the algorithms mentioned above, which are

computationally feasible, makes the double-exponential prior an attractive alter-

native to other priors used for variable selection and requiring computationally

demanding algorithms, such as the one proposed by Fernandez, Ley, and Steel

(2001) in the context of Bayesian Model Averaging and applied by Stock and

Watson (2005a) to macroeconomic forecasting with large cross-sections.

Although Gaussian and double-exponential Bayesian regressions rely on dif-

ferent estimation strategies, an out-of-sample evaluation based on the Stock

and Watson dataset, shows that, for a given range of the prior choice, the two

methods produce forecasts which are highly correlated and are characterized by

similar mean-square errors. Moreover, these forecasts are highly correlated with

those produced by principal components, also with similar mean-square errors:

they do well when PCR does well. Hence, although the Lasso prior leads to the

selection of few variables, the forecasts obtained from these informative targeted

predictors do not outperform PCR based on few principal components.

In order to understand these results, we study the asymptotic properties of

the forecast based on Bayesian regression as the cross-section and the sample

size become large. This double-asymptotic analysis has been applied by recent
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literature to the case of PCR (Bai, 2003; Bai and Ng, 2002; Forni, Giannone,

Lippi, and Reichlin, 2007; Forni, Hallin, Lippi, and Reichlin, 2004; Stock and

Watson, 2002a,b) but never to Bayesian regression. This analysis is however

important to understand performance of this method for large panels and also

as a guide to set shrinkage parameters as the dimension of the panel changes.

Here we will limit the analysis to the Bayesian regression based on Gaussian prior

and show that, under very general conditions, consistency is achieved provided

that the degree of shrinkage increases with the cross-sectional dimension. The

conditions under which we show consistency require that most of the regressors

are informative about the future of the variable to forecast. This condition is

satisfied in the particular case in which the data follow an approximate factor

structure, case for which the literature has shown consistency for PCR. The

approximate factor structure imposes a high degree of collinearity in the data

that persists as we add series to the panel. Intuitively, under those assumptions,

if the prior is chosen appropriately in relation with n, Bayesian regression under

normality will give larger weight to the principal components associated with

the dominant eigenvalues and therefore will produce results which are similar

to PCR.

Our empirical work shows, moreover, that Lasso forecasts, although based

on regression on few variables are as accurate and as highly correlated with

PCR forecasts as are those obtained under normality. This result may seem

puzzling, but it can be explained by the fact that our panel is highly collinear.

Under collinearity, few variables, if selected appropriately, should capture the

essence of covariation. In this case, we expect them to be strongly correlated

with principal components and, as the latter, to span the space of the pervasive

common factors. Under collinearity, however, we expect the selection not to

be stable and to be very sensitive to minor perturbation of the data. In this
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sense, we do not expect variable selection to provide results which lead to clearer

economic interpretation than principal components or ridge regression.

The paper is organized as follows. The second Section introduces the prob-

lem of forecasting using large cross sections. The third Section reports the

results of the out-of-sample exercise for the three methods considered: princi-

pal components, Bayesian regression with normal and with double-exponential

prior. The fourth Section reports asymptotic results for the Gaussian prior case.

The fifth Section concludes and outlines problems for future research.

2 Three solutions to the “curse of dimensional-

ity” problem

Consider the (n×1) vector of covariance-stationary processes Zt = (z1t, ..., znt)′.

We will assume that they all have mean zero and unitary variance.

We are interested in forecasting linear transformations of some elements of

Zt using all the variables as predictors. Precisely, we are interested in estimating

the linear projection

yt+h|t = proj {yt+h|Ωt}

where Ωt = span {Zt−s, s = 0, 1, 2, ...} is a potentially large information set at

time t and yt+h = zh
i,t+h = fh(L)zi,t+h is a filtered version of zit, for a specific

i = 1, ..., n.

Traditional time series methods approximate the projection using only a fi-

nite number, p, of lags of Zt. In particular, they consider the following regression

model:

yt+h = Z ′tβ0 + ... + Z ′t−pβp + ut+h = X ′
tβ + ut+h

where β = (β′0, ..., β
′
p)
′ and Xt = (Z ′t, ..., Z

′
t−p)

′. The implied forecast is given
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by yt+h|t = X ′
tβ and the implied forecast error is ut+h = yt+h − yt+h|t. The

latter is assumed to be orthogonal to zi,t−s for s = 0, 1, ..., p and i = 1, ..., n.

Given a sample of size T , we will denote by X = (Xp+1, ..., XT−h)′ the

(T − h − p) × n(p + 1) matrix of observations for the predictors and by y =

(yp+1+h, ..., yT )′ the (T −h−p)×1 matrix of the observations on the dependent

variable. The regression coefficients are typically estimated by Ordinary Least

Squares (OLS), β̂LS = (X ′X)−1X ′y, and the forecast is given by ŷLS
T+h|T =

X ′
T β̂LS . When the size of the information set, n, is large, such projection

involves the estimation of a large number of parameters. This implies a loss

of degrees of freedom and a poor forecast (“curse of dimensionality problem”).

Moreover, if the number of regressors is larger that the sample size, n(p+1) > T ,

OLS is not feasible.

To solve this problem, the literature proposes to compute the forecast as

a projection on the first few principal components (Forni, Hallin, Lippi, and

Reichlin, 2005; Giannone, Reichlin, and Sala, 2004; Giannone, Reichlin, and

Small, 2005; Stock and Watson, 2002a,b).

Consider the spectral decomposition of the sample covariance matrix of the

regressors:

SxV = V D (1)

where D = diag(d1, ..., dn(p+1)) is a diagonal matrix having on the diagonal

the eigenvalues of Sx = 1
T−h−pX ′X in decreasing order of magnitude and

V = (v1, ..., vn(p+1)) is the n(p + 1) × n(p + 1) matrix whose columns are the

corresponding normalized eigenvectors1. The normalized principal components

1The eigenvalues and eigenvectors are typically computed on 1
T−p

∑T

t=p+1
XtX′

t (see

for example Stock and Watson, 2002a). We instead compute them on 1
T−h−p

X′X =

1
T−h−p

∑T−h

t=p+1
XtX′

t for comparability with the other estimators considered in the paper.

7
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(PC) are defined as:

f̂it =
1√
di

v′iXt (2)

for i = 1, · · · , N where N is the number of non-zero eigenvalues2.

If most of the interactions among the variables in the information set is

due to few common underlying factors, while there is limited cross-correlation

among the variable-specific components of the series, the information content

of the large number of predictors can indeed be summarized by few aggregates,

while the part not explained by the common factors can be predicted by means

of traditional univariate (or low-dimensional forecasting) methods and hence

captured by projecting on the dependent variable itself (or on a small set of

predictors). In such situations, few principal components provide a good ap-

proximation of the underlying factors. The principal component forecast is

defined as:

yPC
t+h|t = proj

{
yt+h|Ωf

t

}
≈ proj {yt+h|Ωt} (3)

where Ωf
t = span

{
f̂1t, ..., f̂rt

}
, with r << n(p+1), is a parsimonious representa-

tion of the information set. The parsimonious approximation of the information

set makes the projection feasible, since it requires the estimation of a limited

number of parameters.

The literature has studied rates of convergence of the principal component

forecast to the efficient forecast under assumptions defining an approximate

factor structure (see Section 4). Under those assumptions, once common factors

are estimated via principal components, the projection is computed by OLS

treating the estimated factors as if they were observables.

The Bayesian approach we follow consists instead in imposing limits on the
2Note that N ≤ min{n(p + 1), T − h− p}.
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length of β through priors and estimating the parameters as the posterior mode.

The parameters are then used to compute the forecasts. Here we consider two

alternatives: Gaussian and double-exponential prior.

Let us assume that ut ∼ i.i.d. N (0, σ2
u), with known variance σ2

u; then,

under Gaussian prior β ∼ N (β0, Φ0), and assuming for simplicity that all pa-

rameters are shrunk to zero, i.e. β0 = 0, we have:

β̂bay =
(
X ′X + σ2

uΦ−1
0

)−1
X ′y.

The corresponding forecast is then computed as:

ŷbay
T+h|T = X ′

T β̂bay.

In the case in which the parameters are i.i.d.3, i.e. Φ0 = σ2
βI, the estimates

are equivalent to those produced by penalized Ridge regression with parameter

ν = σ2
u

σ2
β

. Precisely4:

β̂bay = arg min
β

{‖y −Xβ‖2 + ν‖β‖2} .

It is known that there exist close relationships between OLS, PCR, penal-

ized and Bayesian regression – see e.g. the book by Hastie, Tibshirani, and

Friedman (2001) for a more detailed discussion of the connections between the

different methods. For example, if the prior belief on the regression coefficients

is that they are i.i.d., the forecast can be represented as a weighted sum of the

projections on the principal components:
3Homogenous variance and mean zero are very naive assumptions. In our case, they are

justified by the fact that the variables in the panel we will consider for estimation are stan-
dardized and demeaned. This transformation is appropriate for comparison with principal
components.

4In what follows we will denote by ‖ · ‖ the L2 matrix norm, i.e. for every matrix A,

‖A‖ =
√

λmax(A′A) where λmax(A′A) is the maximum eigenvalue of A′A. For vectors ‖ · ‖
denotes the Euclidean norm.
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X ′
T β̂ =

N∑

i=1

wif̂iT α̂i (4)

where α̂i = 1√
di

v′iX
′y/(T − h− p) is the OLS regression coefficient of y on the

ith principal component. For OLS we have wi = 1 for all i. For the Bayesian

estimates wi = di

di+
ν

T−h−p
, where ν = σ2

u

σ2
β

. For the PCR regression we have

wi = 1 for i ≤ r, and zero otherwise.

OLS, PCR and Gaussian Bayesian regression give non-zero weight to all

variables. An alternative is to select variables. For Bayesian regression, variable

selection can be achieved by a double-exponential prior, which, in the case of a

zero-mean i.i.d. prior, is equivalent to the method that is sometimes called Lasso

regression (an acronym for “least absolute shrinkage and selection operator”)5.

In this particular i.i.d. prior case the method can also be seen as a penalized

regression with a penalty on the coefficients involving the L1 norm instead of

the L2 norm. Precisely:

β̂lasso = arg min
β

{
‖y −Xβ‖2 + ν

n∑

i=1

|βi|
}

(5)

where ν = 1/τ , τ being the scale parameter of the prior density6 (see e.g.

Tibshirani, 1996; Fu, 1998).

Compared with the Gaussian density, the double-exponential puts more mass

near zero and in the tails and this induces a tendency to produce estimates of the

regression coefficients that are either large or zero. As a result, one favors the

recovery of a few large coefficients instead of many fairly small ones. Moreover,

as we shall see, the double-exponential prior favors truly zero values instead of

small ones, i.e. it favors sparse regression coefficients (sparse mode).

To gain intuition about Lasso regression, let us consider, as an example, the
5It should be noted however that Lasso is actually the name of an algorithm proposed in

Tibshirani (1996) for finding a minimizer of (5).
6We recall here that the variance of the prior density is proportional to 2τ2.
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case of orthogonal regressors, a case for which the posterior mode has a known

analytical form. In particular, let us consider the case in which the regressors

are the principal components of X. In this case, the Lasso solution can be cast

in the form (4) with wiα̂i replaced by Sν(α̂i), where Sν is the soft-thresholder

defined by

Sν(α) =





α + ν/2 if α ≤ −ν/2

0 if |α| < ν/2

α− ν/2 if α ≥ ν/2.

(6)

Hence, this sparse solution is obtained by setting to zero all coefficients α̂i

which in absolute value lie below the threshold ν/2 and by shrinking the largest

ones by an amount equal to the threshold. Let us remark that it would also

be possible to leave the largest components untouched, as done in so-called

hard-thresholding, but we do not consider this variant here since the lack of

continuity of the hard-thresholding function makes the theoretical framework

more complicated.

In the general case, i.e. with non-orthogonal regressors, the Lasso solution

will enforce sparsity on the variables themselves rather than on the principal

components, and this is an interesting feature of the method since it implies a

regression on just a few observables rather than on a few linear combinations

of the observables. Note that with such non-Gaussian priors the model is not

invariant under orthogonal linear transformation of the data.

Notice also that, unlike in Ridge and PC regressions, where the regressors

are weighted independently of the choice of the series to be forecasted, in the

Lasso regression the selection and shrinkage depend on that choice.

Methods described by equation (4) will perform well provided that no truly

relevant coefficients αi are observed for i > r, because in principal component

regression they will not be taken into account and in Ridge their influence will

11
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be highly weakened. Bad performances are to be expected if, for example, we

aim at forecasting a time series yt, which by bad luck is just equal or close to a

principal component f̂i with i > r. Lasso solves this problem.

Unfortunately, in the general case, the mode of the posterior distribution

has no analytical form and has to be computed using numerical methods such

as the Lasso algorithm of Tibshirani (1996) or quadratic programming based

on interior point methods as advocated in Chen, Donoho, and Saunders (2001).

Two efficient alternatives to the Lasso algorithm, which work without limitations

of dimensionality also for sample size T smaller than the number of regressors

n(p + 1), have been developed more recently by Efron, Hastie, Johnstone, and

Tibshirani (2004) under the name LARS (Least Angle Regression)7 and by

De Mol and Defrise (2002); Daubechies, Defrise, and De Mol (2004) who use

instead an Iterative Landweber scheme with soft-thresholding applied at each

iteration step8.

In the next Section we study the empirical performance of the three methods

discussed in an out-of-sample forecast exercise based on a large panel of time

series.

3 Empirics

The dataset employed for the out-of-sample forecasting analysis is the same as

the one used in Stock and Watson (2005b). The panel includes real variables

(sectoral industrial production, employment and hours worked), nominal vari-

ables (consumer and producer price indices, wages, money aggregates), asset

prices (stock prices and exchange rates), the yield curve and surveys, for a total

7The LARS algorithm has also been used in econometric forecasting by Bai and Ng (2006b)
who also use it for selecting variables to form principal components.

8The latter algorithm carries out most of the intuition of the orthogonal regression case
and is described in Appendix B. For the LARS algorithm we refer to Efron, Hastie, Johnstone,
and Tibshirani (2004).
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of n = 131 variables9.

Series are transformed to obtain stationarity. In general, for real variables,

such as employment, industrial production, sales, we take the monthly growth

rate. We take first differences for series already expressed in rates: unemploy-

ment rate, capacity utilization, interest rate and some surveys. Prices and wages

are transformed to first differences of annual inflation following Giannone, Re-

ichlin, and Sala (2004); Giannone, Reichlin, and Small (2005).

Let us define IP as the monthly industrial production index and CPI as the

consumer price index. The variables we forecast are

zh
IP,t+h = (ipt+h − ipt) = zIP,t+h + ... + zIP,t+1

and

zh
CPI,t+h = (πt+h − πt) = zCPI,t+h + ... + zCPI,t+1

where ipt = 100× logIPt is the (rescaled) log of IP and πt = 100× log CPIt

CPIt−12

is the annual CPI inflation (IP enters in the pre-transformed panel in first dif-

ferences of the logarithm, while annual inflation enters in first differences).

The forecasts for the (log) IP and the level of inflation are recovered as:

îpT+h|T = ẑh
IP,T+h|T + ipT

and

π̂T+h|T = ẑh
CPI,T+h|T + πT .

The accuracy of predictions is evaluated using the mean-square forecast error
9A full description of our dataset is given in a separate appendix containing sup-

plementary material about this paper and available on request or from the website
http://homepages.ulb.ac.be/∼dgiannon/.
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(MSFE) metric, given by:

MSFEh
π =

1
T1 − T0 − h + 1

T1−h∑

T=T0

(π̂T+h|T − πT+h)2

and

MSFEh
ip =

1
T1 − T0 − h + 1

T1−h∑

T=T0

(îpT+h|T − ipT+h)2 .

The sample has a monthly frequency and ranges from 1959:01 to 2003:12.

The evaluation period is 1970:01 to 2002:12. T1=2003:12 is the last available

point in time, T0= 1969:12 and h = 12. We consider rolling estimates with

a window of 10 years, i.e. parameters are estimated at each time T using the

most recent 10 years of data. For all methods we report results for p = 0 (no

lags of the regressor) which is the one typically considered in macroeconomic

applications. Qualitative results are not affected by this choice10.

All the procedures are applied to standardized data. Mean and variance are

re-attributed to the forecasts accordingly.

We report results for industrial production (IP) and the consumer price

index (CPI).

Let us start from principal component regression. We report results for the

choice of r = 1, 3, 5, 10, 25, 50, 75 principal components. The case r = 0 is the

forecast implied from a random walk with drift on the log of IP and the annual

CPI inflation.

We report MSFE relative to the random walk, and the variance of the fore-

casts relative to the variance of the series of interest11. The MSFE is also

reported for two sub-samples: the first half of the evaluation period 1970-1985,
10Empirical results supporting this claim are reported in a separate appendix contain-

ing supplementary material about this paper and available on request or from the website
http://homepages.ulb.ac.be/∼dgiannon/.

11We limit the empirical evaluation to point forecasts as it is standard in the literature on
principal components forecasts. The theoretical results derived in the next Section are also
limited to point forecasts.
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and the second half 1985-2002. These results help us understand the relative

performance of the methods for the cases where the predictability of key macroe-

conomic time series has dramatically decreased (on this point, see D’Agostino,

Giannone, and Surico, 2006). Results are reported in Table 1.

INSERT TABLE 1 OVER HERE

Let us start with the entire evaluation sample. Results show that principal

components improve a lot over the random walk both for IP and CPI. The

advantage is lost when taking too many PC, which implies loss of parsimony.

Notice that, as the number of PC increases, the variance of the forecasts in-

creases and can become even larger than the variance of the series itself. This

is explained by the large sample uncertainty of the regression coefficients when

there is a large number of regressors. Looking at the two sub-samples, we see

that PCs perform very well in the first part of the sample, while in the most

recent period they perform very poorly, worse than the random walk.

The empirical literature on principal component regression has also consid-

ered the inclusion of the past of the variable of interest to capture series specific

dynamics. The inclusion of those additional regressors does not affect qualita-

tive results and in particular does not significantly improve the accuracy of the

forecasts12.

Let us now do a similar exercise for the i.i.d. Gaussian prior (Ridge regres-

sion). Note, that, for h = 1, this case corresponds to a row of a VAR of order

one. The Gaussian prior works well for the case p = 0 considered here13.
12Results are available on request. Similar results have also been reported in D’Agostino

and Giannone (2007).
13Incidentally, for the case p > 0, let us observe that it might be useful to shrink more the

coefficients of additional lagged regressors, as, for example, with the Minnesota prior (Doan,
Litterman, and Sims, 1984; Litterman, 1986). An additional feature of the Litterman priors
is to shrink less the coefficients associated with the variable to forecast. This can be helpful
when series specific dynamics have significant forecasting power. The study of such more
refined priors goes beyond the scope of the present empirical analysis which is meant as a first
assessment of the general performance of the methods.
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For the Bayesian Gaussian (Ridge) case, we run the regression using the first

estimation sample 1959-1969 for a grid of priors. We then choose the priors for

which the in-sample fit explains a given fraction 1 − κ of the variance of the

variable to be forecast. We report results for different values of κ (the associated

values of ν, which are kept fixed for the whole out-of-sample evaluation period,

are also reported). Notice that κ = 1 corresponds to the random walk since,

in this case, all coefficients are set to zero. The other extreme, κ close to 0, is

associated with a quite uninformative prior and hence will be very close to the

OLS. Results are reported in Table 2.

INSERT TABLE 2 OVER HERE

The Ridge forecast performs well for a range of κ between 30% and 70%

that are associated with shrinkage parameters between half and ten times the

cross-sectional dimension n. For the whole sample, the MSFE are close to those

obtained with principal component regression. Moreover, the forecasts produced

by Ridge regressions are smoother than the PC forecasts, which is a desirable

property.

The last line of the table shows the correlation among Ridge forecasts and

principal component forecasts14. Principal components and Ridge forecasts are

highly correlated, particularly when the prior is such that the forecasting per-

formances are good. The fact that correlation is maximal for parameters giving

the best forecasts suggests that there is a common explanation for the good

performance of the two methods.

As for the two sub-samples, results are also qualitatively similar to principal

component forecasts. Ridge performs particularly well in the first sub-sample

but loses all the advantage in the second. We can note, however, more stability
14For the principal component forecasts we use r = 10. We obtain similar results also for

r = 3, 5, i.e. when PC forecasts perform well.
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than in the principal components case. This is not surprising since Ridge uses

all eigenvalues in decreasing importance instead of truncating after r as in the

principal components case. Notice also that, for inflation, with ν in the inter-

mediate range, even in the most recent sample there is a slight improvement

over the random walk.

Finally, we analyze the case of double-exponential priors. In this case, in-

stead of fixing the values of the parameter ν, we select the prior that delivers

a given number (k) of non zero coefficients at each estimation step in the out-

of-sample evaluation period. We look at the cases of k = 1, 3, 5, 10, 25, 50, 75

non-zero coefficients15.

Results, reported in Table 3, show that good forecasts are obtained with

a limited number of predictors, between 5 and 25. As for Ridge, maximal

correlation with the principal component forecast is achieved for the selection

of parameters that gives the best results.

INSERT TABLE 3 OVER HERE

Comparable MSFE for the three methods as well as high correlation of the

forecasts suggest that all three methods are capturing similar features of the

data. In particular, the correlation of the two Bayesian forecasts with the prin-

cipal component forecast, for the priors that ensure good performance, implies

that there must be a common explanation for the success of the three methods.

The similarity between forecasts based on PC and Ridge can be explained

by collinearity among predictors. In fact, since the covariance of our data is

characterized by few dominant eigenvalues, PC and Ridge, by keeping the largest

ones and giving, respectively zero weight and small weight to the others, should
15An alternative, closer in spirit to the exercise with Gaussian prior, is to select the prior ν

at the beginning of the evaluation and then keep it fixed over the evaluation sample. This al-
ternative strategy provides qualitatively similar results. See the appendix with supplementary
material.
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perform similarly. This point will emerge more clearly in Section 4 on the basis

of the asymptotic analysis.

The result for Lasso is less straightforward to interpret since it is a regres-

sion on few variables rather than on few aggregates of the variables. The high

correlation of the Lasso forecast with the PC forecast suggests that our data

are highly collinear. Under collinearity, few variables, if appropriately selected,

should capture the essence of the covariation of the data and, as principal compo-

nents, span approximately the space of the pervasive common factors. However,

under these circumstances, we should also expect the selection to be unstable

and very sensitive to minor perturbations of the data. With collinear data struc-

ture, variable selection methods are unlikely to provide results that are more

interpretable than principal components or ridge regressions from the economic

point of view.

We examined the variables selected for k ≈ 10 at the beginning and at the

end of the out-of-sample evaluation period16. Two main results emerge from

this analysis. First, only some of the selected variables coincide with those

typically included in small-medium size models: the commodity price indexes,

the spreads, money aggregates and stock market variables. Some of the selected

variables are sectoral (production, labor market and price indicators) or regional

(housing). Second, the selection is different at different points in the sample,

although selected variables generally belong to the same economic category.

We have two conjectures about these results. The fact that variables are not

clearly interpretable and that the procedure selects different variables at differ-

ent points of the sample is, as mentioned above, the consequence of collinearity.

The latter result also suggests temporal instability. Notice, however, that tem-

poral instability does not affect the relative performance of principal components
16These variables are reported in the last two columns of the table describing the database

contained in the appendix containing supplementary material about this paper and available
on request or from the website http://homepages.ulb.ac.be/∼dgiannon/.
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and Ridge with respect to Lasso. This suggests that principal components and

Ridge, by aggregating all variables in the panel, stabilize results providing a sort

of insurance against temporal instability. These conjectures will be explored in

further work.

4 Theory

We have seen that Bayesian regression and PCR are methods that help us solve

the curse of dimensionality problem which typically arises when trying to extract

relevant information from a large number of predictors.

For PCR, the literature has analyzed the asymptotic properties for the size

of the cross-section n and the sample size T going to infinity under assump-

tions that essentially impose that, as we increase the number of time series,

the sources of common dynamics remain limited (Bai, 2003; Bai and Ng, 2002;

Forni, Giannone, Lippi, and Reichlin, 2007; Forni, Hallin, Lippi, and Reichlin,

2005; Stock and Watson, 2002a,b). Double asymptotics for Bayesian regression,

on the other hand, has never been studied and this is a relevant analysis for

understanding its behaviour when using a large number of predictors. In what

follows, we will consider double (n, T ) asymptotics for the case of the Gaussian

prior, under conditions that are more general than those considered for PCR in

the literature mentioned above. As we will see, our assumptions impose that

the optimal forecast and the observable predictors depend on a number of finite

unobservable factors.

For the sake of simplicity, we will assume throughout this Section that no lags

of the regressors are used in the forecasting regression. In the notation of Section

2, this means that we set p = 0. In this case, Xt coincides with the predictors

at time t, Zt = (z1,t, ..., zn,t)′. All results, however, apply straightforwardly to

the case in which lagged predictors are also included, i.e. p different from zero.
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Let us first assume that the forecast of yt depends on a finite number of

unobserved factors.

Assumption A

yt+h = γFt+vt+h, where vt+h is orthogonal to Xt for all n and where the factors

Ft = (f1t, ..., frt)′ are a r-dimensional stationary process with covariance matrix

EFtF
′
t = Ir.

Consider the forecast based on the projection on the unobserved factors Ft:

y∗t+h|t = γFt .

Under Assumption A, the forecast y∗t+h|t is optimal in the sense that, due to

the assumption of orthogonality between the residuals vt+h and the observed

predictors Xt, its forecast accuracy cannot be improved using the information

available at time t. For fixed n, the optimal forecast is unfeasible, even with

infinite sample size T , since the factors are unobserved. We assume that the

observed predictors are related to the common factors as follows:

Assumption B

Xt has the following representation:

Xt = ΛFt + ξt

where

(i) the residuals ξt are a n-dimensional stationary process with covariance

matrix Eξtξ
′
t = Ψ of full rank for all n;
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(ii) the matrix Λ loading the factors is a non-random matrix of dimension

n× r and of full-rank r for each n;

(iii) the residuals ξt are orthogonal to the factors Ft.

In Assumption B the predictors are decomposed into two parts. One part

(ΛFt) is driven by the factors which are informative about the future of the

target variable. The residuals (ξt) can be considered as the component of the

predictors that is not informative. For convenience we assume that the two

components are orthogonal. The assumption that the non-informative residuals

are of full rank entails that there are no redundant predictors. This ensures that

when we increase the number of predictors we do not duplicate information.

Under Assumptions A and B, we have Σx = E(XtX
′
t) = ΛΛ′ + Ψ and

Σxy = E(Xtyt+h) = Λγ′. Because of Assumption B (i), Σx is invertible for

all n. Consequently, for given number n of predictors, the population OLS

regression coefficient β = Σ−1
x Σxy is unique and the forecast is given by:

yt+h|t = X ′
tβ = X ′

t(ΛΛ′ + Ψ)−1Λγ′.

Let us first derive conditions on the shrinkage parameter that will allow to

obtain consistent forecasts from Bayesian regression under Gaussian priors. We

will need the additional Assumption C that ensures that the elements of the

sample covariances of Xt with itself and with yt converge uniformly to their

population counterpart; see Appendix A for details.

Let us consider the prediction based on the Gaussian prior, ut ∼ i.i.d. N (0, σ2
u)

and β ∼ N (0, Φ0). We have the following result:

Proposition 1 Under Assumptions A, B and C, and if lim infn,T→∞
λmin(Φ0)
‖Φ0‖ >
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0, we have for n, T →∞ :

X ′
tβ̂

bay − yt+h|t = Op

(√
δ1,n

δ2
2,n

√
n

T‖Φ0‖

)
+ Op

([
1 +

√
δ1,n

δ2,n

√
n

]
n
√

T‖Φ0‖
)

where δ1,n = λmax(Λ′Λ) and δ2,n = λmin(Λ′Λ).

Proof. See Appendix A.

Proposition 1 indicates that the behavior of the Bayesian forecast under

Gaussian prior is governed by the quantities δ1,n and δ2,n, which in turn are

related to the information content of the observable predictors Xt with respect

to the factors Ft. If the factors are pervasive throughout the predictors’ cross-

section with non decreasing weights, then δ1,n and δ2,n go to infinity with n.

We assume that they increase linearly with n:

Assumption D

0 < lim inf
n→∞

1
n

λmin (Λ′Λ) ≤ lim sup
n→∞

1
n

λmax (Λ′Λ) < ∞ .

Under Assumption D all the predictors are informative for the factors Ft

and hence they all help improve the forecast accuracy. In this case the sample

forecast converges to its population counterpart. Precisely:

Corollary 1 Under the assumptions of Proposition 1, and if Assumption D

holds, then:

X ′
tβ̂

bay − yt+h|t = Op

(
1

nT‖Φ0‖
)

+ Op

(
n
√

T‖Φ0‖
)

as n, T →∞.

22



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

To achieve consistency, a suitable choice for the prior is ‖Φ0‖−1 = cnT
1
2+δ, with

0 < δ < 1/2 and c an arbitrary constant. Under this condition on the prior we

have

∆nT

(
X ′

tβ̂
bay − yt+h|t

)
= Op (1) as n, T →∞,

where ∆nT = min
{

T δ, T
1
2−δ

}
and 0 < δ < 1/2. Let us stress here that no

restriction on the relative path of divergence of T and n is needed in order to

achieve consistency. In this sense the estimates are viable also when the size of

the cross-section n is much larger than the sample size T .

Corollary 1 tells us that, under the factor structure assumption, the Bayesian

regression should use a prior that shrinks increasingly all regression coefficients

to zero as the number of predictors rises. This is because, if the factors are

pervasive, then all variables are informative for the common factors and we

should give weight to all of them. Consequently, as the number of predictors

increases, the magnitude of each regression coefficient has to decrease. The

condition lim infn,T→∞
λmin(Φ0)
‖Φ0‖ > 0 requires that all the regression coefficients

should be shrunk at the same asymptotic rate.

In the empirical exercise, the condition lim infn,T→∞
λmin(Φ0)
‖Φ0‖ > 0 is satisfied

since we used the i.i.d. prior (Φ0 = σ2
βI). Moreover, from Corollary 1, consis-

tency requires that the shrinkage parameter ν = σ2
u

σ2
β

grows asymptotically at a

rate equal to the number of predictors n. Although this is an asymptotic con-

dition that is difficult to assess empirically on the basis of a finite cross-section

and sample size, the empirical results appear to roughly confirm that, in order

to get accurate forecasts, the parameter ν has to be in line with the above con-

dition. Precisely, we found that the forecasts are accurate when the shrinkage

parameter ranges between half and ten times the cross-sectional dimension n

(see Table 2).

Let us now turn to the next question: under which conditions do we actually
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obtain the optimal forecast? We will show that we can get it under further

assumptions on the residuals ξt, i.e. the part of the predictors which is non-

informative about the forecast. Loosely speaking, these assumptions will ensure

that ξt is dominated in size by the common component driven by the factors.

This will be the case when the errors are weakly correlated across predictors.

First notice that the population regression coefficient vector is given by

β = Σ−1
x Σxy = (ΛΛ′ + Ψ)−1Λγ′ = Ψ−1Λ(Λ′Ψ−1Λ + I)−1γ′.

Consider now

yt+h|t = X ′
tβ = F ′tΛ

′Ψ−1Λ(Λ′Ψ−1Λ + I)−1γ′ + ξ′tΨ
−1Λ(Λ′Ψ−1Λ + I)−1γ′;

we have

‖Λ′Ψ−1Λ(Λ′Ψ−1Λ + I)−1 − I‖ = ‖(Λ′Ψ−1Λ + I)−1‖ ≤ 1
λmin(Λ′Ψ−1Λ)

;

moreover,

E
[
(ξ′tβ)2

]
= β′Ψβ = γ(Λ′Ψ−1Λ + I)−1Λ′Ψ−1ΨΨ−1Λ(Λ′Ψ−1Λ + I)−1γ′

≤ ‖γ‖2‖(Λ′Ψ−1Λ)−1‖‖(Λ′Ψ−1Λ)(Λ′Ψ−1Λ + I)−1‖
≤ ‖γ‖2 1

λmin(Λ′Ψ−1Λ) .

Since ‖γ‖ = O (1), by the Markov inequality we have: ξ′tβ = Op

(
λ
−1/2
min (Λ′Ψ−1Λ)

)
.

Summarizing the results just derived above, we have

yt+h|t − γFt = Op

(
λ
−1/2
min (Λ′Ψ−1Λ)

)
as n →∞

provided λmin(Λ′Ψ−1Λ) ≥ 1. We see that the key quantity involved in the
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convergence to the optimal forecast is the minimum eigenvalue λmin(Λ′Ψ−1Λ).

This is a measure of the importance of the informative component relative to

the non-informative component of the predictors. If the informative component

dominates, then the projection over the observables Xt converges to the optimal

unfeasible forecast as the number of predictors goes to infinity.

Since the following bound holds

λmin(Λ′Ψ−1Λ) ≥ λmin(Ψ−1)λmin(Λ′Λ) = λ−1
max(Ψ)λmin(Λ′Λ)

we have the following result:

Proposition 2 Under Assumptions A, B and C, and if

lim inf
n,T→∞

λmin(Φ0)
‖Φ0‖ > 0 ,

we have for n, T →∞ :

X ′
tβ̂

bay − y∗t+h|t = Op

(√
δ3,n

δ2,n

)
+ Op

(√
δ1,n

δ2
2,n

√
n

T‖Φ0‖

)
(7)

+ Op

([
1 +

√
δ1,n

δ2,n

√
n

]
n
√

T‖Φ0‖
)

(8)

where δ1,n = λmax(Λ′Λ), δ2,n = λmin(Λ′Λ) and δ3,n = λmax(Ψ) (provided

δ2,n ≥ δ3,n) .

From Proposition 2 we can see that convergence to the optimal forecast, as

the number of predictors n tends to infinity, is achieved when the maximum

eigenvalue of Ψ is bounded or tends to infinity at a slower rate than the minimum

eigenvalue of Λ′Λ, the latter rate being O(n) when Assumption D holds true.

Let us now introduce an assumption on the asymptotic growth rate of λmax(Ψ):
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Assumption E There exists 0 < α ≤ 1 such that

lim sup
n→∞

1
n1−α

λmax(Ψ) < ∞ .

Assumptions D and E allow us to separate the two clusters of eigenvalues in

the covariance matrix, one corresponding to the common components and the

other to the residuals. This allows convergence to the optimal forecast.

Corollary 2 Under the assumptions of Proposition 2, and if Assumptions D

and E hold, then:

X ′
tβ̂

bay−y∗t+h|t = Op

(
n−α/2

)
+Op

(
1

nT‖Φ0‖
)

+Op

(
n
√

T‖Φ0‖
)

as n, T →∞.

Under the assumptions of Corollary 2, when the prior is such that ‖Φ0‖−1 =

cnT
1
2+δ, then the Bayesian forecast converges to the optimal forecast. Precisely,

∆nT

(
X ′

tβ̂
bay − y∗t+h|t

)
= Op (1) as n, T →∞,

where ∆nT = min
{

nα/2, T δ, T
1
2−δ

}
and 0 < δ < 1/2.

Assumptions D and E require that the non-informative component ξt is

driven by sources that are less pervasive than those driving the informative

component ΛFt. These conditions are satisfied under an approximate factor

structure. The latter is defined by Assumptions A, B, C, D and the condition

that λmax(Ψ) remains bounded as the number of predictors tends to infinity.

If this is verified, the residuals ξt are idiosyncratic in the sense that they are

weakly correlated across predictors (see Forni, Hallin, Lippi, and Reichlin, 2000,
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2005; Forni, Giannone, Lippi, and Reichlin, 2007)17.

If the residuals ξt are idiosyncratic then Assumption E holds for α = 1.

Consequently,

yt+h|t − y∗t+h|t = Op

(
1√
n

)
as n →∞;

hence, from Corollary 2, when the prior is such that ‖Φ0‖−1 = cnT
1
2+δ, we

have:

∆nT

(
X ′

tβ̂
bay − y∗t+h|t

)
= Op (1) as n, T →∞,

where ∆nT = min
{√

n, T δ, T
1
2−δ

}
and 0 < δ < 1/2.

As in principal component regression, if the informative factors are perva-

sive and the non-informative residuals are idiosyncratic, then we converge to

the optimal forecast. The intuition of this result is simple. The factor struc-

ture implies that there are few r dominant eigenvalues that diverge faster than

the remaining ones as the cross-section dimension increases. The parameters’

prior chosen as above ensures that the effect of the factors associated with the

dominant eigenvalues is not distorted asymptotically whereas the effect of the

smallest ones goes to zero asymptotically.

Notice that the rates of consistency of the Bayesian forecasts are slower than

the ones derived for principal components by Bai (2003) under the assumption

that the non-informative component ξt is idiosyncratic. The reason is that, as we

have seen, the assumptions required to achieve consistency of the forecast based

on Bayesian regression are more general that those implied by an approximate

factor structure. In particular, the convergence of the Bayesian to the optimal

forecast is achieved in the case in which Assumption E holds for 0 < α ≤ 1. This

can be viewed as a sort of “weak factor structure” since λmin(Ψ) can be un-

17This is a generalization to the dynamic case of the assumptions defining an approximate
factor structure given by Chamberlain and Rothschild (1983). Bai (2003), Bai and Ng (2002)
and Stock and Watson (2002a) give similar conditions.
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bounded as n →∞. More interestingly, convergence to the population forecast

based on the observed predictors yt+h|t holds under arbitrary correlation struc-

ture among the non-informative component ξt. Such generality gives flexibility

to the method but at the price of a slower rate of convergence.

This result suggests that the properties of alternative methods suitable for

forecasting with a large number of predictors can be studied under more general

conditions than those used in the recent literature on principal components18.

Let us remark in concluding this Section that we have only studied theoret-

ical properties of point forecasts. Under the assumption that the data follow

an approximate factor structure, prediction intervals for principal components

regressions are derived in Bai and Ng (2006a). For the Bayesian regression,

predictive intervals can be computed from the posterior distribution, although

theoretical properties for large cross-sections are not known.

5 Conclusions and open questions

This paper has analyzed the properties of Bayesian regression in large panels of

time series and compared them to PCR.

We have considered the Gaussian and the double-exponential prior and

showed that they offer a valid alternative to principal components. For the

macroeconomic panel considered, the forecast they provide is very correlated to

that of PCR and implies similar mean-square forecast errors.

This exercise should be understood as rather stylized. For the Bayesian case

there is room for improvement, in particular by using developments in BVAR

(Doan, Litterman, and Sims, 1984; Litterman, 1986) and related literature. We

explore this conjecture in a related paper (Banbura, Giannone, and Reichlin,

18Within the framework of principal component regression, this line of research has been
pursued by Onatski (2006) who studies the properties of principal components when factors
are weak.
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2007).

In the asymptotic analysis, we have considered the Gaussian prior case. For

that case, we have shown (n, T ) rates of convergence to the efficient forecast

under an approximate factor structure. This analysis guides us in the setting

of the prior, also interpreted as a Ridge penalization parameter. The empirical

analysis reports results for the optimal parameter and for a larger range of

parameter choice.

The setting of the parameters for the double-exponential case, on the other

hand, has been exclusively empirical. It is designed to deliver a given number

of non-zero coefficients at each estimation step in the out-of-sample evaluation

period. The algorithm provides good results by selecting few variables in the

regression. Selected variables, however, are not not clearly interpretable, typi-

cally not the ones that a macroeconomist would include in a VAR. Moreover, the

selected variables change over time. These results suggest that our data, which

correspond to the typical macroeconomic dataset used for macroeconomic policy

analysis, is characterized by collinearity. Under collinearity we should expect

both that few appropriately selected variables capture the bulk of the covaria-

tion and that the selection is sensitive to minor perturbations of the data. In

this circumstances we should not expect to obtain results that are more inter-

pretable, from the economic point of view, than principal components or ridge

regression, but we should expect comparable forecasting performance. To ex-

plore in more depth these conjectures, we should extend the double-asymptotic

analysis that we have provided for the Gaussian case to the double-exponential

Bayesian regression. We intend to do this in further work.
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Appendix A: Proof of Proposition 1

Throughout this Section we will maintain the simplifying assumption p = 0

introduced in Section 4. All results still hold for the case where p lags are

included, by simply replacing n by n(p + 1).

Denote:

- by yt the generic variable to be forecast as yt = zh
it;

- the covariance matrix of the regressors as Σx = E(XtX
′
t). The sample

equivalent will be denoted by Sx = X ′X/T and the estimation error by

Ex = Σx − Sx. These matrices are of dimension n× n;

- the covariance matrix of the regressors and the variable to be predicted by

Σxy = E(Xty
′
t+h). The sample equivalent will be denoted by Sxy = X ′y/T

and the estimation error by Exy = Σxy − Sxy. These matrices are of

dimension n× 1.

We assume stationarity. Moreover, we need the following assumption:

Assumption C

There exists a finite constant K, such that for all T ∈ N and i, j ∈ N

T E[(ex,ij)
2] < K and T E[(exy,i)2] < K

as T → ∞, where ex,ij denotes the i, jth entry of Ex and exy,i denotes the ith

entry of Exy. Sufficient conditions can be found in Forni, Giannone, Lippi, and

Reichlin (2007).

We consider here only the case of an i.i.d. Gaussian prior on the coefficients

and we denote by ν̃ = σ2
u

T‖Φ0‖ the rescaled penalization in the Ridge regression.
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Remark 1 Notice that this does not imply that we lose in generality. In-

deed, in the case of non-i.i.d. prior, we can always redefine the regression in

terms of X̃t = Φ
1/2
0 Xt√
‖Φ0‖

. Then the corresponding rescaled regression coefficients,

β̃ =
√
‖Φ0‖Φ−1/2

0 β, will be i.i.d. with prior variance ‖Φ0‖. Moreover, under

Assumption B, the transformed regressors X̃t have the representation

X̃t = Λ̃Ft + ξ̃t

where Λ̃ = Φ
1/2
0 Λ√
‖Φ0‖

and ξ̃t = Φ
1/2
0 ξt√
‖Φ0‖

. The assumption lim infn,T→∞
λmin(Φ0)
‖Φ0‖ > 0

ensures that the transformed regressors still satisfy Assumptions D and E when

the original regressors do.

Defining Σx(ν̃) = Σx + ν̃In and the sample equivalent Sx(ν̃) = Sx + ν̃In,

we are interested in the properties of β(ν̃) and β̂(ν̃) which are solutions of the

following linear system of equations:

Σx(ν̃)β(ν̃) = Σxy

Sx(ν̃)β̂(ν̃) = Sxy .
(9)

Notice that β(0) = β is the population OLS regression coefficient and β̂(0) =

β̂ its sample counterpart. For ν̃ > 0, we have the Ridge regression coefficients.

Lemma 1 Under the assumptions of Proposition 1 we have

‖β(ν̃)‖ ≤ ‖β‖ = O

(√
δ1,n

δ2,n

)
(10)

and

‖β − β(ν̃)‖ = O

(
ν̃

√
δ1,n

δ2
2,n

)
as n →∞ . (11)

Proof. We have
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‖β‖ = ‖(ΛΛ′ + Ψ)−1Λγ′‖ .

First notice that for any vector v of the form Λγ′, i.e. orthogonal to the

null-space of Λ, we have the inequality λmin(Λ′Λ)‖v‖ ≤ ‖(ΛΛ′ + Ψ)v‖ since Ψ

is positive definite. Then taking w = (ΛΛ′ + Ψ)v, the inequality becomes

λmin(Λ′Λ)‖(ΛΛ′ + Ψ)−1w‖ ≤ ‖w‖ (12)

and holds for any w in the range of Λ, i.e. of the form Λγ′. Now, replacing w

in (12) by Λγ′, we get, for any γ′

‖(ΛΛ′ + Ψ)−1Λγ′‖ ≤ ‖Λγ′‖
λmin(Λ′Λ)

≤
√

δ1,n

δ2,n
‖γ′‖

where δ1,n = λmax(Λ′Λ) and δ2,n = λmin(Λ′Λ). Since ‖γ′‖ = O(1), we get (10).

The inequality ‖β(ν̃)‖ ≤ ‖β‖ is straightforward. Now,

β − β(ν̃) =
[
(ΛΛ′ + Ψ)−1 − (ΛΛ′ + Ψ + ν̃In)−1

]
Λγ′

= (ΛΛ′ + Ψ)−1ν̃In(ΛΛ′ + Ψ + ν̃In)−1Λγ′

thanks to the matrix identity

A−1 −B−1 = A−1(B −A)B−1 . (13)

Hence

‖β − β(ν̃)‖ ≤ ν̃‖(ΛΛ′ + Ψ)−2Λγ′‖ .

Replacing w in (12) by β and using the bound (10), we easily obtain the bound

(11). Q.E.D.

In contrast to what happens for ν̃ = 0, notice that the Ridge parameter
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ν̃ introduces a bias which tends to zero for large cross-sectional dimensions

provided that the asymptotic behavior of ν̃ as n →∞ is appropriately tuned.

Let us now consider the sample estimates and investigate the relationship

between β(ν̃) and β̂(ν̃). We first need the following lemma:

Lemma 2

(i) ‖Ex‖ = Op

(
n√
T

)

(ii) ‖Exy‖ = Op

(√
n√
T

)

Proof. We have:

‖Ex‖2 ≤ trace [E′
xEx] =

n∑

i=1

n∑

j=1

e2
x,ij

Taking expectations, we obtain:

E




n∑

i=1

n∑

j=1

e2
x,ij


 =

n∑

i=1

n∑

j=1

E
[
e2
x,ij

] ≤ n2K

T
= O

(
n2

T

)

We also have ‖Exy‖2 =
∑n

i=1 e2
xy,i. Taking expectations, we get:

E

[
n∑

i=1

e2
xy,i

]
=

n∑

i=1

E
[
e2
xy,i

] ≤ nK

T
= O

( n

T

)

The results follow from the Markov inequality. Q.E.D.

Lemma 3 Under the Assumptions A, B and C, we have

‖β̂(ν̃)− β(ν̃)‖ = O

( √
n

ν̃
√

T

[
1 +

√
n

√
δ1,n

δ2,n

])
as n, T →∞ .
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Proof. From (9) we have

β̂(ν̃)− β(ν̃) = Sx(ν̃)−1Sxy − Σx(ν̃)−1Σxy

and hence also

β̂(ν̃)− β(ν̃) = Sx(ν̃)−1[Sxy − Σxy] + Sx(ν̃)−1Σxy − Σx(ν̃)−1Σxy

Using again the identity (13), we get

β̂(ν̃)− β(ν̃) = Sx(ν̃)−1[Sxy − Σxy] + Sx(ν̃)−1[Σx(ν̃)− Sx(ν̃)]Σx(ν̃)−1Σxy

whence

‖β̂(ν̃)− β(ν̃)‖ ≤ ‖Sx(ν̃)−1‖ (‖Sxy − Σxy‖+ ‖Σx(ν̃)− Sx(ν̃)‖ ‖β(ν̃)‖)

Using Lemma 2, the bound (10) and the fact that ‖Sx(ν̃)−1‖ ≤ 1/ν̃ , we get the

desired result. Q.E.D.

We can now combine the results of Lemma 1 and Lemma 3, by means of the

triangular inequality, and use the fact that ‖Xt‖ = Op (
√

n) to establish the

following Lemma, which is a simple corollary of the previous ones.

Lemma 4 Under Assumptions A, B and C, we have, as n, T →∞,

X ′
tβ̂(ν̃) = X ′

tβ + Op

(
ν̃
√

n

√
δ1,n

δ2
2,n

)
+ Op

(
n

ν̃
√

T

[
1 +

√
n

√
δ1,n

δ2,n

])
.
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Proposition 1 is now established using Lemma 4 and the definition of ν̃ =

σ2
u/(T‖Φ0‖).

By a proper choice of the regularization parameter ν̃ as a function of n and

T , we will have to ensure that both terms tend to zero as n, T → ∞. This

is done in Corollary 1, under a supplementary assumption on the asymptotic

behaviour of δ1,n and δ2,n (Assumption D).

Appendix B

An alternative to matrix inversion for computing regression estimates is provided

by iterative methods as, for example, the so-called Landweber iteration scheme,

which can be modified to cope with the penalties used in Ridge and Lasso

regression.

To ensure convergence of this algorithm the norm of the sample matrices X

must be smaller than 1. Since our regressors are standardized, this condition is

fulfilled when using the rescaled regressors X̃ = X/
√

n(p + 1)(T − h− p), and

hence estimating the corresponding regression coefficients as

β̃ =
√

n(p + 1)(T − h− p) β.

Starting from the normal equation of the ordinary least squares, we can

rewrite it as β̃ = β̃ + X̃ ′y− X̃ ′X̃β̃ and, starting from arbitrary β̃(0), try to solve

it through the successive approximations scheme

β̃(j+1) = β̃(j) + X̃ ′y − X̃ ′X̃β̃(j); j = 0, 1, . . . (14)

which is the standard Landweber iteration. A nice feature of this scheme is that

it can be easily extended to cope with additional constraints or penalties, and in

particular with those used in Ridge or Lasso regression. As concerns the Lasso
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functional (5), Daubechies, Defrise, and De Mol (2004) have recently proposed

the following thresholded Landweber iteration

β̃(j+1) = Sν(β̃(j) + X̃ ′y − X̃ ′X̃β̃(j)); j = 0, 1, . . . (15)

where the thresholding operator is acting componentwise on a vector by per-

forming the soft-thresholding operation defined by (6) and is thus defined by

Sν(β̃) = [Sν(β̃i)]i=1,···,n . (16)

This operation enforces the sparsity of the regression coefficients in the sense

that all coefficients below the threshold ν/2 are set to zero. The scheme (15)

has been proved in Daubechies, Defrise, and De Mol (2004) to converge to a

minimizer of the Lasso functional (5). Let us remark that this functional fails

to be strictly convex when the null-space of X̃ is not reduced to zero, in which

case the minimizer of (5) is not necessarily unique.
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Table 1: Principal component forecasts

Industrial Production
Number of Principal Components

1 3 6 10 25 50 75
MFSE 1971-2002 0.91 0.62 0.56 0.54 0.65 0.93 1.56
MFSE 1971-1984 0.89 0.45 0.35 0.34 0.46 0.70 1.18
MFSE 1985-2002 0.98 1.13 1.16 1.13 1.21 1.60 2.68

Variance∗ 0.23 0.70 0.79 0.97 1.28 1.43 1.78

Consumer Price Index
Number of Principal Components

1 3 6 10 25 50 75
MFSE 1971-2002 0.57 0.55 0.57 0.69 0.83 1.17 1.69
MFSE 1971-1984 0.48 0.40 0.39 0.48 0.56 0.89 1.23
MFSE 1985-2002 1.03 1.28 1.43 1.71 2.11 2.47 3.83

Variance∗ 0.36 0.55 0.61 0.63 0.69 0.89 1.69

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.
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Table 2: Bayesian forecasts with Gaussian prior
Industrial Production

In-sample Residual variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 6 25 64 141 292 582 1141 2339 6025

MFSE 1971-2002 0.96 0.70 0.60 0.56 0.56 0.58 0.64 0.72 0.83
MFSE 1971-1984 0.74 0.50 0.41 0.38 0.40 0.44 0.52 0.63 0.78
MFSE 1985-2002 1.59 1.31 1.16 1.08 1.03 1.00 0.98 0.98 0.98

Variance∗ 0.71 0.63 0.57 0.49 0.39 0.29 0.19 0.12 0.07

Correlation with
PC forecasts (r=10) 0.62 0.81 0.89 0.92 0.93 0.91 0.85 0.74 0.48

Consumer Price Index

In-sample Residual variance
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ν 16 60 143 288 528 949 1751 3532 9210

MFSE 1971-2002 0.88 0.72 0.66 0.63 0.62 0.63 0.66 0.73 0.84
MFSE 1971-1984 0.72 0.58 0.52 0.51 0.51 0.54 0.59 0.68 0.82
MFSE 1985-2002 1.60 1.41 1.29 1.19 1.11 1.04 0.98 0.95 0.95

Variance∗ 0.41 0.35 0.32 0.28 0.24 0.19 0.13 0.08 0.05

Correlation with
PC forecasts (r=10) 0.68 0.86 0.92 0.94 0.92 0.89 0.83 0.69 0.33

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.
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Table 3: Lasso forecasts
Industrial Production

Number of non-zero coefficients
1 3 5 10 25 50 75

MFSE 1971-2002 0.86 0.69 0.64 0.60 0.64 0.77 1.10
MFSE 1971-1984 0.80 0.56 0.50 0.44 0.47 0.58 0.91
MFSE 1985-2002 1.05 1.05 1.05 1.07 1.14 1.32 1.67

Variance∗ 0.07 0.16 0.24 0.40 0.53 0.65 0.79
Correlation with

PC forecasts (r=10) 0.05 0.64 0.81 0.85 0.84 0.68 0.44

Consumer Price Index
Number of non-zero coefficients

1 3 5 10 25 50 75
MFSE 1971-2002 0.90 0.76 0.62 0.59 0.68 0.86 1.06
MFSE 1971-1984 0.88 0.70 0.54 0.48 0.52 0.70 0.93
MFSE 1985-2002 1.00 1.04 1.02 1.14 1.44 1.65 1.68

Variance∗ 0.05 0.09 0.18 0.26 0.33 0.39 0.50
Correlation with

PC forecasts (r=10) 0.05 0.64 0.81 0.85 0.84 0.68 0.44

MSFE are relative to a the Naive, Random Walk, forecast. ∗The variance of the forecast
relative to the variance of the series.
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