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Homogeneity in the bi-limit as a tool for observer and feedback design

Vincent Andrieu Laurent Praly Alessandro Astolfi

Abstract— We introduce an extension of the notion of homo-
geneous approximation to make it valid both at the origin and at
infinity (homogeneity in the bi-limit). Exploiting this extension,
we give several results concerning stability, robustness and
uniform (in the initial condition) finite time convergence for
a homogeneous in the bi-limit vector field. We then introduce
a homogeneous in the bi-limit observer and state-feedback for
a chain of integrators. Combining these two tools we establish
a global asymptotic stabilization result by output feedback for
feedback and feedforward systems. We obtain also a finite time
observer for globally Lipschitz system.

I. INTRODUCTION

The problems of designing globally convergent observers
and globally asymptotically stabilizing output feedback con-
trol laws for nonlinear systems have been addressed by many
authors following different routes. Many of these approaches
exploit domination ideas and robustness of stability and/or
convergence. In view of developing further these techniques
we have introduced two new tools in [1]. The first one is an
extension of the technique of homogeneous approximation
to make it valid both at the origin and at infinity. The
second tool is a new recursive observer design procedure
for a chain of integrator. Combining these two tools we
propose a global asymptotic stabilization result by output
feedback for feedback and feedforward systems and a finite
time convergent observer design.

To place our contribution in perspective, consider the
system for which we want to design a globally asymptotically
stabilizing output feedback :

ẋ1 = x2 , ẋ2 = u + �2(x2) , y = x1 , (1)

where :

�2(x2) = c0sign(x2)∣sin(x2)∣q (2)
+c∞sign(x2)∣x2∣p ,

with p > q > 0, (c0, c∞) in ℝ2.
In the domination approach, the nonlinear function �2 is

not treated per se in the design but considered as a pertur-
bation. In this framework the output feedback controller is
designed on the linear system :

ẋ1 = x2 , ẋ2 = u , y = x1 , (3)
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and will be suitable for the nonlinear system (1) provided
the global asymptotic stability property of the origin of the
closed-loop system with �2(x2) = 0 is robust to the nonlinear
disturbance �2. For instance, the design given in [13], [22]
provides a linear output feedback controller which is suitable
for the nonlinear system (1) when q = 1 and c∞ = 0. This
result has been extended in [21] employing a homogeneous
output feedback controller which allows to deal with p ≥ 1
and c0 = 0.

Homogeneity in the bi-limit and the recursive observer
design proposed in [1] allow us to deal with the case in
which c0 ∕= 0 and c∞ ∕= 0. In this case, the function �2 is
such that :

1) when ∣x2∣ is small and q = 1, �2(x2) can be
approximated by c0 x2 and the nonlinearity can be
approximated by a linear function;

2) when ∣x2∣ is large, �2(x2) can be approximated by
c∞ xp2, hence we have a polynomial growth which can
be handled by a weighted homogeneous controller as
in [21].

Both linear and polynomial growth are simply handled by the
fact that �3 becomes homogeneous as the state tends to the
origin or to infinity but with different weights and degrees.

The paper is organized as follows. Section II summa-
rizes the general properties related to homogeneity in the
bi-limit established in [1]. After giving the definitions of
homogeneous approximation and homogeneous in the bi-
limit functions and vector fields (Section II-A) we list some
of their properties (Section II-B). Various results concerning
stability and robustness for homogeneous in the bi-limit
vector fields are given in Section II-C. In Section III we
introduce a homogeneous in the bi-limit observer and state
feedback for a chain of integrator. Finally, in Section IV,
using the previous tools we establish results on stabilization
by output feedback and finite time convergent observer.

All proofs and some examples can be found in [1] and in
[3].

NOTATION

∙ The function ℌ : ℝ2
+ → ℝ+ is defined as

ℌ(a, b) =
a

1 + a
[1 + b] . (4)

∙ Given r = (r1, . . . , rn)T in ℝn+ and � in ℝ+, �r ⋄ x =

(�r1 x1, . . . , �
rn xn)

T is the dilation of a vector x in
ℝn with weight r.

∙ Given r = (r1, . . . , rn)T in (ℝ+ ∖ {0})n, ∣x∣r =

∣x1∣
1
r1 + . . . + ∣xn∣

1
rn is the homogeneous norm with

weight r and degree 1.



II. HOMOGENEOUS APPROXIMATION

A. Definitions

The use of homogeneous approximations has a long his-
tory in the study of stability of an equilibrium. It can be
traced back to Lyapunov first order approximation theorem
and has been pursued by many authors, for example Massera
[15], Hermes [10], Rosier [24]. Similarly this technique has
been used to investigate the behavior of the solutions of
dynamical systems at infinity, see for instance Lefschetz in
[14, IX.5] and Orsi, Praly and Mareels in [17]. In this section,
we recall the definitions of homogeneous approximation at
the origin and at infinity and restate some related results.

Definition 1 (Homogeneity in the 0-limit):
∙ A function � : ℝn → ℝ is said homogeneous in the

0-limit with associated triple (r0, d0, �0), where r0 in
(ℝ+∖{0})n is the weight, d0 in ℝ+ the degree and �0 :
ℝn → ℝ the approximating function, if � is continuous,
�0 is continuous and not identically zero and, for each
compact set C in ℝn ∖ {0} and each " > 0, there exists
�0 such that :

max
x∈C

∣∣∣∣�(�r0 ⋄ x)

�d0
− �0(x)

∣∣∣∣ ≤ ", ∀ � ∈ (0, �0] .

∙ A vector field f =
∑n
i=1 fi

∂
∂xi

is said homogeneous in
the 0-limit with associated triple (r0, d0, f0), where r0
in (ℝ+ ∖ {0})n is the weight, d0 in ℝ is the degree and
f0 =

∑n
i=1 f0,i

∂
∂xi

the approximating vector field, if,
for each i in {1, . . . , n}, d0 +r0,i ≥ 0 and the function
fi is homogeneous in the 0-limit with associated triple
(r0, d0 + r0,i, f0,i).

This notion of local approximation of a function or of a
vector field can be found in [10], [24], [5], [11].

Example 1 : The function �2 : ℝ → ℝ introduced in the
illustrative system (1) is homogeneous in the 0-limit with
associated triple (r0, d0, �2,0) = (1, q, c0 x

q
2). Furthermore,

if q < 2 the vector field f(x1, x2) = (x2, �2(x2)) is
homogeneous in the 0-limit with associated triple :

(r0, d0, f0) =
(

(2− q, 1), q − 1, (x2, c0 x
q
2)
)
. (5)

Definition 2 (Homogeneity in the ∞-limit):
∙ A function � : ℝn → ℝ is said homogeneous in the
∞-limit with associated triple (r∞, d∞, �∞), where r∞
in (ℝ+ ∖{0})n is the weight, d∞ in ℝ+ the degree and
�∞ : ℝn → ℝ the approximating function, if � is
continuous, �∞ is continuous and not identically zero
and, for each compact set C in ℝn∖{0} and each " > 0,
there exists �∞ such that :

max
x∈C

∣∣∣∣�(�r∞ ⋄ x)

�d∞
− �∞(x)

∣∣∣∣ ≤ ", ∀ � ≥ �∞ .

∙ A vector field f =
∑n
i=1 fi

∂
∂xi

is said homogeneous in
the∞-limit with associated triple (r∞, d∞, f∞), where
r∞ in (ℝ+ ∖ {0})n is the weight, d∞ in ℝ the degree
and f∞ =

∑n
i=1 f∞,i

∂
∂xi

the approximating vector
field, if, for each i in {1, . . . , n}, d∞ + r∞,i ≥ 0 and

the function fi is homogeneous in the ∞-limit with
associated triple (r∞, d∞ + r∞,i, f∞,i).

Example 2 : The function �2 : ℝ → ℝ given in the illus-
trative system (1) is homogeneous in the ∞-limit with asso-
ciated triple (r∞, d∞, �2,∞) = (1, p, c∞ xp2). Furthermore,
when p < 2, the vector field f(x1, x2) = (x2, �2(x2)) is
homogeneous in the ∞-limit with associated triple :

(r∞, d∞, f∞) =
(

(2− p, 1), p− 1, (x2, c∞ xp2)
)
. (6)

Definition 3 (Homogeneity in the bi-limit): A function
� : ℝn → ℝ (or a vector field f : ℝn → ℝn) is said
homogeneous in the bi-limit if it is homogeneous in the 0-
limit and homogeneous in the ∞-limit.

Remark 1 : If a function � (respectively a vector field f ) is
homogeneous in the bi-limit, then the approximating function
�0 or �∞ (resp. the approximating vector field f0 or f∞) is
homogeneous in the standard sense (with the same weight
and degree).

Example 3 : As a consequence of Examples 1 and 2, the
vector field f(x1, x2) = (x2, �2(x2)) is homogeneous in
the bi-limit with associated triples given in (5) and (6) as
long as 0 < q < p < 2.

B. Properties of homogeneous approximations

Since all the properties presented in this paragraph concern
in the same way homogeneity in 0-limit and in the ∞-limit,
we introduce the letter ”b”, which stands for ”0” or ”∞”.

To begin with note that the weight and degree of an ho-
mogeneous in the b-limit function are not uniquely defined.
Indeed, if � is homogeneous in the b-limit with associated
triple (rb, db, �b), then it is also homogeneous in the b-limit
with associated triple (k rb, k db, �b) for all k > 0. (Simply
change � in �k.)

Here is a list of properties established in [1].
Proposition 1 (Basic properties): Let � and � be two

functions homogeneous in the b-limit, with weights r�,b and
r�,b, degrees d�,b and d�,b, and approximating functions �b
and �b. The following hold.
P1 : If there exists k in ℝ+ such that k r�,b = r�,b

then the function x 7→ �(x) �(x) is homogeneous in
the b-limit with weight r�,b, degree k d�,b + d�,b and
approximating function x 7→ �b(x) �b(x).

P2 : If, for each j in {1, . . . , n}, d�,b
r�,b,j

<
d�,b
r�,b,j

, then the
function x 7→ �(x) + �(x) is homogeneous in the b-
limit with degree d�,b, weight r�,b and approximating
function x 7→ �b(x). In this case we say that the
function � dominates the function � in the b-limit.

P3 : If the function �b + �b is not identically zero and, for
each j in {1, . . . , n}, d�,b

r�,b,j
=

d�,b
r�,b,j

, then the function
x 7→ �(x) + �(x) is homogeneous in the b-limit with
degree d�,b, weight r�,b and approximating function
x 7→ �b(x) + �b(x).

Proposition 2 (Composition function): If � : ℝn → ℝ
and � : ℝ → ℝ are homogeneous in the b-limit functions,



with weights r�,b and r�,b, degrees d�,b > 0 and d�,b ≥
0, and approximating functions �b and �b, then � ∘ � is
homogeneous in the b-limit with weight r�,b, degree d�,b d�,b

r�,b
,

and approximating function �b ∘ �b.
Proposition 3 (Inverse function): Let � : ℝ → ℝ be a

bijective homogeneous in the b-limit function with associated
triple

(
1, db, 'b x

db
)

with 'b ∕= 0 and db > 0. Then the
inverse function �−1 : ℝ → ℝ is a homogeneous in the

b-limit function with associated triple
(

1, 1
db
,
(
x
'b

) 1
db

)
.

Proposition 4 (Integral function): If the function � :
ℝn → ℝ is homogeneous in the b-limit with asso-
ciated triple (rb, db, �b), then the function Φi(x) =∫ xi
0

�(x1, . . . , xi−1, s, xi+1, . . . , xn) ds is homogeneous in
the b-limit with associated triple (rb, db + rb,i,Φi,b), with
Φi,b(x) =

∫ xi
0

�b(x1, . . . , xi−1, s, xi+1, . . . , xn) ds.
Proposition 5: Let � : ℝn → ℝ and � : ℝn → ℝ+

be two homogeneous in the bi-limit functions with the same
weights r0 and r∞, degrees d�,0, d�,∞ and d�,0, d�,∞, and
approximating functions �0, �∞ and �0, �∞. If the degrees
satisfy d�,0 ≥ d�,0 and d�,∞ ≤ d�,∞ and the functions �, �0
and �∞ are positive definite then there exists a positive real
number c satisfying :

�(x) ≤ c �(x) , ∀ x ∈ ℝn .

C. Stability and homogeneous approximation
A very basic property of asymptotic stability is its ro-

bustness. This fact was already known to Lyapunov who
proposed his second method, (local) asymptotic stability of
an equilibrium is established by looking at the first order
approximation of the system. The case of local homogeneous
approximations of higher degree has been investigated by
Massera [15], Hermes [10] and Rosier [24].

Proposition 6 ([24]): Consider a homogeneous in the 0-
limit vector field f : ℝn → ℝn with associated triple
(r0, d0, f0). If the origin of the system :

ẋ = f0(x)

is locally asymptotically stable then the origin of

ẋ = f(x)

is locally asymptotically stable.
Consequently, a natural strategy to ensure local asymptotic

stability of an equilibrium of a system is to design a
stabilizing homogeneous control law for the homogeneous
approximation in the 0-limit (see [10], [12], [8] for instance).

In the context of homogeneity in the∞-limit, we have the
following result.

Proposition 7: Consider a homogeneous in the ∞-limit
vector field f : ℝn → ℝn with associated triple
(r∞, d∞, f∞). If the origin of the system

ẋ = f∞(x)

is globally asymptotically stable then there exists an invari-
ant compact subset of ℝn, denoted C∞, which is globally
asymptotically stable for the system :

ẋ = f(x) .

As in the case of homogeneity in the 0-limit, this property
can be used to design a feedback ensuring boundedness of
solutions.

Example 4 : Consider the system (1) with 0 < q < p < 2
and the control law :

u = − 1

2− p
x
p−1
2−p
1 x2 − x

p
2−p
1 − c∞ xp2−

(
x2 + x

1
2−p
1

)p
.

(7)
This control law is such that the closed loop vector field
is homogeneous in the ∞-limit with degree d∞ = p − 1,
weight (2 − p, 1) and associated vector field f∞(x1, x2) =(
x2,− 1

2−p x
p−1
2−p
1 x2 − x

p
2−p
1 −

(
x2 + x

1
2−p
1

)p)T
. For the

homogeneous Lyapunov function of degree two :

V∞(x1, x2) =
2− p

2
∣x1∣

2
2−p +

1

2

∣∣∣∣x2 + x
1

2−p
1

∣∣∣∣2 ,

we get :

∂V∞
∂x

(x) f∞(x) = −∣x1∣
p+1
2−p −

∣∣∣∣x2 + x
1

2−p
1

∣∣∣∣p+1

.

It follows that the control law (7) guarantees boundedness
of the solutions of the closed loop system. Furthermore,
boundedness of solutions is preserved in the presence of
any perturbation which does not change the approximating
homogeneous function in the ∞-limit, i.e. in the presence
of perturbations which are negligible with respect to the
dominant homogeneous part (see Proposition 1.P2 in Section
II-B).

The key step in the proof of Propositions 6 and 7 is the
converse Lyapunov theorem given by Rosier in [24]. This
result can also be extended to the case of homogeneity in
the bi-limit.

Theorem 1 (Homogeneous in the bi-limit Lyapunov func-
tions): Consider a homogeneous in the bi-limit vector field
f : ℝn → ℝn, with associated triples (r∞, d∞, f∞) and
(r0, d0, f0) such that the origins of the systems :

ẋ = f(x) , ẋ = f∞(x) , ẋ = f0(x) (8)

are globally asymptotically stable equilibria. Let dV∞ and
dV0

be real numbers such that dV∞ > max1≤i≤n r∞,i
and dV0

> max1≤i≤n r0,i. Then there exists a C1, pos-
itive definite and proper function V : ℝn → ℝ+

such that, for each i in {1, . . . , n}, the functions x 7→
∂V
∂xi

is homogeneous in the bi-limit with associated triples(
r0, dV0 − r0,i, ∂V0

∂xi

)
and

(
r∞, dV∞ − r∞,i, ∂V∞∂xi

)
and the

functions x 7→ ∂V
∂x (x) f(x), x 7→ ∂V0

∂x (x) f0(x) and x 7→
∂V∞
∂x (x) f∞(x) are negative definite.

A direct consequence of this result is an Input-to-State
Stability (ISS) property with respect to disturbances (see
[26]). To illustrate this property, consider the system with
exogenous disturbance � = (�1, . . . , �m) in ℝm :

ẋ = f(x, �) , (9)



with f : ℝn × ℝm a continuous vector field homogeneous
in the bi-limit with associated triples (d0, (r0, r0), f0) and
(d∞, (r∞, r∞), f∞) where r0 and r∞ in (ℝ+ ∖ {0})m are
the weights associated to the disturbance �.

Corollary 1 (ISS Property): If the origins of the systems :

ẋ = f(x, 0) , ẋ = f0(x, 0) , ẋ = f∞(x, 0)

are globally asymptotically stable equilibria, then the func-
tion V given by Theorem 1 satisfies1 for all � = (�1, . . . , �m)
in ℝm and x in ℝn :

∂V

∂x
(x) f(x, �) ≤ −cV ℌ

(
V (x)

dV0
+d0

dV0 , V (x)
dV∞+d∞
dV∞

)
(10) + c�

m∑
j=1

ℌ

(
∣�j ∣

dV0
+d0

r0,j , ∣�j ∣
dV∞+d∞

r∞,j

)
,

where cV and c� are positive real numbers.
In other words, system (9) with � as input is ISS.
Finally, we have also the following small-gain result for

homogeneous in the bi-limit vector fields.
Corollary 2 (Small-Gain): Under the hypotheses of

Corollary 1, there exists a real number cG > 0 such that,
for each class K function 
z and Kℒ function �� , there
exists a class Kℒ function �x such that, for each function
t ∈ [0, T ) 7→ (x(t), �(t), z(t)), T ≤ +∞, with x C1 and �
and z continuous, which satisfies, both (9) on [0, T ) and,
for all 0 ≤ s ≤ t ≤ T ,

∣z(t)∣ ≤ max
{
��

(
∣z(s)∣, t− s

)
, sups≤�≤t 
z(∣x(�)∣)

}
(11)

∣�i(t)∣ ≤ max
{
��

(
∣z(s)∣, t− s

)
, (12)

cG sups≤�≤t
{
ℌ
(
∣x(�)∣r0,ir0 , ∣x(�)∣r∞,ir∞

)}}
,

we have

∣x(t)∣ ≤ �x(∣(x(s), z(s))∣, t− s) 0 ≤ s ≤ t ≤ T . (13)

Example 5 : An interesting case which can be dealt with by
Corollary 2 is when the �i’s are outputs of auxiliary systems
with state zi in ℝni , i.e :

�i(t) := �i(zi(t), x(t)) , żi = gi(zi, x) . (14)

It can be checked that the bounds (12) and (11) are satisfied
by all the solutions of (9) and (14) if there exist positive
definite and radially unbounded functions and !3, a positive
real number � in (0, 1) such that for all x in ℝn, for all i in
{1, . . . ,m} and zi in ℝni , we have :

∣�i(zi, x)∣ ≤ !1(x) + !2(Zi(zi)) ,

∂Zi
∂zi

(zi) gi(zi, x) ≤ −Zi(zi) + !3(∣x∣) ,

!1(x) + !2 ([1 + �]!3(∣x∣)) ≤ cGℌ
(
∣x∣r0,ir0 , ∣x∣r∞,ir∞

)
.

Another important result exploiting Theorem 1 deals with
finite time convergence of solutions to the origin when this
is a globally asymptotically stable equilibrium (see [6]). It

1The function ℌ is defined in (4).

is well known that when the origin of the homogeneous
approximation in the 0-limit is globally asymptotically stable
and with a strictly negative degree then solutions converge
to the origin in finite time (see [7]). We extend this result by
showing that if, furthermore the origin of the homogeneous
approximation in the ∞-limit is globally asymptotically
stable with strictly positive degree then the convergence time
does not depend on the initial condition. We call this property
finite time convergence uniform in the initial condition or
simply uniform finite time convergence.

Corollary 3 (Uniform Finite Time Convergence): Under
the hypotheses of Theorem 1, if we have d∞ > 0 > d0,
then all solutions of the system ẋ = f(x) converge in finite
time to the origin, uniformly in the initial condition.

III. HOMOGENEOUS IN THE BI-LIMIT TOOLS FOR A
CHAIN OF INTEGRATORS

The notion of homogeneity in the bi-limit is instrumental
to introduce an observer and a state feedback for a chain
of integrator. Throughout this section we consider an input
output system given as a chain of integrators, with state X =
(X1, . . . ,Xn) in ℝn, input u in ℝ and output y in ℝ, namely :

Ẋ = S X + B u , y = CX (15)

where S is the shift matrix of order n, i.e. S X =
(X2, . . . ,Xn, 0)

T , B = (0, . . . , 0, 1)T , and C =
(1, 0, . . . , 0). By selecting arbitrary vector field degrees d0

and d∞ in
(
−1, 1

n−1

)
, we see that, to possibly obtain

homogeneity in the bi-limit of the vector field associated
with (15) with some feedback for u, we must choose the
weights r0 = (r0,1, . . . , r0,n) and r∞ = (r∞,1, . . . , r∞,n)
as :

rb,n = 1 , rb,i = rb,i+1 − db = 1 − db (n− i) , (16)

where the letter ”b” stands for ”0” or ”∞”.

A. Homogeneous in the bi-limit Observer

The goal of this section is to introduce a global homoge-
neous in the bi-limit observer for the system (15). The design
presented in [1] follows a recursive method.

The observer is given by the system :

˙̂
X = S X̂ + B u + K(X̂1 − y) (17)

with state X̂ = (X̂1, . . . , X̂n), and where K : ℝ → ℝn
is a homogeneous in the bi-limit vector field with weights
r0 and r∞, and degrees d0 and d∞. If we introduce the
estimation error vector E in ℝn defined as E = X̂−X, the
output injection vector field K has to be selected such that
the origin is a globally asymptotically stable equilibrium for
the system :

Ė = S E + K(e1) , E = (e1, . . . en)T , (18)

and also for its homogeneous approximations.
Theorem 2 (Homogeneous in the bi-limit observer):

With d0, d∞, r0 and r∞ satisfying the constraints given in
the introduction of this section, there exists a homogeneous



in the bi-limit vector field K : ℝ → ℝn, with associated
triples (r0, d0,K0) and (r∞, d∞,K∞), such that, the origin
is a globally asymptotically stable equilibrium for the
system (18) and its homogeneous approximation:

Ė = S E +K0(e1) , Ė = S E +K∞(e1) .

B. Homogeneous in the bi-limit state feedback

It is well-known that the system (15) can be rendered
homogeneous by using a stabilizing homogeneous state
feedback which can be designed by backstepping (see [19],
[16], [21], [11] for instance). We show in this section that
this property can be extended to the case of homogeneity in
the bi-limit.

Theorem 3 (Homogeneous in the bi-limit state-feedback):
With d0, d∞, r0 and r∞ satisfying the constraints given in
the introduction of this section, there exits a homogeneous
in the bi-limit function � : ℝn → ℝ with associated
triples (r0, d0 + 1, �0) and (r∞, d∞ + 1, �∞) such that,
with u = �(X), the origin is a globally asymptotically
stable equilibrium of the systems (15) and its homogeneous
approximations, i.e.

Ẋ = S X + B �0(X) , Ẋ = S X + B �∞(X)

C. Homogeneous in the bi-limit output feedback

With the observer and the state feedback we can derive a
result on stabilization by output feedback for the origin of
system (15). The output feedback is obtained following an
observer-controller approach and is given as:

˙̂
X = S X̂ +B�(X̂) + K(X̂1 − y) , u = �(X̂) , (19)

with X̂ in ℝn and where � and K are the homogeneous
functions obtained from Theorem 3 and 2:

Corollary 4: For every real numbers d0 and d∞ in(
−1, 1

n−1

)
, the origin of system (15) and (19) is a globally

asymptotically stable equilibrium and the same holds for its
homogeneous approximations.

IV. APPLICATION TO NONLINEAR SYSTEMS

A. Results on output feedback

In this Section, we consider a system in the form :

ẋ = S x + B u + �(x, t) , y = x1 , (20)

where x = (x1, . . . , xn) is in ℝn and � : ℝn × ℝ+ → ℝn
is a continuous function.

The system (20) has the structure of a chain of integrators
disturbed by nonlinear terms. So to design a stabilizing
output feedback, we follow the domination approach intro-
duced in [13] (see also [22]) where a linear controller was
introduced to deal with a nonlinear system. This approach
has also been followed with a nonlinear controller in [20]
and in combination with weighted homogeneity in [27], [21],
[23] and references therein.

In the domination context the nonlinear functions (the �i’s)
are not used in the design but considered as perturbations and
the controller is designed on a dominating model which in

this case is the chain of integrators. To ensure robustness to
these nonlinearities, we employ high-gain techniques. This
leads us to work with the scaled coordinates :

X i = L1−i xi , i = 1, . . . , n , (21)

where L is the high-gain parameter (a positive real number),
or in compact form

X = Lx , L = diag
(
1, L−1, L−2, . . . , L1−n) ,

Employing the homogeneous in the bi-limit output feed-
back for a chain of integrator (Corollary 4), the small gain
result (Corollary 2) in combination with high-gain technique
we obtain an output feedback result. The output feedback we
propose is given as :

˙̂
X = L

(
SX̂ +B�(X̂) +K(X̂1 − y)

)
, u = Ln�(X̂), (22)

where � and K are given in Theorem 2 and 3, and L in ℝ+

is the high-gain parameter.
Depending on wether d0 ≤ d∞ or d∞ ≤ d0 we get a

result for systems in Feedback or Feedforward form.
Corollary 5 (Feedback form): If d0 ≤ d∞ and

�(x, t) ≤ c0
i∑

j=1

∣xj ∣
1−d0(n−i−1)

1−d0(n−j) + c∞

i∑
j=1

∣xj ∣
1−d∞(n−i−1)
1−d∞(n−j)

where c0 and c∞ are positive real numbers then there exist
a real number L∗ > 0 such that for every L in [L∗,+∞),
the origin of system (20) with the output feedback (22) is
globally and asymptotically stable.

Corollary 6 (Feedforward form): If d∞ ≤ d0 and

�(x, t) ≤ c0
n∑

j=i+2

∣xj ∣
1−d0(n−i−1)

1−d0(n−j) +c∞

n∑
j=i+2

∣xj ∣
1−d∞(n−i−1)
1−d∞(n−j)

where c0 and c∞ are positive real numbers, there exists a
real number L∗ > 0 such that for every L in (0, L∗], the
following holds, the origin of system (20) with the output
feedback (22) is globally and asymptotically stable.

The results presented in [1] are actually more general since
the bound on the functions �i’s is expressed in terms of a
small gain condition.

Employing a dynamic high-parameter, a similar approach
has been employed to solve a tracking trajectory problem in
[2].

B. Result on finite-time observer design

The domination approach has been also widely used to
design observers for systems of the form (20). This approach
has been popularized by high-gain observer [9]. These ob-
servers are given as:

˙̂x = S x̂+Bu+ �(x̂, t) + LL−1K(x̂1 − y) (23)

where L is the high-gain parameter and K the output
injection which has to be designed to ensure that the state
of the error system:

˙̃x = S x̃+ �(x̃, t)− �(x̂− x̃, t) + LL−1K(x̃1) (24)



with x̃ = (x̃1, . . . , x̃n) in ℝn converges to the origin.
As previously, this system has the structure of a chain of

integrators disturbed by nonlinear terms which assuming a
global Lipschitz condition (as in [9]) is linearly bounded. In
[9], the domination approach has been employed and a linear
vector field K in (23) was introduced to ensure global and
asymptotic convergence of the error x̃ toward the origin.

Recently, this approach has been extended in [25] (see also
[18]) to a homogeneous vector field K with negative degree
to allow semi-global and finite time estimation.

Employing the homogeneous in the bi-limit vector field
K obtained from Theorem 2 allows us to get a global
observer with finite-time estimation and with an estimation
time uniform in the initial condition.

Corollary 7 (Uniform Finite Time Observer): If ∃ c in
ℝ+ such that

∣�i(x+ x̃, t)− �i(x, t)∣ ≤ c
i∑

j=1

∣x̃j ∣ , ∀(x, x̃) ∈ ℝ2n ,

then there exists a real number L∗ > 0 such that for every L
in [L∗,+∞), the estimate given by the system (23) with K,
the homogeneous in the bi-limit vector field obtained from
Theorem 2 with d0 < 0 < d∞, converges to the state of
system (20) in finite time uniformly in the initial condition.

The proof of this result is a direct consequence of [1] and
can be found in [3].

Note however that this estimation algorithm is based on
the integration of a non locally Lipschitz ordinary differential
equation. In practice, this may cause some bad behavior of
the resulting estimate.

Finally, the use of a dynamic high gain parameter allows
to design a high-gain observer (not necessarily with finite
time convergence) for some non-globally Lipschitz system
as exposed in [4].

V. CONCLUSION

With the help of the notion of homogeneous approxima-
tion valid both at the origin and at infinity introduced in
[1], we have reported results concerning asymptotic stability,
robustness analysis and finite time convergence (uniformly
in the initial conditions). We have then introduced a homo-
geneous in the bi-limit observer and controller for a chain
of integrators. The combination of these two tools allows
to obtain a new result on stabilization by output feedback
for systems whose dominant homogeneous in the bi-limit
part is a chain of integrators. A result concerning finite time
convergent observers for globally Lipschitz system has also
been given.
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