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Université de Lyon, CNRS, LIRIS, UMR5205, F-69622, France

david.coeurjolly@liris.cnrs.fr

Abstract

In this paper, we present a fast and accurate approx-

imation of the Euclidean opening function which is a

wide-used tool in morphological mathematics to ana-

lyze binary shapes since it allows us to define a local

thickness distribution. The proposed algorithm can be

defined in arbitrary dimension thanks to the existing

techniques to compute the discrete power diagram.

1. Introduction

In many applications the granulometric analysis of

binary images is an important task in which morpho-

logical mathematics tools pay an important role since it

is based on opening computations [4, 7]. When deal-

ing with the Euclidean metric, the Euclidean opening

function or thickness distribution [3] can be simply de-

fined as follows: we associate to each grid point x of a

shape X the radius of the maximal ball B contained

in X with x ∈ X . We are thus facing a geometri-

cal problem in which we will have to deal with the

discrete medial axis of a binary shape (see [2] for an

overview on Euclidean Medial Axis). Existing algo-

rithms to compute opening functions are based on open-

ing with a structuring element and thus approximate the

Euclidean metric with kinds of fixed neighborhood met-

rics in which unit balls are squares or diamonds for in-

stance [8]. When we consider large binary images in

3-D as in [3] and the Euclidean case, the naive imple-

mentation of the Euclidean opening function leads to

expensive computational costs. In this paper, we in-

vestigate fast approximation algorithms defined in arbi-

trary dimensions based on a discrete version of the well-

known Power Diagram from Computational Geometry

[1]. Since such a discrete power diagram mapping can

be obtained in optimal time in arbitrary dimension, the

proposed opening function algorithm can also be gener-

alized to handle binary objects as subset of Zd.

2. Preliminaries

The notion of granulometry and granulometric func-

tions was first introduced by Matheron in 1967 [4] in

order to study images of porous materials. First of all,

a generic definition of granulometry can be sketched as

follows [7]: Let Φ = (φλ)λ≥0 be a family of image

transformations. Φ is a granulometry if and only if: for

all λ, µ ≥ 0, φλ is increasing (i), φλ is anti-extensive

(ii), and φλφµ = φmax(λ,µ) (iii). From the granulom-

etry, the opening function can be defined as follows

[8]: The granulometry function or opening function GX
Φ

of a binary image X for granulometry Φ maps each

pixel x ∈ X to the size of the smallest λ such that

x 6∈ φλ(X).
Granulometry can be interpreted as a sieving process

with increasing mesh size. From Mathematical Mor-

phology, the set Φ exactly corresponds to a decreasing

family of algebraic openings. Furthermore, if the fam-

ily of openings with the element λB is considered with

B convex (λ ∈ R
+), then the resulting set is a granu-

lometry [5]. Dealing with the Mathematical Morphol-

ogy approach, several authors have investigated fast al-

gorithms to compute such a sequence of openings (see

[8, 7] for overviews). In this paper, we consider a gran-

ulometry based on the Euclidean metric using perfect

increasing disks as structuring elements.

In Digital Geometry, Distance Transformation and

Medial Axis (MA for short) extraction are classical

problems from decades. Briefly, the Medial Axis can

be defined as the set of maximal balls of X: A ball

B ⊂ X is maximal in X if there is no ball B′ ⊂ X

such that B ⊂ B′. In [2], we have presented an al-

gorithm to extract the set of Euclidean maximal balls in

linear time in arbitrary fixed dimension. More precisely,

if X ⊂ [0..n]d, the Medial Axis is obtained in O(nd)
(see Fig. 1-a in 2-D). We investigate in this paper the

granulometry analysis and opening function based on

the Euclidean metric [3]. More precisely, we are look-

ing for an algorithm to construct the opening function



GX
E such that:

GX
E (x) = max({r | ∀B(c, r) ⊂ X,x ∈ B(c, r)} (1)

where B(c, r) denotes an Euclidean ball with center

c ∈ X and radius r. In other words, we want to as-

sociate to each point x in X , the maximal radius of the

set of balls inscribed in X that contains x. The set of

transformations Φ induced by GX
E is clearly a granu-

lometry in which openings are Euclidean balls with in-

creasing radii. As discussed in [3], Eq. (1) can be op-

timized since it is sufficient to only consider MA balls

{Bi(xi, ri)}. Indeed, Eq. (1) is equivalent to

GX
E (x) = max({ri | ∀i, x ∈ Bi(ci, ri)} (2)

If we consider the height function hi(x) as follows

hi(x) =

{

r2i if r2i − ‖si − x‖2 > 0
0 otherwise

.

Eq. (2) is thus equivalent to

GX
E (x) =

√

max
Bi(ci,ri)∈MA(x)

(hi(x)) (3)

In a computational point of view, the overall compu-

tational cost of the algorithm derived from Eq. (2) is

O(nd +
∑

Bi∈MA(X) |Bi|). Indeed, O(nd) is required

to obtain the MA, then we have to scan all MA ball grid

points and store the maximal radius at each point (see

Fig. 2-b). As illustrated in Sect. 5, such a brute-force

algorithm is very expensive since many balls of the MA

may overlap and thus their associated grid points would

be scanned several times.

3. Power Diagram as an Opening Function

In [2], we have also demonstrated links between the

MA extraction and the computation of a Power diagram

(also known as the Laguerre diagram) [1]. First, we

consider a set of sites S = {ci} such that each point ci is

associated with a radius ri. The power σi(p) of a point p

in the plane according to the site ci is given by σi(p) =
‖p − ci‖

2 − r2i . If σi(p) < 0, p belongs to the disk of

center vi and radius ri. If σi(p) > 0, p is outside the

disk. The power diagram is a kind of Voronoi diagram

based on the metric induced by σ. Hence, the power

diagram VS is a decomposition of the plane into cells

F = {fi} associated with each site ci such that fi =
{p ∈ R

2 : argmini{σi(p)}} [1] (see Figure 2-c).

In [2], we have demonstrate that during the Medial

Axis extraction, a Power diagram mapping ΠX(x) of

MA balls can be obtained without changing the over-

all computational cost. The mapping associates to each

(a) (b)

Figure 1. (a)− (b) discrete medial axis and

discrete power diagram of a 2-D shape.

point x ∈ X the ball Bi = (ci, ri) such that x belongs

to the open cell fi. If x belongs to a cell boundary, we

arbitrarily choose to associate x to one of the balls of

its adjacent cells. If we consider now a power func-

tion σ′ such that σ′
i(p) = −σi(p), we do not change

the power diagram cells geometry and we can inter-

pret the diagram construction as the upper envelope of

a set of elliptic paraboloids in 2-D (see [2]).Let us con-

sider the power diagram of balls in MA(X). We define

the function GX
Π such that GX

Π (x) = ri, with i =
ΠX(x). In other words, GX

Π (x) = argmaxri{σ
′
i(x)}

with Bi(ci, ri) ∈ MA(X).

Lemma 1 We have: (i)GX
Π (x) is a granulometry func-

tion; (ii) GX
Π (x) ≤ GX

E (x).

Proof: From GX
Π (x), the transformations φλ are such

that φλ(X) = {x ∈ X | GX
Π (x) > λ} with λ ∈

[rmin, rmax]. Hence it clear that functions φλ satisfy

the statements (i), (ii), (iii) in Sect. 2. To prove the sec-

ond statement, let us consider a ball Bi(ci, ri), thus we

have for all x ∈ X , σ′
i(x) ≤ hi(x). Since GX

Π (x) and

GX
E (x) are obtained at a point x as the ball radius ri

maximizing the sets {σ′
i(x)}i and {hi(x)}, we obtain

that GX
Π (x) ≤ GX

E (x).�
Beside the properties presented in Lemma 1, we can

demonstrate that GX
Π (x) is an intuitive local thickness

measurement on classical shapes as defined in [3]. As

detailed above and from [2], an implementation of the

GX
Π (x) map computation can be designed in O(nd) for

objects in dimension d. As illustrated in Fig. 2-c, the

differences between GX
Π (x) and GX

E (x) are located on

balls intersections. In the following section we provide

a quasi-linear but fast algorithm to correct some of these

differences.

4. Fast Quasi-linear Approximation

As illustrated in Fig. 2-d, the main idea of this

algorithm is to start from the GX
Π (x) result and then
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Figure 2. Overview of the proposed

method: (a) an input set of maximal balls,
(b) its Euclidean opening function, (c) a

first approximation based on the power
diagram of balls, and (d) the approxima-
tion based on active border propagation.

to displace the power diagram boundary between two

balls taking into account the relative order between their

radii. Let us define the active border of a discrete

power diagram cell i as N (i) = {x ∈ X | ΠX(x) =
i,ΠX(N(x)) 6= i} where N(x) denotes the set of direct

neighbors of x in X (4-neighbors in 2-D, 6-neighbors in

3-D. . . ).

The fast approximation algorithm can be sketched as

follows (see Alg. 1 for details): we first scan the grid

points to detect active borders. Then, we process the

active borders of cells with decreasing radii and use a

breath-first approach to move active border of a cell i

with the constraints that we stay inside the ball Bi and

that we rewrite values GX
Π′(y) only if the radius of Bi is

greater than the radius associated to y.

Lemma 2 Alg. 1 computes the function GX
Π′ in O(nd+

b·log b) with b the number of balls in MA(X). Further-

more, GX
Π′ also satisfies all the statements of Lemma 1.

Proof: The computational cost of Alg. 1 is quasi-linear

since it runs in O(nd + b · log b) with b the number of

balls in the MA(X) (b ≪ nd). Indeed, as discussed

above, both MA(X) and GX
Π are obtained in O(nd).

Then we have to sort the balls in O(b · log b). Finally, it

is clear that the overall size of the active border stacks

({N (i)}i=1...b) is bounded by the size of X . In fact,

since {N (i)}i=1...b contains only boundary points of

ΠX cells, its size is generally of an order on magni-

tude lower than |X|. To conclude the complexity anal-

ysis, we can see that if a point x in N (i) is popped

Alg. 1: Euclidean Opening Function Approx.

Input: a digital object X in dimension d

Output: the map GX
Π′

Compute MA(X) and ΠX ; GX
Π′ ← GX

Π
;

Initialize theN (i) empty stacks;

foreach grid point x ∈ X do

if x is an active border then
N (ΠX(x))← N (ΠX(x)) ∪ {x}

Sort the balls in MA(X) with decreasing radii;

foreach ball with index i in the sorted list do

whileN (i) is not empty do
x← Pop element(N (i));
foreach y ∈ N(x) do

if ΠX(x) = i 6= ΠX(y) = j and

y ∈ Bi(xi, ri) and rj < ri then

GX
Π′ (y) = ri;

Remove the element y fromN (j);
Push element(y,N (i));

from the stack i, and since we process the stacks by

decreasing radii, the point will not be considered any-

more (thanks to the constraint rj < ri). The proof of

Lemma 1’s statement on GX
Π′ is very similar. We just

mention that GX
Π′ is still an approximation of GX

E (and

thus G′X
Π ≤ GX

E ) as illustrated in the 1-D example de-

picted in Fig. 3: the discrete power diagram labeling

may not intersect the labeling induced by the opening

function (pixels associated to the ball b). Hence, dur-

ing the boundary propagation, the ball a will rewrite

the pixels associated to b and thus the active border

of b that would have been used to propagate b onto c.

Hence when the ball b is processed, no more active bor-

der point exists for b and thus we have to process with

ball c leading to an incorrect result (at x = 8). �
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Figure 3. A illustration of 1-D configura-

tion in which GX
Π′ may contain incorrect

results.



5. Experiments and Discussion

In this section we provide a complete experimental

evaluation of the proposed algorithms. Table delow de-

tails the overall results on a set of digital objects pre-

sented in Fig. 4. We have computed the elapsed time

for each algorithm and the speed-up of the proposed ap-

proximation algorithm. The column MSE indicates the

Mean Square Error between the GX
E distance map and

both GX
Π and GX

Π′ . Also note that the number of grid

points considered is equal to n3.

Object n Time (in sec.) Speed-up

(w.r.t.

GX
E )

MSE

GE(X) GX
Π GX

Π′ GX
Π GX

Π′ GX
Π GX

Π′

cat. 40 0.05 0.05 0.06 1 1.2 1.85 0.26

cat. 200 11.94 4.41 4.96 2.71 2.41 75.62 1.44

Snow 111 4.22 2.8 3.64 1.5 1.16 5.25 0.34

Al 450 248.86 56.62 61.04 4.4 4.08 65.1 3.1

To summarize the table, we can see both GX
Π and

GX
Π′ outperform GX

E . Furthermore, the active bor-

der propagation step in GX
Π′ considerably increases the

accuracy of the approximation while preserving the

time efficiency. In Fig. 5, we have considered the

object AL with different increasing resolutions (n ∈
{50, 100, 150, . . . , 450}). If we perform a least-square

fitting analysis in log-scale space , we can observe that

the behavior of the GX
E curve is in O(n4) whereas the

behavior the GX
Π′ curve stays in O(n3). Figure 5 also

presents a comparison of the opening function value

distributions on the object Al (n = 450). Again, GX
Π′

distribution is an accurate approximation of GX
E .

(a) (b) (c)

Figure 4. Objects used in the experi-

ments: (a) catenoid, (b) Al, (c) Snow

6. Conclusion

In this paper, we have proposed a fast and accurate

approximation of the Euclidean opening function based

a geometrical structure from computational geometry

(the Power diagram) and digital tools such as the Eu-

clidean Medial Axis and the discrete power diagram.

The proposed technique defined in arbitrary dimension

allows us to extract many geometrical parameters on
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Figure 5. Opening function distribution on
Al (n = 450) and time efficiency in log-
scale on the multi-resolution object Al.

large volumetric data. The intended application of this

framework is to use these techniques to efficiently ana-

lyze X tomographies of snow sample with resolution up

to 20483.
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