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1 Introduction

The problem of understanding the geometry and dynamics of geodesics and rays
(i.e. distance-minimizing half-geodesics) on Riemannian manifolds dates back
at least to Hadamard [20], who started to study the qualitative behaviour of
geodesics on nonpositevely curved surfaces of R3. In particular, he first distin-
guished between different kinds of ends on such surfaces, and introduced the
notion of asymptote, which we shall be concerned about in this paper.
Half a century later, in his seminal book [11], Busemann introduced an amaz-
ingly simple notion for measuring the “angle at infinity” between rays (now
known as the Busemann function) as a tool to develop a theory of parallels on
geodesic spaces. The Busemann function of a ray α is the two-variables function

Bα(x, y) = lim
t→+∞

d(x, α(t)) − d(α(t), y)

and played an important role (far beyond the purposes of his creator) in the
study of complete noncompact Riemannian manifolds.
It has been used to derive fundamental results in nonnegative curvature such
as Cheeger-Gromoll-Meyer’s Soul Theorem or Toponogov’ Splitting Theorem
([36]), in the function theory of harmonic and noncompact symmetric spaces
([1], [22]), and has a special place in the geometry of Hadamard spaces and in the
dynamics of Kleinian groups. The main reason for this place is that any simply
connected, nonpositively curved space X (a Hadamard space) has a natural,
“visual” compactification whose boundary X(∞) is easily described in terms
of asymptotic rays; and, when X is given a discrete group G of motions, the
Busemann functions of rays appear as the densities at infinity of the Patterson-
Sullivan measures of G ([35], [39]).
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The simple visual picture of the compactification of a Hadamard space un-
fortunately breaks down for general, non-simply connected manifolds: but Buse-
mann functions (more precisely, their direct generalizations known as horofunc-
tions) have inspired Gromov to define a natural, universal compactification (the
horofunction compactification), whose properties however are more difficult to
describe. The aim of this paper is to investigate how far the visual description
of this boundary and the usual properties of rays carry over in the negatively
curved, non-simply connected case, and to stress the main differences.

Let us start by describing a first, näıf approach to the problem of finding a
“good” geometric compactification of a general complete Riemannian manifold.
The first idea is to add all “asymptotic directions” to the space, similarly to
En which can be compactified as the closed ball Bn = En ∪ Sn by adding the
set of all oriented half-lines modulo (orientation-preserving) parallelism. Now,
on a general Riemannian manifold we have at least two elementary notions of
asymptoticity for rays α, β : R+ → X with, respectively, origins a, b:

• Distance Asymptoticity: we say that d∞(α, β)<∞ if supt d(α(t), β(t))<∞,
and then we say that α and β are distance-asymptotic (or, simply, asymptotic);

• Visual Asymptoticity: we say that α tends visually 1 to β, and write it α ≻ β,
if there exist minimizing geodesic segments βn = [b, α(tn)] such that βn → β
(i.e. the angle ∠β, βn → 0); it is also current to say in this case that β is a
coray to α (β ≺ α), following Busemann [11]. Then, we say that α and β are
visually asymptotic if α ≻ β and β ≻ α (α ≺≻ β).

It is classical that these two notions of asymptoticity coincide for Hadamard
spaces. For a Hadamard space X one then defines the visual boundary X(∞) as
the set of rays R(X) modulo asymptoticity, gives to X = X ∪ X(∞) a natural
topology which coincides on X with the original one and makes of it a compact
metrizable space: we will refer to X as to the visual compactification of X (cp.
[14] and Section §3.1).

The idea of proceeding analogously for a general Riemannian manifold is
tempting but disappointing. First, besides the case of Hadamard spaces, the
relation ≺ is known to be generally not symmetric, and the relation ≺≻ is not
an equivalence relation (exceptly for rays having the same origin, as Theorem 16
shows). Some indirect 2 examples of the asymmetry can be found in literature
for surfaces with variable curvature [21], or for graphs [34]. We shall give in
Section §6 an example of hyperbolic surface (the Asymmetric Hyperbolic Flute)
which makes evident the general asymmetry of the coray relation, which can be
interpreted in terms of the geometrical asymmetry of the surface itself. More
difficult is to exhibit a case where ≺≻ is not an equivalence relation: Theorem 16

1To avoid an innatural, too restrictive notion of visual asymptoticity, the correct definition
is slightly weaker, cp. §2.2, Definition 13: one allows that βn = [bn, α(tn)] for some bn → b.
Take for instance a hemispherical cap, with pole N , attached to an infinite flat cylinder: two
meridians issuing from the pole N (which we obviously want to define the same “asymptotic
direction”) would never be corays if we do not allow to slightly move the origins of the βn.

2The work [21] of Innami concerns the construction of a maximal coray which is not a
maximal ray; this property implies that the coray relation is not symmetric.
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and Example 44(a) (the Hyperbolic Ladder) will make it explicit. The problem
that visual asymptoticity is not an equivalence relation has been by-passed by
some authors ([26], [29]) by taking the equivalence relation generated by ≺
(this means partitioning all the corays to some ray α into maximal packets all
of which contain only rays corays to each other): this exactly coincides with
taking rays with the same Busemann function (see [23] and Section §2), which
explains the original interest of Busemann in this function. We will see in §2.2
that the condition Bα = Bβ geometrically simply means that we can see α(t)
and β(t), for t ≫ 0, under a same direction from any point of the manifold.

Secondly, distance and visual asymptoticity (even in this stronger form) are
strictly distinct relations on general manifolds: there exist rays staying at
bounded distance from each other having different Busemann functions, and
also, more surprisingly, diverging rays defining the same Busemann function.
This already happens in constant negative curvature:

Theorem 1 (The Hyperbolic Ladder 44 & The Symmetric Hyperbolic Flute 41)

There exist hyperbolic surfaces S1, S2 and rays αi, α
′
i on Si such that:

(i) d∞(α1, α
′
1) < ∞ but Bα1

6= Bα′

1
;

(ii) Bα2
= Bα′

2
but d∞(α2, α

′
2) = +∞.

Worst, trying to define a boundary Xd(∞) or Xv(∞) from R(X) by identifying
rays under any of these asymptotic relations generally leads to a non-Hausdorff
space, because these relations are not closed (with R(X) endowed of the topol-
ogy of uniform convergence on compacts):

Theorem 2 (The Twisted Hyperbolic Flute 42)

There exist a hyperbolic surface X and rays αn → α on X such that:
(i) d∞(αn, αm) < ∞ but d∞(αn, α) = ∞ for all n, m;
(ii) Bαn

= Bαm
but Bαn

6= Bα for all n, m.

This prevents doing any reasonable measure theory (e.g. Patterson-Sullivan
theory) on any compactification built out of Xd(∞), Xv(∞). A remarkable
example where this problems occurs is the Teichmuller space Tg which, endowed
with the Teichmuller metric, has a non-Hausdorff visual boundary for g ≥ 2 [27].

Gromov’s idea of compactification overrides the difficulty of using asymptotic
rays, by considering the topological embedding

b : X →֒ C(X)/R P 7→ [d(P, ·)]

of any Riemannian manifold X in the space of real continuous functions on X
(with the uniform topology), up to additive constants. He defines X as the
closure of b(X) in C(X)/R, and its boundary as ∂X = X − b(X), obtaining a
compact, Hausdorff (even metrizable) space where X sits in. We will call X the
horofunction compactification 3 of X, and ∂X the horoboundary of X.

3This construction first appeared, as far as we know, in [17] (cp. also, for instance [4], [10])
and for this is also known as the Gromov compactification (or also as the Busemann or metric
compactification) of X. We will stick to the name “horofunction compactification”, keeping
the other for the well-known compactification of Gromov-hyperbolic spaces.
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The points of ∂X are commonly called horofunctions; Busemann functions then
naturally arise as particular horofunctions: actually, for points of X diverging
along a ray Pn = α(n) we have that

b(Pn) = [d(Pn, ·)] = [d(x, Pn) − d(Pn, ·)] −→ [Bα(x, ·)]

in C(X)/R, cp. Section §2 for details. Accordingly, the Busemann map

B : R(X) → ∂X

is the map which associates to each ray the class of its Busemann function. For
Hadamard manifolds, it is classical that B induces a homeomorphism between
the visual boundary X(∞) and the horoboundary ∂X (cp. §2).

The properties of the Busemann map for general nonpositively curved Rie-
mannian manifolds will be the second object of our interest in this paper. The
main questions we address are:

(a) the Busemann Equivalence: i.e., when do the Busemann functions of two
distinct rays coincide?

Actually, the equivalence relation generated by the coray relation is difficult to
test in concrete examples. In Section §4 we discuss several notions of equivalence
of rays related to the Busemann equivalence; then we give a characterization
(Theorem 28) of the Busemann equivalence for rays on quotients of Hadamard
spaces, in terms of the points at infinity of their lifts, which we call weak G-
equivalence. For rays with the same origin, it can be stated as follows:

Criterium 3 Let X = G\X̃ be a regular quotient of a Hadamard space.

Let α, β be rays based at o, with lifts α̃, β̃ from õ ∈ X̃, and let Hα̃, H
β̃

be the

horoballs through õ centered at the respective points at infinity α̃+, β̃+. Then:

Bα =Bβ ⇔ ∃ (gn), (hn)∈G such that

ß
gnα̃+ → β+

d(g−1
n õ, Hα̃) → 0

and

®
hnβ̃+ → α+

d(h−1
n õ, Hβ̃) → 0

This reduces the problem of the Busemann equivalence for rays α, β on quotients
of a Hadamard space to the problem of approaching the limit points (of their

lifts) α̃+, β̃+ with sequences gnβ̃+, hnα̃+ in the respective orbits, keeping at the
same time control of the dynamics of the inverses g−1

n , h−1
n .

(b) the Surjectivity of the Busemann map: i.e., is any point in the horobound-
ary of X equal to the Busemann function of some ray?

In this perspective, it is natural to extend the Busemann map B to the set
qR(X) of quasi-rays (i.e. half-lines α : R+ → X which are only almost-
minimizing, cp. Definition 8); we then call Busemann boundary BX = B(qR(X)).
The problem whether BX = ∂X has been touched by several authors for sur-
faces with finitely generated fundamental group (cp. [37] and [44]). In [44] there
are examples of a non-negatively curved surface admitting horofunctions which
are not in BX, and even of surfaces where the set of Busemann functions of rays
emanating from one point is different from that of rays emanating from another
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point4. This explains our interest in considering rays with variable initial points,
instead of keeping the base point fixed once and for all.
In [25] Ledrappier and Wang start developing the Patterson-Sullivan theory on
non-simply connected manifolds, and the question whether an orbit accumulates
to a limit point which is a true Busemann function naturally arises; the The-
orem below shows that, in this context, Patterson-Sullivan theory must take
into account limit points which are not Busemann functions, and that some
paradoxical facts already happen in the simplest cases:

Theorem 4 (The Hyperbolic Ladder 44)

There exists a Galois covering X → Σ2 of a hyperbolic surface of genus 2, with
automorphism group Γ ∼= Z, such that:
(i) BX consists of 4 points, while ∂X consists of a continuum of points;
(ii) the limit set LΓ = Γx0∩∂X depends on the choice of the base point x0, and
for some x0 it is included in ∂X − BX.

The problem of surjectivity and the interest in finding Busemann points in the
horoboundary seems to have been revitalized due to recent work on Hilbert
spaces (cp. [41], [42]), on the Heisenberg group [24], on word-hyperbolic groups
and general Cayley graphs (cp. [6], [43]). A construction similar to that of
Theorem 4 is discussed in [10] as an example where the boundary of a Gromov-
hyperbolic space does not coincide with the horoboundary (notice however that
the notion of boundary for Gromov-hyperbolic spaces differs from BX, as it is
defined up to a bounded function).

(c) the Continuity of the Busemann map: i.e., how does the Busemann
functions change with respect to the initial direction of rays?

This is crucial to understand the topology of the horofunction compactification
and, beyond the simply connected case, it has not been much investigated in
literature so far. Busemann himself seemed to exclude it in full generality.5

We shall see that, in general, the dependence from the initial conditions is only
lower-semicontinuous:

Theorem 5 (Proposition 30 & The Twisted Hyperbolic Flute 42)

Let X = G\X̃ be the regular quotient of a Hadamard space.
(i) for any sequence of rays αn → α we have limn→∞ Bαn

≥ Bα;
(ii) there exists X = G\H2 and rays αn → α such that limn→∞ Bαn

> Bα.
(Convergence of rays is always meant uniform on compacts.)

The example of the Twisted Hyperbolic Flute 42 is the archetype where a jump
between limn→∞ Bαn

and Bα occurs; we will explain geometrically –actually,

4For surfaces with finite total curvature, Yim uses the terminology convex and weakly
convex at infinity, which is suggestive of the meaning of the value of 2πχ(X) −

∫
X

KK

(to be interpreted, for surfaces with boundary, as the convexity of the boundary). How-
ever this can be misleading, suggesting the possibility of joining with bi-infinite rays any two
points at infinity. As our manifolds will generally be infinitely connected, we will not adhere
to this terminology.

5He wrote in his book [11]: “It is not possible to make statements about the behaviour of
the function Bα under general changes of α [...]”.
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we produce, the discontinuity in terms of a discontinuity in the limit of the
maximal horoballs associated to the αn in the universal covering, cp. Definition
20 and Remark 43. Interpreting e−Bα(o,·) as a reparametrized distance to the
point at infinity of α, the jump can be seen as a hole suddenly appearing in a
limit direction of a hyperbolic sky.
We stress the fact that the problem of continuity makes sense only for rays
αn (i.e. whose velocity vectors yield minimizing directions): it is otherwise
easy to produce a discontinuity in the Busemann function of a sequence of
quasi-rays tending to some limit curve which is not minimizing (and for which
the Busemann function may be not defined), cp. Example 29 in §4 and the
discussion therein.

It is noticeable that all the possible pathologies in the geometry of rays which
we described above already occur for hyperbolic surfaces belonging to two basic
classes: flutes and ladders, see Section §6. These are surfaces with infinitely
generated fundamental group whose topological realizations are, respectively,
infinitely-punctured spheres and Z-coverings of a compact surface of genus g ≥ 2:

Figure 1: Geometric realization of flutes and ladders

On the other hand, limiting ourselves to the realm of surfaces with finitely
generated fundamental group, all the above pathologies disappear and we re-
cover the familiar picture of rays on Hadarmard manifolds. More generally, in
Section §5 we will consider properties of rays and the Busemann map for geomet-
rically finite manifolds: these are the geometric generalizations, in dimension
greater than 2, of the idea of negatively curved surface with finite connectivity
(i.e. finite Euler-Poincaré characteristic). The precise definition of this class and
much of these manifolds is due to Bowditch [8]; we will summarize the necessary
definitions and properties in Section §5. We will prove:

Theorem 6 (Propositions 33, 34, 35, 36 & Corollary 37)

Let X = G\X̃ be a geometrically finite manifold:
(i) every quasi-ray on X is finally a ray (i.e. it is a pre-ray, cp. Definition 8);
(ii) d∞(α, β) < ∞ ⇔ Bα = Bβ ⇔ α ≺ β for rays α, β on X;
(iii) the Busemann map R(X) → ∂X is surjective and continuous.
As a consequence, X(∞) = R(X)/(Busemann eq.) is homeomorphic to ∂X and:

• if dim(X) = 2, X is a compact surface with boundary;
• if dim(X) > 2, X is a compact manifold with boundary, with a finite number
of conical singularities (one for each class of maximal parabolic subgroups of G).

6



In this regard, it is of interest to recall that the question whether any geomet-
rically finite manifold has finite topology (i.e., is homeomorphic to the interior
of a compact manifold with boundary) was asked by Bowditch in [8], and re-
cently answered by Belegradek and Kapovitch, cp. [5]. However, Belegradek and
Kapovitch’s proof yields a natural topological compactification whose boundary
points are less related to the geometry of the interior than in the horofunction
compactification. According to [5], any horosphere quotient is diffeomorphic to
a flat Euclidean vector bundle over a compact base, so a parabolic end can be
seen as the interior of a closed cylinder over a closed disk-bundle. On the other
hand, in the horofunction compactification, a parabolic end is compactified as
a cone over the Thom space of this disk-bundle (cp.Corollary 37&Example 38);
one pays the geometric content of the horofunction compactification by the ap-
pearing of (topological) conical singularities.
The problem of relating the ideal boundary and the horoboundary for geomet-
rically finite groups has also been considered in [22]; there, the authors prove
that, in the case of arithmetic lattices of symmetric spaces, both compactifica-
tions coincide with the Tits compactification, and also discuss the relation with
the Martin boundary.

Section §2 is preliminary: we report here some generalities about the Buse-
mann functions and the coray relation.

From Section §3 on, we focus on nonpositively curved manifolds. We briefly
recall the classical visual properties of rays on Hadamard spaces, and then we
turn our attention to their quotients X = G\X̃. The difference between rays
and quasi-rays is deeply related with the different kind of points at infinity of
their lift to X̃; that is why we review a dictionary between limit points of G
and corresponding quasi-rays on X. Then, we prove a formula (Theorem 24)
expressing the Busemann function of a ray α on X in terms of the Busemann
function of a lift α̃ of α to X̃. We will use this formula to translate the Busemann
equivalence in terms of the above mentioned weak G-equivalence; this turns out
to be the key-tool for constructing examples having Busemann functions with
prescribed behaviour.

In Section §4 we discuss the properties of the Busemann map on general
quotients of Hadamard spaces; here we prove the Criterium 3 and the lower
semicontinuity.

Section §5 is devoted to geometrically finite manifolds and to the proof of
Theorem 6.

Finally, we collect in Section §6 the main examples of the paper (the Asym-
metric, Symmetric and Twisted Hyperbolic Flute, and the Hyperbolic Ladder).

In the Appendix we report, for the convenience of the reader, proofs of those
facts which are either classical, but essential to our arguments, or which we were
not able to find easily in literature.

We will always assume that geodesics are parametrized by arc-length, and we will
use the symbol [p, q] for a minimizing geodesic segment connecting two points p, q.
Moreover, we shall often use, in computations, the notations x >ǫ y for x ≤ y + ǫ

(respectively, x hǫ y for |x − y| ≤ ǫ) and abbreviate d(x, y) with xy.
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2 Busemann functions on Riemannian manifolds

2.1 Horofunctions and Busemann functions

Let X be any complete Riemannian manifold (not necessarily simply connected).
The horofunction compactification of X is obtained by embedding X in a natural
way into the space C(X) of real continuous functions on X, endowed with the
C0-topology (of uniform convergence on compact sets):

b : X →֒ C(X) P 7→ −d(P, ·)

then, defining X
.
= b(X) and ∂X

.
= X − b(X).

An (apparently) more complicate version of this construction has the advan-
tage of making the Busemann functions naturally appear as boundary points.
For fixed P , define the horofunction cocycle as the function of x, y:

bP (x, y) = d(x, P ) − d(P, y)

then, consider the space of functions in C(X) up to an additive costant (with
the quotient topology) and the same map

b : X → C(X)/R P 7→ [−d(P, ·)] = [d(x, P ) − d(P, ·)] = [bP (x, ·)]

(which is independent from the choice of x). The following properties hold, in
all generality, for any complete Riemannian manifold, and can be found, for
instance, in [3] or [10]:

1) b is a topological embedding, i.e. an injective map which is a homeomorphism
when restricted to its image;

2) X is a compact, 2nd-countable, metrizable space.

Definition 7 Horoboundary and horofunctions
The horofunction compactification of X and the horoboundary of X are respec-
tively the sets X

.
= b(X) and ∂X

.
= X − b(X). A horofunction is an element

ξ ∈ ∂X, that is the limit of a sequence [bPn
], for Pn ∈ X going to infinity; we

will write ξ = B(Pn).

Notice that, as bP (x, y) − bP (x′, y) = bP (x, x′) saying that (Pn) → ξ ∈ ∂X is
equivalent to saying that, for any fixed x, the horofunction cocycle bPn

(x, ·) con-
verges uniformly on compacts for n → ∞ (to a representative of ξ).
Concretely, we see a horofunction ξ = B(Pn) as a function of two variables
(x, y) satisfying:

(i) (cocycle condition) B(Pn)(x, y) − B(Pn)(x
′, y) = B(Pn)(x, x′)

or, equivalently 6, B(Pn)(x, x′) + B(Pn)(x
′, y) = B(Pn)(x, y).

6this formulation is much suggestive as, when thinking of horofunctions as reparametrized
distance functions from points at infinity, then we see that the usual triangular inequality
becomes an equality for all points at infinity.
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The following properties follow right from the definitions:

(ii) (skew-symmetry) B(Pn)(x, y) = −B(Pn)(y, x)

(iii) (1-Lipschitz) B(Pn)(x, y) ≤ d(x, y)

(iv) (invariance by isometries) B(gPn)(gx, gy) = B(Pn)(x, y) ∀g ∈ Isom(X)

(v) (continuous extension) the cocycle bP (x, y) can be extended to a continuous
function B : X × X × X → R, i.e. Bξ(x, y) = limn→∞ bPn

(x, y) if (Pn) → ξ;

(vi) (extension to the boundary) every g ∈ Isom(X) naturally extends to a
homeomorphism g : ∂X → ∂X.

Now, the simplest way of diverging, for a sequence of points {Pn} on an
open manifold X, is to go to infinity along a geodesic. As we deal with non-
simply connected manifolds, we shall need to distinguish between geodesics and
minimizing geodesics:

Definition 8 Excess and quasi-rays
The length excess of a curve α defined on an interval I is the number

∆(α) = sup
t,s∈I

ℓ(α; t, s) − d(α(t), α(s))

that is the greatest difference between the length of α between two of its points,
and their effective distance. Accordingly, we say that a geodesic α in a manifold
X is quasi-minimizing if ∆(α) < +∞, and ǫ-minimizing if ∆(α) ≤ ǫ.
A quasi-ray is a quasi-minimizing half-geodesic α : R+ → X. For a quasi-ray α
there are three possibilities:

• either α is minimizing (i.e. ∆(α) = 0): then α is a true ray;

• or α|[t0,+∞] is minimizing for some a > 0, an then we call α a pre-ray;

• or ∆(α) < ∞ but α|a,+∞ is never minimizing, for any a ∈ R; in this case,
following [19], we call α a rigid quasi-ray.

We will denote by R(X) and qR(X) the sets of rays and quasi-rays of X (resp.
Ro(X) and qRo(X) those with origin o), with the uniform topology given by
convergence on compact sets.

There exist, in literature, examples of all three kinds of quasi-rays.
An enlightening example is the modular surface X = PSL(2, Z)\H2 (though
only an orbifold). X has a 6-sheeted, smooth covering X̂ = Γ(2)\H2 → X,
with finite volume; the half-geodesics α of X̂ with infinite excess are precisely
the bounded geodesics and the unbounded, recurrent ones (those who come
back infinitely often in a compact set); their lifts in the half-plane model of H2

correspond to the half-geodesics α̃ having extremity α̃+ ∈ R−Q . Moreover, α
is bounded if and only if α̃+ is a badly approximated number (i.e. its continued
fraction expansion is a sequence of bounded integers), see [12]. In this case,
all half-geodesics α with ∆(α) < ∞ (corresponding to lifts α̃ with rational
extremity) are minimizing after some time, i.e. they are pre-rays.
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On the other hand, in [19] one can find examples and classification of rigid
quasi-rays on particular (undistorted) hyperbolic flute surfaces.

For future reference, we report here some properties of the length excess:

Properties 9 Let α, αk : [0,+∞] → X curves with origins respectively a, ak:

(i) if ∆(α) < ∞, then for every ǫ > 0 there exists Tǫ ≫ 0 such that

∆(α|[Tǫ,+∞]) ≤ ǫ and ∆(α|[0,Tǫ]) ≥ ∆(α) − ǫ ;

(ii) if αk → α uniformly on compacts, then ∆(α) ≤ lim infk→∞ ∆(αk).
In particular, any limit of minimizing geodesics segments is minimizing.

(iii) Assume now that the universal covering of X is a Hadamard space.
If α̃ is a lift of α to X̃ with origin ã, then:

∆(α) = lim
t→+∞

d(ã, α̃(t)) − d(a, α(t))

Proof. (i) follows from the fact that the excess is increasing with the width of
intervals. For (ii), pick Tǫ as in (i) for α, and k ≫ 0 such that d(αk(t), α(t)) ≤ ǫ
for all t ∈ [0, Tǫ]; then

akαk(Tǫ) >2ǫ aα(Tǫ) >ǫ Tǫ − ∆(α) = ℓ(αk) − ∆(α)

therefore ∆(αk) ≥ ∆(α)−3ǫ. By passing to limit for k → ∞, as ǫ is arbitrary, we
deduce lim infk→∞ ∆(αk) ≥ ∆(α). Finally, if X̃ is Hadamard then d(ã, α̃(t)) =
t = ℓ(α; 0, t) for all t; hence, by monotonicity of the excess on intervals,

∆(α) = lim
t→+∞

ℓ(α; 0, t) − d(a, α(t)) = lim
t→+∞

d(ã, α̃(t)) − d(a, α(t)) 2

Proposition 10 Let α : R+ → X be a quasi-ray. Then, the horofunction
cocycle bα(t)(x, y) converges uniformly on compacts to a horofunction for t →
+∞.

Definition 11 Busemann functions
Given a quasi-ray α, the cocycle bα(t)(x, y) is called a Busemann cocycle, and
the horofunction Bα(x, y) = limt→∞ bα(t)(x, y) is called a Busemann function;
the Busemann function of α will also be denoted by α+.
The Busemann map is the map

B : qR(X) → ∂X α 7→ Bα

The image of this map, denoted BX, is the subset of Busemann functions, that
is those particular horofunctions associated to quasi-rays. We shall denote BoX
the image of the Busemann map restricted to to qRo(X).

The proof of Proposition 10 relies on the

Monotonicity of the Busemann cocycle 12 Let α be a quasi-ray from a:
for all ǫ > 0 there exists Tǫ such that bα(s)(a, y) ?2ǫ bα(t)(a, y) ∀s > t > Tǫ.
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Actually, if ∆(α) = ∆, by the property 9(i) we have, for s, t ≥ Tǫ:

bα(s)(a, y) − bα(t)(a, y) = [aα(s) − α(s)y] − [aα(t) − α(t)y]

?2ǫ [ℓ(α|[0,s]) − α(s)y] − [ℓ(α|[0,t]) − α(t)y] ≥ ℓ(α|[t,s]) − α(t)α(s) ≥ 0.

Notice that this is a true monotonicity property when α is a ray.

Proof of Proposition 10. As bP (x, y) − bP (x′, y) = bP (x, x′), then the co-
cycle bα(t)(x, y) converges for t → ∞ if and only if bα(t)(x

′, y) converges; we
may therefore assume that x = a is the origin of α. The Lipschitz functions
bα(t)(a, ·) are uniformly bounded on compacts, hence a subsequence bα(tn) of
them converges uniformly on compacts, for tn → ∞; but, then, property 12
easily implies that bα(t) must also converge uniformly for t → ∞ to the same
limit, and uniformly.2

2.2 Horospheres and the coray relation

If ξ is a horofunction and x ∈ X is fixed, the sup-level set

Hξ(x) = {y | ξ(x, y) ≥ 0}

(resp. the level set ∂Hξ(x) = {y | ξ(x, y) = 0}) is called the horoball (resp. the
horosphere) centered at ξ, passing through x.
If Hξ, H

′
ξ are horoballs centered at ξ ∈ ∂X, we define the signed distance to a

horoball as

ρ(x, Hξ) =

ß
d(x, ∂Hξ) if x 6∈ Hξ(y)

−d(x, ∂Hξ) otherwise
ρ(Hξ, H

′
ξ) =

ß
d(∂Hξ, ∂H ′

ξ) if Hξ ⊃ H ′
ξ

−d(∂Hξ, ∂H ′
ξ) otherwise

By the Lipschitz condition, we always have Bξ(x, y) ≤ ρ(Hξ(x), Hξ(y)).
On the other hand, notice that when α is a ray and x = α(t), y = α(s) are
points on α with s > t we have

Bα(x, y) = d(x, y) = ρ(Hα+(x), Hα+(y))

It is a remarkable rigidity property that the equality holds precisely for points
which lie on rays, which are corays to α:

Definition 13 Corays
The definition of coray formalizes the idea of seeing (asymptotically) two rays
under the same direction, from the origin of one of them.
A half-geodesic α with origin a is a coray 7 to a quasi-ray β in X – or, equiva-
lently, β tends visually to α – (in symbols: α ≺ β) if there exists a sequence of
minimizing geodesic segments αn = [an, bn] with an → a and bn = β(tn) → ∞
such that αn → α uniformly on compacts; equivalently, such that α′

n(0) → α′(0).
If α ≺ β and β ≺ α, we write α ≺≻ β and say that they are visually asymptotic.
We will say that α, β are visually equivalent from o if there exists a ray γ with
origin o such that γ ≺ α and γ ≺ β (i.e. if we can see α and β under a same
direction from o).

7We stress the fact that, by Property 9(ii) of the excess, every coray is necessarily a ray.
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Given x, y ∈ X, we denote by −→xy a complete half-geodesic which is the contin-
uation, beyond y, of a minimizing geodesic segment [x, y]. Then:

Proposition 14 For any quasi-ray β we have: Bβ(x, y) = d(x, y) ⇔ −→xy ≺ β.
In particular, if Bβ(x, y) = d(x, y), the extension of any minimizing segment
[x, y] beyond y is always a ray.

Remarks 15 It follows that:
(i) any coray α ≺ β (and β itself, if it is a ray) minimizes the distance between
the β-horospheres that it meets;
(ii) for any quasi-ray β, we have the equality Bβ(x, y) = ρ(Hβ(x), Hβ(y))
(as it is always possible to define a coray α to β intersecting Hβ(x) and Hβ(y),
and Bβ increases exactly as t along α(t)).

Theorem 16 Assume that α, β are rays in X with origins a, b respectively.
The following conditions are equivalent:

(a) Bα(x, y)=Bβ(x, y) ∀x, y ∈ X;

(b) α ≺≻ β and Bα(a, b) = Bβ(a, b);

(c) α, β are visually equivalent from every o ∈ X.

Proposition 14 is folklore (under the unnecessary, extra-assumption that −→xy is a
ray), and it is already present in Busemann’s book [11]. Theorem 16 (a)⇔(c) is
a reformulation in terms of visibility of the equivalence, proved in [23], between
Busemann equivalence and the coray relation generated by ≺; the part (a)⇔(b)
stems from the work of Busemann [11] and Shiohama [36], but we were not able
to find it explicitly stated anywhere. For these reasons, we report the proofs of
both results in the Appendix.

Remarks 17
(i) The coray relation is not symmetric and the visual asymptoticity is not tran-
sitive, in general, already for (non simply-connected) negatively curved surfaces,
as we will see in the Examples 40 and 44. On the other hand, visual asymp-
toticity is an equivalence relation when restricted to rays having all the same
origin, by the above theorem.

(ii) The condition Bα(a, b) = Bβ(a, b) is not just a normalization condition.
In Example 44 we will show that there exist rays α, β satisfying α ≺≻ β , but
such that Bα 6= Bβ an do not differ by a constant.

(iii) Horospheres are generally not smooth, as Busemann functions and horo-
functions generally are only Lipschitz (cp. [14],[44]) This explains the possible
existence of multiple corays, from one fixed point, to a given ray α, as well as
the asymmetry of the coray relation; actually, in every point of differentiability
of Bα, the direction of a coray to α necessarily coincides with the gradient of
Bα by Proposition 14.
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3 Busemann functions in nonpositive curvature

3.1 Hadamard spaces

Let X̃ be a simply connected, nonpositively curved manifold (i.e. a Hadamard
space). In this case, every geodesic is minimizing; moreover, as the equation
of geodesics has solutions which depend continuously on the initial conditions,
R(‹X) can be topologically identified with the unit tangent bundle SX̃.

Proposition 18 Let ‹X be a Hadamard space:

(i) if α, β are rays, then d∞(α, β) < ∞ ⇔ Bα = Bβ ⇔ α ≺ β.
Moreover, two rays with the same origin are Busemann equivalent iff they co-
incide, so the restriction of the Busemann map Bo :Ro(‹X) → ∂‹X is injective;
(accordingly, we will denote by [o, ξ] the only geodesic starting at o with point
at infinity ξ)

(ii) for any o ∈ X̃, the restriction of the Busemann map Bo : Ro(‹X) → ∂‹X is
surjective, hence BX̃ = BoX̃ = ∂X̃;

(iii) the Busemann map B : R(X̃) → ∂X̃ is continuous.

The space Ro(‹X) ∼= So(‹X) being compact, the map Bo gives a homeomorphism

So(‹X) ∼= ∂X̃ for any o (for this reason the topology of the horoboundary ∂‹X
for Hadamard manifolds is also known as the sphere topology).
Also notice that Proposition 14(a), together with point (a) above, imply the
following fact (which we will frequently use):

(iv) if Bβ(x, y) = d(x, y) for some x 6= y, then −→xy+ = β+.

The above properties of rays on a Hadamard space are well-known (cp. [3],
[14], [10]); we shall give in the Appendix a unified proof of (i), (ii) and (iii) for
the convenience of the reader. Here we just want to stress that the distinctive
feature of a Hadamard space which makes this case so special: for any ray α,
the Busemann function Bα(x, y) is uniformly approximated on compacts by its
Busemann cocycle bα(t)(x, y). Namely:

Uniform Approximation Lemma 19 Let ‹X be a Hadamard space.
For any compact set K and ǫ > 0, there exists a function T (K, ǫ) such that for
any x, y ∈ K and any ray α issuing from K, we have |Bα(x, y)−bα(t)(x, y)| ≤ ǫ,
provided that t ≥ T (K, ǫ).

In fact, properties (ii) and (iii) follow directly from the above approximation
lemma, while (i) is a consequence of convexity of the distance function on a
Hadamard manifold and of standard comparison theorems (cp. §A.2 for details).
A uniform approximation result as Lemma 19 above does not hold for general
quotients of Hadamard spaces: actually, from a uniform approximation of the
Busemann functions by the Buseman cocycles one easily deduces surjectivity
and continuity of the Busemann map as in the proof of (ii)&(iii) in §A.2, whereas
Example 44 shows that for general quotients of Hadamard spaces the Busemann
map is not surjective.
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3.2 Quotients of Hadamard spaces

Let X = G\X̃ be a nonpositively curved manifold, i.e. the quotient of a
Hadamard space by a discrete, torsionless group of isometries G (we call it
a regular quotient). In this section we explain the relation between the Buse-
mann function of a quasi-ray α of X and the Busemann function of a lift α̃ of
α to X̃, which will be crucial for the following sections.
Let us recall some terminology:

Definition 20 Let G be a discrete group of isometries of a Hadamard space X̃.
The limit set of G is the set LG of accumulation points in ∂X̃ of any orbit Gx̃
of G; the set OrdG = ∂X̃ −LG is the discontinuity domain for the action of G
on ∂X̃, and its points are called ordinary points. A point ξ ∈ LG is called:

• a radial point if one (hence, every) orbit Gx̃ meets infinitely many times an
r-neighbourhood of [x, ξ] (for some r depending on x̃);

• a horospherical point if one (hence, every) orbit Gx̃ meets every horoball
centered at ξ, i.e. supg∈G Bξ(x̃, gx̃) = +∞ for every x̃ ∈ X̃.

Radial points clearly are horospherical points, and correspond to the extremities
of rays α̃ whose projections α to X come back infinitely many times into some
compact set (so ∆(α) = ∞). A simple example of non-horospherical point is
the fixed point of a parabolic isometry of a Fuchsian group 8 (a parabolic point).
For finitely generated Fuchsian groups, it is known that all horospherical points
are radial, but starting from dimension 3 there exist examples of horospherical
non-radial (even parabolic) points (see [12], [13]).

If ξ is non-horospherical, then for every x̃ there exists a maximal horoball

Hmax
ξ (x) = {ỹ ∈ X̃ | Bξ(x̃, ỹ) ≥ sup

g∈G

Bξ(x̃, gx̃)}

(only depending on ξ and on the projection x of x̃ on X = G\X̃) whose interior
does not contain any point of Gx̃. For Kleinian groups, there is large freedom
in the orbital approach of the maximal horosphere, which leads to the following
distinction:

Definition 21 Let ξ be a non-horospherical point of G, and x̃ ∈ X̃:

• ξ is a x̃-Dirichlet point if x̃ ∈ Hmax
ξ (x), i.e. supg∈G Bξ(x̃, gx̃) = 0;

• ξ is a x̃-Garnett point if it is not gx̃-Dirichlet for all g ∈ G, which means that
Bξ(x̃, gx̃) < supg∈GBξ(x̃, gx̃) < +∞ for all g ∈ G;

• ξ is universal Dirichlet if ∀x̃ ∈ X̃ ∃g ∈ G such that ξ is gx̃-Dirichlet, and a
Garnett point otherwise.

In literature one can find examples of limit points which are x̃-Dirichlet points
but x̃′-Garnett for x̃′ 6= x̃, and also of points which are x̃-Garnett for all x̃,
cp. [30], [32]. Notice that Dirichlet points may be ordinary or limit points;
on the other hand, any ordinary point is universal Dirichlet (as if there exists

8On the other hand, in dimension n ≥ 3 parabolic points can be horospherical, cp. [38].
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a sequence gn ∈ G such that d(gnx̃, Hmax
ξ (x)) → 0, then ξ is necessarily a

limit point). We will meet another relevant class of universal Dirichlet points in
Section §5 (the bounded parabolic points). Notice that we have, by definition:

LG = LhorG ⊔ Lu.dirG ⊔ LgarG
a disjoint union of the subsets of horospherical, universal Dirichlet and Gar-
nett points.

Consider now the closed Dirichlet domain of G centered at x̃ ∈ X̃:

D(G, x̃) = {y ∈ X̃ | d(y, x) ≤ d(y, gx̃) ∀g ∈ G}

This is a convex, locally finite 9 fundamental domain for the G-action on X̃; we
will denote by

∂D(G, x̃) = D(G, x̃) ∩ ∂X̃

its trace at infinity. Then, we have the following characterization, which explains
the name “Dirichlet point”:

Proposition 22 (Characterization of Dirichlet points) Let ξ ∈ ∂X̃ and x̃ ∈ X̃.
Then, ξ is x̃-Dirichlet if and only if ξ belongs to ∂D(G, x).

Proof. Let γ̃ = [x̃, ξ]. As the Dirichlet domain is convex, we have that
ξ ∈ ∂D(G, x̃) if and only if γ̃(t) ∈ D(G, x̃) for all t, which means that

d(γ̃(t), x̃) ≤ d(γ̃(t), gx̃) for t ≥ 0 and for all g ∈ G (1)

On the other hand, condition (1) is equivalent to

sup
g∈G

Bξ(x̃, gx̃) ≤ 0 (i.e. ξ is x̃-Dirichlet) (2)

In fact, we obtain (2) from (1) by passing to limit for t → +∞. Conversely, (2)
implies that x̃ ∈ Hmax

ξ (x), and as we know that the direction γ̃ is the shortest
to travel out of the horoball from γ̃(t), we deduce (1).2

The relation with the excess is explained by the following:

Excess Lemma 23 Let X=G\X̃ be a regular quotient of a Hadamard space X̃.
Assume that α is a half-geodesic in X with origin a, and lift it to α̃ in X̃ with
origin ã. Then:

∆(α) = sup
g∈G

Bα(ã, gã) = d(ã, Hmax
α̃+ (a))

Proof. We have, for any g ∈ G:

∆(α) = lim
t→∞

d(ã, α̃(t)) − d(a, α(t)) ≥ lim
t→∞

d(ã, α̃(t)) − d(α̃(t), gã) = Bα̃(ã, gã)

so ∆(α) ≥ supg∈G Bα̃(ã, gã). On the other hand, for arbitrary ǫ > 0, let t ≫ 0
such that ∆(α|[0,t]) hǫ ∆(α), and let gt ∈ G such that d(a, α(t)) = d(gtã, α̃(t)).
Then, by monotonicity of the Busemann cocycle (12), we have for s > t

∆(α) hǫ d(ã, α̃(t)) − d(α̃(t), gtã) ≤ d(ã, α̃(s)) − d(α̃(s), gtã).

9i.e. for any compact set K ⊂ X̃ one has gD(G, x̃) ∩ K 6= ∅ only for finitely many g ∈ G.
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Letting s → +∞ we get ∆(α) >ǫ Bα̃(ã, gtã) and, as ǫ is arbitrary, we deduce
the converse inequality ∆(α) ≤ supg∈G Bα̃(ã, gã).
To show that supg∈G Bα(ã, gã) = d(ã, Hmax

α̃+ (a)) we just notice that, if ỹ is the
point cut on [a, α̃+] by Hmax

α̃+ (a) then, by Proposition 14,

d(ã, Hmax
α̃+ (a)) = d(ã, ỹ) = Bα̃(ã, ỹ) = sup

g∈G

Bα̃(ã, gã) . 2

Theorem 24 Let X = G\‹X be a regular quotient of a Hadamard space X̃.
Assume that α is a quasi-ray on X with origin a, and lift it to α̃ in X̃, with
origin ã. Then, for all x, y ∈ X we have:

Bα(x, y) = ρ(Hmax
α̃+ (x), Hmax

α̃+ (y)) (3)

In the particular case where x = a the formula becomes:

Bα(a, y) = sup
g∈G

Bα̃(ã, gỹ) − ∆(α) = ρ(ã, Hmax
α̃+ (y)) − ∆(α) (4)

and, if α is a ray: Bα(a, y) = sup
g∈G

Bα̃(ã, gỹ) = ρ(ã, Hmax
α̃+ (y)) (5)

Notice that, in the particular case of a ray α, formula (4) is quite natural, if we
interpret Bα(a, y) as a (renormalized, sign-opposite) “distance to the point at
infinity” α+ in ∂X; in fact, the distance on the quotient manifold X = G\X̃
can always be expressed as d(a, y) = infg∈G d(ã, gỹ).

Proof of Theorem 24. We shall first prove the particular formula (4).
Since ℓ(α; 0, t) − d(a, α(t)) ≤ ∆(α) for all t, we get

Bα(a, y) = lim
t

[d(a, α(t)) − d(α(t), y)] ≥ lim
t

[ℓ(α; 0, t) − ∆(α) − inf
g∈G

d(α̃(t), gỹ)]

≥ lim
t

[d(ã, α̃(t)) − d(α̃(t), gỹ)] − ∆(α) = Bα̃(ã, gỹ) − ∆(α)

for all g ∈ G. To prove the converse inequality, pick for each t > 0 a preimage
ỹt of y in X̃ such that d(α(t), y) = d(α̃(t), ỹt). By monotonicity and Lemma
9(i) we have, for all s > t ≫ 0

d(ã, α̃(s))−d(α̃(s), ỹt) ≥ d(ã, α̃(t))−d(α̃(t), ỹt) ?ǫ d(a, α(t))+∆(α)−d(α(t), y)

Therefore letting s → +∞ we get

sup
g∈G

Bα̃(ã, gỹ) ≥ Bα(ã, ỹt) ?ǫ bα(t)(a, y) + ∆(α)

and as ǫ is arbitrarily small, for t → +∞ this yields (4). Then, (3) follows from
(4) and the cocycle condition since, for any x̃′ ∈ ∂Hmax

α̃+ (x) and ỹ′ ∈ ∂Hmax
α̃+ (y)

Bα(x, y) = Bα(a, y) − Bα(a, x) = Bα(ã, ỹ′) − Bα(ã, x̃′) = Bα̃(x̃′, ỹ′)

and this is precisely the signed distance between the two maximal horospheres,
by Remark 15(ii). The second inequalities in (4)&(5) are just geometric re-
formulations, as for ỹ′ ∈ Hmax

α̃+ (y) we have supg∈G Bα̃(ã, gỹ) = Bα̃(ã, ỹ′) =
d(ã, Hmax

α̃+ (y)).2

We conclude the section mentioning the relation between boundary points
and type of quasi-rays, which is an immediate Corollary of the Excess Lemma
9; this was first pointed out by Haas in [19], for Kleinian groups of Hn:
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Corollary 25 Let π : X̃ → X = G\X̃ and ξ ∈ ∂X̃.

(i) ξ is non-horospherical iff ∀x̃ ∈ X̃ the projection π([x̃, ξ]) is a quasi-ray;

(ii) ξ is x̃-Dirichlet iff π([x̃, ξ]) is a ray;

(iii) ξ is x̃-Garnett iff ∀g ∈ G the curve π([gx̃, ξ]) is a quasi-ray but not a ray.

We shall see in Section §5 a special class of manifolds where every quasi-ray is
a pre-ray: the geometrically finite manifolds.

4 The Busemann map

4.1 The Busemann equivalence

We will consider several different types of equivalence between rays and quasi-
rays on quotients of Hadamard spaces. The main motivation for this is to find
workable criteria to know when two rays α, β are Busemann equivalent, that is
when Bα = Bβ . We first consider the most natural notion of aymptoticity:

Definition 26 Distance asymptoticity
For quasi-rays α, β on a general manifold X we define

d∞(α, β) =
1

2
lim sup
t→+∞

[d(α(t), β) + d(α, β(t))]

and we say that α, β are asymptotic if d∞(α, β) < ∞ (resp. strongly asymptotic
if d∞(α, β) = 0); we say that α, β are diverging, otherwise.

Notice that strongly asymptotic quasi-rays define the same Busemann function,
since for all ǫ > 0 there exists t, s ≫ 0 such that |bα(t)(x, y) − bβ(s)(x, y)| < ǫ.
On Hadamard spaces we know, by Proposition 18(a), that two rays are Buse-
mann equivalent precisely when they are asymptotic (moreover, for Hadamard
spaces of strictly negative curvature, the notions of asymptoticity and strong
asymptoticity coincide). Unfortunately, this easy picture is false in general: the
Example 44 in Section §6 exhibits, in particular, two asymptotic rays on a hy-
perbolic surface yielding different Busemann functions; on the other hand, in the
Example 41 we produce a hyperbolic surface with two diverging rays defining
the same Busemann function.

This leads us to describe the Busemann equivalence in a different way.
For quotients X = G\X̃ of Hadamard manifolds, we can characterize Busemann
equivalent rays it in terms of the dynamics of G on the universal covering of X.
Recall that, by Property (v) after Definition 7, the action of G on X̃ extends
in a natural way to an action by homeomorphisms on ∂X̃, which is properly
discontinuous on OrdG.

Definition 27 G-equivalent and weakly G-equivalent rays.
Let α, β be quasi-rays with origins a, b, and lift them to rays α̃, β̃ in X̃, with
origins ã, b̃. We say that:
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• α and β are G-equivalent (α ≈G β) if α̃+ ∈ Gβ̃+;

• α is weakly G-equivalent to β (α ≺G β) if there exists a sequence gn ∈ G

such that gnβ̃+ → α̃+ and the quasi-rays αn = π[ã, gnβ̃+] have ∆(αn) → 0.
This is equivalent 10 to asking that there exists a sequence (gn) such that

gnβ̃+ → α̃+ and Bβ̃(b̃, g−1
n ã) → Bβ(b, a)

where the second condition geometrically means that d(g−1
n ã, Hmax

β̃+
(a)) → 0.

We say that α and β are weakly G-equivalent (α ≺G≻ β) if α ≺G β and β ≺G α.

Obviously, G-equivalent rays always are weakly asymptotic (as they admit lifts
with common point at infinity); the converse is false in general, as the Example
44 in Section 6 will show. Further, notice that G-equivalent rays α, β define the
same Busemann function; in fact, if α+ = gβ+, then according to Theorem 24

Bα(x, y) = ρ(Hmax
α̃+ (x), Hmax

α̃+ (y)) = ρ(gHmax

β̃+ (x), gHmax

β̃+ (y)) = Bβ(x, y)

but we will see that, in general, two Busemann equivalent rays need not to be
G-equivalent (Example 41).

The interest of the weak G-equivalence is explained by the following:

Theorem 28 Let X = G\‹X be a regular quotient of a Hadamard space.
Let α, β rays in X with origins a, b. Then:

(i) α ≺ β if and only if α ≺G β;

(ii) Bα =Bβ if and only if α≺G≻β and Bα(a, b) = Bβ(a, b).

As a corollary, for rays with the same origin o, we obtain the Criterium 3.

Proof of Theorem 28.
Lift α, β to α̃, β̃ on ‹X with origins ã, b̃. By Proposition 14, we know that α ≺ β
if only if Bβ(a, α(t)) = Bα(a, α(t)) = t for all t. On the other hand, we have

Bβ(a, α(t)) = Bβ(a, b) + Bβ(b, α(t)) = Bβ(a, b) + sup
g∈G

[Bβ̃(b̃, gã) + Bβ̃(gã, gα̃(t))]

≤ −Bβ(b, a) + sup
g∈G

Bβ̃(b̃, gã) + sup
g∈G

B
g−1β̃

(ã, α̃(t)) ≤ d(ã, α̃(t)) = t

so α ≺ β precisely if there exists a sequence gn ∈ G such that Bβ̃(b̃, gnã) →

Bβ(b, a) and B
g
−1
n β̃

(ã, α̃(t)) → d(ã, α̃(t)) = Bα(a, α(t)), that is g−1
n β̃+ → α̃+.

This shows (i). Part (ii) follows from Theorem 16(b).2

10As αn = π[ã, gnβ̃+] = π[g−1
n ã, β̃+], the excess condition says that d(g−1

n ã, Hmax

β̃+
(a)) → 0;

by the formula (3), this means that B
β̃
(b̃, g−1

n ã) → ρ

Ä
Hmax

β̃+
(b), Hmax

β̃+
(a)
ä

= Bβ(b, a).
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4.2 Lower semi-continuity.

The behaviour of Busemann functions with respect to the initial directions of
quasi-rays is intimately related with the excess.
On the one hand, a limit of quasi-minimizing directions does not usually give a
direction for which the Busemann function is defined: for instance, if X = G\X̃
and the limit set LG contains at least a Dirichlet point ζ and a radial point ξ,
then (as LG is the minimal G-invariant closed subset of ∂X̃) there also exists
a sequence ζn = gnζ → ξ; the projections αn on X of rays [õ, ζn] give a family
of G-equivalent quasi-rays, all defining the same Busemann function, while the
limit curve α is the projection of [õ, ξ], and is a recurrent geodesic for which the
Busemann function is not defined.
Even when the limit curve is a ray or a quasi-ray, with no control of the excess
of the family we cannot expect any continuity, as the following example shows:

Example 29 Let G < Is(H2) be a discrete subgroup generated by two parabolic
isometries p, q with distinct, fixed points ζ, ξ, and assume them in Schottky po-
sition, that is:

(
H2 − D(<p>, õ)

)
∩

(
H2 − D(<q>, õ)

)
= ∅, for some õ ∈ H2.

For instance, we can take the group Γ(2), generated by p(z) = z
2z+1 and

q(z) = z+2 in the Poincaré half-plane model, with õ = i. In this case, LG = ∂H2

and ∂D(G, õ) consists of two parabolic fixed points ζ = 0, ξ = ∞ and two G-
equivalent points ω = −1 and ω′ = 1. The quotient surface X = G\H2 has
three cusps corresponding to ζ, ξ and ω′ = p(ω) = q(ω), and only four rays with
origin õ: the projections α, β, γ and γ′ of, respectively, [õ, ζ], [õ, ξ], [õ, ω] and
[õ, ω′], only the last two of which being Busemann-equivalent.
By minimality of LG, there exists a sequence ζn = gnζ → ξ; then, the projec-
tions αn on X of the rays [õ, ζn] are all G-equivalent quasi-rays (by Corollary
25, the ζn being horospherical) which tend to β. However Bαn

= Bα for all n,
therefore their limit is Bα, while the Busemann function of the limit curve is
Bβ 6= Bα.

Notice that in the above examples the excess of the αn tends to infinity (by
Lemma 9(ii) in the first case, and by direct computation or by the Proposition 30
below in Example 29). Keeping control of the length excess yields at least lower
semi-continuity of the Busemann function with respect to the initial directions:

Proposition 30 Let X = G\‹X be a regular quotient of a Hadamard space.
(i) For any sequence of rays αn → α uniformly on compacts, we have:

lim inf
n→+∞

Bαn
(x, y) ≥ Bα(x, y)

(ii) For any sequence of quasi-rays αn → α with ∆(αn) → ∆(α) + δ we have:

lim inf
n→+∞

Bαn
(x, y) ≥ Bα(x, y) − δ

Proof. Part (i) is a particular case of (ii). So let α̃n, α̃ be lifts of the quasi-
rays αn, α to X̃, with origins ãn, ã with ãn → ã, projecting respectively to an, a.
By the cocycle condition, we may assume that x = a. By the (4) we deduce

Bαn
(a, y) ≥ Bα̃n

(ã, gỹ) − ∆(αn) − 2d(a, an)
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for all g ∈ G. As α̃+
n tends to α̃+ in ∂X̃, we have convergence on compacts of

Bα̃n
to Bα̃; hence, taking limits for n → ∞ yields

lim inf
n→∞

Bαn
(a, y) ≥ Bα̃(ã, gỹ) − ∆(α) − δ

for all g, and we conclude again by using formula (4).2

Lower semi-continuity is the best we can expect, in general, for the Buse-
mann map: in Example 42 we will produce a case where the strict inequality
Bα < lim infn→+∞ Bαn

holds, for a sequence of rays αn → α.

5 Geometrically finite manifolds

We recall the definition and some properties of geometrically finite groups.
Let G be a Kleinian group, that is a discrete, torsionless group of isometries of
a negatively curved simply connected space X̃ with −a2 < k(X̃) ≤ −b2 < 0.

Let ‹CG ⊂ X̃ be the convex hull of the limit set LG; the quotient CG := G\‹CG

is called the Nielsen core of the manifold X = G\X̃. The Nielsen core is the
relevant subset11 of X where the dynamics of geodesics takes place.
The group G (equivalently, the manifold X) is geometrically finite if some (any)
ǫ-neighbourhood of CG in X has finite volume. The simplest examples of ge-
ometrically finite manifolds are the lattices, that is Kleinian groups G such
that vol(G\X̃) < +∞. In dimension 2, the class of geometrically finite groups
coincides with that of finitely generated Kleinian groups; in dimension n > 2,
geometrically finiteness is a condition strictly stronger than being finitely gener-
ated, cp. [2]. The following resumes most of the main properties of geometrically
finite groups that we will use:

Proposition 31 (see [8]) Let X = G\X̃ be a geometrically finite manifold:

(a) LG is the union of its radial subset LradG and of a set Lb.parG = ⊔l
i=1Gξi

made up of finitely many orbits of bounded parabolic fixed points; this means
that each ξ ∈ Lb.parG is the fixed point of some maximal parabolic subgroup P
of G acting cocompactly on LG−ξ; equivalently, P preserves every horoball Hξ

centered at ξ and acts cocompactly on ∂Hξ ∩ ‹CG;

(b) (Margulis’ Lemma) there exist closed horoballs Hξ1
, . . . ,Hξl

centered respec-
tively at ξ1, . . . , ξl, such that gHξi

∩Hξj
= ∅ for all 1 ≤ i, j ≤ l and all g ∈ G−Pi.

Accordingly, geometrically finite manifolds fall in two classes:

• either CG is compact, and then G (and X) is called convex-cocompact;

• or CG is not compact, in which case it can be decomposed into a disjoint
union of a compact part C0 and finitely many “cuspidal ends” C1, ..., Cl: each
Ci is isometric to the quotient, by a maximal parabolic group Pi ⊂ G, of the
intersection between ‹CG ∩ Hξi

, where Hξi
is a horoball preserved by Pi and

centered at ξi.

11CG coincides with the smallest closed and convex subset of X containing all the geodesics
which meet infinitely often any fixed compact set.
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This yields a first topological description of geometrically finite manifolds; for
more details on the topology of a horosphere quotient see [5]. In the sequel, we
shall always tacitly assume that X is non-compact.

We will also repeatedly use the following facts:

Lemma 32 Let X = G\X̃ be a geometrically finite manifold and let ξ ∈ LG a
bounded parabolic point, fixed by some maximal parabolic subgroup P < G:
(i) ξ is non-horospherical and universal Dirichlet;
(ii) there exists a subset Gξ ⊂ G of representatives of P\G such that ξ 6∈ Gξx̃,

for every x̃ ∈ X̃.

Proof. By Proposition 31(a), we know that ξ = gξi for some g ∈ G, ξi ∈ Pi

and that P = giPig
−1
i . Then, consider the family of horoballs Hξi

given by the
Margulis’ Lemma, let Hξ = gHξi

and choose a point x̃0 ∈ ∂Hξ, projecting to
x0 ∈ X. By Margulis’ Lemma, we know that there is no point of the orbit Gx̃0

inside Hξ, hence Hmax
ξ (x0) = Hξ and ξ is non-horospherical.

To see (ii), fix a compact fundamental domain K for the action of G on LG− ξ:
then, define the subset Gξ by choosing the identity of G as representative of the
class P and, for every g ∈ G − P , a representative ĝ ∈ Pg such that ĝξ ∈ K.
Since K is compact in LG− ξ, it is separated from ξ by an open neighbourhood
UK of K in X, ξ 6∈ UK . Now, as ξ is universal Dirichlet, for every fixed x̃ we can
find g ∈ G such that ξ ∈ ∂D(G, gx̃); by construction, the orbit Gξξ accumulates
to K and, as the Dirichlet domain is locally finite, the domain D(G, gx̃) too.
Since d(x̃, gx̃) < ∞, we also deduce that the subset Gξx̃ is included (up to a
finite subset) in UK ; this shows that ξ 6∈ Gξx̃.2

Proposition 33 Let X = G\X̃ be a geometrically finite manifold: then, every
quasi-ray of X is a pre-ray.

Proof. Let α be a quasi-ray of X with origin a, and lift it to a ray α̃ of
X̃, with origin ã. Assume that α is not a pre-ray: then, by Property 9(i) we
would have a positive, strictly decreasing sequence ∆n = ∆(α|[tn,+∞)), tending
to zero, for some tn → +∞. Since α̃+ is a non-horospherical point, it is either
ordinary or bounded parabolic; anyway, it is a universal Dirichlet point by
Lemma 32, so for each n we can find gn such that g−1

n α̃(tn) ∈ ∂Hmax
α̃+ (α(tn)).

Let P be the maximal parabolic subgroup fixing ξ = α̃+, and let ĝn = pngn be
the representative of gn ∈ Gξ given by Lemma 32, for pn ∈ P . We have:

∆(α) ≥ Bα̃(ã, g−1
n ã) = Bα̃(ã, ĝ−1

n ã) = Bα̃(ã, α̃(tn)) + Bα̃(α̃(tn), ĝ−1
n α̃(tn))+

+Bα̃(ĝ−1
n α̃(tn), ĝ−1

n ã) ≥ tn + ∆n − Bĝnα̃(ã, α̃(tn))

which, since the excess of α is finite, shows that ĝnα̃+ → α̃+ necessarily, for
n → ∞. By the locally finiteness of the Dirichlet domain, we deduce that
ĝnã → α̃+ too, which contradicts (ii) of Lemma 32.2
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For geometrically finite manifolds, the equivalence problem is answered by:

Proposition 34 Let X = G\X̃ be a geometrically finite manifold, and let α, β
rays. The following conditions are equivalent:

(a) Bα = Bβ (b) α ≈G β (c) α ≺ β (d) d∞(α, β) < ∞

Proof. Let a, b the origins of the two rays α, β, and let α̃ and β̃ the lifts of
α, β to X̃, with origins ã, b̃ respectively. Now assume that α ≺ β. Consider
the quasi-ray β′ which is the projection of β̃′ = [ã, β̃+] to X, and fix a t0 > 0.
Since α ≺ β ≈G β′ we have, by Proposition 14 and Theorem 28

Bβ′(a, α(t0)) = Bβ(a, α(t0)) = d(a, α(t0)) = t0.

As G is geometrically finite, β̃+ is universal Dirichlet and there exists g0 such
that g0α̃(t0) ∈ ∂Hmax

β̃+
(α(t0)). Then, by Theorem 24 and the Excess Lemma 9

t0 = Bβ′(a, α(t0)) = Bβ̃′(ã, g0ã) + Bβ̃′(g0ã, g0α̃(t0)) − ∆(β′) ≤

≤ Bg
−1

0
β̃′(ã, α̃(t0)) ≤ d(ã, α̃(t0)) = t0

Then Bg
−1

0
β̃′(ã, α̃(t0)) = d(ã, α̃(t0)), hence g−1

0 β̃+ = g−1
0 β̃′+ = α̃+. Therefore

α ≈G β, which implies Bα = Bβ . As (a) implies (c), this shows that the first
three conditions are equivalent. To conclude, let us show that (d) and (b) are
equivalent. We already remarked that G-equivalence implies asymptoticity. So,
assume now that d∞(α, β) < +∞. Up to replacing β with the G-equivalent
quasi-ray β′ defined above, which still has d∞(α, β′) ≤ M < +∞, we can

assume that their lifts α̃ and β̃ have the same origin ã. Then, let tk, t′k → +∞

and gk ∈ G such that d(α(tk), β(t′k)) = d(α̃(tk), gkβ̃(t′k)) ≤ M ; this implies

that gkβ+ → α+. Now, if the gk’s form a finite set, then gkβ̃+ = α̃+ for some
k, and the rays are G-equivalent. Otherwise, since G acts discontinuously on
∂X̃ − LG, we deduce that α̃+ ∈ LG; moreover, as α̃+ is a Dirichlet point, it
necessarily is a bounded parabolic point of G. We deduce analogously that β̃+ is
parabolic. But now, if β̃+ 6∈ Gα̃+, Margulis’ Lemma yields horoballs Hα̃+ , Hβ̃+ ,

respectively containing α̃(tk) and β̃(tk) for k ≫ 0, such that Hα̃+∩gHβ̃+ = ∅ for

all g ∈ G. Then, d(α̃(tk), gkβ̃(tk)) ≥ d(α̃(tk), Hα̃+) → +∞, which contradicts
our assumption.2

Proposition 35 Let X = G\X̃ be a geometrically finite manifold.
For any o∈X the Busemann map Bo : RoX→∂X is surjective, i.e. BX =∂X.
Namely, let (xn) be a sequence of points converging to a horofunction B(xn).
If x̃n are lifts of the xn in a Dirichlet domain D(G, õ), accumulating to some
ξ ∈ ∂D(G, o), then B(xn) = Bα where α is the ray projection of [õ, ξ] to X.

Proof. First notice that we have d(o, xn) − d(xn, x) ≥ d(õ, x̃n) − d(x̃n, gx̃)
for every g and, by taking limits, we get B(xn)(o, x) ≥ Bξ(õ, gx̃), as the x̃n

accumulate to ξ; therefore B(xn)(o, x) ≥ supg Bξ(õ, gx̃) = Bα(o, x), by (5).
To show the converse inequality, let x be fixed and for each n choose gn such
that d(x, xn) = d(gnx̃, x̃n). We will show that there exists ĝ ∈ G such that
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d(gnx̃, x̃n) − d(ĝx̃, x̃n) −→ 0 as n → ∞ (6)

up to a subsequence; then, from this we will deduce that

[d(o, xn) − d(xn, x)] − [d(õ, x̃n) − d(x̃n, ĝx̃)] −→ 0

and, as the first summand tends to B(xn)(o, x) and the second to Bξ(õ, ĝx̃), we
can conclude that B(xn)(o, x) = Bξ(õ, ĝx̃) ≤ supg Bξ(õ, gx̃) = Bα(o, x).
Let us then show (6). Notice that this is evident when the set of the gn is finite.
So, assume that the set is infinite; then gnx̃ accumulates to some limit point η.

If η 6= ξ, let ϑ0 = ξ̂õη > 0; then, by comparison geometry, there exists c = c(ϑ0)
(also depending on the upper bounds of the sectional curvature of X̃) such that
for n ≫ 0

d(gnx̃, x̃n) ∼c(ϑ0) d(gnx̃, õ) + d(õ, x̃n)

but, as d(gnx̃, õ) → +∞, this contradics the fact that d(õ, x̃n) − d(x̃n, gnx̃)
converges. Therefore gnx̃ → ξ ∈ LG∩ ∂D(G, õ), and ξ necessarily is a bounded
parabolic point. Then, let P be the maximal parabolic subgroup fixing ξ, and let
ĝn = pngn be the representative of gn in the subset Gξ given by Lemma 32, for
pn ∈ P . We again have that pnxn → ξ up to a subsequence; in fact, xn tends to
ξ within D(G, õ), so either the pn’s form a finite set and pnxn = pxn → pξ = ξ,
or the whole pnD(G, õ) converges to ξ (the Dirichlet domain being locally finite).
We now infer that the set of ĝn is finite: otherwise, the points ĝnx̃ = pngnx̃
would accumulate to some η different from ξ (by Lemma 32); and the same
comparison argument as above would give

d(x, xn) = d(gnx̃, x̃n) = d(ĝnx̃, pnx̃n) ∼c(ϑ0) d(ĝnx̃, x̃) + d(x̃, pnx̃n) ≫ d(x, xn)

for n large enough, which is a contradiction. Thus, the set of ĝn is finite, and
we may assume that gn = ĝ definitely. Now

[d(õ, x̃n) − d(õ, pnx̃n)] + [d(x̃n, p−1
n ĝx̃) − d(x̃n, ĝx̃)] (7)

= [d(õ, x̃n) − d(x̃n, ĝx̃)] − [d(õ, pnx̃n) − d(pnx̃n, ĝx̃)] → 0 (8)

as we know that both x̃n and pnx̃n tend to ξ, so both terms in (8) tend to
Bξ(õ, ĝx̃). The first summand [d(õ, x̃n) − d(õ, pnx̃n)] in (7) is nonpositive since
the x̃n belong to D(G, õ); the second summand in (7) also is nonpositive, as

d(x̃n, p−1
n ĝx̃) = d(x̃n, gnx̃) ≤ d(x̃n, gx̃) ∀g ∈ G

by assumption; therefore by (8) we deduce that d(x̃n, gnx̃) − d(x̃n, ĝx̃) → 0
which proves (6) and concludes the proof.2

For the next result, we need to recall the Gromov-Bourdon metric on ∂X̃.
This is a family of metrics indexed by the choice of a base point õ ∈ X̃:

Dõ(η, ξ) = e−
1
2
|Bη(õ,x̃)+Bξ(õ,x̃)| for any x̃ ∈ [η, ξ]

The exponent corresponds to minus the length of the finite geodesic segment
cut on [η, ξ] by the horospheres Hη(õ), Hξ(õ). The fundamental property of

these metrics is that any isometry of X̃ acts by conformal homeomorphisms
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on ∂X̃ with respect to them; moreover, the conformal coefficient can be easily
expressed in terms of the Busemann function [7]:

Dõ(gη, gξ) =
»

g′(η)
»

g′(ξ)Dõ(η, ξ) where g′(ζ) = eBζ(õ,g−1õ) (9)

Proposition 36 Let X = G\X̃ be a geometrically finite manifold, and let αn

be a sequence of rays converging to α. Then, Bαn
(x, y) → Bα(x, y) uniformly

on compacts.

Proof. Notice that the limit curve α still is a ray by Lemma 9. Also, notice
that, if a is the origin of α, by the cocycle condition it is enough to show
that Bαn

(a, x) converges uniformly on compacts to Bα(a, x). Then, let α̃, α̃n

be rays of X̃ with origins ã, ãn projecting respectively to α and αn, and let
ǫn = d(ã, ãn) → 0. Now choose any point x ∈ X. Since G is geometrically
finite, α+ and α+

n are either ordinary or bounded parabolic points; anyway,
they are universal Dirichlet, so let x̃ and gnx̃ be lifts of x such that

Bα(a, x) = Bα̃(ã, x̃), Bαn
(an, x) = Bα̃n

(ãn, gnx̃)

by Theorem 24. If α̃+ is parabolic, let P be its maximal parabolic subgroup
and let ĝn = pngn be the representative of gn modulo P given by Lemma 32,
with pn ∈ P ; if α̃+ is ordinary, just set ĝn = gn and pn = id. Then, consider
the set F of all the ĝn’s: we claim that F is finite. In fact, first notice that

Dã(pnα̃+
n , α̃+) =

»
p′n(α̃+

n )Dã(α̃+
n , α̃+) ≤ e2ǫnDã(α̃+

n , α̃+)

as Bα̃
+
n
(ã, p−1

n ã) ≤ 2ǫn, αn being a ray from an with d(a, an) = ǫn; therefore,

we deduce that pnα̃+
n → α̃+. Moreover, we have

−d(a, x)≤Bαn
(a, x)=Bα̃n

(ã, p−1
n ã)+Bα̃n

(p−1
n ã, gnx̃) >2ǫn

Bpnα̃n
(ã, ĝnx̃) (10)

If F is infinite, we deduce ĝnx̃ → ξ 6= α̃+ by Lemma 32, so Bpnα̃n
(ã, ĝnx̃) → −∞,

contradicting (10). So, F is finite and we may assume that ĝn = ĝ definitely.
But then, passing to limits in (10) we get

lim
n→+∞

Bαn
(a, x) ≤ Bα̃(ã, ĝx̃) ≤ Bα(a, x) .

By the lower semi-continuity (Proposition 30) we deduce that Bαn
(a, x) converge

pointwise to Bα(a, x); but as Bαn
(a, x) are a family of 1-Lipschitz functions of

x, this implies uniform convergence on compacts.2

Corollary 37 Let X = G\X̃ be a geometrically finite, n-dimensional manifold.
For any õ ∈ X̃ projecting to o ∈ X, the horoboundary ∂X of X is homeomorphic
to

Ro(X)/(Busemann eq.)
∼= G\∂D(G, õ) (11)

and the horofunction compactification of X is X ∼= G\D(G, õ).
If n = 2 or G has no parabolic subgroups, then X is a topological manifold
with boundary. If n ≥ 3 and G has parabolic subgroups, then X is a topolog-
ical manifold with boundary with a finite number of conical singularities, each
corresponding to a conjugate class of maximal parabolic subgroups of G.
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Here, we call conical singularity a point ξ with a neighbourhood homeomorphic
to the cone over some topological manifold (with or without boundary) Y :

C(Y, ξ) = (Y × [0, 1]) /(y,1)=ξ, y∈Y

and we say that X is a topological manifold with conical singularities if X has
a discrete subset S = {ξk} of conical singularities such that X − S is a usual
topological manifold (with or without boundary).

Proof. By the Property 9(ii), for any o ∈ X the set of rays from o can be
topologically identified to a closed subset of the tangent sphere SoX at o, hence
it is compact. Then, by Propositions 35 & 36 we deduce that the restriction
of the Busemann map Bo : Ro(X)/(Busemann eq.) → ∂X is a homeomorphism.
Moreover, the set of rays of X with origin o consists of all projections of half-
geodesics from õ in X̃ staying in the Dirichlet domain, i.e. whose boundary
points belong to ∂D(G, õ). Since by Proposition 34 the Busemann equivalence
is the same as G-equivalence, this establish the bijection (11). Notice that
this is a homeomorphism as the uniform topology on Ro(X) corresponds to
the sphere topology on (the subset of minimizing directions of) SoX. Then,
as G\D(G, õ) ∼= X, the map b of Section 2.1 establishes the homeomorphism
G\D(G, õ) ∼= X. Let us now precise the structure of X at its boundary points.
We know that ∂D(G, õ) is made up of ordinary points of OrdG and finitely many
orbits of bounded parabolic points ξk; let ∂ordD(G, õ) the subset of ordinary
points on the trace of the Dirichlet domain. Every ordinary point ξ ∈ OrdG
has a neighbourhood homeomorphic to a neighbourhood of a boundary point of
the closed, unitary Euclidean ball in ToX centered at 0, and the action of G on
OrdG is proper. So, the space

X ′ = G\(X̃ ∪ OrdG) = G\ [D(G, õ) ∪ ∂ordD(G, õ)]

has a structure of ordinary topological manifold with boundary. This structure
coincides with the uniform topology of the horofunction compactification, as a
sequence (xn) in D(G, õ) tend to an ordinary point ξ if and only if bxn

→ Bξ,
by Proposition 35. Now, X ′ has a finite number of ends Ek, corresponding
to the classes modulo G of the bounded parabolic points ξk; we will use the
description of such ends due to Bowditch, to figure out their horofunction com-
pactification. Let Pk be the maximal parabolic subgroup associated with ξk,
let Hk some horosphere centered at ξk, with quotient Yk = Pk\Hξk

, and let

Xk = Pk\X̃. Xk is a geometrically finite manifold, with one orbit of parabolic
points corresponding to ξk, and the manifold with boundary

X ′
k = Pk\(X̃ ∪ OrdPk) = Pk\

î
D(Pk, õ) − ξk

ó

has one end isometric to the end Ek, cp. [8]; topologically, X ′
k = Yk×[0,∞). By

[5], Yk is a vector bundle over a compact manifold Mk, so let D(Yk) and S(Yk) the
associated closed disk and sphere bundles. The horofunction compactification
of the end Ek, by (11), has just one point at infinity corresponding to ξk, and
is homeomorphic to

C(T (Yk), ξk) =
D(Yk) × [0,∞]

(S(Yk)×[0,∞]) ∪ (D(Yk)×{∞})
=

T (Yk) × [0,∞]

T (Yk) × {∞}
,
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the cone over the Thom space T (Yk) = D(Yk)/S(Yk) of Yk, with vertex ξk; actu-
ally, every sequence of points diverging in the end yields the same horofunction
(the Busemann function of the projection to Xk of [õ, ξk], by Proposition 35).

Notice that, on each fiber of Yk over m ∈ Mk, the space Dm(Yk)×[0,∞]
(Sm(Yk)×[0,∞])∪(Dm(Yk)×{∞})

is homeomorphic to the cone C(Dm(Yk), ξm(k)) with base Dm(Yk) and vertex
ξm(k); it follows that

C(T (Yk), ξk) ∼=

⋃
m∈Mk

C(Dm(Yk), ξm(k))

∪m∈Mk
ξm(k)

∼=
D(Yk) × [0,∞]

D(Yk) × {∞}
= C(D(Yk), ξk)

is homeomorphic to the cone over the closed manifold (with boundary) D(Yk).
Clearly T (Yk) = D(Yk) = Yk = Mk if n = 2, and in this case C(D(Yk), ξk) is a
closed topological disk; on the other hand, in dimension n ≥ 3 this cone is always
singular at ξk (since Yk is not simply connected, the subset C(D(Yk), ξk)− ξk is
not locally simply connected).2

Examples 38 The horofunction compactification of an unbounded cusp
(i) Let X = P\H3 where P is generated by a parabolic isometry p with fixed
point ξ. In the Poincaré half-space model, assume that ξ is the point at infinity,
fix some horosphere Hξ and choose a origin õ. The Dirichlet domain D(P, õ)
is an infinite vertical corridor, with parallel vertical walls W1, W2 paired by p.
X is homeomorphic to an open cylindrical shell, which is the product of the
horosphere quotient Y = P\Hξ̃ = Cyl (a flat infinite cylinder) with R∗

+ :

X = P\D(P, õ) ∼= Cyl × (0,∞).

We may take Cyl ∼= S1 × (−1, 1) with closure Cyl = S1 × [−1, 1] . Then, the
manifold X ′ is

X ′ = P\
[
H3 ∪ OrdP

]
= P\

î
D(P, õ) − ξ

ó
∼= Cyl × [0,∞)

the end of which corresponds to a neighbourhood of the bases B± = S1 ×{±1}
of the cylinder and of the internal boundary Cyl∞ = Cyl × {∞} of the shell
(a solid hourglass). The horofunction compactification is

X ∼= Cyl × [0,∞] /(B+=B−=Cyl
∞ )

that is, a spindle solid torus, whose center corresponds to the unique singular
point at infinity of the compactification.

(ii) Let X = G\H3 where G =< p, h > is the free group generated by a parabolic
isometry p and a hyperbolic isometry h in Schottky position. In this case, the
Dirichlet domain is the same vertical corridor as above, minus two hemispherical
caps (the attractive and repulsive domains of h), and the horofunction compact-
ification is the above spindle solid torus with a solid handle attached.

6 Examples

We present in this section some examples of two basic classes of complete, non-
geometrically finite hyperbolic surfaces presenting the pathologies described in
the introduction (Theorems 1, 2, 4, 5):
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• Hyperbolic Ladders: these are Z-coverings of a hyperbolic closed surface
Σg of genus g ≥ 2, obtained by infinitely many copies of the base surface Σg

cut along g simple, non-intersecting closed geodesics of a fundamental system,
glued along the corresponding boundaries, cp. Figure 2;

Figure 2: Construction of ladders

• Hyperbolic Flutes: these are, topologically, spheres with infinitely many
punctures ei accumulating to one limit puncture e; the surface thus has one end
for each puncture ei (called its finite ends), and an end corresponding to e, the
infinite end of the flute. Geometrically, each end ei different from e must be
either a cusp (the quotient of a horoball Hξ of H2 by a parabolic subgroup Pξ

fixing the center ξ of Hξ) or a funnel (the quotient of a half-plane of H2 by an
infinite cyclic group of hyperbolic isometries).

We obtain workable models of flutes via infinitely generated Schottky groups.
Define the attractive and repulsive domains A(g, õ), A(g−1, õ) of a parabolic or
hyperbolic isometry g, with respect to some point õ ∈ H2, respectively as

A(g±1, õ) = {x ∈ H2 | d(x, õ) ≥ d(x, g±1õ)}

We say that G is an infinitely generated Schottky group if it is generated by
countable many hyperbolic isometries S = (gn), in Schottky position with respect
to some õ ∈ H2, that is: A(gǫ

n, õ) ∩ A(gǫ′

m, õ) = ∅ ∀n, m and ∀ǫ, ǫ′ ∈ {±1}.
By a ping-pong argument it follows that G is discrete and free over the gener-
ating set S; moreover, its Dirichlet domain with respect to õ is

D(G, õ) = H2 \
⋃

gn∈S

(
A(gn, õ) ∪ A(g−1

n , õ)
)o

If the axes of the hyperbolic generators do not intersect and the domains
A(g±1

n , õ) accumulate to one boundary point ζ (or to different boundary points
E = {ζk}, all defining the same end of the quotient X = G\H2) then the result-
ing surface X = G\H2 is a hyperbolic flute: it has a cusp for every parabolic
generator, a funnel for every hyperbolic generator, and an infinite end corre-
sponding to ζ (or to the set E). For the construction of Schottky groups we will
repeatedly make use of the following (cp. Appendix A.3 for a proof):

Lemma 39 Let õ ∈ H2, and let C, C ′ two ultraparallel geodesics (i.e. with no
common point in H2 ∪ ∂H2) such that d(õ, C) = d(õ, C ′). Then:
(i) there exists a unique hyperbolic isometry g with axis perpendicular to C, C ′

and such that g(C) = C ′;
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(ii) g−1õ and gõ are obtained, respectively, by the hyperbolic reflections of õ with
respect to C, C ′;
(iii) the Dirichlet domain D(g, õ) has boundary C ∪ C ′.

Example 40 The Asymmetric Hyperbolic Flute
We construct a hyperbolic flute X = G\H2 with two rays α, α′ having same
origin such that:
(a) α′ ≺G α 6≺G α′ (i.e. α′ ≺ α 6≺ α′); therefore, α 6≈G α′ and Bα 6= Bα′ ;
(b) d∞(α, α′) = ∞.

We use the disk model for H2 with origin õ. Let õ′ = − i
10 , and consider the

geodesics α̃ = [õ,−i], α̃′ = [õ, i]. Then, let R be the reflection with respect to the
real axis, and consider the horoballs H = Hα̃+(õ) and H ′ = Hα̃′+(õ′) ⊃ R(H);
finally, choose some positive sequence ǫk ց 0.
Let [õ, ζ1] be a ray making angle ϑ1 with α̃, let õ1 be the point on [õ, ζ1] such
that d(õ1, H) = ǫ1, and let C1 be the hyperbolic perpendicular bisector of the
segment [õ, õ1], with extremities c1,+ and c1,−, cp. Figure 6.a. Notice that,
as ǫ1 > 0 the circle C1 does not intersect α̃ (the extremity c1,+ closest to α̃+

coincides with α̃+ if and only if õ1 ∈ ∂H). Then, consider R(C1) and rotate it
clockwise around õ until it is tangent to H ′: call this new geodesic C ′

1 and its
extremities c′1,+, c′1,−.

Figure 3: Asymmetric and Twisted Flutes

Let now g1 be the hyperbolic isometry given by Lemma 39, with axis g̃1

perpendicular to C1, C
′
1, and such that g1(C1) = C ′

1 and g−1
1 (õ) = õ1.

Then, construct g2 analogously: that is, choose a ray [õ, ζ2], for some ζ2 be-
tween α̃+ and c1,+, making angle ϑ2 < ϑ1 with α̃; call õ2 the point on [õ, ζ2] with
d(õ2, H) = ǫ2, and then let C2, C ′

2, g̃2 etc. as before. Repeating inductively this
construction we obtain the infinitely generated group G =< g1, g2, ..., gk, ... >.
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Moreover, choosing ϑk+1 ≪ ϑk, we can make the following conditions satisfied:

A(gǫ
n, õ) ∩ A(gτ

m, õ) = ∅ for all n 6= m and ǫ, τ ∈ {±1} (12)

Un(α̃ ∪ α̃′) ∩ A(gǫ
n, õ) = ∅ for all n ∈ N and ǫ ∈ {±1} (13)

where Un(α̃ ∪ α̃′) is the tubular neighbourhood of α̃ ∪ α̃′ of width n.
Condition (12) says that G is a discrete Schottky group. The quotient manifold
X = G\H2 is a hyperbolic flute, with infinite end corresponding to the set
E = {α̃+, α̃′+}. Let α and α′ be projections of α̃, α̃′ to X, with common origin
o: they are rays, as their lifts stay in D(G, õ) by construction.

Proof of Properties 40(a)&(b).
We have α ≻G α′ as gnα̃+ → α̃′+ and Bα̃(õ, g−1

n õ) → 0, by construction.
On the other hand, for every sequence hk ∈ G such that hkα̃′+ → α̃+, the
points h−1

k õ definitely lie in some of the attractive domains A(gn, õ), which are
exterior to H ′: thus, Bα̃′(õ, h−1

k õ) ≥ 1
10 and does not tend to 0. This proves

that α 6≺G α′. The other assertions in (a) follow from the construction of
G and Theorem 28. For (b), assume that d∞(α, α′) < M : then we could
find arbitrarily large t, t′ and gt ∈ G such that d(α̃(t), gtα̃

′(t′)) < M . Let
then gn(t) be the generator such that gtα̃

′ ⊂ A(gǫ
n(t), õ), for some ǫ ∈ {±1}.

By (13) we deduce that d(α̃(t), gtα̃
′(t′)) ≥ d(α̃, A(gǫ

n(t), õ)) ≥ n(t) which shows

that we necessarily have n(t) = n for infinitely many, arbitrarily large t. Hence

lim sup
t→+∞

d(α̃(t), gtα̃
′(t′)) ≥ lim sup

t→+∞
d(α̃(t), A(gǫ

n, õ)) = ∞

a contradiction.2

Example 41 The Symmetric Hyperbolic Flute
We construct a hyperbolic flute X = “G\H2 with two rays α, α′ having same
origin such that:
(a) α ≺

Ĝ
≻ α′ (i.e. α ≺≻ α′); therefore, Bα = Bα′ ;

(b) α 6≈G α′;
(c) d∞(α, α′) = ∞.

Let G =< g1, ..., gn, ... > be the group constructed in the Example 40, and
let S be the symmetry with respect to õ. Then, for every n, consider the
hyperbolic translation ĝn having axis S[g̃n] and attractive/repulsive domains
A(ĝ±1

n , õ) = S[A(g±1
n , õ)], and define Ĝ =< g1, ĝ1, ..., gn, ĝn, ... >.

Notice that, by symmetry, all these generators again satisfy the conditions (12)
and (13), so Ĝ is a discrete Schottky group. Again, the quotient manifold
X = Ĝ\H2 is a hyperbolic flute, with infinite end corresponding to the set
E = {α̃+, α̃′+} and, with the same notations as above, the projections α and α′

on X are rays.

Proof of Properties 41(a),(b)&(c).
We deduce as before that α ≻Ĝ α′; but now we also have the sequence ĝn such
that ĝnα̃′+ → α̃+ and Bα′(õ, ĝ−1

n õ) → 0; so α′ ≻Ĝ α too. As the rays α and α′

have a common origin, Theorem 28 implies that Bα = Bα′ . Again assertion (b)
follows by construction, and (c) is proved as before.2
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Example 42 The Twisted Hyperbolic Flute
We construct a hyperbolic flute X = G\H2 with a family of rays αn having
same origin and converging to a ray α such that:
(a) αn ≈G αm ∀n, m; therefore, d∞(αn, αm) < ∞ and Bαn

= Bαm
∀n, m;

(b) d∞(αn, α) = ∞ ∀n;
(c) Bα0

= limn→+∞ Bαn
6= Bα.

Again, in the disk model for H2 with origin õ, consider a sequence of bound-
ary points ζ0 = i, ζn = eiϑn , for a decreasing sequence π

2 ≥ ϑn ց −π
2 .

Then, for every n ≥ 1 choose a pair of ultraparallel geodesics Cn, C ′
n such that

d(õ, Cn) = d(õ, C ′
n) = dn, each cointained in the disk sector [ζn−1, õ, ζn], and

with points at infinity respectively equal to ζn−1, ζn. Finally, let gn be the
hyperbolic isometry with gn(Cn) = C ′

n whose axis is perpendicular to Cn, C ′
n,

given by Lemma 39, cp. Figure 6.b, and set α̃n = [õ, ζn], α̃ = [õ,−i].
Moreover, if H ′ = Hα̃+(õ′) for õ′ = i

10 , we can choose the dn ≫ 0 in order that
the following condition is satisfied:

H ′ ∩ A(g±1
n , õ) = ∅ for all n (14)

Define G as the group generated by all the gn. Again, G is an infinitely generated
Schottky group, and the quotient manifold X = G\H2 is a flute whose infinite
end corresponds to the set E = {α̃+, α̃+

n | n ≥ 0}. The projections αn and α of
all the α̃n, α̃ on X are rays, by construction, such that αn → α.

Proof of Properties 42(a),(b)&(c).
The rays αn are all G-equivalent by construction, as α̃+

n = gnα̃+
n−1 for all n.

The other assertions in (a) follow from the discussion after Definition 27
(actually, as we are in strictly negative curvature, we have d∞(αn, αm) = 0).
On the other hand, by (14), all the images by G of α̃n are exterior to the
horoball H ′, exceptly for α̃n itself; thus if s ≫ 0 we have d(gα̃n, α̃(s)) > s for
all g. It follows that d∞(αn, α) ≥ 1

2 lim sups→+∞ infg∈G d(gα̃n, α̃(s)) = +∞.
To conclude we have to prove that Bα0

6= Bα, and by Theorem 28 it is enough
to show that α 6≻G α0. But for any sequence hn with hnα̃+ → α̃+

0 we have
Bα̃(õ, hnõ) < − 1

10 , since by construction this is true for all nontrivial g in G.2

Remark 43 The discontinuity (c) can be interpreted geometrically as follows.
Consider the maximal horoballs Hmax

α̃+ (o′), Hmax

α̃
+
n

(o′), for the projection o′ of õ′.

It is easy to see that Hmax
α̃+ (o′) = Hα̃+(õ′), as all the gõ′, for g 6= 1, stay far

away from H ′, by construction. Moreover, since o′ ∈ α0 and α0 is a ray, we
also deduce that Hmax

α̃
+

0

(o′) = Hα̃
+

0

(õ′) precisely. Now Bαn
(o, o′) = Bα0

(o, o′),

so formula (5) shows that d(õ, Hmax

α̃
+
n

(o′)) = d(õ, Hmax

α̃
+

0

(o′)); then, by rotational

symmetry, Hmax

α̃
+
n

(o′) is the horoball centred at α̃+
n having the same Euclidean

radius as Hα̃
+

0

(õ′). Therefore the discontinuity can be read in terms of a discon-

tinuity in the limit of the maximal horoballs: in fact, the Hmax
α̃n

(o′)’s converge
for n → ∞ to Hα̃+(−õ′), which is strictly smaller than the maximal horoball
Hα̃+(õ′) of the limit ray.
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Example 44 The Hyperbolic Ladder
We construct a hyperbolic ladder which is a Galois covering X → Σ2 of a
hyperbolic surface of genus 2, with automorphisms group Γ ∼= Z, such that:
(a) X has distance-asymptotic rays α, α′ with α ≺≻ α′, but Bα 6= Bα′ ;
(b) BX consists of 4 points;
(c) ∂X consists of a continuum of points;
(d) the limit set LΓ = Γx0 ∩∂X depends on the choice of the base point x0, and
for some x0 it is included in ∂X − BX.

We construct X by glueing infinitely many pairs of hyperbolic pants.
The following properties of hyperbolic pants are well-known:

Lemma 45 ([16], [40]) Let H+, H− be two identical right-angled hyperbolic
hexagons with alternating edges labelled respectively by a±, b±, c± and opposite
edges α±, β±, γ±. Let P the hyperbolic pant obtained by glueing them along
a±, b±, c±; the identified edges a, b, c are called the seams of P , and the resulting
boundaries α = α+ ∪ α−, β = β+ ∪ β−, γ = γ+ ∪ γ− of P are closed geodesics
called the cuffs. The seams are the shortest geodesic segments connecting the
cuffs of P and, reciprocally, the cuffs are the shortest ones connecting the seams.

Now, we start from infinitely many copies Pn, P ′
n, for n ∈ Z, of the same pair

of pants P , and we assume that ℓ(b) = ℓ(c) = L > ℓ = ℓ(a). We glue them
as in figure 6, by identifying via the identity the cuffs αn with α′

n, and the
cuffs βn, β′

n with γn−1, γ′
n−1 respectively (with no twist), obtaining a complete

hyperbolic surface X = N\H2. Remark that, if Σ2 = G\H2 is the hyperbolic
surface obtained from P0 ∪ P ′

0 by identifying α0 to α′
0 and β0, β′

0 respectively
to γ0, γ′

0, there is a natural covering projection X → Σ2, with automorphism
group Γ ∼= Z ∼= G/N . The group Γ acts on X by “translations” Tk, sending
Pn ∪ P ′

n into Pn+k ∪ P ′
n+k.

Figure 4: The Hyperbolic Ladder

We define α =
⋃

k≥0 ak, α− =
⋃

k<0 ak, α′ =
⋃

k≥0 a′
k, α′

− =
⋃

k<0 a′
k and set

A = α ∪ α−, A′ = α′ ∪ α′
−. Notice that the surface X is also endowed of:
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– a natural flip symmetry, denoted ′, obtained by sending a point in Pk to the
corresponding point in P ′

k; let F = Fix(′) and call the top and the bottom of X
the (closure of) the two connected components of X −F interchanged by ′;

– a natural mirror symmetry S, obtained interchanging each point on a pant
Pk (resp. P ′

k) with the corresponding point lying on the same pant, but on the
opposite hexagon; if M =

⋃
k∈Z

bk ∪ b′k ∪ ck ∪ c′k, we have Fix(S) = A∪A′∪M,
and we will call the back and the front of X the closure of the two connected
components of X − Fix(S) interchanged by S;

– a group of reflections Rn with respect to βn ∪ β′
n, exchanging Pn+k ∪ P ′

n+k

with Pn−k−1 ∪ P ′
n+k−1.

Lemma 46
(i) Every minimizing geodesic does not cross twice neither A, A′, F nor M;
(ii) every quasi-ray is strongly asymptotic to one of the four rays α, α−, α′, α′

−.

Proof.
(i) Assume that γ is a minimizing geodesic between x and y, crossing A twice,
at two points x1, y1. Break it as γ = γ1 ∪ [x1, y1] ∪ γ2, where [x1, y1] is the
subsegment between x1 and y1. Then, using the mirror symmetry S, we would
obtain a curve γ̂ = γ1∪S[x1, y1]∪γ2 of same length, still connecting x to y, but
singular at x1 and y1; hence, it could be shortened, which is a contradiction.
The proof is the same for A′,B, and using the flip simmetry ′ one analogusly
proves that a minimizing geodesic cannot cross twice F .
For (ii), let us first show that, if γ is a quasi-ray included, say, in the top-
front of X, then either d∞(γ, α) = 0 or d∞(γ, α−) = 0. Actually, assume that
pn = γ(tn) is a sequence such that d(pn,A) > ǫ, for n ≥ 0 and tn → ∞. Consider
the projections qn of pn on A, which we may assume at distance d(qn, qn+1) ≫ 0;
as γ is included in a simply connected open set of X containing the bi-infinite
geodesic A, we can use hyperbolic trigonometry (cp. Lemma 49 in the §A.3) to
deduce that ℓ(γ|[tn,tn+1]) ≥ qnqn+1 + δ(ǫ), for a universal function δ(ǫ) > 0.
As p0pn ≤ q0qn + 2diam(P ), we obtain

∆(γ|[t0,tN ]) ≥
N−1∑

n=0

qnqn+1 + Nδ(ǫ) − q0qN − 2diam(P ) = Nδ(ǫ) − 2diam(P )

which diverges as N → ∞; so, ∆(γ) is not bounded, a contradiction. As ǫ is
arbitrary, this shows that γ is strongly asymptotic either to α or to α−. Finally,
if γ is a quasi-ray which is not included in the top-front of X, we can use the
symmetries S and ′ to define, from γ, a curve γ̂ fully included in the top-front
of X, by reflecting the subsegments which do not lie in the top-front of X. This
new curve still has bounded excess (as it has the same lenght as γ on every
interval, and the distance between endpoints reduces at most of 2diam(P )) so,
as we just proved, it is strongly asymptotic either to α or to α−. In particular,
γ̂ finally does not intersect C; so, γ|[t0,+∞], for some t0 ≫ 0, is included in an
ǫ-neighborhood of A, for arbitrary ǫ, and therefore it is strongly asymptotic to
one of the four rays α, α−, α′, α′

−.2
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Proof of 44(a),(b),(c)&(d) of Example 44.
(a) The geodesic segments an are the shortest curves connecting the cuffs βn, γn

of Pn: this implies that α cannot be shortened, so it is a ray; similarly for α′.
Let now x0 = a0 ∩ β0, xn = Tn(x0) and let x′

n be their flips; finally, consider
a sequence of minimizing segments ηn = [x0, x

′
2n] and their inverse paths −ηn.

By (i) above, we know that ηn is included in the front (or the back) of X; more-
over, it can be broken as ηn = ηt

n∪ηb
n where ηt

n, ηb
n respectively are subsegments

in the top and in the bottom of X meeting at some pn ∈ F . Therefore, each of
these segments stays in a simply connected open set of X, isometric to an open
set of H2; then, since d(pn, α) = d(pn, α′) < diam(P ) we can apply standard
hyperbolic trigonometry to deduce that ηn makes an angle ϑn, with either α or
α′, such that

tanϑn ≤
tanh(diam(P ))

sinh(nℓ)
→ 0, for n → ∞.

By possibly replacing ηn with Rn(−ηn)′, we find a sequence of minimizing seg-
ments [x0, x

′
2n] → α, hence α′ ≻ α. The converse relation α ≻ α′ is analogous.

Let us now show that Bα 6= Bα′ . It is enough to show that Bα(x0, x
′
0) > 0;

then clearly, by the flip symmetry, we will deduce Bα′(x0, x
′
0) = Bα(x′

0, x0) < 0.
Let us compute Bα(x0, x

′
0) = limn→∞ x0xn−xnx′

0. Let νn = [xn, x′
0] be a mini-

mizing segment intersecting F at some p ∈ α̂k, and break it as νn = νt
n∪ ν̂n∪νb

n

where ν̂n is the maximal subsegment of νn included in Pk ∪ P ′
k; then,

xnx′
0 ≥ ℓ(νt

n) + d(γk, β′
k) + ℓ(νb

n) ≥ (n − 1)ℓ + 2L ≥ (n + 1)ℓ

while clearly x0xn = nℓ; so, Bα(x0, x
′
0) ≥ ℓ.

(b) One proves analogously that α− and α′
− are rays defining different Buse-

mann functions, while it is clear that Bα and Bα′ are different from Bα−
, Bα′

−

.

Therefore BX has at least 4 points. On the other hand, by Proposition 46(ii),
every quasi-ray in X is strongly asymptotic to one of the four above, thus defin-
ing the same Busemann function. This shows that BX has precisely four points.

(c)-(d) Clearly, the orbits Γx0 and Γx′
0 accumulate to Bα and Bα′ . Let now x(t)

be a continuous curve from x0 = x(0) to x′
0 = x(1), and set xn(t) = Tn(x(t)).

For any fixed t, let B(xn)(t) be the limit of (a subsequence of) xn(t), for n → ∞.
The family B(xn)(t) defines a continuous curve in ∂X connecting Bα to Bα′ , as
‖B(xn)(t) − B(xn)(s)‖∞ ≤ 2d(xn(t), xn(s)); since it is non-constant, its image is
an uncountable subset of ∂X. It remains to exhibit an orbit accumulating to
a point of ∂X \ BX. Let y0 ∈ α0: we affirm that yn = Tny0 is such an orbit.
Actually, if yn converged to one of the four Busemann functions, say Bα, then
we would also have yn = y′

n → Bα′ , as the flip symmetry preserves the orbit
and exchanges α with α′. Hence we would get Bα = Bα′ , a contradiction.2

Remark 47 The surface X is quasi-isometric to Z, hence it is a Gromov-
hyperbolic metric space. Its boundary as a Gromov-hyperbolic space Xg(∞)
(cp. [10], [34]) consists of two points. So, the Busemann boundary and the
horoboundary prove to be finer invariants than Xg(∞) (as they are not defined
up to bounded functions, so they are not invariant by quasi-isometries).
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A Appendix

A.1 Rays on Riemannian manifolds.

Lemma 48 Let β be a quasi-ray and x, y ∈ X such that Bβ(x, y)=d(x, y).Then:
(i) x and y minimize the distance between the horospheres Hβ+(x) and Hβ+(y);
(ii) y is the only projection to Hβ+(y) of every z∈ [x, y], exceptly possibly for x.

Proposition 14 For any quasi-ray β we have: Bβ(x, y) = d(x, y) ⇔ −→xy ≺ β.
In particular, if Bβ(x, y) = d(x, y), the extension of any minimizing segment
[x, y] beyond y is always a ray.

Theorem 16 Assume that α, β are rays in X with origins a, b respectively.
The following conditions are equivalent:

(a) Bα(x, y)=Bβ(x, y) ∀x, y ∈ X;

(b) α ≺≻ β and Bα(a, b) = Bβ(a, b);

(c) α and β are visually equivalent from every o ∈ X.

Proof of Lemma 48. (i) follows from the fact that any two points x′, y′ re-
spectively in Hβ+(x), Hβ+(y) satisfy d(x′, y′) ≥ Bβ(x′, y′) = Bβ(x, y) = d(x, y).
In particular, y is a projection to Hβ+(y) of any point z ∈ [x, y], as

xz + zy = xy = d(x, Hβ+(y)) ≤ xz + d(z, Hβ+(y)).

Moreover, let z ∈ [x, y], z 6= x, and assume that q is a projection of z on Hβ(y)
different from y. Then, the angle between [x, z] and [z, q] would be different
from π; hence xq < xz + zq and

d(x, Hβ+(y)) < xz + zq = xz + zy = d(x, Hβ+(y))

a contradiction.2

Proof of Proposition 14. Let α=−→xy, with x=α(0), y=α(s). Assume α≺β.
So, there exist minimizing geodesic segments αn = [an, bn] → α such that
an = αn(0) → x, bn = αn(sn) = β(tn) → β+, for sequences sn, tn → +∞.
Let s be fixed and ǫ arbitrary. There exists N(s, ǫ) such that d(αn(s), α(s)) < ǫ
and d(an, x) < ǫ for n > N(s, ǫ); therefore

Bβ(x, α(s)) = lim
n→∞

xbn − bnα(s) hǫ lim
n→∞

xbn − bnαn(s) = s

and as ǫ is arbitrary, this shows that Bβ(x, α(s)) = s = d(x, α(s)) for all s,
hence Bβ(x, y) = d(x, y). Conversely, assume that Bβ(x, y) = d(x, y). Then:

s = s − (s − s) ≤ Bβ(x, y) − Bβ(α(s), y) = Bβ(x, α(s)) ≤ s ∀s ∈ [0, s]

and we deduce that Bβ(x, x′) = d(x, x′) for all x, x′ on α between x and y.
Now, fix 0 < ǫ < s and consider minimizing geodesic segments αǫ

n = [α(ǫ), β(n)];
up to a subsequence, they converge, for n → ∞, to a ray αǫ which is, by
definition, a coray of β. So (as we previously proved)

Bβ(α(ǫ), αǫ(s)) = Bαǫ(α(ǫ), αǫ(s)) = s ∀s > 0

But then, for s > ǫ, α(s) and αǫ(s − ǫ) are both projections of α(ǫ) to the
horosphere Hβ+(α(s)) and, by Lemma 48(ii), we know that they coincide. This
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shows that αǫ = α|ǫ,+∞ and that αǫ ′
n (0) tend to α′(ǫ), for every fixed ǫ > 0; by

a diagonal argument we then build a sequence of minimizing geodesic segments
αk = αǫk

nk
, for ǫk → 0 and nk → +∞, such that αk → α. Thus α ≺ β.2

Proof of Theorem 16.
Let us show that (a) ⇒ (b). Assume that Bα = Bβ , and let b = β(0), y = β(t).
As Bα(b, y) = Bβ(b, y) = d(b, y), we deduce by Proposition 14 that β ≺ α. One
proves that α ≺ β analogously.
Conversely, let us show that (b) ⇒ (a). Assume that α ≺ β, so we have geodesic
segments αn = [an, bn] → α with an = αn(0) → a, bn = β(tn) = αn(sn) → β+;
moreover, let as before N(s, ǫ) such that d(αn(s), α(s)) < ǫ for n > N(s, ǫ).
Then, for every x and n > N(s, ǫ):

aα(s) − α(s)x hǫ s − αn(s)x ≤ s − (bnx − bnαn(s))

and, as bnαn(s) = sn − s we deduce that

aα(s) − α(s)x >ǫ sn − bnx = (sn−tn) + (tn− bnx) ≤ Bβ(an, b) + Bβ(b, x)

by monotonicity of the Busemann cocycle. Taking limits for s → ∞ we deduce
that Bα(a, x) >ǫ Bβ(a, x) for all x and, as ǫ is arbitrary, Bα(a, x) ≤ Bβ(a, x).
From β ≺ α we deduce analogously that Bβ(b, x) ≤ Bα(b, x). Therefore:

Bβ(b, x) ≤ Bα(b, x) = Bα(b, a) + Bα(a, x) ≤ Bα(b, a) + Bβ(a, b) + Bβ(b, x)

and since Bα(b, a) = Bβ(b, a) we get the conclusion.
Let us now prove that (a) ⇒ (c). Assume again that Bα = Bβ , and let o ∈ X.
Let γ be a limit of (a subsequence of) geodesic segments γn = [o, α(n)]; then
γ is a ray (by the Properties 9) and, by definition, is a coray to α. Then, by
Proposition 14

Bβ(o, γ(t)) = Bα(o, γ(t)) = d(o, γ(t))

which, by the same Proposition, also implies that γ ≺ β.
Finally, let us show that (c) ⇒ (a). The functions Bα(a, ·) and Bβ(b, ·) are
Lipschitz, hence differentiable almost everywhere. Let o be a point of differ-
entiability for both Bα(a, ·) and Bβ(b, ·), and let γ be a ray from o which is a
coray to α and β. Then Bα(o, γ(t)) = d(o, γ(t)) = Bβ(o, γ(t)) for all t, which
implies that gradoBα(a, ·) = γ′(0) = gradoBβ(b, ·). So Bα(a, ·) and Bβ(b, ·) are
Lipschitz functions whose gradient is equal almost everywhere, hence they differ
by a constant and Bα = Bβ .2

A.2 Rays on Hadamard spaces.

Proposition 18 Let ‹X be a Hadamard space:

(i) if α, β are rays, then d∞(α, β) < ∞ ⇔ Bα = Bβ ⇔ α ≺ β.
Moreover, two rays with the same origin are Busemann equivalent iff they co-
incide, so the restriction of the Busemann map Bo :Ro(‹X) → ∂‹X is injective;

(ii) for any o ∈ X̃, the restriction of the Busemann map Bo : Ro(‹X) → ∂‹X is
surjective, hence BX̃ = BoX̃ = ∂X̃;

(iii) the Busemann map B is continuous.
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Uniform Approximation Lemma 19 Let ‹X be a Hadamard space.
For any compact set K and ǫ > 0, there exists a function T (K, ǫ) such that for
any x, y ∈ K and any ray α issuing from K, we have |Bα(x, y)−bα(t)(x, y)| ≤ ǫ,
provided that t ≥ T (K, ǫ).

Proof of Lemma 19.
First notice that, by the cocycle condition (holding for bα(t) as well as for Bα

we can assume that x = α(0) = a. Then, let z = α(t), z′ = α(t′) for t′ > t, and
let us estimate bz′(a, y)− bz(a, y) = (yz + zz′)− yz′. Assume that K ⊂ B(a, r),
denote by y′ the projection of y on α and consider ϑ = ŷza. The right triangle
[y, y′, z] has catheti yy′ ≤ r and zy′ ≥ t − r (as ay′ ≤ r); by comparison with
a Euclidean triangle, we deduce that 0 < ϑ ≤ ϑ0 < π with tanϑ0 = r/(t − r).
Comparing now the triangle [y, z, z′] with an Euclidean triangle [y0, z0, z

′
0] such

that ÷y0z0z′0 = π−ϑ0 and y0z0 = yz, z0z
′
0 = zz′ we deduce that yz′ ≥ y0z

′
0. So,

bz′(a, y) − bz(a, y) = (yz + zz′) − yz′ ≤ (y0z0 + z0z
′
0) − y0z

′
0 (15)

Now a straightforward computation in the plane shows that this tends to zero
uniformly on y ∈ K, for t → ∞. Actually, consider the projection y′

0 of y0 on
the line containing z0, z

′
0, and set r0 = y0y

′
0, s0 = z0z

′
0 and ρ0 = y′

0z0. Then,
for r fixed and t tending to infinity, we have t + r ≥ yz ≥ ρ0 = yz cos ϑ0 → +∞

while r0 = ρ0 tanϑ0 ≤ r(t+r)
t−r

stays bounded. Therefore

(y0z0 + z0z
′
0)− y0z

′
0 =
»

r2
0 + ρ2

0 + s0 −
»

r2
0 + (ρ0 + s0)2 ≤

2r2
0√

r2
0 + ρ2

0 + ρ0

≤ ǫ

for t > T (r, ǫ). As y′ = α(t′) with t′ arbitrarily greater than t, taking the limit
in (15) for t′ → ∞ proves the lemma.2

Proof of Proposition 18.

Let us first prove (iii). Let α, β be rays with origins a, b and initial condi-
tions u = α′(0), v = β′(0) and let K be any fixed compact set containing a, b.
We have to show that, for any arbitrary δ > 0, if u is sufficiently close to v then
|Bα(x, y) − Bβ(x, y)| < δ for all x, y ∈ K. Now, the Uniform Approximation
Lemma ensures that we can replace Bα(x, y) and Bβ(x, y) with bα(t)(x, y) and
bβ(t)(x, y), making an error smaller than δ/3, by taking any t > T (K, δ/3). But
the difference between these two functions is smaller than 2d(α(t), β(t)); and
this, for any fixed t, tends to zero as u → v, on any Riemannian manifold.

Let us now prove (ii).
Assume that (Pk) → ξ = B(Pk)(o, ·). Then, consider the geodesic segments
αk = [o, Pk] and their velocity vector uk = α′

k(0). Up to a subsequence, the uk’s

converge to some unitary vector u ∈ SoX̃. As before, for any fixed compact set
K, the Uniform Approximation Lemma ensures that bαk(t)(x, y) ≃ǫ Bαk

(x, y),
for any t ≥ T (K, ǫ) and for all x, y ∈ K; in particular, bPk

(x, y) ≃ǫ Bαk
(x, y) if

tk = d(o, Pk) > T (K, ǫ). On the other hand, Bαk
(x, y) ≃ǫ Bα(x, y) if k ≫ 0, by

(iii); so passing to limits for k → ∞, we deduce that B(Pk)(x, y) = Bα(x, y) on
K and, as K is arbitrary, B(Pk) = Bα.
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We now prove the first equivalence d∞(α, β) < ∞ ⇔ Bα = Bβ in (i).
Let a = α(0), b = β(0) be the origins of α, β. If d∞(α, β) < ∞, by convexity of
the distance in nonpositive curvature we deduce that there exist points ak, bk

tending to infinity respectively along α and β, such that

lim
k→∞

akbk = d = d(α, β)

Clearly, the angles ’aakbk and ’bbkak tend to π/2. Now let y be arbitrarily fixed,
with D = d(a, y). By comparison with the Euclidean case, the tangent of the
angle ‘aaky is smaller than D/(aak − D), which goes to zero for k → ∞, so the

angle ϑk = ’yakbk → π/2. Now we know, by comparison geometry, that

(bky)2 ≥ (aky)2 + (akbk)2 − 2aky · akbk · cos ϑk

hence lim infk→∞ bky − aky ≥ − limk akbk cos ϑk = 0. One proves analogously
that lim infk→∞ aky − bky = 0, hence we deduce that limk→∞ bky − aky = 0.
As y is arbitrary, this shows that Bβ = Bα.
Conversely, assume that d∞(α, β) = ∞. Up to possibly extending α and β be-
yond their origins, we may assume that a is the projection of b over α and, more-

over, that ÷abβ(t) ≥ π/2 (for t ≫ 0). In fact, let α̃, β̃ be the bi-infinite geodesics

extending α, β: either lim supt→−∞ d(α̃(t), β̃(t)) is unbounded and, by convex-

ity, there exists a minimal geodesic segment between α̃ and β̃ (orthogonal to both

α̃, β̃); or lim supt→−∞ d(α̃(t), β̃(t)) is bounded, so the angle
Ÿ�
α̃(t)aβ̃(t) → 0 and

[a, b, β̃(t)] tends to the limit triangle α̃|R− ∪ [a, b]∪ β̃|R− for t → −∞; as the sum

of its angles cannot exceed π, we deduce that ÷abβ(t) ≥ π
2 for t ≫ 0.

So, now consider the triangle [a, b, β(t)] for t ≫ 0. The angle Ÿ�α(t)aβ(t) does
not tend to zero for t → +∞, otherwise α|R+ ∪ [a, b] ∪ β|R+ would be again a
limit triangle, whose sum of angles necessarily would be π; thus, it would be flat
and totally geodesic, and limt→+∞ d(α(t), β(t) would be bounded. Therefore,
Ÿ�α(t)aβ(t) ≥ ϑ0 > 0 for t → +∞. By comparing [a, α(s), β(t)], for s, t ≥ 0, with
an Euclidean triangle, we then get

(α(s)β(t))2 ≥ s2 + (aβ(t))2 − 2s · aβ(t) · cos ϑ0 (16)

so Bβ(a, α(s)) = limt→+∞ aβ(t) − β(t)α(s)) ≤ s cos ϑ0 < s = Bα(a, α(s)).
This shows that Bα 6= Bβ .

Proof of the equivalence Bα = Bβ ⇔ α ≺ β.
One implication is true on any Riemannian manifold, as we have seen in The-

orem teorcoray. So, assume that α ≺ β: let αn =
−−→
anbn → α with an → a,

bn = β(tn) = αn(sn) for tn, sn → +∞. Let K be a compact set contain-
ing a, b, the an and points x, y, and let ǫ > 0; then, choose n ≫ 0 so that
sn, tn > T (K, ǫ) of Lemma 19 and such that Bαn

hǫ Bα on K, by (iii). By
Lemma 19 and monotonicity of the Busemann cocycle we then get

Bα(x, y) hǫ Bαn
(x, y) hǫ bαn(sn)(x, y) = bβn(tn)(x, y) hǫ Bβ(x, y)

and as ǫ is arbitrary, we deduce that Bα(x, y) = Bβ(x, y).
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Finally, if two rays α, β with common origin o make angle ϑ0 6= 0, then
d(α(s), β(t)) grows at least as in the Euclidean case according to the formula
(16), hence the rays are not Busemann equivalent, so the restriction of the
Busemann map Ro(X) → ∂X is injective.2

A.3 Hyperbolic computations.

Lemma 39 Let õ ∈ H2, and let C, C ′ two ultraparallel geodesics (i.e. with no
common point in H2 ∪ ∂H2) such that d(õ, C) = d(õ, C ′). Then:
(i) there exists a unique hyperbolic isometry g with axis perpendicular to C, C ′

and such that g(C) = C ′;
(ii) g−1õ and gõ are obtained, respectively, by the hyperbolic reflections of õ with
respect to C, C ′;
(iii) the Dirichlet domain D(g, õ) has boundary C ∪ C ′.

Proof. By convexity of the distance function, there exists a unique common
perpendicular g̃ to C, C ′, so g is the unique hyperbolic translation along g̃ send-
ing C to C ′. Let ∆(g) the displacement of g, let õ0 be the projection of õ on
g̃, and let p = C ∩ g̃. By symmetry, ∆(g) = d(C, C ′) = 2õ0p. Now consider
the hyperbolic reflection R with respect to C, and define c̃ = R(õ), c̃0 = R(õ0)
and q = [õ, c̃]∩C. Since g̃ is perpendicular to C, R preserves g̃; we deduce that
[c̃, c̃0] = R([õ, õ0]) is also perpendicular to g̃. As õ0c̃0 = 2õ0p = ∆(g), it follows
that g−1õ = c̃. Then, C is one of the two boundaries of D(g, õ), as it is the
perpendicular bisector of [õ, c̃]. The verification for gõ and C ′ is the same.2

Lemma 49 There exists a positive function δ(t, ǫ) for t,ǫ > 0, increasing in t,
with the following property. Let α be any geodesic of H2 and assume that p1, p2

are points with projections q1, q2 on α such that d(q1, q2) = t: if d(p1, α) = ǫ,
then d(p1, p2) ≥ t + δ(t, ǫ).

Proof. Consider the projection p′1 of p1 on the geodesic containing p2, q2 and
let d = p1p

′
1 ≤ p1p2. Let c = p1q2 and β = ÷p1q2q1. By the sinus and cosinus

formula applied, respectively, to the triangles [p1, p
′
1, q2] and [p1, q1, q2] we find

sinh d = sinh c · cos β = cosh c · tanh t

and by Phytagora’s formula we deduce that sinh d = cosh ǫ sinh t. This shows
that d = t + δ(t, ǫ), for a positive function δ(t, ǫ) when t, ǫ > 0. To see that
δ(t, ǫ) is increasing with t we just compute the derivative

∂t δ(t, ǫ) = d(t)′ − 1 =
cosh ǫ cosh t

cosh d
− 1 =

cosh c

cosh d
− 1 > 0

as c > d for ǫ > 0.2
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[19] Haas A. Dirichlet points, Garnett points, and infinite ends of hyperbolic surfaces.
I Ann. Acad. Sci. Fenn. Math. 21 (1996), no. 1, 3–29.
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