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Introduction and summary of the results

In a recent article [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF], Pearson and Bellissard defined a spectral triple -the data of Riemannian noncommutative geometry (NCG) [START_REF] Connes | Noncommutative geometry[END_REF] -for ultrametric Cantor sets. They used a construction due to Michon [START_REF] Michon | Les cantors réguliers[END_REF]: any ultrametric Cantor set (C, d) can be represented isometrically as the set of infinite paths on a weighted rooted tree. The tree defines the topology, and the weights encode the distance. The spectral triple is then given in terms of combinatorial data on the tree.

With this spectral triple, they could define several objects, including a ζ-function, a measure µ, and a one-parameter family of operators on L 2 (C, µ), which were interpreted as Laplace-Beltrami operators. They showed the abscissa of convergence of the ζ-function to be a fractal dimension of the Cantor set (the upper box dimension).

The goal of Pearson and Bellissard was to build a spectral triple for the transversals of tiling dynamical systems. This opened a new geometrical approach to the theory of tilings. Until now, all the operator-algebraic machinery used to study tilings and tiling spaces was coming from noncommutative topology. Striking application of noncommutative topology were the study of the K-theory for tiling C * -algebras [START_REF] Bellissard | Schrödinger operators with almost periodic potential: an overview[END_REF][START_REF] Bellissard | Gap labelling theorems for one-dimensional discrete Schrödinger operators[END_REF][START_REF] Kellendonk | Noncommutative geometry of tilings and gap labelling[END_REF][START_REF] Kellendonk | The local structure of tilings and their integer group of coinvariants[END_REF], and namely [START_REF] Anderson | Topological invariants for substitution tilings and their associated C * -algebras[END_REF][START_REF] Durand | Substitutional dynamical systems, Bratteli diagrams and dimension groups[END_REF][START_REF] Forrest | K-groups associated with substitution minimal systems[END_REF] for computations applied to substitution tilings. A follow-up of this study was the gap-labeling theorems for Schrödinger operators [START_REF] Bellissard | Spaces of tilings, finite telescopic approximations and gap-labeling[END_REF][START_REF] Bellissard | Gap-labelling for three-dimensional aperiodic solids[END_REF][START_REF] Benameur | Gap-labelling for quasi-crystals (proving a conjecture by J. Bellissard)[END_REF][START_REF] Kaminker | A proof of the gap labeling conjecture[END_REF][START_REF] Van Elst | Gap-labelling theorems for Schrödinger operators on the square and cubic lattice[END_REF] -a problem already appearing in some of the previously cited articles. Other problems include cyclic cohomology and index theorems (and applications to the quantum Hall effect) [START_REF] Bellissard | The noncommutative geometry of the quantum Hall effect[END_REF][START_REF] Benameur | Index theory for quasi-crystals. I. Computation of the gap-label group[END_REF][START_REF] Kellendonk | Gap labelling and the pressure on the boundary[END_REF][START_REF] Kellendonk | Edge current channels and Chern numbers in the integer quantum Hall effect[END_REF][START_REF] Kellendonk | Boundary maps for C * -crossed products with R with an application to the quantum Hall effect[END_REF][START_REF] Kellendonk | Quantization of edge currents for continuous magnetic operators[END_REF]. . . These problems were tackled using mainly topological techniques. The construction of a spectral triple is a proposition for bringing geometry into play.

In this article, we revisit the construction of Pearson and Bellissard for the transversals of some tiling spaces. For this purpose, we use the formalism of Bratteli diagrams instead of Michon trees. This approach is equivalent, and applies in general to any ultrametric Cantor set. But in some cases, the diagram conveniently encodes the self-similarity, and is very well suited to handle explicit computations. For this reason, we will focus on diagrams arising from substitution tilings, a class of tilings which is now quite well studied [START_REF] Anderson | Topological invariants for substitution tilings and their associated C * -algebras[END_REF][START_REF] Kenyon | The construction of self-similar tilings[END_REF][START_REF] Queffélec | Substitution dynamical systems-spectral analysis[END_REF][START_REF] Solomyak | Dynamics of self-similar tilings[END_REF].

Bratteli diagrams were introduced in the seventies for the classification of AF -algebras [START_REF] Bratteli | Inductive limits of finite dimensional C * -algebras[END_REF]. They were used by Veršik to encode measurable Z-actions, as a tool to approach some dynamical systems by a sequence of periodic dynamical systems [START_REF] Vershik | Adic models of ergodic transformations, spectral theory, substitutions, and related topics[END_REF]. They were then adapted in the topological setting to encode Z-actions on the Cantor set [START_REF] Durand | Substitutional dynamical systems, Bratteli diagrams and dimension groups[END_REF][START_REF] Giordano | Topological orbit equivalence and C * -crossed products[END_REF][START_REF] Herman | Ordered Bratteli diagrams, dimension groups and topological dynamics[END_REF]. Then, Bratteli diagrams were used to represent the orbit equivalence relation arising from an action of Z 2 [START_REF] Giordano | Orbit equivalence for Cantor minimal Z 2 -systems[END_REF] (and recently Z d [START_REF] Giordano | Orbit equivalence for Cantor minimal Z d -systems[END_REF]) on a Cantor set. Yet, it is not well understood how the dynamics itself should be represented on the diagram. The case we will look at is when the Cantor set is the transversal of a tiling space, and the action is related to the translations. The idea of parameterizing tilings combinatorially dates back to the work of Grünbaum and Shephard in the seventies, and the picture of a Bratteli diagram can be found explicitly in the book of Connes [START_REF] Connes | Géométrie non commutative[END_REF] for the Penrose tiling. However, it took time to generalize these ideas, and to understand the topological and dynamical underlying questions. (root on the left).

• Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ • Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ •
In the self-similar case (for example when the Cantor set is the transversal of a substitution tiling space), the diagram only depends on an adjacency (or Abelianization) matrix. There is a natural C * -algebra associated with this matrix, called a Cuntz-Krieger algebra [START_REF] Cuntz | A class of C * -algebras and topological Markov chains[END_REF]. Its generators implement recursion relations and therefore provide a method of computation for the eigenvalues of the Laplace-Beltrami operators.

While Bratteli diagrams are suited to facilitate computations for any self-similar Cantor set, we focus on diagrams associated with substitution tilings. Indeed, a tiling space comes with a convenient distance, which is encoded (up to Lipschitz-equivalence) in a natural way by weights on the diagram.

The Laplace-Beltrami operators we build here are similar to two other types of constructions found in the literature. First, the C * -algebras in the spectral triples presented here are commutative AF -algebras. Christensen and Ivan built a family of spectral triples for general AF -algebras in [START_REF] Christensen | Spectral triples for AF C * -algebras and metrics on the cantor set[END_REF], and their Dirac operators are, in the commutative case, related (and in some cases identical) to our Laplacians, see Section 4.2. Second, those Laplacians come from Dirichlet forms and are generators of Markov semi-groups. They can also be constructed with purely probabilistic means. There is a rich literature on the subject of stochastic processes on homogeneous or regular trees, when additional algebraic structure is at disposal [START_REF] Evans | Local properties of Lévy processes on a totally disconnected Abelian group[END_REF][START_REF]Stable processes on the boundary of a regular tree[END_REF]. For non-compact totally disconnected spaces, similar (jump) processes were obtained in [START_REF] Albeverio | Jump processes on leaves of multibranching trees[END_REF].

Laplacians and stochastic processes are used in physics to model diffusion phenomenons. There is a peculiar type of atomic diffusion which is expected to occur in quasicrystals due to structural effects (flip-flops) and not thermodynamics, and might thus become predominant at low temperature. Quasicrystals are often modeled by substitution tilings, and we believe the Laplacians studied in this paper to be good candidates to describe this phenomenon.

Results of the Paper

Let B be a weighted Bratteli diagram (Definition 2.2, and 2.9), and (∂B, d w ) the ultrametric Cantor set of infinite paths in B (Proposition 2.10).

The Dixmier trace associated with the spectral triple gives a measure µ Dix on ∂B. The construction of Pearson-Bellissard gives a family of Laplace-Beltrami operators ∆ s , s ∈ R, on L 2 (∂B, dµ Dix ), see Definition 4.12. For all s, ∆ s is a nonpositive, self-adjoint, and unbounded operator. For a path γ, we denote by [γ] the clopen set of infinite paths with prefix γ, and by χ γ its characteristic function. And we let ext 1 (γ) denote the set of ordered pairs of edges that extend γ one generation further. The operator ∆ s was shown to have pure point spectrum in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF]. In this paper, we determine all its eigenelements explicitly.

Theorem 4.3. The eigenspaces of ∆ s are given by the subspaces

E γ = 1 µ Dix [γ • a] χ γ•a - 1 µ Dix [γ • b] χ γ•b : (a, b) ∈ ext 1 (γ)
for any finite path γ in B. We have dim E γ = n γ -1 where n γ is the number of edges in B extending γ one generation further.

The associated eigenvalues λ γ are also calculated explicitly, see equation (4.13). An eigenvector of ∆ s is simply a weighted sum of the characteristic functions of two paths of the same lengths that agree apart from their last edge, see Figure 2 for an example.
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The transversal Ξ to a substitution tiling space (Ω, ω) of R d , can be described by a stationary Bratteli diagram, like the Fibonacci diagram shown in Figure 1. There is a "natural map", called the Robinson map in [START_REF] Kellendonk | Noncommutative geometry of tilings and gap labelling[END_REF], ψ : ∂B → Ξ, which under some technical conditions (primitivity, recognizability, and border forcing) is a homeomorphism (Theorem 2.22). We endow Ξ with the combinatorial metric d Ξ : two tilings are ε-close if they agree on a ball of radius 1/ε around the origin. Let A be the Abelianization matrix of the substitution, and Λ P F its Perron-Frobenius eigenvalue. We denote by w(γ) the weight of a finite path γ in B (Definition 2.9). Theorem 2.25. If there are constants c

+ > c -> 0 such that c -Λ -n/d P F ≤ w(γ) ≤ c + Λ -n/d P F
for all paths γ of lengths n, then the homeomorphism ψ :

∂B → Ξ is (d w -d Ξ ) bi-Lipschitz.
In our case of substitution tiling spaces, we have a ζ-function which is given as in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] by

ζ(s) = γ∈Π w(γ) s ,
where Π is the set of finite paths in B. It is proven in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] that, when it exists, the abscissa of convergence s 0 of ζ is the upper box dimension of the Cantor set. For self-similar Cantor sets it always exists and is finite. We also have an interpretation of s 0 which is not topological. We link s 0 to the exponent of the complexity function. This function p, associated with a tiling, counts the number of distinct patches: p(n) is the number of patches of radius n (up to translation). We present two results. Theorem 3.12. For the transversal of any minimal aperiodic tiling space with a well-defined complexity function, the box dimension, when it exists, is given by the following limit:

dim Ξ = lim sup n→+∞ ln(p(n)) ln(n) .
And we deduce the following.

Corollary 3.14. Let Ξ be the transversal of a substitution tiling of dimension d, with complexity function p. Then there exists a function ν such that:

p(n) = n ν(n) , with lim n→+∞ ν(n) = d .
With the above choice of weights we can compute the Dixmier trace µ Dix . Furthermore, there is a uniquely ergodic measure on (Ω, R d ), which was first described by Solomyak [START_REF] Solomyak | Dynamics of self-similar tilings[END_REF]. It restricts to a measure µ erg Ξ on the transversal, and we have the following. Theorem 3.8. With the above weights one has ψ * (µ Dix ) = µ erg Ξ . As B is stationary, the sets of edges between two generations (excluding the root) are isomorphic. Let us denote by E this set, and by E 0 the set of edges linking to the root. Thanks to the self-similar structure we can define affine maps u e , e ∈ E, that act on the eigenvalues of ∆ s as follows (see section 5.1)

u e (λ η ) = λ Ueη = Λ (d+2-s)/d P F λ η + β e ,
where U e η is an extension of the path η (see Definition 5.17), and β e a constant that only depends on e. Those maps U e , and u e , e ∈ E, implement two faithful * -representations of a Cuntz-Krieger algebra associated with the matrix

A (Lemma 5.2). If γ = (ε, e 1 , e 2 , • • • e n ), ε ∈ E 0 , e i ∈ E, is a path of length n, let u γ be the map u e 1 • u e 2 • • • • u en . Let us denote by λ ε , ε ∈ E 0 ,
the eigenvalues of ∆ s corresponding to paths of length 1. For any other eigenvalue λ γ , there is a (unique) λ ε such that

λ γ = u γ (λ ε ) = Λ n s λ ε + n j=1 Λ j-1 s β e j ,
where Λ s = Λ

(d+2-s)/d P F
. That is, the Cuntz-Krieger algebra allows to calculate explicitly the full spectrum of ∆ s from the finite data of the λ ε , ε ∈ E 0 , and β e , e ∈ E -which are immediate to compute, see Section 5.1.

For instance, for the Fibonacci diagram (Figure 1) and s = s 0 = d, there are only two such u e maps, namely u a (x) = x • φ 2φ, and u b (x) = x • φ 2 + φ, where φ = (1 + √ 5)/2 is the golden mean. The eigenvalues of ∆ d are all of the form p + qφ 2 for integers p, q ∈ Z. They can be represented as points (p, q) in the plane; these points stay within a bounded distance to the line directed by the Perron-Frobenius eigenvector of the Abelianization matrix, see Figure 3. This is an example of a general result, valid for hyperbolic substitutions, see Theorem 5.9. We treat further examples in Section 6, in particular the Thue-Morse and Penrose tilings. The name Laplace-Beltrami operator for ∆ s can be justified by the following two results. For s = s 0 = d, in analogy with the Laplacian on a compact d-manifold, ∆ d satisfies the classical Weyl asymptotics, and the trace of its heat kernel follows the leading term of the classical Seeley expansion.

Let N (λ) be the number of eigenvalues of ∆ d of modulus less than λ.

Theorem 5.7. There are constants 0 < c -< c + such that as λ → +∞ one has

c -λ d/2 ≤ N (λ) ≤ c + λ d/2 .
Theorem 5.8. There are constants 0 < c -< c + such that as t ↓ 0 one has

c -t -d/2 ≤ Tr e t∆ d ≤ c + t -d/2 .
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Weighted Bratteli diagrams and substitutions

We first give general the definitions of Cantor sets, Bratteli diagrams, and substitution tilings.

We then describe how to associate diagrams to tilings.

Definition 2.1. A Cantor set is a compact, Hausdorff, metrizable topological space, which is totally disconnected and has no isolated points. An ultrametric d on a topological space X is a metric which satisfies this strong triangle inequality:

∀x, y, z ∈ X, d(x, y) ≤ max{d(x, z), d(y, z)}.

Bratteli diagrams

To a substitutive system, one can naturally associate a combinatorial object named a Bratteli diagram. These diagrams were first used in the theory of C * -algebras, to classify AF-algebras. Then, it was mainly used to encode the dynamics of a minimal action of Z on a Cantor set.

Definition 2.2. A Bratteli diagram is an oriented graph defined as follows:

B = (V, E tot , r, s),
Where V is the set of vertices, E tot is the set of directed edges, and r, s are functions E tot → V (range and source), which define adjacency. We have a partition of V and E tot in finite sets:

V = n≥0 V n ; E tot = n≥0 E n ,
V 0 is a single element called the root and noted •. The edges of E n have their source in V n and range in V n+1 , that is:

r : E n → V n+1 , s : E n → V n .
We ask that s -1 (v) = ∅ for all v ∈ V, and

r -1 (v) = ∅ for all v ∈ V \ V 0 . Remark 2.3. If, for all v ∈ V \ {•}, r -1 (v
) is a single edge, then B is a tree. In that sense, the formalism of Bratteli diagrams includes the case of trees, and so is a generalization of the case studied in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF]. However, our goal is to restrict to self-similar diagrams, for which computations are easier. for all 0 ≤ i < n, r(e i ) = s(e i+1 ).

We call Π n the set of paths of length n < +∞, Π the set of all finite paths, and ∂B the set of infinite paths.

The function r naturally extends to Π: if γ = (ε 0 , . . . , e n ), then r(γ) := r(e n ).

In addition to the definition above, we ask that a Bratteli diagram satisfies the following condition.

Hypothesis 2.5. For all v ∈ V, there are at least two distinct infinite paths through v.

Remark 2.6. If, for all n ≥ 1 and (v, v ′ ) ∈ V n × V n+1 , there is at most one edge from v to v ′ , we can simply encode path by vertices: the following map is an homeomorphism onto its image.

(ε 0 , e 1 , . . .) -→ (ε 0 , r(e 1 ), . . .).

Definition 2.7. Given two finite or infinite paths γ and γ ′ , we note γ ∧ γ ′ the (possibly empty) longest common prefix of γ and γ ′ .

The set ∂B is called the boundary of B. It has a natural topology inherited from the product topology on +∞ i=0 E i , which makes it a compact and totally disconnected set. A basis of neighborhoods is given by the following sets:

[γ] = {x ∈ ∂B ; γ is a prefix of x}.
Hypothesis 2.5 is the required condition to make sure that there are no isolated points. This implies the following. Proposition 2.8. With this topology, ∂B is a Cantor set. Definition 2.9. A weight on ∂B is a function w : V → R * + , satisfying the following conditions:

(i) w(•) = 1;
(ii) sup{w(v) ; v ∈ V n } tends to 0 when n tends to infinity;

(iii) ∀e ∈ E tot , w(s(e)) > w(r(e)).

A weight extends naturally on paths: by definition, w(γ) := w(r(γ)).

Proposition 2.10. We define a function d w on (∂B) 2 by:

d w (x, y) = w r(x ∧ y) if x = y; 0 otherwise
It is a ultrametric on ∂B, which is compatible with the topology defined above, and so (∂B, d w ) is a ultrametric Cantor set.

A case of interest is when the Bratteli diagram is self-similar. For a diagram, self-similarity means that all the V n are isomorphic, and all E n are isomorphic for n ≥ 1, and r, s commute with these identifications. We will focus on self-similarity when the diagram is associated with a substitution.

Substitution tilings

Let us give the definition of a tiling of R d . The tilings we are interested in are constructed from a prototile set and an inflation and substitution rule on the prototiles. The notion of substitution dates back to the sixties. For example the self-similarity of the Penrose tiling is well-known. However, systematic formalization of substitution tilings and properties of their associated tiling space was done in [START_REF] Kenyon | The construction of self-similar tilings[END_REF][START_REF] Solomyak | Nonperiodicity implies unique composition for self-similar translationally finite tilings[END_REF] in the nineties. In this section, we follow the description by Anderson and Putnam [START_REF] Anderson | Topological invariants for substitution tilings and their associated C * -algebras[END_REF] with some minor changes. In particular, some non trivial facts are cited along the text. We do not claim to cite the original authors for all of these. The reader can refer to the reviews [START_REF] Robinson | Symbolic dynamics and tilings of R d . In Symbolic dynamics and its applications[END_REF] and [START_REF] Frank | A primer of substitution tilings of the Euclidean plane[END_REF].

By tile, we mean a compact subset of R d , homeomorphic to the closed unit ball. A tile is punctured if it has a distinguished point in its interior. A prototile is the equivalence class under translation of a tile. Let A be a given set of punctured prototiles. All tilings will be made from these tiles.

A patch p on A is a finite set of tiles which have disjoint interior. We call A * the set of patches modulo translation. A partial tiling is an infinite set of tiles with disjoint interior, and the union of which is connected, and a tiling T is a partial tiling which covers R d , which means: Supp(T ) :

= t∈T t = R d .
A substitution rule is a map ω which maps tiles to patches, and such that for all tile p ∈ A, Supp(ω(p)) = λ Supp(p) for some λ > 1. The factor λ inflates the tiles p, which is then cut into pieces; these pieces are elements of A. The map ω extends to patches, partial tilings and tilings.

Since we will represent tilings spaces by diagrams, we have a specific interest for the combinatorics of the substitution. Definition 2.11. Given a substitution ω, its Abelianization matrix is an integer-valued matrix A ω = (a pq ) p,q∈A (or simply A) defined by: ∀p, q ∈ A, a pq = number of distinct translates of p included in ω(q). We now define the tiling space associated with ω.

Definition 2.12. The tiling space Ω is the set of all tilings T such that for all patch p of T , p is also a subpatch of some ω n (t) (n ∈ N, t ∈ A).

We make the following assumptions on ω: Hypothesis 2.13. (i) The matrix A is primitive: A n has non-negative entries for some n.

(ii) Finite local complexity (FLC): for all R > 0, the set of all patches p ⊂ T which can be included in a ball of radius R is finite up to translation, for all T ∈ Ω.

Just as every tile has a distinguished point inside it, Ω has a distinguished subset. This is the Cantor set which will be associated with a Bratteli diagram. Definition 2.14. Let Ξ be the subset of Ω of all tilings T such that 0 is the puncture of one of the tiles of T . This set is called the canonical transversal of Ω.

Note that, by this definition, the substitution ω extends to a map Ω → Ω. We will assume in the following that ω : Ω → Ω is one-to-one. This condition is equivalent (Solomyak [43]) to the fact that no tiling in Ω has any period. Furthermore, it implies that Ω is not empty, and ω : Ω → Ω is onto.

The set of interest for us is Ξ. Its topology is given as follows. For any patch p, define the following subset of Ξ:

U p = {T ∈ Ξ ; p ⊂ T }.
Note that U p can be empty. Nevertheless, the family of all the U p 's is a basis for a topology on Ξ.

Let us now define a distance d on Ω:

d(T, T ′ ) = inf ǫ > 0 ; ∃x, y ∈ B(0, ǫ) such that B(0, 1/ǫ) ⊂ Supp (T -x) ∩ (T ′ -y) ∪ {1} .
Two tilings are d-close when, up to a small translation, they agree on a large ball around the origin. This distance, when restricted to Ξ, is compatible with the topology defined above. With this topology, Ξ is a Cantor set. Furthermore, the map ω : Ω → Ω is a homeomorphism, and the dynamical system (Ω, R d ) given by translation is continuous and uniquely ergodic [START_REF] Solomyak | Dynamics of self-similar tilings[END_REF].

Substitution tiling spaces are minimal, which means that every R d -orbit is dense in Ω. Combinatorially, this is equivalent to the fact that these tilings are repetitive: for all R > 0, there is a bound ρ R , such that every patch of size R appears in the tiling within range ρ R to any tile.

We need an additional assumption -the border forcing condition. It is required in order to give a good representation of Ξ as the boundary of a Bratteli diagram. Definition 2.15. Let p ∈ L be a patch. The maximal unambiguous extention of p is the following patch, obtained as an intersection of tilings:

Ext(p) = T ∈ Ω ; p ⊂ T .
So any tiling which contains p also contains Ext(p). The patch Ext(p) is called the empire of the patch p by some authors [START_REF] Grünbaum | Tilings and patterns[END_REF]. Definition 2.16. Assume there is some m ∈ N and some ǫ > 0 such that for all t ∈ A,

Ext ω m (t) contains an ǫ1-neighborhood of ω m (t).
Then ω is said to force its border.

It is always possible to give labels to the tiles, in order to change a non-border forcing substitution into a border-forcing one. See [START_REF] Anderson | Topological invariants for substitution tilings and their associated C * -algebras[END_REF].

Example 2.17. Let us give an example in dimension one. Consider the substitution defined on symbols by: a → baa b → ba It has a geometric realization, with a being associated with an interval of length φ = (1 + √ 5)/2, and b with an interval of length 1. Then the map above is a substitution in the sense of our definitions, with λ = φ. The transversal Ξ is naturally identified with a subset of {a, b} Z (the subshift associated with ω). The map ω satisfies the border forcing condition. Indeed, if p is a patch of a tiling T (which we identify symbolically with a finite word on {a, b} in a bi-infinite word), let x, y ∈ {a, b} be the letters preceding and following p in T respectively. Then ω(x) ends by an a and ω(y) begins by a b. Therefore, ω(p) is always followed by b and preceded by a. This proves that ω forces its border.

Bratteli diagrams associated with substitution tilings

We show how to associate a Bratteli diagram to a substitution, and identify the transversal with the boundary of the diagram. It is clear that these two are homeomorphic, being Cantor sets. We will give an explicit and somehow natural homeomorphism.

Let ω be a primitive, FLC and border forcing substitution, and A = (a ij ) i,j∈A its Abelianization matrix. Let λ be the expansion factor associated with ω. Let Ξ be the transversal of the tiling space associated with ω.

The diagram B associated with the substitution is defined as follows.

Definition 2.18. The diagram associated with ω is the diagram B = (V, E tot , r, s), where:

∀n ≥ 1, V n = A × {n},
for all n ≥ 1, for all i, j ∈ A, there are exactly a ij edges of E n from (i, n) to (j, n + 1), and for all v ∈ V 1 there is exactly one edge ε v from the root • to v.

We call E the set of "models" of edges from one generation to another. All E n are copies of E (for example with identification E n = E × {n}). Since the models for the vertices are the elements of A, we do not use a specific name. The maps source and range can be restricted as maps E → A. When the "depth" of a vertex is not important, we will sometimes consider r, s as functions valued in A. There is a correspondence between the paths on B and the transversal Ξ. It depends on a choice on the edges which remembers the geometry of the substitution: each e ∈ E from a ∈ A to b ∈ A corresponds to a different occurrence of a in ω(b). This correspondence is a homeomorphism φ : Ξ → ∂B, called the Robinson map, as defined in [START_REF] Kellendonk | Noncommutative geometry of tilings and gap labelling[END_REF]. We first give the definition of φ, and we will then give a condition the weight function w so that φ is bi-Lipschitz.

To construct φ, start with T ∈ Ξ. Let t ∈ T be the tile containing 0, and [t] ∈ A the corresponding prototile. Then, the first edge of φ(p) is the edge from • to ([t], 1) ∈ V 1 . Assume that the prefix of length n of φ(T ) is already constructed and ends at vertex ([t ′ ], n), where t ′ is the tile of ω -(n-1) (T ) which contains 0. Let t ′′ be the tile containing 0 in ω -n (T ); then the (n + 1)-th edge of φ(T ) is the edge corresponding to the inclusion of t ′ in ω(t ′′ ). This edge ends at ([t ′′ ], n + 1). By induction we construct φ(T ).

Theorem 2.22 (Theorem 4 in [START_REF] Kellendonk | Noncommutative geometry of tilings and gap labelling[END_REF]). The function φ : Ξ → ∂B is an homeomorphism.

We give explicitly the inverse for φ as follows. Let us define ψ : Π → A * which is increasing in the sense that if a path is a prefix of another, then the patch associated to the first is included in the patch associated to the second. The image of an infinite path will then be defined as the union of the images of its prefixes.

If (ε) is a path of length one, then ψ(ε) is defined as the tile r(ε) with puncture at the origin. Now, given a path γ of length n, assume its image by ψ is well defined, and is some translate of ω n-1 (r(γ)), with the origin at the puncture of one of its tiles. Consider the path γ.e, with e ∈ E n such that s(e) = r(γ). Then, e encodes an inclusion of s(e) inside ω(r(e)). It means that it encodes an inclusion of ω n-1 (r(γ)) inside ω n (r(e)). The patch ψ(γ.e) is defined as the translate of ω n (r(e)) such that the inclusion ψ(γ) ⊂ ψ(γ.e) is the inclusion defined by the edge e.

Remark that if x ∈ ∂B, ψ(x) does not a priori define more than a partial tiling. The fact that it corresponds to a unique tiling results from the border forcing condition. Then the map ψ, extended to infinite paths, is the inverse of φ.

Continuity can be proved directly, but can also be seen as a consequence of Theorem 2.25, which we prove later.

Lemma 2.23. There exists C 1 , C 2 positive constants, such that for all path γ of length n in B,

B(0, C 1 λ n ) ⊂ Supp Ext ψ(γ) , B(0, C 2 λ n ) ⊂ Supp Ext ψ(γ) ,
where λ is the expansion factor of ω.

Proof. Let k be the smallest number such that for all v ∈ V, there exists two distinct paths of length k starting from v. For example, k = 1 when there are two elements of E tot starting from v, for all v, and k = 2 in the case of Fibonacci, pictured in Figure 1. Let C be the maximum diameter of the tiles. Let γ be a path of length n. Then, one can find two distinct extensions of length n + k of γ; call them γ 1 and γ 2 . Remember that ψ(γ i ) is some translate of ω n+k-1 (t i ) with t i ∈ A, and 0 ∈ Supp ψ(γ) . So ψ(γ 1 ) and ψ(γ 2 ) differ within range Cλ n+k-1 . Therefore, with C 1 = Cλ k-1 , we have the second line.

For the first inclusion, let m be the exponent for which ω satisfies the border forcing condition, and γ a path of length m. Let t ∈ A be the range of γ. Then Ext(ω m (t)) covers an ǫ-neighborhood of Supp(ω m (t)). It means that, since ψ(γ) is a translate of ω m (t) which contains 0, B(0, ǫ) ⊂ Ext(ψ(γ)).

Similarly, for all path of length m + k, B(0, ǫλ k ) ⊂ Ext(ψ(γ)).

With n = m + k and C 1 = ǫ/λ m , one has the result. For n < m, the inequality still holds (up to a reduction of ǫ).

Remark 2.24. We can simplify the diagram in the case where a symmetry group

G ⊂ O n (R d ) acts freely on A, such that ∀g ∈ G, ∀p ∈ A, ω(g • p) = g • ω(p).
With this, it is possible to extend the action of G to the edges of E tot . It induces naturally an action of G on ∂B. The group G also acts on Ω by isometries, and these two actions are conjugate by ψ.

One can "fold" the diagram by taking a quotient as follows. Define:

B ′ = (V ′ , E ′ tot , r ′ , s ′ ), where V ′ 0 = V, E ′ 0 = E 0 × G, and ∀n ≥ 1, V ′ n = V n /G and E ′ n = E n /G. Furthermore, for [e] G ∈ E n /G, r ′ ([e] G ) := [r(e)] G and s ′ ([e] G ) := [s(e)]
G . These definitions do not depend on the choice of the representant e. For (e, g) ∈ E ′ 0 = E 0 × G, define r ′ ((e, g)) := [r(e)] G and s ′ ((e, g)) := •. One can check that these two diagrams are "the same" in the sense that the tree structure of their respective sets of paths of finite length is the same.

In terms of substitution, the image by ψ of a path γ = (ε 0 , e 1 , . . . , e n-1 ) is the image of ω n (r(γ)) under some element of R d ⋊ G . The translation part is given by the truncated path (e 1 , . . . , e n-1 ). The rotation part is encoded in the first edge ε 0 ∈ E ′ 0 : ε 0 = (ε ′ , g), where ε ′ brings no additional information, but g corresponds to the choice of an orientation for the patch.

There is still an action of G on ∂B ′ , defined by: g • ((ε 0 , h), e 1 , . . .) = ((ε 0 , gh), e 1 , . . .) .

Weights and metric

We gave in Theorem 2.22 an explicit homeomorphism φ between the boundary of the Bratteli diagram, and the transversal of the tiling space. Since we are interested in metric properties of the Cantor set, we now show that a correct choice of weights on the vertices of the Bratteli diagram gives a metric on ∂B which is Lipschitz equivalent to the usual metric on Ξ (the equivalence being induced by φ).

Theorem 2.25. Let B the Bratteli diagram associated with a substitution ω. Let λ be the inflation factor of ω. We make the following assumption on the weight function w:

∀n ≥ 1, ∀v ∈ V, w(v, n + 1) = 1 λ w(v, n). (2.1)
Then the function φ : (Ξ, d) → (∂B, d w ) defined in Proposition 2.22 is a bi-Lipschitz homeomorphism.

Proof. It is enough to show that there are two constants m, M > 0, such that for all γ ∈ Π,

m ≤ diam(U γ ) diam(φ -1 (U γ )) ≤ M.
Since the U γ are a basis for the topology of ∂B, this will prove the result. Let γ ∈ Π n . By Lemma 2.23, any two tilings in φ -1 (U γ ) coincide on a ball of radius at least C 1 λ n . Therefore,

diam(φ -1 (U γ )) ≤ 1 C 1 λ -n .
On the other hand, it is possible to find two tilings in φ -1 (U γ ), which disagree on a ball of radius C 2 λ n . Therefore,

diam(φ -1 (U γ )) ≥ 1 C 2 λ -n .
And by definition of the weights,

min{w(v, 1) ; v ∈ V}λ -n+1 ≤ diam(U γ ) ≤ max{w(v, 1) ; v ∈ V}λ -n+1 .
Together with the previous two inequalities, this proves the result.

3 Spectral triple, ζ-function, and complexity

Spectral triple

Let B be a weighted Bratteli diagram, and let (∂B, d) be the ultrametric Cantor set of infinite rooted paths in B. Pearson and Bellissard built in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] a spectral triple for (∂B, d) when B is a tree (that is when for all vertex v ∈ V \ {•}, the fiber r -1 (v) contains a single point). In our setting, their construction is adapted as follows.

A choice function on B is a map 

τ : Π → ∂B × ∂B γ → τ + (γ), τ -(γ) such that d τ + (γ), τ -(γ) = diam[γ] , (3.2 
π τ (f ) = γ∈Π f τ + (γ) 0 0 f τ -(γ) . (3.3) 
This notation means that for all ξ ∈ H and all γ ∈ Π,

π τ (f ) • ξ (γ) = f τ + (γ) 0 0 f τ -(γ) • ξ(γ) .
A Dirac operator D on H is given by

D = γ∈Π 1 diam[γ] 0 1 1 0 , (3.4) 
that is D is a self-adjoint unbounded operator such that (D 2 + 1) -1 is compact, and the commutator

D, π τ (f ) = γ∈Π f τ + (γ) -f τ -(γ) diam[γ] 0 -1 1 0 , ( 3.5) 
is bounded for all f ∈ C Lip (∂B). Finally a grading operator is given by Γ = 1 l 2 (Π) ⊗ 1 0 0 -1 , and satisfies Γ 2 = Γ * = Γ, and commutes with π τ and anticommutes with D. The following is Proposition 8 in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF].

Proposition 3.1. C Lip (∂B), H, π τ , D, Γ is an even spectral triple for all τ ∈ E.

In [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] the set of choice functions E is considered an analogue of a tangent bundle over ∂B, so that the above commutator is interpreted as the directional derivative of f along the choice τ . The metric on ∂B is then recovered from the spectral triple by using Connes formula, i.e. by taking the supremum over all directional derivatives Theorem 3.2 (Thm. 1 in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF]). The following holds:

d(x, y) = sup |f (x) -f (y)| ; f ∈ C Lip (∂B) , sup τ ∈E [D, π τ (f )] ≤ 1 .
(3.6)

Definition 3.3. The ζ-function associated with the spectral triple is given by:

ζ(s) = 1 2 Tr |D| -s = γ∈Π diam[γ] s , (3.7) 
and we will denote by s 0 ∈ R its abscissa of convergence, when it exists.

We now assume that the weight system on B is such that s 0 ∈ R.

Definition 3.4. The Dixmier trace of a function f ∈ C Lip (∂B) is given by the following limit, when it exists:

µ(f ) = lim s↓s 0 Tr |D| -s π τ (f ) Tr |D| -s . (3.8) 
It defines a probability measure on ∂B and does not depend on the choice τ ∈ E (Theorem 3 in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF]). Furthermore, when f = χ γ is a characteristic function, the limit above can be rewritten: where Π γ stands for the set of paths in Π with prefix γ.

µ([γ]) := µ(χ γ ) = lim

The measure on ∂B

Let (Ω, ω) be a substitution tiling space, A be the Abelianization matrix of ω, and B be the associated Bratteli diagram, as in previous section (Definition 2.18). We assume that B comes together with a weight function w, which satisfies the properties given in Definition 2.9, and adapted to the substitution ω. In particular, it satisfies w(a, n + 1) = λ -1 w(a, n) for all a ∈ A and n ∈ N.

As we assumed A to be primitive, it has a so called Perron-Frobenius eigenvalue, denoted Λ P F , which satisfies the following (see for example [START_REF] Horn | Topics in matrix analysis[END_REF]):

(i) Λ P F is strictly greater than 0, and equals the spectral radius of A;

(ii) For all other eigenvalue ν of A, |ν| < Λ P F ;

(iii) The right and left eigenvectors, v R and v L , have strictly positive coordinates;

(iv) If v R and v L are normalized so that v R , v L = 1, then:

lim n→+∞ A n Λ n P F = v L v t R ;
(v) Any eigenvector of A with non-negative coordinates corresponds to the eigenvalue Λ P F .

A classical result about linear dynamical systems together with the properties above gives the following result, which will be needed later. Lemma 3.5. Let A be a primitive matrix with Perron-Frobenius eigenvalue Λ P F . Let P M be its minimal polynomial:

P M = (X -Λ P F ) p i=1 (X -α i ) m(i) .
Then, the coefficients of A n are given by:

[A n ] ab = c ab Λ n P F + p i=1 P (a,b) i (n)α n i ,
where the P i 's are polynomials of degree m(i), and c ab > 0.

Note that the coefficients (a, b) of A n gives the number of paths of length n in the diagram between some vertex (a, k) ∈ V k and (b, n + k). This lemma states that this number is equivalent to c ab Λ n P F when n is large.

Proof. We have c ab > 0, as it is the (a, b) entry of the matrix v L v t R defined above. The rest is classical, and results from the Jordan decomposition of the matrix A.

We assume that Ω is a d-dimensional tiling space. Since ω expands the distances by a factor λ, the volumes of the tiles are dilated by λ d . This gives the following result: Proposition 3.6. Let Λ P F be the Perron-Frobenius eigenvalue of A. Then Λ P F = λ d . In particular, Λ P F > 1. The quantity w(γ) only depends on r(γ). Furthermore, w(a, n) tends to zero like λ n = Λ 1/d P F n when n tends to infinity. So we have:

n∈N) m s Λ ns/d P F Card(Π n ) ≤ ζ(s) ≤ n∈N) M s Λ ns/d P F Card(Π n ),
where m (resp. M ) is the minimum (resp. the maximum) of the w(a, 1), a ∈ A Now, since Card(Π n ) grows like Λ n P F up to a constant (see Lemma 3.5), we have the result.

Theorem 3.8. The measure µ given by the Dixmier trace (Definition (3.4)) is well defined, and given as follows. Let v = (v a ) a∈A be the (right) eigenvector for A, normalized such that

e∈E 0 v r(e) = 1. For all γ ∈ Π, let (a, n) := r(γ) ∈ V n . Then: µ([γ]) = v a Λ -n+1 P F
.

In particular, in the case of a substitution tiling, ψ * (µ) is the measure given by the frequencies of the patches, and therefore is the restriction to Ξ of the unique ergodic measure on (Ω, R d ) (see [START_REF] Solomyak | Dynamics of self-similar tilings[END_REF]).

Proof. Let γ = (ε 0 , e 1 , . . . , e n-1 ) ∈ Π n , and (a, n) := r(γ). Let Π γ the subset of Π of all paths which have γ as a prefix. Define:

f (s) = η∈Πγ w(η) s η∈Π w(η) s .
Then µ([γ]) = lim s↓d f (s), when this limit exists. The terms of the sum above can be grouped together: if η is a path of Π γ , then the quantity w(η) s only depends on the length of η, say n + k (k ≥ 0), and on r(η) = b ∈ A. Then, if we call N (a, b; k) the number of paths of length k from a to b, we can group the sum and write:

f (s) = k≥0 b∈A N (a, b; k)w(b, n + k) s 1 + k≥0 ε∈E 0 b∈A N (r(ε), b; k)w(b, k) s . Now, since w(b, n) s = λ (-n+1)s w(b, 1) s , we can write: b∈A N (a, b; k)w(b, n + k) s = λ (-n-k+1)s E t a A k W (s),
where E a is the vector (δ a (b)) b∈A , and W is the continuous vector-valued function s → (w((b, 1)) s ) b∈A . Similarly,

ε∈E 0 b∈A N (r(ε), b; k)w(b, k) s = λ (-k+1)s E t E 0 A k W (s),
where E E is the sum over ε ∈ E 0 of all E r(ε) . Now, by lemma 3.5, we have:

E t a A k W (s) = c a (s)Λ n P F + p i=1 P i (n, s)α n i ,
where the P i 's are polynomial in n for s fixed, with Λ P F > |α i | for all i, and c a (s) > 0. Furthermore, the P i are continuous in s. Similarly,

E t E 0 A k W (s) = c E (s)Λ n P F + p i=1 Q i (n, s)α n i ,
and since E E 0 is a linear combination of the E a 's,

c E = ε∈E 0 c r(ε) . (3.10)
Then, we write:

f (s) = λ -ns k≥0 c a (Λ P F /λ s ) n + k≥0 p i=1 P i (n, s)(α i /λ s ) n λ s + k≥0 c E (Λ P F /λ s ) n + k≥0 p i=1 Q i (n, s)(α i /λ s ) n = λ -ns k≥0 c a (Λ P F /λ s ) n + R 1 (s) λ s + k≥0 c E (Λ P F /λ s ) n + R 2 (s) ,
Note that the expression above is defined a priori for s > d, but R i (i = 1, 2) is defined and continuous for s ≥ d (the continuity results from the absolute convergence of the sum). The remaining sums above can be computed explicitly, and we have:

f (s) = λ -ns c a (s) + 1 -(Λ P F /λ s ) n R 1 (s) c E + 1 -(Λ P F /λ s ) n (R 2 (s) + λ s )
.

Then it is now clear that this expression is continuous when s tends to d, and has limit

Λ -n P F c a (d)/c E (d).
Let u a be defined as c a /c E for all a. Let us show that u = v. First, show that (u a ) a∈A (or equivalently, (c a ) a∈A ) is an eigenvector of A associated with Λ P F . We have:

c a (d) = lim n→+∞ E a A n W (d) Λ n P F = E a LW (d),
where L = xy t , with x (resp. y) an eigenvector of A (resp. of A t ) associated with Λ P F , and x, y = 1. So c a is the a-coordinate of LW (d) = y, W (d) x, and so is an eigenvector of A associated to Λ P F . Equation (3.10) now proves that u has the good normalization, and that u = v.

Complexity and box counting dimension

Definition 3.9. Let (X, d) be a compact metric space. Then, the box counting dimension is defined as the following limit, when it exists:

dim(X, d) = lim t→0 - ln(N t ) ln(t) ,
where N t is the minimal number of balls of radius t needed to cover X.

Theorem 3.10 (Thm. 2 in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF]). Given an ultrametric Cantor set and its associated ζfunction, let s 0 be the abscissa of convergence of ζ. Then:

s 0 = dim(X, d) .
This dimension can be linked to complexity for aperiodic repetitive tilings.

Definition 3.11. The complexity of a tiling T is a function p defined as follows:

p(n) = Card q ⊂ (T -x) ; x ∈ R d , B ( 
0, n) ⊂ Supp(q) and ∀q ′ ⊂ q, B(0, n) ⊂ Supp(q ′ ) .

In other words, p(n) is the number of patches q of T of size n.

Note that when T is repetitive (for example when T is a substitution tiling) the complexity is the same for all the tilings which are in the same tiling space. Theorem 3.12. Let Ω be a minimal tiling space, and Ξ its canonical transversal, endowed with the metric defined in Section 2.2. Let p be the associated complexity function. Then, for this metric, the box dimension is given by:

dim(Ω, d) = lim n→+∞ ln(p(n)) ln(n) .
Proof. Let N t be the number of balls of diameter smaller than t needed to cover Ξ. Let us first prove that for all n ∈ N,

p(n) = N 1/n .
Let L(n) be the set of all patches of size n, so that p(n) = Card(L(n)). Then, since all the tilings of Ξ have some patch of size n at the origin, the set:

U q ; q ∈ L(n)
is a cover of Ξ by sets of diameter smaller than 1/n. So p(n) ≥ N 1/n . To prove the equality, assume we have a covering of Ξ by open sets {V i ; i ∈ I}, with Card(I) < p(n), and diam(V i ) ≤ 1/n for all n. Then, in every V i , we can find some set of the form U q , q a patch. This allows us to associate some patch q(i) to all i ∈ I. We claim that for all such q(i), B(0, n) ⊂ Ext(q(i)), where Ext(q) is the maximal unambiguous extension of p, as defined in 2.15. Indeed, if it were not the case, diam(U q ) would be smaller than n. Therefore, by restriction, to each i ∈ I, we can associate a patch q ′ (i) of size n, such that U q ′ (i) ⊂ V i . Since the {V i } i∈I cover Ξ, all patches of size n are obtained this way, and p(n) ≤ Card(I). Since this holds for all cover, p(n) ≤ N 1/n . Now, N t is of course an increasing function of t. Therefore,

N t-1 ≤ p [1/t] ≤ N t ,
and so:

- N t-1 ln(t) ≤ p [1/t] ln([1/t]) ≤ - N t ln(t -1)
.

Letting t tend to zero proves the theorem.

Corollary 3.13. Let Ξ be the transversal of a minimal aperiodic tiling space, with a complexity function which satisfies

C 1 n α ≤ p(n) ≤ C 2 n α for C 1 , C 2 , α > 0. Then: dim(Ξ, d) = α.
Let now consider a tiling space Ω associated to a substitution ω. Let B be the weighted Bratteli diagram associated with it. We proved in Section 3.2 that for a Bratteli diagram associated with a substitution tiling of dimension d, the abscissa of convergence is exactly d. It is furthermore true that the box dimension of the transversal Ξ with the usual metric is d; it results from the invariance of the box dimension under bi-Lipschitz equivalence, which is proved in [START_REF] Falconer | Fractal geometry[END_REF]Ch. 2.1].

Therefore, we can deduce the following result:

Corollary 3.14.
Let Ω be a substitution tiling space satisfying our conditions. Then there exists a function ν such that:

p(n) = n ν(n) , with lim n→+∞ ν(n) = d .
Equivalently, for all ǫ > 0, there exists C 1 , C 2 > 0 such that for all n large enough,

C 1 n d-ǫ ≤ p(n) ≤ C 2 n d+ǫ .
This result is actually weaker than what we can actually expect: in fact, there exist

C 1 , C 2 > 0 such that C 1 n d ≤ p(n) ≤ C 2 n d .
The upper bound was proved by Hansen and Robinson for self-affine tilings (see [START_REF] Robinson | Symbolic dynamics and tilings of R d . In Symbolic dynamics and its applications[END_REF]). The lower bound can be proved by direct analysis for substitution tilings. It would also result from the conjecture that any d-dimensional tiling with low complexity (which means p(n)/n d tends to zero) has at least one period (see [START_REF] Lagarias | Repetitive Delone sets and quasicrystals[END_REF]). However, it is still interesting to see how the apparently abstract fact that the abscissa of convergence s 0 equals the dimension gives in fact a result on complexity.

Laplace-Beltrami operator

We introduce here the operators of Pearson and Bellissard, revisited in our context of Bratteli diagram, and give their explicit spectrum. We then compare those operators with the Dirac operators proposed by Christensen and Ivan in [START_REF] Christensen | Spectral triples for AF C * -algebras and metrics on the cantor set[END_REF] for AF -algebras.

The Pearson-Bellissard operators

Let B be a weighted Bratteli diagram. The Dixmier trace (3.8) induces a probability measure ν on the set E of choice functions (see [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] section 7.2.). The following is [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] Theorem 4. Proposition 4.1. For all s ∈ R the bilinear form on L 2 (∂B, dµ) given by

Q s (f, g) = 1 2 E Tr |D| -s [D, π τ (f )] * [D, π τ (g)] dν(τ ) , (4.11 
)

with dense domain Dom Q s = χ γ : γ ∈ Π , is a closable Dirichlet form.
The classical theory of Dirichlet forms [START_REF] Fukushima | Dirichlet forms and Markov processes[END_REF] allows to identify Q s (f, g) with f, ∆ s g for a non-positive definite self-adjoint operator ∆ s on L 2 (∂B, dµ) which is the generator of a Markov semi-group. We have Dom Q s ⊂ Dom ∆ s ⊂ Dom Qs where Qs is the smallest closed extension of Q s . The following is taken from [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] section 8.3.

Theorem 4.2. The operator ∆ s is self-adjoint and has pure point spectrum.

Following Pearson and Bellissard we can calculate ∆ s explicitly on characteristic functions of cylinders. For a path η ∈ Π let us denote by ext 1 (η) the set of ordered pairs of distinct edges (e, e ′ ) which can extend η one generation further.

∆ s χ γ = - |γ|-1 k=0 1 G s (γ k ) (µ[γ k ] -µ[γ k+1 ])χ γ -µ[γ](χ γ k -χ γ k+1 ) (4.12a) with G s (η) = 1 2 diam[η] 2-s (e,e ′ )∈ext 1 (η) µ[η • e]µ[η • e ′ ] (4.12b)
Note that the term χ γ k -χ γ k+1 is the characteristic function of all the paths which coincide with γ up to generation k and differ afterwards, i.e. all paths which split from γ at generation k. And µ[γ k ]µ[γ k+1 ] is the measure of this set.

We now state the main theorem which gives explicitly the full spectrum of ∆ s .

Theorem 4.3. The spectrum of ∆ s is given by the following.

(i) 0 is a single eigenvalue with eigenspace 1 = χ ∂B .

(ii

) λ 0 = 1 Gs(•) is eigenvalue with eigenspace E 0 = 1 µ[ε] χ ε -1 µ[ε ′ ] χ ε ′ : ε, ε ′ ∈ E 0 , ε = ε ′ of dimension dim E 0 = n 0 -1, where n 0 is the cardinality of E 0 . (iii) For γ ∈ Π, λ γ = |γ|-1 k=0 µ[γ k+1 ] -µ[γ k ] G s (γ k ) - µ[γ] G s (γ) (4.13)
is eigenvalue with eigenspace

E γ = 1 µ[γ • e] χ γ•e - 1 µ[γ • e ′ ] χ γ•e ′ : (e, e ′ ) ∈ ext 1 (γ) (4.14) of dimension dim E γ = n γ -1,
where n γ is the number of edges extending γ one generation further.

Proof. The formula for the eigenvalues is calculated easily noticing that ∆ s χ γ•e and ∆ s χ γ•e ′ only differ by the last term in the sum in equation (4.12a).

The spectrum of ∆ s is always the closure of its set of eigenvalues (whatever its domain may be). Hence we do not miss any of it by restricting to characteristic functions.

We now show that all the eigenvalues of ∆ s are exactly given by the λ γ . It suffices to check that the restriction of ∆ s to Π n has exactly dim Π n eigenvalues (counting multiplicity). Notice that χ γ is the sum of χ γ•e over all edges e extending γ one generation further. Hence an eigenfunction in E γ for γ ∈ Π k can be written as a linear combination of characteristic functions of paths in Π m , for any m > k. The number of eigenvalues λ γ for γ ∈ Π n-1 is Remark 4.4. As noted in Remark 2.3, our formalism with Bratteli diagrams includes as a special case the approach of Pearson-Bellissard for weighted Cantorian Michon trees. Hence Theorem 4.3 gives also the spectrum and eigenvectors of their Laplace-Beltrami operators.

The eigenvectors (4.14) are very simple to picture. Given a path γ, and two extensions (a, b) ∈ ext 1 (γ), an eigenvector is the difference of their characteristic functions weighted by their measures. See Figure 2 in section 1 for an example for the Fibonacci diagram.

Remark 4.5. One can easily see that the eigenspaces of ∆ s are pairwise orthogonal. Upon orthonormalising E 0 and the E γ , one gets an orthonormal basis of L 2 (∂B, dµ) made of eigenvectors of ∆ s .

Comparison with the Dirac operator of Christensen and Ivan

Christensen and Ivan introduced in [START_REF] Christensen | Spectral triples for AF C * -algebras and metrics on the cantor set[END_REF] a family of spectral triple for an AF -algebra A = lim -→n

A n with a faithfull state τ . We recall briefly the construction of their Dirac operators. They considered the GNS representation associated with τ , on the Hilbert space H τ that is the completion of A under the dot product

a, b = τ (b * a). If [a] denotes the image of a ∈ A in H τ , the representation is given by π τ (a)[b] = [ab]. The projection A → A n becomes H τ → H n = {π τ (a)[1] : a ∈ A n }. There is an orthogonal projection P n : [A n+1 ] → [A n ],
with kernel the finite dimensional vector space ker

P n = [A n ] ⊥ ∩ [A n+1 ].
We let Q n be the projection H τ → ker P n . Given a sequence of positive real numbers λ = (λ n ) n∈N , Christensen and Ivan defined the following self-adjoint operator

D λ = n∈N λ n Q n . (4.15) 
Under some growth conditions for the sequence λ, they showed that D λ is a suitable Dirac operator, and that the metric it induces on the space of states generates the weak- * topology. Now let A = C(∂B) and A n = χ γ : γ ∈ Π n . An element χ γ ∈ A n can be written χ γ•e where the sum runs over the edges that extend γ one generation further. The dot product in

H = L 2 (∂B, dµ) reads on A χ γ•e , χ γ•f = µ[γ • e] δ ef ,
and the completion of A under , is H here of course. To simplify notation we identify χ γ with its image in H. The orthogonal complement of χ γ in [A n+1 ] is generated by elements of the form

χ γ•e /µ[γ • e] -χ γ•f /µ[γ • f ], for (e, f ) ∈ ext 1 (γ), i.e.
it is exactly the eigenspace E γ of ∆ s given in Theorem 4.12. Therefore ker P n corresponds in this case to the direct sum of the E γ for γ ∈ Π n . Thus P n is the sum of the spectral projections for eigenvalues associated to paths γ ∈ Π n . In the case where λ γ = λ n for all γ ∈ Π n (as in the Thue-Morse example in section 6.2) then ∆ s is exactly the Dirac operator of Christensen and Ivan D λ given in equation (4.15).

Cuntz-Krieger algebras and applications

We now consider stationary Bratteli diagrams. We use the self-similar structure to further characterize the operator ∆ s and its spectrum.

Cuntz-Krieger algebras

Let B be a stationary Bratteli diagram. Let A be its Abelianization matrix. Let us denote by E 0 the set of edges ε linking the root to generation 1, and by E the set of edges linking two generations (excluding the root). Let à = ãef e,f ∈E be the square matrix with entries ãef = 1 if e can be composed with (or followed down the diagram by) f and ãef = 0 else. There is an associated Bratteli diagram B with Abelianization matrix Ã, which is "dual" to B in the sense that its vertices corresponds to the edges of B and its edges to the adjacencies of edges in B. Note that, because the entries of à are zeros or ones, all the edges in B are simple. Furthermore, since the matrix A is primitive, it is easily checked that à is primitive as well.

Remark 5.1. If B has only simple edges, we can simply take B = B and à = A.

The Cuntz-Krieger algebra O Ã, is the C * -algebra generated by the partial isometries U e , e ∈ E (on a separable, complex, and infinite dimensional Hilbert space H) that satisfy the following relations.

O Ã = C * U e , U * e , e ∈ E | U e U * e , U * e U e ∈ P(H) , U * e U e = f ∈E Ãef U f U * f , (5.16) 
where P(H) denotes the set of projections in H:

p ∈ P(H) ⇐⇒ p 2 = p * = p.
By abuse of notation we write the basis elements of l 2 (Π \ Π 1 ) as γ ∈ Π \ Π 1 . We define a representation of O Ã on l 2 (Π \ Π 1 ) as follows:

π 0 (U e )(ε, e 1 , e 2 , • • • ) = (ε ′ , e, e 1 , e 2 , • • • ) if A ee 1 = 1 0 else (5.17a) π 0 (U * e )(ε, e 1 , e 2 , • • • ) = (ε ′ , e 2 , e 3 , • • • ) if e 1 = e 0 else (5.17b) 
where ε ′ ∈ E 0 stands for the (possibly) new edges linking to the root, as illustrated in the case of the Penrose substitution below. The orientation of ε ′ however is taken to be the same as that of ε: if ε = (s(e 1 ), g) then we have ε ′ = (s(e), g) (see Remark 2.24). In other words we require that ψ(ε ′ , e, e 1 ,

• • • ) = ω • ψ(ε, e 1 , • • • ) + x for some x ∈ R d ,
and where ψ : ∂B → Ξ is the homeomorphism of Proposition 2.22. See Figure 4 for some examples.

Lemma 5.2. π 0 is a faithful * -representation of O Ã on l 2 (Π \ Π 1 ).
Proof. This follows from the unicity of the algebra O à for a primitive matrix à [14, Theorem 2.18].

We now define a representation on L 2 (∂B, dµ). To simplify notation we will simply write U e for π 0 (U e ). First on Dom∆ s ⊂ L 2 (∂B, dµ) we let:

π(U ( * ) e )χ γ = χ U ( * ) e γ if U ( * )
e γ = 0 0 else (5.18) for paths in Π n≥2 and by linearity for shorter paths, using the relations χ γ = e χ γ•e (the sum running over all edges e extending the path one generation further). This allows to define another representation on the set of eigenvalues of ∆ s as follows. The Hilbert space we consider is the l 2 space of pairs (λ γ , γ) together with the element (0, 0). And we simply write λ γ and 0 for such elements. We set

• ε d d d d d d d • ε ′ ~~~~~~~• ε ′ ~~~~~~• e 2 e 1 e 3 • e 4 | | | | | | | | | | | | | | | | | e 5 • f f f f f f f f f f f f f f f f f • • U * e 4 γ f f f f f f f f f f f f f f f f f • • γ f f f f f f f f f f f f f f f f f • • • | | | | | | | | | | | | | | | | | • • • • • Ue 3 γ f f f f f f f f f f f f f f f f f • • • • • • • • •
u e (λ γ ) = λ Ueγ if U e γ = 0 0 else , (5.20) 
and one can easily check that this defines a faithful * -representation of O Ã. Those maps u e are calculated as shown below. 

u e (λ γ ) = Λ (d+2-s)/d P F λ γ - µ[ε] -µ[•] G s (•) + µ[ε ′ ] -µ[•] G s (•) + µ[ε ′ e] -µ[ε ′ ] G s (ε ′ ) (5.21)
Proof. By equation (4.13) we have

λ Ueγ = - |Ueγ|-1 k=0 µ[(U e γ) k ] -µ[(U e γ) k+1 ] G s ((U e γ) k ) - µ[U e γ] G s (U e γ) . (5.22) 
The terms for k = 0, 1, in the above sum give the last two terms in equation ( 5 to the sum over k = 1, • • • |γ| -1 (and the last term) for the eigenvalue λ γ (equation (4.13)). We then add the contribution of the root, i.e. the term for k = 0, to get equation (5.21).

Note that the maps u e are affine, with constant terms, written β e , that only depend on e. We will write for now on

u e (λ γ ) = Λ s λ γ + β e ,
with Λ s = Λ (d+2-s)/d P F

.

(5.23)

The eigenelements of ∆ s corresponding to E 0 , and E ε , ε ∈ E 0 , are immediate to calculate explicitly from equations (4.13) and (4.14). We can therefore calculate explicitly all other eigenelements by action of O Ã on those corresponding to the E ε , ε ∈ E 0 . We summarize this in the following.

Proposition 5.5. For γ = (ε, e 1 , e 2 , • • • e n ) ∈ Π n≥1 , set U γ = U e 1 U e 2 • • • U en and u γ = u e 1 • u e 2 • • • • u en . For any γ ∈ Π n≥1 , we have E γ = U γ E ε ′ , and
λ γ = u γ (λ ε ′ ) = Λ n s λ ε ′ + n j=1 Λ j-1
s β e j .

(5.24)

Bounded case

We consider here the case s > d + 2. We show that ∆ s is bounded and characterize the boundary of its spectrum.

Proposition 5.6. For s > d + 2, ∆ s is a bounded, and we have

∆ s B(L 2 (∂B,dµ)) ≤ c 1 1 -Λ (d+2-s)/d P F , with c = max max ε∈E 0 |λ ε |, max e∈E |β e | .
Proof. By Proposition 5.5, equation (5.24), we see that for γ ∈ Π n we have.

|λ γ | ≤ max max ε∈E 0 |λ ε |, max e∈E |β e | n j=0
Λ j s .

From equation (5.23) we have Λ s = Λ (d-s+2)/d P F

< 1, therefore the above geometric sum converges, and is bounded for all n by its sum 1/(1 -Λ s ).

We define the ω-spectrum of ∆ s as

Sp ω (∆ s ) = n∈N Sp(∆ s ) \ Sp ∆ s | Πn .
In our case here, this is the boundary of the (pure point) spectrum of ∆ s . Under some conditions on A and the β e , e ∈ E, and for s > d + 2 large enough, one can show that Sp ω (∆ s ) is homeomorphic to Ξ, and that this homeomorphism is Hölder [START_REF] Julien | Hölder embedding of self-similar cantor sets[END_REF].

Weyl asymptotics

The following theorem justifies calling ∆ s a Laplace-Beltrami operator. Indeed, for s = s 0 = d, Theorem 5.7 shows that the number of eigenvalues of ∆ d of modulus less that λ behaves like λ d/2 when λ → ∞, which is the classical Weyl asymptotics for the Laplacian on a compact d-manifold. 

c -λ d/(d-s+2) ≤ N s (λ) ≤ c + λ d/(d-s+2) , (5.25) 
as λ → +∞, for some constants 0 < c -< c + .

Proof. By Proposition 5.5, equation (5.24), there exists constants x ± , y ± > 0, such that for all γ ∈ Π n we have

x -Λ n s + y -≤ |λ γ | ≤ x + Λ n s + y + . For s < d + 2, Λ s > 1 (see equation (5. 23 
)), so there is an integer k > 0 (independent of n) such that x + Λ n s + y + ≤ x -Λ n+k s + y -. Hence for all γ ∈ Π l , l ≤ n, we have |λ γ | ≤ x + Λ n s + y + , and for all γ ∈ Π l , l ≥ n + k, we have |λ γ | ≥ x -Λ n+k s + y -. Therefore we get the inequalities: Card Π n ≤ N (x + Λ n s + y + ) ≤ Card Π n+k . There are constants c 1 > c 2 > 0 such that for all l ∈ N, c 1 Λ l P F ≤ Card Π l ≤ c 2 Λ n P F , so that we get c 1 Λ n P F ≤ N (x + Λ n s + y + ) ≤ c 2 Λ n+k P F = c 3 Λ n P F . We substitute Λ s from equation (5.23) to complete the proof.

Seeley equivalent

For the case s = s 0 = d we give an equivalent to the trace Tr e t∆ d , for s = s 0 = d, as t ↓ 0. The behavior of Tr e t∆ d like t -d/2 as t ↓ 0 is in accordance with the leading term of the classical Seeley expansion for the heat kernel on a compact d-manifold.

Theorem 5.8. There exists constants c + ≥ c -> 0, such that as t ↓ 0

c -t -d/2 ≤ Tr e t∆ d ≤ c + t -d/2 .
(5.26)

Proof. Let P γ be the spectral projection (onto E γ ) for γ ∈ Π n≥1 , and P 0 that on E 0 . The trace reads

Tr e t∆s = 1 + e λ 0 t Tr (P 0 ) + Let us consider F the field of decomposition of the characteristic polynomial of A over Q (for example, a realization of F is Q[X]/ A ). It is clear that Λ P F and the coordinates of the associated eigenvectors belong to F. From the assumptions above and using equations (4.12b), (4.13) and (5.21), we see that the λ ε , ε ∈ E 0 , and the β e , e ∈ E, belong to F. Hence by equation (5.24) all the eigenvalues of ∆ d belong to F. It is clear that the maps u e in equation (5.23) are affine maps in this field, whose linear part is the multiplication by Λ 2/d P F (that is Λ 2 P F or Λ P F depending on d). Now, remark that F is just a finite dimensional Q-vector space. Therefore, we can chose a basis and represent its elements by vectors in Q r for some r. Now, the linear map which is multiplication by Λ P F or Λ 2 P F can be represented by a matrix in this basis, which we call C. This matrix has coefficients in Q. Note that necessarily, Λ where β e is the matrix of β e in the basis of F we just chose. The general expression of an eigenvalue given in proposition 5.5, equation (5.24), takes here the form

λ γ = C n λ ε ′ + n j=1 C j-1 β e j . (5.36) 
This identification of F and Q r allows to describe the distribution of eigenvalues in a geometric way. We now assume that Λ P F is Pisot, i.e. it is real and greater than 1, and all its algebraic conjugates µ satisfy |µ| < 1. It implies that the matrix C has a single eigenvalue of modulus greater than 1, which is Λ Theorem 5.9. Let dist V be a distance (given by a norm) on Q r ≃ F. There exists a constant M > 0 such that for any eigenvalue λ γ of ∆ d , one has dist λ γ , V ≤ M.

(5.37)

Proof. One can decompose the space F as a direct sum of V on the one hand, and the sum of of all other characteristic spaces of C on the other hand, which we call V ′ . With this decomposition, C is block-diagonal, with Λ 2/d P F as the first diagonal coefficient. Note C ′ the other block (this is the matrix of the application induced by C on V ′ ).

Chose some Euclidean norm arbitrarily, but such that V and V ′ are orthogonal. Furthermore, it is possible to chose the restriction of the norm on V ′ so that the induced matricial norm satisfies C < 1. The distance dist λ γ , V equals the norm of the projection of λ γ to V ′ . Call P the projection to V ′ with respect to V . Using the fact that C and P commute (P C = CP = P CP = C ′ ), we have:

dist λ γ , V = P   C n λ ε ′ + n j=1 C j-1 β e j   ≤ (C ′ ) n . λ ε ′ + n j=1 (C ′ ) j-1 . P ( β e j ) (5.38)
Now, remark that there are only finitely many β e and finitely many λ ε , so they can be dominated uniformly by a constant. Furthermore, C ′n ≤ C ′ n , which is a geometric series decreasing to zero. So it is enough to chose:

M = max e P. β e n≥0 C ′ n .
Remark 5.10. (i) Up to rescaling the basis of the space F by an integer large enough, it is possible to express the eigenvalues as integer column vectors.

(ii) In greater dimension, it is possible to generalize. The required property is that the weights must belong to a suitable algebraic field.

(iii) If C is no longer Pisot but strictly hyperbolic (i.e. has no eigenvalue of modulus 1), then the above result still holds but with V the unstable space (the span of the eigenvectors with eigenvalues |µ| > 1).

Examples

We illustrate here the results of sections 4 and 5 for the classic examples of the Thue-Morse, Fibonacci, Ammann-A2, and Penrose tilings. 

The Fibonacci diagram

α 4 B • c c c c c c c c α Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ α 2 Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ α 3
where the top vertices are of "type b" and the bottom ones of "type a", where α = 1/φ = ( √ 5 -1)/2 is the inverse of the golden mean, and the term α n at a vertex is the measure of the cylinder of infinite paths through that vertex.

Note that this substitution does not force the border, so that ∂B is not the transversal of the Fibonacci tiling space. For illustration purposes it is however worth carrying this example in details. We treat the "real" Fibonacci tiling together with the Penrose tiling in section 6.3.

Since the Bratteli diagram has only simple edges, as noted in Remark 2.6, the paths can be indexed by the vertices they go through. The paths in Π 1 are thus written a and b, and the paths in Π 2 are written aa, ab, and ba (note that these are not orthonormal bases for the dot product given by the Dixmier trace , so that the Laplacians written below will not be symmetric). The restrictions of the Laplace operator (4.12) for s = s 0 = 1 to Π 1 and Π 2 are given below together with their eigenelements.

∆| Π 1 = 1 -φ 2 -1 + φ 2 φ 2 -φ 2 , with eigenelements (0 , 1 1 ) , (1 -2φ 2 , 1 1 -φ 2 ) . ∆| Π 2 =   2 -3φ 2 -1 + 2φ 2 -1 + φ 2 -1 + 3φ 2 2 -4φ 2 -1 + φ 2 -1 + φ 2 1 -φ 2   , with eigenelements (0,   1 1 1   ) , (1 -2φ 2 ,   1 1 1 -φ 2   ) , (3 -6φ 2 ,   1 1 -φ 2 0   ) .
Using the identities χ b = χ ba , and χ a = χ aa + χ ab , we see that the first two eigenvectors of ∆| Π 2 are exactly those of ∆| Π 1 expressed in Π 2 . Note that 1φ 2 = -φ and that the above eigenvectors of ∆ are χ a + χ b , χ aφχ b , and χ aaφχ ab . And all other eigenvectors are given by χ γaaφχ γab for γ ∈ Π. 

u a λ γ = φ 2 λ γ + 1 -φ 2 , u b λ γ = φ 2 λ γ -1 + φ 2 , (6.39) 
if γ is compatible with their action, and u a (λ γ ) = 0 or u b (λ γ ) = 0 otherwise.

Over the ring Z ⊕ φ 2 Z, the companion matrix of A is 0 1 1 1 , and the operators (6.39) become the affine maps

u a λ γ = 0 1 1 1 λ γ - -1 1 , u b λ γ = 0 1 1 1 λ γ + -1 1 ,
when γ is compatible with the corresponding action. Figure 3 illustrates Theorem 5.9 that characterizes the repartition of the eigenvalues of -∆ as point of integer coordinates that stay within a bounded strip to the Perron-Frobenius eigenline of A (slope φ) in Z ⊕ φ 2 Z. Note that the repartition of points in the strip is not "homogeneous", i.e. the number of points within a distance r to the origin is not linear in r, but rather follows the Weyl asymptotics in √ r (Theorem 5.7). and its associated diagram for its Cuntz-Krieger algebra B is the Bratteli diagram of the (uncollared) Thue-Morse substitution 0 → 01 1 → 10 :

1 2 W W W W W W W W W W W W W W W W W W 1 4 W W W W W W W W W W W W W W W W W W 1 8 B • Ó Ó Ó Ó Ó Ó Ó Ó Y Y Y Y Y Y Y Y 1 2 Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ 1 4 Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ Õ 1 8
where the term 1 2 n at a vertex is the measure of the cylinder of infinite paths through that vertex. The top vertices are of "type 0", the bottom ones of "type 1".

We label the paths in B by sequences of 0's and 1's labeling the edges they go through from the root: γ ∈ Π n is written γ = (ε 1 , • • • , ε n ). The Laplacian on B commutes with the following operators:

τ i χ (ε 1 ,••• ,εn) = χ (ε 1 ,••• ,ε i +1,•••εn) if 1 ≤ i ≤ n , χ (ε 1 ,••• ,εn) else, (6.40) 
where the addition is taken mod 2. The operators τ i commute with each other and square up to the identity. One can therefore choose an eigenbasis for ∆ made of eigenelements of the τ i 's: that is Haar functions on the dyadic Cantor set ∂B. We recover this way the example treated in [START_REF] Pearson | Noncommutative riemannian geometry and diffusion on ultrametric cantor sets[END_REF] and we refer the reader there for the details.

For the Thue-Morse diagram B, we can also index paths by sequences of 0's and 1's labeling the vertices they go through from the root. The Laplacian is also commuting with the operators τi defined like the τ i defined in equation (6.40). A basis of eigenvectors of ∆ for s = s 0 = 1 is given by the constant function χ ∂ B (with eigenvalue 0), and the functions ϕ n,γ = χ γτn χ γ , γ ∈ Πn , for n ∈ N, with eigenvalues λ n = -2 3 7 • 4 n-1 -1 of degeneracy 2 n-1 = Card Π n . The eigenvalues satisfy the induction formula λ n+1 = 4λ n -2.

The Weyl asymptotics of Theorem 5.7 reads here 1 2 6 7 λ + 10 7 ≤ N (λ) ≤ 6 7 λ + 4 7 .

The Penrose tiling

The Fibonacci, Penrose, and Ammann-A2 [START_REF] Grünbaum | Tilings and patterns[END_REF] tilings have formally the "same" substitution on prototiles modulo their symmetry groups, with Abelianization matrix

A = 2 1 1 1 .
The Penrose and Ammann-A2 substitutions force the border. And for the Fibonacci tiling, one considers the conjugate substitution a → baa, b → ba, which is primitive, recognizable, and forces the border as noted in Example 2.17. Those three substitution tilings have the same Perron-Frobenius eigenvalue, namely Λ P F = φ 2 , where φ = (1 + √ 5)/2 is the golden mean. In conclusion, the transversals of those tiling spaces can be described by the set of infinite paths in the same Bratteli diagram B illustrated below:

α 2 |G| e 5 e 4 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y α 4 |G| Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y α 6 |G| B • ε b Ñ Ñ Ñ Ñ Ñ Ñ Ñ Ñ εa a a a a a a a a α |G| e 1 e 2 e 3 Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó α 3 |G| Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó Ó α 5 |G|
where α = 1/φ = ( √ 5 -1)/2 is the inverse of the golden mean, and the term α n /|G| at a vertex is the measure of the set of infinite paths through that vertex. And where G is the symmetry group of the tiling introduced in section 2. 

λ 0 = -2|G| |G| + 1 -4φ 2 |G| 2 -10|G| + 5 , λ εa = µ[ε a ] -µ[•] G(•) - µ[ε a ] G(ε a ) , λ ε b = µ[ε b ] -µ[•] G(•) - µ[ε b ] G(ε b ) .

Figure 1 :

 1 Figure 1: A self-similar Bratteli diagram associated with the matrix 1 1 1 0(root on the left).

Theorem 3 . 7 .

 37 For a weighted Bratteli diagram associated with a substitution tiling space of dimension d, the abscissa of convergence of the ζ-function is s 0 = d.

Figure 3 :

 3 Figure 3: Distribution of the eigenvalues of -∆ d for the Fibonacci diagram.

Definition 2 . 4 .

 24 A path γ of length n ∈ N ∪ {+∞} in a Bratteli diagram is an element (ε 0 , e 1 , e 2 , . . .) ∈

Remark 2 .

 2 [START_REF] Frank | A primer of substitution tilings of the Euclidean plane[END_REF]. Combinatorially, the diagram only depends on the Abelianization matrix of ω. It is indeed possible to associate a diagram to a primitive matrix A with integer coefficients. We would have similar definitions, with V n = I × {n}, with I the index set of the matrix. Proposition 2.20. This is a Bratteli diagram in the sense of Definition 2.2, except in the case A = (1). Example 2.21. Figure 1 is an example of the self-similar diagram associated with the Fibonacci substitution: a → ab; b → a.

  ) and we denote by E the set of choice functions on B. Let C Lip (∂B) be the C * -algebra of Lipschitz continuous functions on (∂B, d). Given a choice τ ∈ E we define a faithfull *representation π τ of C Lip (∂B) by bounded operators on the Hilbert space H = l 2 (Π) ⊗ C 2 as

  s↓s 0 η∈Πγ w(r(η)) s η∈Π w(r(η)) s .(3.9)

Theorem 3 . 7 .

 37 The ζ-function for the weighted Bratteli diagram (∂B, w) has abscissa of convergence s 0 = d. Proof. We have ζ(s) = γ∈Π w(γ) s .

Figure 4 :

 4 Figure 4: Example of some Cuntz-Krieger operators acting on finite paths.
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 54 Let Λ P F be the Perron-Frobenius eigenvalue of A. Let γ = (ε, e 1 , e 2 , • • • ) ∈ Π n≥2 . Then, if U e γ = 0, we have

  .21). For all k ≥ 2, µ[(U e γ) k = Λ -1 P F µ[γ k-1 ], and G s ((U e γ) k ) = Λ (s-d)/d-2 P F G s (γ k-1 ) (see Theorem 3.8 for the rescalling of the measures). Hence the rest of the sum, over k = 2, • • • |U e γ| -1 (and the last term) in equation (5.22), rescales by a factor Λ (d-s+2)/d P F

Theorem 5 . 7 .

 57 Let N s (λ) = Card λ ′ eigenvalue of ∆ s : |λ ′ | ≤ λ . For s < d + 2,we have the following Weyl asymptotics

e

  tλγ Tr (P γ ) . (5.27) Now Tr (P γ ) = n γ -1, with n γ the number of possible extensions of γ one generation further (see equation (4.14) in theorem 4.3), and Tr (P 0 ) = n 0 -1. Since the Bratteli diagram of the
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  is an eigenvalue of C, and so the characteristic polynomial of C is divided by the minimal polynomial of Λ 2/d P F . The affine maps β e can be represented in a matrix form, and equation (5.23), becomes here u e λ γ = C λ γ + β e , (5.35)

PF

  , and all other eigenvalues are smaller than 1 in modulus. Let us denote by V the eigenspace (of dimension 1) of the matrix C associated to Λ 2/d P F . We can characterize the distribution of the eigenvalues of ∆ d as follows.

  Since the Bratteli diagram has only simple edges, as noted in Remark 5.1, we can take B = B and à = A of the two Cuntz-Krieger operators U a and U b on the eigenvalues of ∆ as in equation (5.20) is given in here by

6. 2

 2 The dyadic Cantor set and the Thue-Morse tilingThose examples have enough symmetries to allow easy and direct calculations (without using the operators of the Cuntz-Krieger algebra). The Bratteli diagram B of the dyadic Cantor set is the dyadic odometer,

2 + ( α 2 |G| ) 2 + |G| 2 α |G| α 2 |G| , G(ε a ) = 2 ( α 2 |G| ) 2 + ( α 3 |G| ) 2 + 4 α 3 |G| α 4 3 |G| α 4 |G|

 222222323434 24, and |G| the cardinality of G. That is G = {1} is the trivial group (so |G| = 1) for the Fibonacci tiling, G = C 2 × C 2 for the Ammann-A2 tiling (symmetries of "vertical and horizontal" reflections, |G| = 4), and G = D 10 for the Penrose tiling (10-fold rotational symmetries, and reflections, |G| = 20). Let us denote by U i , i = 1, • • • 5, the generators of the Cuntz-Krieger algebra (5.16) associated with the Abelianization matrix of B. The induced action on the eigenvalues of ∆ = ∆ s 0 as in equation (5.20) reads here for Penrose and Ammann-A2 (for Fibonacci, Λ 2/d P F = φ 4 has to replace φ 2 in the following equations):u 1 λ γ = φ 2 λ γ + (1φ 2 ) µ[ε a ]µ(•) G(•) + µ[ε a e 1 ]µ[a] G(ε a ) u 2 λ γ = φ 2 λ γ + (1φ 2 ) µ[ε a ]µ(•) G(•) + µ[ε a e 2 ]µ[a] G(ε a ) u 3 λ γ = φ 2 λ γ + -φ 2 µ[ε a ]µ(•) G(•) + µ[ε b ]µ(•) G(•) + µ[ε b e 3 ]µ[a] G(ε b ) u 4 λ γ = φ 2 λ γ + -φ 2 µ[ε b ]µ(•) G(•) + µ[ε a ]µ(•) G(•) + µ[ε a e 4 ]µ[a] G(ε a ) u 5 λ γ = φ 2 λ γ + (1φ 2 ) µ[ε b ]µ(•) G(•) + µ[ε b e 5 ]µ[ε b ] G(ε b )if λ γ is compatible with the operators. Here G = G s 0 as in equation (4.12b), so we haveG(•) = |G|(|G| -1) ( α |G| )|G| and G(ε b ) = 2 α . The eigenelements of ∆| Π 2 are 0 for χ ∂B , λ 0 for χ εaφχ ε b , λ εa for χ εaeφχ εaf , e, f ∈ ext 1 (ε a ), and λ ε b for χ ε b eφχ ε b f , e, f ∈ ext 1 (ε b ), where

γ∈Π n-1 dim E γ = γ∈Π n-1 (n γ -1) = dim Π ndim Π n-1 . So the number of eigenvalues λ γ for γ ∈ Π k for all 1 ≤ k ≤ n -1 is n-1 k=1 dim Π k+1dim Π k = dim Π ndim Π 1 .And counting 0 and λ 0 adds up (dim Π 1 -1) + 1 to make the count match.
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substitution is stationary, the integers n γ are bounded, so there are p -, p + > 0, such that for all γ ∈ Π we have: p -≤ Tr (P γ ) ≤ p + .

(5.28)

By equation (5.24), the λ ε , β e , being bounded, there exists λ -, λ + > 0, such that for all γ ∈ Π we have:

The cardinality of Π n grows like Λ n P F so there are π -, π + > 0, such that for all n ≥ 0 we have:

(5.30)

We substitute inequalities (5.28), (5.29), and (5.30) into equation (5.27) to get

Set N t = d log(1/t)/(2 log(Λ P F )), and split the above sums into two parts: the sum over n < N t , and the remainder. For the finite sum we have:

where we have used Λ

≤ 1, the above sum on the right hand side of (5.32) is bounded by the geometric series Nt-1 n=0 Λ n P F = (Λ Nt P F -1)/(Λ P F -1). Multiplying by t -d/2 Λ -Nt we get the inequalities:

for some constants c ′ -, c ′ + > 0, and t small enough. For the remainder of the sums in (5.31) we have

where c ′′ ± > 0 is the sum of the absolutely convergent series. We put together inequalities (5.33) and equation (5.34) into inequalities (5.31) to complete the proof.

Eigenvalues distribution

We now restrict to the case d ∈ {1, 2} and s = s 0 = d, so that Λ d = Λ 2/d P F in equation (5.23). In dimension 2, and for s = s 0 = 2, the weights are not involved in the formula which define the Laplace operator. In dimension 1, we assume that the weights are taken equal to the measures: diam[γ] = µ[γ]. In particular (and it is the important point if one wants to generalize), all the coefficients in the formula defining the Laplacian belong to the same algebraic field, which is the decomposition field for the characteristic polynomial of the matrix A.