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Abstract

We are interested in a nonlocal conservation law which describes the morphodynamics of sand
dunes sheared by a fluid flow, recently proposed by Andrew C. Fowler and studied by [1, 2]. We
prove that constant solutions of Fowler’s equation are non-linearly unstable. We also illustrate this
fact using a finite difference scheme.
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1 Introduction

Partial Differential Equations with nonlocal or fractional operators are widely used to model scientific
problems in mechanics, physics, signal processing and other subjects, see for example [3] and references
therein. We consider in this paper a nonlocal conservation law which appears in the formation and
dynamics of sand structures such as dunes and ripples [7, 11]. Namely, Fowler ([7, 8, 9]) introduced the
following equation

{

∂tu(t, x) + ∂x

(

u2

2

)

(t, x) + I[u(t, ·)](x) − ∂2xxu(t, x) = 0 t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x) x ∈ R,
(1)

whereu = u(t, x) represents the dune height,u0 ∈ L2(R) is an initial condition,T is any given positive
time andI is a nonlocal operator defined as follows: for any Schwartz function ϕ ∈ S(R) and any
x ∈ R,

I[ϕ](x) :=
∫ +∞

0
|ζ|− 1

3ϕ′′(x− ζ)dζ. (2)

Equation (1) is valid for a river flow over an erodible bottomu(t, x) with slow variation. The nonlocal
term appears after a subtle modeling of the basal shear stress. This operator appears also in the work of
Kouakou & Lagrée [10, 11].
The nonlocal termI can be seen as a fractional power of order2/3 of the Laplacian with the bad sign.
Indeed, it has been proved [1]

F
(

I[ϕ]− ϕ′′) (ξ) = ψI(ξ)Fϕ(ξ) (3)
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where
ψI(ξ) = 4π2ξ2 − aI |ξ|

4

3 + i bIξ|ξ|
1

3 , (4)

with aI , bI positive constants andF denotes the Fourier transform. One simple way to establish this fact
is the derivation of a new formula for the operatorI [1]

I[ϕ](x) = CI

∫ 0

−∞

ϕ(x+ z)− ϕ(x)− ϕ′(x)z

|z|7/3 dz, (5)

with CI = 4
9 .

The operatorI[u] is a weighted mean of second derivatives ofu with the bad sign and has therefore an
anti-diffusive effect and creates instabilities which arecontrolled by the diffusive operator−∂2xx. This
remarkable feature enabled to apply this model for signal processing. Indeed, the diffusion is used to
reduce the noise whereas the nonlocal anti-diffusion is used to enhance the contrast [3].

Remark 1. For causal functions (i.e.ϕ(x) = 0 for x < 0), this operator is up to multiplicative constant,
the Riemann-Liouville fractional derivative operator which is defined as follows [12]

1

Γ(2/3)

∫ +∞

0

ϕ
′′

(x− ξ)

|ξ|1/3 dξ =
d−2/3

dx−2/3
ϕ′′(x) =

d4/3

dx4/3
ϕ(x), (6)

whereΓ denotes the Euler function.

Recently, some results regarding this equation have been obtained, namely, existence of travelling-
wavesuφ(t, x) = φ(x − ct) whereφ ∈ C1

b (R) andc ∈ R represents wave velocity, the global well-
posedness forL2-initial data, the failure of the maximum principle, the local-in-time well-posedness in
a subspace ofC1

b [1, 2] and the global well-posedness in aL2-neighbourhood ofC1
b , solving namely

for u = uφ + v, with v ∈ L2(R) [4]. For this purpose, the following Cauchy problem solved by the
perturbationv has been considered:

{

∂tv(t, x) + ∂x(
v2

2 + uφv)(t, x) + I[v(t, ·)](x) − ∂2xxv(t, x) = 0 t ∈ (0, T ), x ∈ R,

v(0, x) = v0(x) x ∈ R,
(7)

wherev0 ∈ L2(R) is an initial perturbation andT is any given positive time.

Let us note also that any constant is solution of the Fowler equation. We shall prove below that these
solutions are unstable.
To prove that a solutionuφ is unstable whenφ is constant, we introduce the notion ofmild solution(see
Definition 1) based on Duhamel’s formula (8). We also give some numerical results that illustrate this
fact.

The remaining of this paper is organized as follows: in the next section, we define the notion of mild
solution and we give some results. Section 3 contains the proof of the instability. We introduce in section
4 an explicit finite difference scheme for which we give numerical simulations to illustrate the theory of
the previous section.
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2 Duhamel formula and some results

Definition 1. Let uφ be a constant,T > 0 andv0 ∈ L2(R). We say thatv ∈ L∞((0, T );L2(R)) is a
mild solution to (7) if for any t ∈ (0, T ),

v(t, x) = K(t, ·) ∗ v0(x)−
∫ t

0
∂xK(t− s, ·) ∗

(

v2

2

)

(s, ·)(x) ds (8)

whereK(t, x) = F−1
(

e−tφI(·)
)

(x) is the kernel of the operatorI − ∂2xx+uφ∂x andφI(ξ) = 4π2ξ2−
aI |ξ|

4

3 + i bIξ|ξ|
1

3 + i 2πuφξ.

The expression (8) is the Duhamel formula and is obtained using the spatial Fourier transform. The
use of this formula allows to prove the local-in-time existence with the help of the contracting fixed point
theorem. The global existence is obtained thanks toL2 a priori estimate. We refer to [1, 4] for the proof.

Lemma 1. Let t > 0. Then,∂xK(t, ·) ∈ L2(R) and satisfies

||∂xK(t, ·)||L2(R) ≤ C
(

t−3/4 + eαt
)

, (9)

whereC is a positive constant independent oft.

Proof. By Plancherel formula, we have

||∂xK(t, ·)||2L2(R) = ||F (∂xK(t, ·)) ||2L2(R) = ||ξ 7→ 2iπξe−tφI (ξ)||2L2(R),

= 2

∫ +∞

0
4π2ξ2e−2t(4π2ξ2−aIξ

4/3) dξ.

Let ξ0 > 0 such that for allξ > ξ0,
4π2ξ2 − aIξ

4/3 ≥ ξ2.

Then, if we denote byα = −minRe(φI) (see Figure 2), we have

||∂xK(t, ·)||2L2(R) ≤ 8π2
∫ ξ0

0
ξ2e−2t(4π2ξ2−aIξ

4/3) dξ + 8π2
∫ +∞

ξ0

ξ2e−2t(4π2ξ2−aIξ
4/3) dξ,

≤ 8π2
∫ ξ0

0
ξ2e2tα dξ + 8π2

∫ +∞

0
ξ2e−2tξ2 dξ,

≤ 8π2
ξ30
3
e2tα +

4π2√
2
t−3/2

∫ +∞

0
ξ2e−ξ2 dξ,

≤ C
(

t−3/2 + e2αt
)

,

which completes the proof of this lemma. �

Remark 2. Using again Plancherel formula, we have for any initial datav0 with values inL2(R), the
followingL2-estimate [1]:

||v(t, ·)||L2(R) ≤ eαt||v0||L2(R).
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3 Instability

In this section, we give the proof of the instability.

Let us first note that a fundamental property of the kernelK is the non-positivity [1], see Figure 1.
This feature enabled to prove the failure of the maximum principle. We use again this property to show
that the constant solutions of the Fowler equation are unstable.

Figure 1: Evolution of the kernelK for t = 0.1 andt = 0.5 s

Theorem 1. Any constant solutionuφ of the Fowler equation is unstable, i.e.∃ε > 0,∀δ > 0,∃v0 ∈
L2(R) an initial data with ||v0||L2(R) ≤ δ and t0 > 0 such that ||v(t0, ·)||L2(R) > ε, wherev(t, ·) is
the solution of(7) with v(0, ·) = v0.

Proof. We adapt the strategy used by De Bouard in [6], making it more elementary in our setting.
We denote byS(t) the linear semigroup associated with equation (7) i.e.S(t)w = K(t, ·) ∗ w. Hence,
we have

T (t)v0 := v(t, ·) = S(t)v0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ v2(s, ·) ds, (10)

whereT denotes the nonlinear semigroup associated with equation (7).
First, by Young inequality, Lemma 1 and Remark 2, we have

||T (t)v0 − S(t)v0||L2(R) ≤ 1

2

∫ t

0
||∂xK(t− s, ·)||L2(R)||v(s, ·)||2L2(R) ds,

≤ C

2

∫ t

0

[

(t− s)−3/4 + eα(t−s)
]

e2αs||v0||2L2(R) ds,

≤ b(t)||v0||2L2(R), (11)

whereb(t) = C
2 e

2αt(4t1/4 + 1
αe

αt) > 0 for all t ∈ (0, T ).
Hence, we obtain fort0 > 0 fixed,

||T (t0)v0 − S(t0)v0|| ≤ b0||v0||2L2(R), (12)

whereb0 = b(t0).
Assume now that the constantuφ is a stable solution of the Fowler equation i.e,

∀ε > 0,∃η > 0, ||v0|| < η ⇒ ||v(t, ·)||L2(R) < ε,
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for all positivet. Let then

0 < ε <
eαt0 − 1

16b0
,

and letη > 0 be such that||v0||L2(R) < η ⇒ ||v(t, ·)|| ≤ ε, for all positivet.
LetN be an integer large enough such that

eαt0N ≥ eαt0 − 1

4ηb0
. (13)

Let us now consider the following initial data:v0 = δw0, whereF(w0) =
1√
d−c

1[c,d], with 0 < c < d

satisfying (see Figure 2):

• Re(φI) (c) < Re(φI) (d) = −β < 0,

• for all ξ ∈ [c, d],Re(φI) (ξ) ≤ −β,

• β = α− γ where0 < γ < ln(2)
Nt0

.

And δ is defined as

δ = e−αNt0 e
αt0 − 1

4b0
. (14)

The shape ofw0 is given by

w0(x) =
1√
d− c

{

2
sin(d−c

2
x)

x e−i d+c
2

x if x 6= 0,
d− c otherwise.

It follows from (13) and (14) that||v0||L2(R) = δ ≤ η, and thus for this initial data, we get that

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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6

c d

−α

−β

Figure 2: Behaviour of Re(φI)

||v(t, ·)||L2(R) ≤ ε for all t > 0.
Forn ∈ {0, · · · , N}, we have

v(nt0) = S(nt0)v0 +

n−1
∑

k=0

S ((n− 1− k)t0) [v((k + 1)t0)− S(t0)v(kt0)] ,

= S(nt0)v0 +

n−1
∑

k=0

S ((n− 1− k)t0) [T (t0)v(kt0)− S(t0)v(kt0)] .
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Hence, we get using (12) and theL2-estimate given in Remark 2

||v(nt0)− S(nt0)v0||L2(R) ≤
n−1
∑

k=0

eαt0(n−k−1)||v((k + 1)t0)− S(t0)v(kt0)||L2(R),

≤
n−1
∑

k=0

eαt0(n−k−1)b0||v(kt0)||2L2(R),

≤
n−1
∑

k=0

eαt0(n−k−1)b0e
2αkt0 ||v0||2L2(R),

= δ2b0e
αt0(n−1) e

αnt0 − 1

eαt0 − 1
,

≤ δ

4
eαt0n.

Moreover, by Plancherel formula, we have

||S(t)v0||2L2(R) = ||K(t, ·) ∗ v0||2L2(R) = ||F(K(t, ·) ∗ v0)||2L2(R),

=

∫

R

|F(K(t, ·))(ξ)F(v0)(ξ)|2dξ,

=

∫ d

c

δ2

d− c
e−2tRe(φI)(ξ)dξ,

≥ e2βt||v0||2L2(R).

We finally infer that

||v(Nt0)||L2(R) ≥ ||S(Nt0)v0||L2(R) − ||v(Nt0)− S(Nt0)v0||L2(R),

≥ δeβNt0 − δ

4
eαt0N ,

≥ eαt0 − 1

16b0
> ε,

which gives us a contradiction and completes the proof of this theorem.
�

Remark 3. We can give a physical interpretation of this result: a flat profileuφ = constant is unstable
under the morphodynamics described by the Fowler model.

4 Numerical simulations

The spatial discretization is given by a set of pointsxj ; j = 1, ..., N and the discretization in time is
represented by a sequence of timest0 = 0 < ... < tn < ... < T . For the sake of simplicity we will
assume constant step sizeδx andδt in space and time, respectively. The discrete solution at a point will
be represented byunj ≈ u(tn, xj). The schemes consist in computing approximate valuesunj of solution
to (1) on[nδt, (n + 1)δt[×[jδx, (j + 1)δx[ for n ∈ N andj ∈ N thanks to the following relation:

un+1
j − unj
δt

+
1

2

(unj )
2 − (unj−1)

2

δx
−
unj+1 − 2unj + unj−1

δx2
+ Iδx[un]j = 0, (15)
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whereIδx is the discretization of the nonlocal termI. We use a basic quadrature rule to approximateI
given by (2)

Iδx[ϕ]j = δx−4/3
+∞
∑

l=1

l−1/3 (ϕj−l+1 − 2ϕj−l + ϕj−l−1) . (16)

Let us note that for compactly supported initial datum the sum is a finite sum. In this section, we want
to simulate the instability stated previously. To this aim we must be careful to distinguish between the
instability which stems from the model and numerical instabilities, which could be caused by a careless
discretization.
The numerical stability ensures that the difference between the approximate solution and the exact solu-
tion remains bounded for increasingt for δx, δt given.

As noticed, the Fowler model amplifies slowly the low frequencies whereas the high frequencies are
quickly dampened. Thus, the classical notion ofA-stability (strong stability) andC-stability are not suit-
able nor desirable. A new definition of stability for this model has been considered in [5] and numerical
stability criteria have been obtained.

In the following numerical test, we have to take care to choose δx andδt accurately following the
stability condition, see [5]. We expose in Figure 3(a) the evolution of an initial flat bottom disturbed by a
small bump for different times. As we can see the perturbation creates small ripples that grow with time
without bound. This result proves that the perturbed solution goes away from the non-perturbed solution.
This illustrates the instability of constant solutions forthe Fowler model (1). Figure 3(b) shows the log-
plot for theL2-norm evolution of this perturbed bottom, which confirms thevalidity of the estimate given
in Remark 2.

(a) Evolution of the solution disturbed. (b) Evolution oflog(||v(t, ·)||L2 )

Figure 3: Evolution of a flat bottom disturbed by a small bump.
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