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Abstract

We are interested in a nonlocal conservation law which dessithe morphodynamics of sand
dunes sheared by a fluid flow, recently proposed by Andrew @ldfaand studied by[[l[l 2]. We
begin by proving the global-in-time well-posedness in tegghbourhood of travelling-waves. We
next show the instability of travelling-waves solutiongloé Fowler equation.

Keywords: nonlocal evolution equation, fractional anti-diffusiveavator, Duhamel formulation, travelling-
wave, instability.

Mathematics Subject Classification:35L65, 45K05, 35G25, 35C07, 35B35.

1 Introduction

The study of mechanisms that allow the formation of striegsuch as sand dunes and ripples at the
bottom of a fluid flow plays a crucial role in the understandaigoastal dynamics. The modeling of
these phenomena is particularly complex since we must nptoive the Navier-Stokes or Saint-Venant
equations coupled with an equation for sediment transpottalso take into account the evolution of the
bottom. Instead of solving the whole system fluid flow, fredate and free bottom, nonlocal models
of fluid flow interacting with the bottom were introduced i, [ [I]. Among these models, we are
interested in the following nonlocal conservation |dv{|6BF

{atu(t, )+ 0, (%> (t,2) + T[u(t, ))(z) — 2, ult,z) =0 te (0,T),z R, "

u(0,2) = up(x) z € R,

whereT is any given positive timey = u(t, z) represents the dune height (see fig. 1)Aigla nonlocal
operator defined as follows: for any Schwartz functjpg S(R) and anyz € R,

+oo 1
Tlol(x) = /O €5 — €. @)
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n (x,t)=z

Figure 1: Domain considered for the Fowler modelis the depth water; the free surface and the
sandy bottom.

Equation L) is valid for a river flow over an erodible bottett, ) with slow variation and describes
both accretion and erosion phenomefja [1].
The nonlocal tern¥ can be seen as a fractional power of orglés of the Laplacian with the bad sign.
Indeed, it has been proved [1] that

F (Zlg] - ¢") (&) = ¥z(&)Fep(€) 3)

where \ )
Dr(€) = 4n°E* — azl€]5 + i brél¢]3, (4)
with az, bz positive constantsF denotes the Fourier transform defined[h (7) &hdenotes the Euler

function. One simple way to establish this fact is the dé¢igvaof a new formula for the operatdr, see
Proposition{]2.

Remark 1. For causal functions (i.eo(z) = 0 for = < 0), this operator is, up to a multiplicative
constant, the Riemann-Liouville fractional derivativeeagtor of order4/3 which is defined as follows

[T

1 +oo gDu(:,;_g) B d-2/3 , B q4/3
(2/3) /0 i %= gen? @ = gantle) )

Therefore, the Fowler model has two antagonistic termsualwdiffusion and a nonlocal fractional
anti-diffusive term of lower order. This remarkable feat@nabled to apply this model for signal pro-
cessing. Indeed, the diffusion is used to reduce the noigzesk the nonlocal anti-diffusion is used to
enhance the contragi [4].

Recently, some results regarding this equation have betmed, namely, existence of travelling-
wavesu,(t, x) = ¢(z — ct) whereg € C}(R) andc € R represents wave velocity, the global well-
posedness fok2-initial data, the failure of the maximum principle and toedl-in-time well-posedness
in a subspace af'! [fll, B]. Notice that the travelling-waves are not necesgaifisolitary type (se€[]2])
and therefore may not belong I (R), the space where a global well-posedness result is availatl
[Fl], the authors prove local well-posedness in a subspa@ @R) but fail to obtain global existence.
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One main focus of this paper is the study of travelling-wadetions of (1). Indeed, an interesting topic

is to know if the shape of this travelling-wave is maintaingtkn it is perturbed. This raises the question

of the stability of travelling-waves. In our paper, we firstablish global well-posedness for an initial

perturbationin L?(R) and then prove the nonlinear instability of travelling-wa\solutions to[[1). More

precisely, we exhibit a disturbance which grows withoutrtmbmeaning that the original travelling-wave

is unstable. To begin with, we prove the global well-posadrie aL?-neighbourhood of”!, namely

u = ug + v, Whereuy # 0 is a nontrivial solution. To prove this result, we consideg following

Cauchy problem:

{&gv(t,x) + 3;6(% +ugv)(t,z) + Z[v(t, )] (z) — O2v(t,z) =0 t e (0,T),z €R,

(6)
v(0, ) = vo(x) z € R,

wherevg € L?(R) is an initial perturbation and is any given positive time.

To prove the existence and uniqueness results, we begintrogliting the notion ofmild solution
(see Definitior{]1) based on Duhamel’s formdla (8), in whighkbrnelk of T — 9?2, appears. The use of
this formula allows to prove the local-in-time existencehathe help of contracting fixed point theorem.
The global existence is obtained thanks to an energy estitagtriori estimate)[(30). This approach is
quite classical: we refer for instance ﬂ) [L 5]. On the ottend, the Duhamel formulation also allows
to prove that travelling-waves are unstable.

The plan of this paper is organised as follows. In the nexti@ecwe define the notion of mild
solution of () and we give some properties on the kefielf 7 — 02, that will be needed in the sequel.
Section[B and]4 are, respectively, devoted to the proof ofitiqueness and the existence of a mild
solution of [§). Sectiof] 5 contains the proof of the regtyanf the solution. The proof of the instability
of travelling-waves is given in sectidh 6.

Here are our main results.

Theorem 1. LetT > 0 andvy € L*(R). There exists a unique mild solution € L> ((0,7); L*(R))
of (@) (see Definitior}]1). Moreover,

1. ve C([0,T]; L*(R)) andv(0, ) = vy almost everywhere,

2. v e CH2((0,T] x R),

3. v satisfiesdv + 9, (% + u¢v) + Z[v] — 92,v = 0, on (0,T] x R, in the classical sense or
equivalentlyu = uy + v is a classical solution of equatiof]).

Theorem 2 (Instability of travelling-waves) LetT > 0 and¢ € C}(R) be a travelling-wave solution
to {@). Assume that, € L*(R) is such thatF(vy) = elgp Withe > 0, 0 < a < b satisfying
Re(y7) (a) < Re(yz) (b) = —a < 0 and for all¢ € [a, b], Re(y7) (€) < —a (see Figurd]3).

Then the unique mild solution {f) satisfies

vlleog:22r)) = C e,

where0 < 8 < § and('is a positive constant.



Remark 2. The shape of this perturbation is given by

sin(85%z) _jatb

vo(m)za{z I oAV

b—a otherwise.
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Figure 3: Behaviour of Re/7)

Remark 3. An interesting property for the kernd{ is the non-positivity (see Figuf¢ 2) and the main
consequence of this feature is the failure of maximum piecifl]. We use again this property to
establish the instability of travelling-waves, see prooTbeoren{]2.

Notations.
- The norm of a measurable functighe LP(R) is written HfH’zp(R) = [pIf(z)Pdxforl < p < oo.
- We denote byF the Fourier transform of which is defined by: for alf € R

FFE) = /R &2 £ () d, @)

andF~! denotes the inverse of Fourier transform.
- The Schwartz space of rapidly decreasing function®asdenoted byS(R).
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-We write C*(R) = {f : R — C; f, f',--- , f*¥) are continous oiR}.

- We denote by’ (R) the space of all bounded continuous real-valued functiori® endowed with the
norm||.||~ = supg |f]-

- We write for anyT” > 0,

CH2((0,T) x R) := {u € C((0,T] x R); dyu, Dy, %, € C ((0,T] x R)}.

- We denote byD(U) the space of test functions dhandD’(U) denotes the distribution space.

2 Duhamel formula and main properties of K

Definition 1. LetT > 0 andvy € L%(R). We say thav € L>((0,T); L?(R)) is amild solution of (g)
if foranyt € (0,7):

v(t,x) = K(t,-) *vo(x) — /0 O, K(t—s,-)x* <% + u¢v> (s,-)(z) ds (8)

whereK (t,z) = F~1 (e7*¥z0)) (z) is the kernel of the operatdf — 92, and+)z is defined in).
The expressior[]8) is the Duhamel formula and is obtaineagusie spatial Fourier transform.
Proposition 1 (Main properties of<, [fll]). The kernelK satisfies:
1.Vt >0, K(t,-) € L' (R)and K € C* ((0, ) x R),

2. Vs, t >0, K(s,")*x K(t,")=K(s+t,-),
Yug € L2 (R), limy_y0 K (t,-) * ug = ug in L? (R),

3. VT > 0,3Ko such thatVt € (0,T], [|0.K (t,-)||r2®) < Kot %%,
4.YT > 0,3Ky such thatVt € (0,T], [|0:K (t,-)||p1w) < K1t~ /2
Remark 4. Using Plancherel formula, we have for any € L?(R) and anyt € (0, 7]
1K (t,-) * voll L2 ry < €*°Mvoll 2wy
whereay = —min Rg(tz) > 0.

Proposition 2 (Integral formula forZ ). For all ¢ € S(R) and allz € R,

4 [0 z+2)— o) — o (x)z
_ / s0(+)|zs|07(/3) ¢(2)z

Z. (9)

o0



Proof. The proof is based on simple integrating by parts. The retyland the rapidly decreasing of
ensure the validity of the computations that follow. We have

/ " el e = / ) = e =) eV de
0 o d§ '

“+o00o
. / €743 (¢ (2) - @' — €)) de,

3 Jo
+oo
= 3T @t el =€)~ olw)
A [T =8 —pl@) + ()¢
= 9/0 |£|7/3 @,
A0 p(@+8) —p(x) — ()¢
= 5/_00 ’§‘7/3 df

There is no boundary term at infinity (resp. at zero) becaugea rapidly decreasing function dd
(resp.¢ is smooth). [

Remark 5. Using integral formula@), [[l, B] proved that

F (Zle]) (§) = 4T )lel (—% Y3 sgn@)) Fol6).

Notice thatF (Z[y]) (€) = 4x°T'(2)(i¢)*/3 which is consistent with Remafk 1: up to a multiplicative
d4/3£p

constantZy| is —£.

Proposition 3. Lets € Randy € H*(R). ThenZ[y] € H*~*/3(R) and we have

2
Zloll grs-ars(my < 47T2F(§)||90||H5(R)- (10)

Proof. For alls € R and allp € H*(R), we have, using remafk 5

1/2
Zlell gs-arsmy = </R(1+I£I2)S4/3|f(1[90])(£)l2d£> ;

— 4r?r(2 2ys—4/31 V3 /s AR
= awr ) ( [y - isane Ll E O de )
2\ 4/3 1/2
~ awrd) (/R (%) <1+\§P>S\f<w><s>\2d§> ,
1/2
< ()| [ariepriFeera

2
= 4772F(§)HSOHHS(R)-



Remark 6. From the previous Proposition, we deduce that forsaét R and all € H*(R),
T[p] € H**3(R). In particular, using the Sobolev embeddifkf/? — Cy,(R) N L*(R), we deduce
thatZ : H? — C,(R) N L?(R) is a bounded linear operator.

Proposition 4 (Duhamel formula[(8) is well-defined).etT > 0, vy € L?*(R) andw € L*>((0,7T); L' (R))U
L>=((0,T); L*(R)). Then, the function
t
vite (0,T] = K(t,-)*vy — / 0. K(t—s,-)*w(s,-)ds (11)
0

is well-defined and belongs @([0, T; L?(R)) ( being extended at= 0 by the value(0,-) = vg ).

Proof. From Propositioff]1, it easy to see theis well-defined and that for anye (0, 77,

v(t,-) € L*(R). Indeed vt > 0,0, K (t,-) € L'(R) N L%(R) so by Young inequality), K (t, -) * w(t, )
exists and using the estimates on the gradient (item 3 andP4opiositior[JL) we deduce thatis well-
defined andi(¢, ) € L*(R).

Let us prove the continuity af. By the second item of Propositigh 1, we have that the functio
t € (0,T] — K(t,-) = vg Is continuous and it is extended continuously uptte- 0 by the value
v(0,-) = vo. We define the function

t
F:tel0,T] — / 0. K(t —s,-)*xw(s,-)ds.
0
Now, we are going to prove thdt is uniformly continuous. For ang > 0, Young inequalities imply
t
[F(+h,) = Ft,)zm < /0 |0z K (t+h—s,) = 0. K(t — s,)||Li(w) ds |[w]] Los (0,7);1 (R))

t+h
[ I0KC R = ds el on ey (2)
wherei, j € N* are such that + j = 3. Sinced, K(t,-) = F (¢ — 2inte (), the dominated
convergence theorem implies that
102K (t — 5+ h, ) — K (t — 5,)|| iy — 0, ash — 0.

Moreover, using the estimates on the gradient (item 3 andPraposition[]L), we have the following
inequality

t+h
/ 10K (t — s+ hy )| s myds < A%,
t

, iy (12 ifj=1
wherec; is a positive constant and;, = 14 =2
Using (12), we obtain thatF'(t + h,-) — F(t,-)||;2@) — 0, ash — 0. Hence, the functior” is
continuous and this completes the proof of the continuity.of |

Remark 7. Using the semi-group property, one can easily chdfk [1] foatall ¢, € (0,7') and all
te [0, T— to],

v(t +to,-) = K(t,-) *v(tg,) — /0 0. K(t—s,)*xw(ty+s,-)ds.



3 Unigqueness of a solution

Let us first establish the following Lemma.
Lemmal. LetT > 0 andwvy € L?(R). Fori = 1,2, letw; € L>((0,T); L*(R)) U L>((0,T); L*(R))
and definey; as in Propositior{ |4 by:

vi(t,-) = *vo—/ 0. K (t -k wi(s, ) ds.

Then,

{ 4K0T1/4Hw1 w2"Loo((07T);L1(R)) if w; € LOO((O,T); L' (R)),

on = ealleqome®) <\ 2k VFwy — wllyeoryaae) s € L0, 1) L2(R)).

Proof. For allt € [0, 7], we have

vi(t,-) — va(t / 0. K (t * (w1 — ws)(s,-)ds.
Hence with the help of Young inequalities, we get
Jo 10K (¢ — 5, 2wy |l (w1 — w2) (s, )|l 1wy ds

if w; € L=((0,T); L'(R)),

Jo oK (t = 5, )| ol (w1 — w2) (s, )| 12wy ds
if w; € L°°((0,T); L*(R)).

[l (8, ) =va(t, )l L2 (r) <

It then follows that
SN0 K (t — 5, 2wy ds lwr — wal| oo (o)1 (RY)
if w; € L>((0,T); L*(R)),

Jo NORK (t = 5, )| 1wy ds [Jwy — wal| o 07y 2(RY)
if w; € L°°((0,T); L*(R)).

[l (8, ) =va(t, )| L2 () <

Using again the estimates of the gradienfofsee Propositiofj 1), we conclude the proof of this Lemma.
[

Proposition 5. LetT > 0 andvy € L?(R). There exists at most onec L>((0,7); L?(R)) which is a
mild solution to(g).

Proof. Letwvy, v € L%°((0,7); L?(R)) be two mild solutions tq[{6) antl € [0, T]. Using the previous
Lemma, we get
llor = valloqoaszzmy) < 2Kot" [0 — 03] poe (0,050 ) + 2K1VE [ugv1 — ugva|| oo 0,0512 (R))-
Since,
[ — 03] Lee (0,001 (R)) < M[v1 — valloo:22(w)) (13)

with M = [[v1lcqo,ry;22®)) + valleo,r):2®))
then

llor = valleogzamy) < @MEotY* + 2K18" 2| [ug|loy)llor = valleogca@))-
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Therefore,n; = vy on [0, ¢] for anyt € (0,7] satisfying2M Kot'/* + 21"/ |ug||c3 ) < 1. Since
v1 andvy are continuous with values ib?(R), we have that; = v, on [0, 7] whereT, is the positive
solution of the following equation

2M Kot/ + 2812 fug| [0 =) = 1,

—2M Ko+, [AM2K3+8K1||ugl| o1
. (R)
e T, =( V RS

4K1Hu¢||cg(R)
To prove that; = v, on [0, 77, let us define

to := sup{t € [0,T] s.tv; = vy [0,4]}

and we assume tha < 7. By continuity ofv; andwvy, we have thaw, (to,-) = va(to,-). Using the
semi-group property, see remaik 7, we deducedh@t + -,-) = va(to + -, -) are mild solutions to[{6)
with the same initial data; (¢o, -) = va(to, ), which implies that (¢, -) = va(t, -) for t € [to, T + to]-
Finally, we get a contradiction with the definition f and we infer that, = 7. This completes the
proof of this proposition. |

4 Global-in-time existence of a mild solution

Proposition 6 (local-in-time existence)Let vy € L?*(R). There existsl, > 0 that only depends
on |[vol|z2(r) and H%Hq}(m such that(d) admits a unique mild solution € C([0,T.]; L?>(R)) N
C((0,T.]; H'(R)). Moreover,v satisfies

sup tV/2||0,v(t, 2wy < +oo.
t€(0,7%]

Proof. The proof of this proposition is based on the Banach fixedtgb&orem.
Since the gradient of the kernel with tfié-norm explodes with a controlled rate, see item 4 of Proposi-
tion I, we consider fovr € C([0,T]; L?>(R)) N C((0, T]; H'(R)), the following norm

1
ol = 1lvlleqo,rye @y + sup t2[|0zv0(t, )l |2 @) (14)
te(0,77

and we define the affine space
X = {ve C([0,T}; L*(R)) N C((0, T); H*(R)) s.t.v(0, ) = vo and|||v||| < +oo} .

It is readily seen thaf endowed with the distance induced by the ndfm ||| is a complete metric
space. For € X, we define the function

t ¢
Ov:te|0,T] — K(t,) vy — %/ DK (t —s5,-) % v%(s,-)ds —/ O K(t—s,-) % ugv(s,-)ds.
0 0
From Propositiof]4Qv € C([0, T]; L?(R)) and satisfie®v(0, -) = vo.

First step: ©®v € X. Since

(K (t,-) xv0) = 0, K (t,-) x vg = FH(& = 2im€e 7 Fuy(€)),

9



the dominated convergence theorem implies that fortgny 0,

2
/ Am?|€|? (e*wf-(ﬁ) — VIO | Fug(€)2de — 0, ast — to.
R
Therefore, the function > 0 — (& — 2irée 7 Fuo(€)) € L?(R) is continuous and sincg is an

isometry of.2, we deduce that> 0 — 9, K (¢,-) xvg € L*(R) is continuous. We then have established
thatt > 0 — K(t,-) xvg € H'(R) is continuous. Moreover, from Propositiph 1, we have

10K (t,-) * vol| r2(ry < K1t~ ?|[vo| p2(w)- (15)

Let w denote the function
_%/Otaxf((t—s, ds—i—/@K ) * ugv(s, -)ds.
Let us now prove thaty € C((0,T]; H'(R)). We first have
/ 0. K (t ) * vOv(s, - )ds +/ OpK(t—s,-) % 0p(ugv)(s,-)ds.
Using Young inequalities and Propositifln 1, we get
ot Mz < [ 10K~ 5. unts, o

/ 10K (£ — 5.,) % O (tg0) (5. )| 2.y 5.

IN

[ 108 = 5. Mmoot s e
+ /0 100K (£ — 5, )12 1 (0 (5, ) 2 gy s,

t
< ||v||C([O,T};L2(R))/ Kot —s)™3/*s71/2ds sup s'/?||0,v(s, M2

s€(0,T
b [ Bl 7 s s )
s€(0,T)
< Kol|lllogoryzeeyT " sup s'2[1000(s, )l 2wy
s€(0,7T7]
+K,J sup 31/2\!595(%”)(37 Nz w), (16)

s€(0,7T

wherel = B(3, %) andJ = B(3, 3) = =, B being the beta function defined by

1
B(z,y) ::/0 " 11— 1)y tdt.

As [|[v]|| < oo thensup,c (o, 31/2uax7)(37')HL2(R) < oo andsup,e o, 1] SI/QH@(%U)(& Nezm) <
oo. We then deduce thak.w(t, -) is in L? and sad,v(t,-) € L*(R) for all t € (0, T].

10



Let us now prove thab,w is continuous orf0, 7] with values inL?.
Foré > 0 andt € (0,77, we define

(Ozw);s / 0. K (t (1{S>5}(08 v)(s,+))ds
/aK ) % (L sy D (ug0) (5, ) ds.

Since 1¢5-4, (v9,v)(s,-) € L>([0,T]; L'(R)) and 1y 5,0:(ugv)(s,-) € L([0,T]; L*(R)) then
Propositior{}4 implies thatd,w)s : [0,7] — L*(R) is continuous. Moreover, we have

5
10zw(t, ) = (Bzw)s(t, )l L2m) < Ko/o (¢ = 5) 1712 ds ol oo, 11:02(m) Szlpﬂsl/z\!@mv(s,-)HL2(R>

se(0,

6
—|—K1/ (t —s)"Y257Y2ds sup 81/2||(9x(u¢v)(8, N r2m)-
0 s€(0,T]

It then follows that

sup |[Ozw(t, ) — Opws(t,)||2m) — 0asd — 0.
te(0,T

We next infer thab,w € C((0,T]; L?(R)) because it is a local uniform limit of continuous function.
Hence, we have established tigat € C([0, T); L2(R)) N C((0,T]; H*(R)). To prove thaBv € X, it
remains to show that|©v||| < +oo. Using (1) and[(16), we have

sup t1/2||ar®v(t,')||L2(R) < Killvollr2(w) + KoITY* sup s'/2]|0,v(s s, N2l lvlleqo,r;r2w))
te(0,T) s€(0,T]

+ K JTY? sup s72)|0,(ugv)(s,)l|L2 () (17)
s€(0,T

Finally, we have® : X — X.
Second step:We begin by considering a ball &f of radiusR centered at the origin
Br:={ve X /|ljv@t, )|l < R}

whereRR > ||vo|[z2r) + Ki1l|vo|lr2r)- Takev € Bg and let us now prove th& mapsBy into itself.
We have

t 1)2
0012wy < 1) s wullzage + [ 105 =5 = (5 +ue0 ) (2age s

By remark{}4, we get
1K (t,-) * voll L2y < € [[vol| 2wy (18)

whereag = —min Re(yz) > 0. Moreover, since|v?|| o 1).11 (r)) = HUH%OO((QT);LQ(R)) and with
the help of properties of Propositi¢h 1, we get

10@)(E M2y < e lvollra) + 2K R? + 2K T2 Jug ||y ) R- (19)

11



Using (IF) and[(39), we deduce that

IOl < e*T[vollL2 gy + Killvoll 2@ + (2 + DETY* R + (2 + J)RK TV [ug|lcp )
+ K1 |ugllop ) BT

Therefore, forl" > 0 sufficiently small such that

€a°T||Uo||L2(R)+K1||Uo||L2(R)+(2+I)K0T1/4RQ+(2+J)RK1T1/2||u¢||c;(R)+K1J||u¢||c;(R)RT <R,
(20)
we get that||Ov||| < R.

To finish with, we are going to prove th&xtis a contraction.
Forv,w € Br, we have for any € (0,7

19 (v) (t,-) = O (w) (&, M2y < 5 [ 10K (=5, )o@ ll(v* = w?)(s, )| myds
t
+ 0 [0 K (t — s, ')HLl(R)H%(U —w)(s, ')HL2(R)d87

< 2KotY[v? — w?|oqo o m)
I zKltl/QHuqﬁHCg(R)Hv — wllo(jo,1:22(R))
and since,

Iv* — w?|| oo, () (ol om;z2my) + lwlleqom:2 @)Y — wlleqo,r; L2 ®)

<
< 2R|[lv = wlleqo,m;L2®)

we get

10 (v) (¢,) = © (w) (¢, )| p2(r) < (ARKot"* + 2K1t1/2”“¢>”c,}(ﬂza))HU —wlleqomizem®y- (21)

Moreover
1 t
H@C(@v — (“)w)(t, ')HLQ(R) < 5 A HBxK(t — S, ) * 696(1)2 _ wz)(s, .)HLQ(R)ds
¢
[ 10K = 55 010 = 0) )2 .
< Kolt™* sup s'2||(vdpv — wdyw)(s, Nz w)
s€(0,T
+K1J sup 520, (ug(v — w)) (s,)]| 2 w)-
s€(0,T

And since
(VO v—w0pw)(t, )| 1 () < [|0zw(E, )| L2 w)[[(v—w)(#, L2 @) +|v(E, )| L2 @) O (v—w)(t, )|l L2 (w),
then

(v = w)(t, 2 gy el + (1ol [[£72]105 (0 = w) (E, )l 2 )
2R|[|v = wl].

t211(000v — wdw) ()l 1 )

IA A
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Therefore, we obtain

10:(©v—=Ow)(t, )l 2wy < 2K01t*Rl|[o—wl|[+K1 T |[ugllcs ) T2 [Jo—ww| [ +-K 1T Jugll oy [l o—wl].
(22)

Finally, using [2l1) and(22), we get
I10v - Oul[| < 2+ D2RETY* + (2 + J)l[ugll oz K1 TV + K1JT||ugll e ][0 — w]]-
Last step: conclusion.For anyT, > 0 sufficiently small such thaf (R0) holds true and
(2 + D2RK T + (2 + Dlluglley KlTl/Q + Ky I T [ugllep ) < 1,
O is a contraction fromBy into itself. The Banach fixed point theorem then implies tBaadmits a
unique fixed point € C([0,T.]; L*(R)) N C((0, T.]; H*(R)) which is a mild solution to[{6).
|

Lemma 2 (Regularity H? of v(t,-)). Letvy € L?(R). There existsI”! > 0 that only depends on
llvoll L2 and]\u¢\ycl(R) such tha(E) admits a unique mild solution € C ([0, T!]; L*(R))NC((0, T’]); H*(R)).
Moreoverv satisfies

sup t1/2 |0, v(t, )||L2 < +4+o0o and sup t||8§x (t, )||L2 < +o0.

t€(0,77] t€(0,17)]

Proof. To prove this result, we use again a contracting fixed poiabtm. But this time, it is the
gradient of the solutiom which is searched as a fixed point.

From Propositioff]6, there exists > 0 which depends offvo|| 22wy @nd||ug||c1 (my Such that

v € C([0,T.]; L*(R)) N C((0,T.]; H'(R)) is a mild solution to[(6). Since € C((0,7.]; H'(R)), we
can consider the gradient oft, -) for any¢ € (0, T,]. Let thenty € (0,7,) andT, € (0,T, — to]. We
consider the same complete metric spacelefined in the proof of the Propositigh 6 and we take the
norm||| - ||| defined in [[I}):

X = {w € C([0,T.]; L*(R)) N C((0, T.]; H'(R)) s.t. w(0, -) = wy and|||w]|| < +oo} ,

with the initial datawy = 9, v(to, ).
We now wish to apply the fixed point theorem at the followingdtion

Ow:tel0,T)] — Kt )*wo—/aK s,+) * (vw) (s,-)ds
/ 0. K (t * (02 (ug)v) (s,-) ds
—/0 0 K(t—s,-)* (ugw) (s,-)ds,

whereu(t, ) := v(to + t,-). First, we leave to the reader to verify tiatmapsX into itself. The proof
is similar to the first step of the proof of the Propositj$n 6.

13



For anyw € X, we have from Young inequalities

[[Ow(t, )|lL2@m) < et

t
Hc({to,T,i];Hl(R))!Hw!H/0 10K (t — s,)|| L2 (r)ds
t
sy e el oy | 100K (= 5.l ayds

t
+luglleymlllll [ 10,5 = . Mluxods

and using item 3 and 4 of the Propositﬁn 1, we get

1/4
Ow(t, 2w < ) + KT 19| 2210 oy 11
12
+2K1T’ gl @l ol 2 @)
12
+ 250 T fug oy oy 1] (23)

Moreover, we have the following estimate
t
10:0w(t, M2y < 10K (t)|pwyllwoll 2y + /0 1055 (t = . )| p2(2) |10 (00) (5, )| 11 ) ds
t
+Hu¢>Hc;(R)/O [0z K (t — s, )1 (®)[1020(5, )| 2 (m) ds

t
+/O 10K (E = 5, )|| L1 () 102 (upw) (5, )l L2 () ds,

and using again the estimates for the gradient of the kefmehdn Propositiorf]1, we obtain the next
result for anyt € (0, 77]

172)0,00(t, |2y < Kullwollpa ) + 4AK0TE 9]l s oyl el

/14

+ Kol ||U||C ([to; TV 1;HY (R |||w||| + 2K1T/||u¢||c1||v||c( [to;T'];H(R))

/1 2
+ 2K T g | P ugllc Ml (24)

wherel, J are two positive constants defined in the proof of the Proipog§.
Hence, using[(23) and (P4), we get

/ _ 1/2
llOwlll < €T |luwo| 2y + Kallwoll z2(r) + 2K1 sl o) 9] oy ryy (T + T272)
+ O|||wl[|(TM* + T+ TP T,

for some positive constaxit which depends o, K71, ||v||C( (to: /] HL(R)) and||u¢||cl(R)
We leave to reader to verify that: for amy, we € X,

11/4 /1/2 /3/4
*

llOw) — Owsl[| < C'(Ko, K, [[ugllcrmy, 1]l ooy vy (T + T + TN Jwr = wal|l,

whereC" is a non-negative constant which also depend&oni, [|9]| ¢ ,.7). 11 (r)) and||ug||c1 (g)
Let us now take? such that? > [[wol|z2r) + K1l|wol|z2(r) - Then, if T} > 0 satisfies

1/2
lwoll 2y + 281 llusllop @ 191 e )ars gy (T + TE7%)
+CRMM 4+ T+ TP 1)) <R,
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and
C/(T41/4—|—T£/2 —|—T43/4—|—T4) <1,

© : Br(X) — Bpg(X) is a contraction, wher&r(X) is ball of X of radiusR centered at the origin.
Using a contracting point fixed theorem, it exists a uniquedigoint, which we denote hy. But it is
easy to see thadd,v = 0,0 taking into account the space derivated of the Duhamel ftation ($).
Thanks to an uniqueness argument, we deducethatd, v and thus that € C((0,77]; H*(R)), which
completes the proof of this lemma.

|

Let us now prove the global-in-time existence of mild santi.

Proposition 7 (Global-in-time existence.)Letvy € L?(R) andT > 0. There exists a (unique) mild
solutionv € C([0,T]; L*(R)) N C((0,T]; H*(R)) of (B). Moreover,v satisfies the PDER) in the
distribution sense.

Proof. First step: v is a distribution solution. Taking the Fourier transform w.r.t the space variable in
(B), we get for al: € [0, 7] and all¢ € R,

Flo(t,)(€) = e 7 Fuy(€)— /0 im€e” VIO F(p2(s,.))(€)ds— /O 2imee 1Y) Fugu(s, ) (€) ds.

(25)
Let us denoté&= the following function:
G(t, &) = — / t 2imge” =)V F (”—2 + u¢v> (s,-)(€) ds.
0 2
Classical results on ODE imply thét is derivable w.r.t the time with
BiG(t,€) +vz(O)G(1,€) = —imeF (v(s,) (€) — 2imEF ((ugv)(s,-)) (6),
2
= —f(am(%)(t,-))(@ = F(0x(ugv)(t, ) (E)- (26)

Let us now prove that all terms ifi {26) are continuous witlugalinL?. Since,v € C((0,T]; H'(R))
thend, (v2), 9, (ugv) € C((0,T); L2(R)). We thus deduce thak (ax(é)(t, -)) and 7 (9, (ugv)(t, )
are continuous with values ib?(R). Moreover, equatior] (5) implies that

UrG(t,) = v (F(o(t, ) — e T F o)

and soyrG(t, -) is continuous with values ih2. Indeed,

15



[ce.ora = [ moct.opas [ woc.op s

< sw u@PIICE g +C [ RGP b
R\(—-1,1)

fE[—l,l]
< sup [Pz(OPIGE )7 g
fE[—l,l]
e | F(02,0(t,-)) — €277 Fyy | de,
R\(~1,1)

<, sup [z (©)PIIGE Iy + Cllv(t, e
el— )

+Cllvollz2gm) + Cllo(t, )l ellvol |12,
< 00,
with C, C two positive constants. Hence, we have clearly that thetiome — ¢7G(t,-) € L*(R,C) is

continuous. Finally, we have proved that all the term$ if) €26 continuous with values i?. Therefore,

in particular, from [26), we get that € C'([0, T]; L?(R, C)) and then
’l)2
9G(19) + G, ) = ~FO)(0) ~ F@rlugn)(1, ).

Moreover,t € [0,T] — e~ "2 Fvy € L3(R,C) is C* with

G I Fug) + e VI Fug = 0.
From equation[(35), we infer th&v is C! on [0, T'] with values inL? with
LF(u(t,)) = 0z F(0(t.) = FO(5)(0.) — FOulugo)(t. ).
SinceF is an isometry of.?, we deduce that € C''([0,7]; L*(R)) and by [B), we get
Do) = ~F I rF () - (L)  dulugo)t.).

v

= _I[U(t7 )] + 8%351)@7 ) - 83&(3)@7 ) - 8$(U¢U)(t, )

We are now going to prove thatsatisfies the PDHJ(6) in the distribution sense. Let us note

w(t, ) 1= =Tu(t, )] + 5,0(t ) = 0u(Z) (1) = Ou(ugv)(t, )

and let us show that
ov=w in D((0,T)xR).

By definition, we have for any € D(0,7) andy € D(R):

< O, o >p01)xR) = / /RU ) dt dz,

- </R x) W) o,
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Therefore, it is enough to prove that

/OT ( /R w(t,m)w(m)dm> p(t)dt = — /OT ( /R U(t,m)w(m)dm> o (t)dt,

d
pr Rv(t,x)w(m)dx:/Rw(t,w)w(ﬂf) du,

in the sense oD’ (0, T'). But, we have that the function
(0,7) r—>/ (t,z)Y(z)dr € R

isC! and d
5 Rv(t,x)qp(:v)d:v:/w(t,$)¢($)dx

R
in the classical sense, which proves that the mild solutiena distribution solution of[[6).

Second step: A priori estimate.By the first step, we have

v2
Opv + Oy ( + ugv) + Iv] — 02,0 =0

in the distribution sense. Therefore, multiplying this alify by v and integrating w.r.t the space variable,
we get:

/R v dx + /R (Z[v] = Vge) v da + /R (upv) vdz =0 (27)

because the nonlinear term is zero. Indeed, integratingalig,pve have

/8 vdx——/ Bvdx———/a Jvdz.

There is no boundary term from the infinity because for al (0, 7], v(t,-) € H*(R). Using (3) and
the fact thatf, (Z[v] — 92,v)v dx is real, we get

[ @) -2 = [ FlurFods = [ vrlFotis = [ RewolFlae (@8)
R R R R
Moreover, since:,v € H'(R) we have

2 2
/ (ugv),vdr = —/ UpVVy dT = —/ Ug (%) dr = /(8xu¢)% dx. (29)
R R R z R

Using (27), [2B) and (29), we obtain

2ot iz < (a0 +Co)llo@)lz:

th
whereay = —minRejz > 0 andCy = %H%Hc;- Finally, we get for allt € [0, 7] the following
estimate
lo(t, |2 @y < e ||ug| 2 g)- (30)
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Last step: global-in-time exitence.Up to this point, we know thanks to Propositidn 6 and Lerinas® th
there existsl, = T%(||vo| r2(r), [[ugllc ) > 0 such thab € C([0,Ty]; L3(R)) N C((0, Ty]; H*(R))
is @ mild solution of [[6) or{0, 7%.]. Let us define

to := sup {t > 0 / there exists a mild solution of|(6) of0, ¢) with initial conditionvy} .

To prove the global-in-time existence of a mild solution, hese to prove thaty > 7', whereT is any
positive constant. Assume by contradiction that< 7'. With again the help of Propositidi} 6, there
existsT > 0 such that for any initial datay, that satisfy

o2y < e ®F ! vol 2wy, (31)
it exists a mild solutionv on (0, 77]. Using (3p), we have that, := v(to — T /2, -) satisfies[[J1). There-
fore, using an argument of uniqueness, we deducestiigt- 7., /2 +t,-) = w(t,-) forall t € [0, T, /2).
To finish with, we defined by & = v on [0,t) andd(ty — 1./2 + t,-) = w(t,-) for t € [T, /2,T,).

Hence,? is a mild solution or{0, to 4 77, /2] with initial datumug, which gives us a contradiction.
|

5 Regularity of the solution

This section is devoted to the proof of the existence of @aksolutionsv to (@).

Proposition 8 (Solution in the classical sensd)etvy € L?(R) andT > 0. The unique mild solution
v e C([0,T]; L2(R)) N C((0,T); H*(R)) of (g) belongs taC'2 ((0, 7] x R) and satisfies

2
O + 0, (U +u¢v> +Zv] — 92,0 =0,

on (0,77 x R in the classical sense.

Proof. First step: C2-regularity in space. Let us take any, € (0, T as initial time and let
T' € (0,T — to]. Differentiating the Duhamel formulatiof] (8) two times wthe space, we get for any
t e (0,7,

Ozav(t+to,) = K(t,-)* Dpu(to, ) / 0. K(t * (u1 4+ u2) (fo +5,-) ds
_/O D2 K (t — 8,-) % (Dp(ug)v) (to + s, ) ds,

whereu; := (9,v)?+vd2,v anduy := 8, (uedyv). Sincev € C((0,T]; H*(R)) thenuy € C ((0,T]; L*(R)),
9z (ug)v € C((0,T); L*(R)) and using the Sobolev imbeddidé? (R) — CL(R), we get that
up € C((0,T]; LY(R) N L2(R)). Let us now define the following functions

t
Fi(t,z) = / 0. K (t —s,-) *xui(to + s,-)(x) ds, fori=1,2,
0
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and .
G(t,z) = / D2 K(t—s,-)x (Oz(ug)v) (to + s,-) ds.
Forallz,y € R, we have thankos to Cauchy-Schwartz inequality
|0, K (t —s,-) % ui(to+ s,-)(x) — 0 K(t — s,-) xu;(to + s,-)(y)]
/|8K 2)| Jui(to + 8,2 — 2) — ui(to + s,y — 2)| dz,
S T (a—y) (uilto +5,-)) — wils + to, )| 2w [0 K (t = 5, )l r2(R)

whereT,p denotes the translated functien— ¢(z + z).

Therefore, for allz,y € R and allt € [0,7"], we deduce that

|Fi(t,x) — Fi(t,y)] < /Ot Kot — )7 Tay) (uilto +5,-)) — uilto + s, N 2w ds,

< 4K, SE)pT} T (e—y) (@i(s,)) — wi(s, ) L2(m)> (32)
se|0,

with @;(s, -) = u;(to + s, -). Then,u; is uniformly continuous with values ih? as a continuous function
on a compact sdo, 7']. Therefore, for any > 0, there exists a finite sequen@e= sy < s1 < -+ <
sy = T" such that for any € [0,7"], there existg € {0,--- , N — 1} with

@i (s, ") — @i(sj, )2y < e
Therefore, using (32) we have

|Fi(t, ) — Fy(t,y)| < 4KT™* SESPT}HT(H’) (Ui(s,-)) = Tw—y) (@ils5,-)) [ L2(r)
se|0,

+ 4KoT’1/4{|IT($—y) (@i(s,-)) = wilsg; Nz + sup_|[as, )_ai(‘sj,')HL?(R)}-

s€[0,T]
And since||T(z—y) (wi(s, ) = Ta—y) (@i(s;,-)) [[2®) = lti(s,-) = wils;, )l L2 (m), We get
|Fi(t,2) = Fi(ty)| < 4K TV {|[ Ty (@(s5, ) — @ilsg, )l 2wy + 2¢} -
By the continuity of the translation ifi?(R), we have
T (o—y) (@i(s;,-)) — Bils, )2 @) — 0,
as(z —y) — 0. Hence,

limsup |F;(t,z) — Fi(t,y)| < 2e.
(z—y)—0

Taking the infimum w.r.e > 0, we infer thatF; is continuous w.r.t the variable. And using the same
argument as the proof of Propositifin 4, we get that C ([0,7"]; L*(R)). From classical results, we
then deduce thaf; is continuous w.r.t the couplg, z) on[0,7"] x R.

Let us now consider the functiad. Using again Cauchy-Schwartz inequality, we have forall € R,

07K (t = 5,) % (Du(ug)v) (to + 5, )(x) = 2, K (t = 5,) * (Du(ug)v) (to + 5,)(y)| <
lugllep @) Oe K (E = s,-) % Opv(to + 5,-)(x) = O K(t = s,-) * Bzo(to + 5,-)(y)];
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and using the same arguments as previougfowe get thatz € ((0,7] x R).

Moreover, since(ty,-) € H?(R), we can easily check thét, z) — K(t,-) * 92,v(to,-)(x) is contin-
uous on(0,7] x R. Finally, we get thav? v € C ([to, T] x R) and sincet, is arbitrary in(0, T, we
conclude thab?,v € C ((0,7] x R).

Second step:C''-regularity in time. From Propositior]] 7, we know that the ter#s and

-0, <§ + u¢v) + 02 v — Z[v] have the same regularity. Moreover, by the first step of tropgsition,

we have thav?,v € C((0,7] x R) and from Sobolev embeddings and Remfgrk 6, we deduce that
O (% + u¢u) andZ[v] belong toC'((0, 7] x R). Finally, we obtain that,v € C((0,7] x R) and thus

v € CH2((0,T] x R). The proof of this Proposition is now complete. [ |

Remark 8 (C*°-regularity) LetT > 0 andvy € L?(R). If v is solution to(@) on (0, T') in the classical
sense, then is indefinitely derivable with respect foandt. To get this result, we can used the bootstrap
method, already applied if][{] 5] for instance.

6 Instability of travelling-waves

In this section, we investigate the proof of the instabitifytravelling-waves solution stated in Theorem
B, which is an immediate consequence of the Duhamel forrfjjla (

Proof of Theoren]2To prove the instability of travelling-waves solution oktRowler equation, we use
the Duhamel formulg[]8) for the perturbation

ot x) = K(t, ) * vo(x /aK ( +u¢v>( () ds. (33)
First, by Plancherel formula, we have
1K () *vollfemy = [FE(E, -)*wo)H%z(R),
= [ IFEENOF @@ P

_ / £2e~ 2 REWD)(E) g

a

wherea, b > 0 are such that Re'z)(a) < R&(y7)(b) = —a < 0 andV¢ € [a, b], Rey7)(§) < —a (see
Figure[3). We then infer that

(£, ) # ol Zagry = €26 — a)e® = &[ug 32z (34)

Moreover, by Young inequality
t 1)2
I [ ontc= s, (% + wow) () dslzagn <
0
1 t

) o 10K (t = 5,°)|[2(m) ds ||U||2c([o,t];L2(R))

t
+/0 |0 K (t — 5>')||L1(R) ds ||U¢||cg(R) ||v||(}([0,t];L2(R))>
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then from the properties of the gradient of the keriie{Propositior{ L), [(33) and (B4) we deduce
lollcqogiz@) = e llvollram) — 2Kot"|[vl1E o,4:02(r)) — 2K18 2 luslloa wyll0lleo1:02))
i.e.

2Kot " [0] 210,022y + (1 + 2K18" 2 [ugller )llollooazmy) — e llvoll2@) > 0. (35)

Let us denoteX = ||v||c(jo,q;22(r))- Basic algebra implies that' solution of the previous inequality
(BB) satisfiest > X, where

—(1 + 2K [Juglcp @yt'/?) + \/(1 + 2K |ugllcp myt1/?)? + 8Kot /e [|vo| L2 (w)
4K ytt/4

Xo =

is the positive solution of the following equation
2Kt X%+ (1+ 2K1t1/2||u¢||c;(R))X — ol |2 ry = 0.
Therefore, we have

—(1+ 2K [Jug|cp yt'/?) + 2v 2Kot/8e%[vo| L2 (w)
4Kt1/4 ’
= —Cyt VA = Ot Ot /BeRt

||U||C([0,t];L2(lR)) =

with C1, C2, C3 positive constants which depends &9, K71, |[vol |2 (r) and||u¢||C§(R).
Let0 < 8 < §. Since
_Clt71/4 o Cgt1/4 + C3t71/86%t
et
ast — +oo thenvM > 0, 3ty > 0 such thatvt > g,

— +00,

[vlleo,g;L2m)) = MePt.

This completes the proof of the instability of travellingves.
[
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