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Abstract

We are interested in a nonlocal conservation law which describes the morphodynamics of sand
dunes sheared by a fluid flow, recently proposed by Andrew C. Fowler and studied by [1, 2]. We
begin by proving the global-in-time well-posedness in the neighbourhood of travelling-waves. We
next show the instability of travelling-waves solutions ofthe Fowler equation.

Keywords: nonlocal evolution equation, fractional anti-diffusive operator, Duhamel formulation, travelling-
wave, instability.
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1 Introduction

The study of mechanisms that allow the formation of structures such as sand dunes and ripples at the
bottom of a fluid flow plays a crucial role in the understandingof coastal dynamics. The modeling of
these phenomena is particularly complex since we must not only solve the Navier-Stokes or Saint-Venant
equations coupled with an equation for sediment transport,but also take into account the evolution of the
bottom. Instead of solving the whole system fluid flow, free surface and free bottom, nonlocal models
of fluid flow interacting with the bottom were introduced in [6, 7, 10]. Among these models, we are
interested in the following nonlocal conservation law [6, 7, 8]:

{

∂tu(t, x) + ∂x

(

u2

2

)

(t, x) + I[u(t, ·)](x) − ∂2xxu(t, x) = 0 t ∈ (0, T ), x ∈ R,

u(0, x) = u0(x) x ∈ R,
(1)

whereT is any given positive time,u = u(t, x) represents the dune height (see Fig. 1) andI is a nonlocal
operator defined as follows: for any Schwartz functionϕ ∈ S(R) and anyx ∈ R,

I[ϕ](x) :=
∫ +∞

0
|ξ|− 1

3ϕ′′(x− ξ)dξ. (2)
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Figure 1: Domain considered for the Fowler model:h is the depth water,η the free surface andu the
sandy bottom.

Equation (1) is valid for a river flow over an erodible bottomu(t, x) with slow variation and describes
both accretion and erosion phenomena [1].
The nonlocal termI can be seen as a fractional power of order2/3 of the Laplacian with the bad sign.
Indeed, it has been proved [1] that

F
(

I[ϕ]− ϕ′′
)

(ξ) = ψI(ξ)Fϕ(ξ) (3)

where
ψI(ξ) = 4π2ξ2 − aI |ξ|

4
3 + i bIξ|ξ|

1
3 , (4)

with aI , bI positive constants,F denotes the Fourier transform defined in (7) andΓ denotes the Euler
function. One simple way to establish this fact is the derivation of a new formula for the operatorI, see
Proposition 2.

Remark 1. For causal functions (i.e.ϕ(x) = 0 for x < 0), this operator is, up to a multiplicative
constant, the Riemann-Liouville fractional derivative operator of order4/3 which is defined as follows
[11]

1

Γ(2/3)

∫ +∞

0

ϕ
′′

(x− ξ)

|ξ|1/3 dξ =
d−2/3

dx−2/3
ϕ′′(x) =

d4/3

dx4/3
ϕ(x). (5)

Therefore, the Fowler model has two antagonistic terms: a usual diffusion and a nonlocal fractional
anti-diffusive term of lower order. This remarkable feature enabled to apply this model for signal pro-
cessing. Indeed, the diffusion is used to reduce the noise whereas the nonlocal anti-diffusion is used to
enhance the contrast [4].

Recently, some results regarding this equation have been obtained, namely, existence of travelling-
wavesuφ(t, x) = φ(x − ct) whereφ ∈ C1

b (R) andc ∈ R represents wave velocity, the global well-
posedness forL2-initial data, the failure of the maximum principle and the local-in-time well-posedness
in a subspace ofC1

b [1, 2]. Notice that the travelling-waves are not necessarily of solitary type (see [2])
and therefore may not belong toL2(R), the space where a global well-posedness result is available. In
[2], the authors prove local well-posedness in a subspace ofC1

b (R) but fail to obtain global existence.

2



One main focus of this paper is the study of travelling-wave solutions of (1). Indeed, an interesting topic
is to know if the shape of this travelling-wave is maintainedwhen it is perturbed. This raises the question
of the stability of travelling-waves. In our paper, we first establish global well-posedness for an initial
perturbationin L2(R) and then prove the nonlinear instability of travelling-waves solutions to (1). More
precisely, we exhibit a disturbance which grows without bound meaning that the original travelling-wave
is unstable. To begin with, we prove the global well-posedness in aL2-neighbourhood ofC1

b , namely
u = uφ + v, whereuφ 6= 0 is a nontrivial solution. To prove this result, we consider the following
Cauchy problem:

{

∂tv(t, x) + ∂x(
v2

2 + uφv)(t, x) + I[v(t, ·)](x) − ∂2xxv(t, x) = 0 t ∈ (0, T ), x ∈ R,

v(0, x) = v0(x) x ∈ R,
(6)

wherev0 ∈ L2(R) is an initial perturbation andT is any given positive time.

To prove the existence and uniqueness results, we begin by introducing the notion ofmild solution
(see Definition 1) based on Duhamel’s formula (8), in which the kernelK of I−∂2xx appears. The use of
this formula allows to prove the local-in-time existence with the help of contracting fixed point theorem.
The global existence is obtained thanks to an energy estimate (a priori estimate) (30). This approach is
quite classical: we refer for instance to [1, 5]. On the otherhand, the Duhamel formulation also allows
to prove that travelling-waves are unstable.

The plan of this paper is organised as follows. In the next section, we define the notion of mild
solution of (6) and we give some properties on the kernelK of I − ∂2xx that will be needed in the sequel.
Section 3 and 4 are, respectively, devoted to the proof of theuniqueness and the existence of a mild
solution of (6). Section 5 contains the proof of the regularity of the solution. The proof of the instability
of travelling-waves is given in section 6.

Here are our main results.

Theorem 1. LetT > 0 andv0 ∈ L2(R). There exists a unique mild solutionv ∈ L∞
(

(0, T );L2(R)
)

of (6) (see Definition 1). Moreover,

1. v ∈ C
(

[0, T ];L2(R)
)

andv(0, ·) = v0 almost everywhere,

2. v ∈ C1,2 ((0, T ]× R),

3. v satisfies∂tv + ∂x

(

v2

2 + uφv
)

+ I[v] − ∂2xxv = 0, on (0, T ] × R, in the classical sense or

equivalently,u = uφ + v is a classical solution of equation(1).

Theorem 2 (Instability of travelling-waves). Let T > 0 andφ ∈ C1
b (R) be a travelling-wave solution

to (1). Assume thatv0 ∈ L2(R) is such thatF(v0) = ε1[a,b] with ε > 0, 0 < a < b satisfying
Re(ψI) (a) < Re(ψI) (b) = −α < 0 and for all ξ ∈ [a, b],Re(ψI) (ξ) ≤ −α (see Figure 3).
Then the unique mild solution of(6) satisfies

||v||C([0,t];L2(R)) ≥ C eβt,

where0 < β < α
2 andC is a positive constant.
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Remark 2. The shape of this perturbation is given by

v0(x) = ε

{

2
sin( b−a

2
x)

x e−i
a+b
2
x if x 6= 0,

b− a otherwise.
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Figure 2: Evolution of the kernel K fort = 0.1 (red) andt = 0.5 s (blue)
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Figure 3: Behaviour of Re(ψI)

Remark 3. An interesting property for the kernelK is the non-positivity (see Figure 2) and the main
consequence of this feature is the failure of maximum principle [1]. We use again this property to
establish the instability of travelling-waves, see proof of Theorem 2.

Notations.
- The norm of a measurable functionf ∈ Lp(R) is written ||f ||pLp(R) =

∫

R
|f(x)|p dx for 1 ≤ p <∞.

- We denote byF the Fourier transform off which is defined by: for allξ ∈ R

Ff(ξ) :=
∫

R

e−2iπxξf(x)dx, (7)

andF−1 denotes the inverse of Fourier transform.
- The Schwartz space of rapidly decreasing functions onR is denoted byS(R).
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- We writeCk(R) = {f : R → C; f, f ′, · · · , f (k) are continous onR}.
- We denote byCb(R) the space of all bounded continuous real-valued functions onR endowed with the
norm ||.||L∞ = supR |f |.
- We write for anyT > 0,

C1,2 ((0, T ]× R) := {u ∈ C ((0, T ]× R) ; ∂tu, ∂xu, ∂
2
xx ∈ C ((0, T ]× R)} .

- We denote byD(U) the space of test functions onU andD′(U) denotes the distribution space.

2 Duhamel formula and main properties ofK

Definition 1. LetT > 0 andv0 ∈ L2(R). We say thatv ∈ L∞((0, T );L2(R)) is a mild solution of (6)
if for any t ∈ (0, T ):

v(t, x) = K(t, ·) ∗ v0(x)−
∫ t

0
∂xK(t− s, ·) ∗

(

v2

2
+ uφv

)

(s, ·)(x) ds (8)

whereK(t, x) = F−1
(

e−tψI(·)
)

(x) is the kernel of the operatorI − ∂2xx andψI is defined in(4).

The expression (8) is the Duhamel formula and is obtained using the spatial Fourier transform.

Proposition 1 (Main properties ofK, [1]). The kernelK satisfies:

1. ∀t > 0,K(t, ·) ∈ L1 (R) andK ∈ C∞ ((0,∞) ×R),

2. ∀s, t > 0, K(s, ·) ∗K(t, ·) = K(s+ t, ·),
∀u0 ∈ L2 (R) , limt→0K (t, ·) ∗ u0 = u0 in L2 (R),

3. ∀T > 0,∃K0 such that ∀t ∈ (0, T ] , ||∂xK (t, ·) ||L2(R) ≤ K0t
−3/4,

4. ∀T > 0,∃K1 such that ∀t ∈ (0, T ] , ||∂xK (t, ·) ||L1(R) ≤ K1t
−1/2.

Remark 4. Using Plancherel formula, we have for anyv0 ∈ L2(R) and anyt ∈ (0, T ]

||K(t, ·) ∗ v0||L2(R) ≤ eα0t||v0||L2(R)

whereα0 = −minRe(ψI) > 0.

Proposition 2 (Integral formula forI ). For all ϕ ∈ S(R) and allx ∈ R,

I[ϕ](x) = 4

9

∫ 0

−∞

ϕ(x+ z)− ϕ(x)− ϕ′(x)z

|z|7/3 dz. (9)
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Proof. The proof is based on simple integrating by parts. The regularity and the rapidly decreasing ofϕ
ensure the validity of the computations that follow. We have

∫ +∞

0
ϕ′′(x− ξ)|ξ|−1/3 dξ =

∫ +∞

0

d

dξ

(

ϕ′(x)− ϕ′(x− ξ)
)

|ξ|−1/3 dξ,

=
1

3

∫ +∞

0
|ξ|−4/3

(

ϕ′(x)− ϕ′(x− ξ)
)

dξ,

=
1

3

∫ +∞

0
|ξ|−4/3 d

dξ

(

ϕ′(x)ξ + ϕ(x− ξ)− ϕ(x)
)

dξ,

=
4

9

∫ +∞

0

ϕ(x− ξ)− ϕ(x) + ϕ′(x)ξ

|ξ|7/3 dξ,

=
4

9

∫ 0

−∞

ϕ(x+ ξ)− ϕ(x)− ϕ′(x)ξ

|ξ|7/3 dξ.

There is no boundary term at infinity (resp. at zero) becauseϕ is a rapidly decreasing function onR
(resp.ϕ is smooth). �

Remark 5. Using integral formula(9), [1, 2] proved that

F (I[ϕ]) (ξ) = 4π2Γ(
2

3
)|ξ|4/3

(

−1

2
+ i

√
3

2
sgn(ξ)

)

Fϕ(ξ).

Notice thatF (I[ϕ]) (ξ) = 4π2Γ(23 )(iξ)
4/3 which is consistent with Remark 1: up to a multiplicative

constantI[ϕ] is d4/3ϕ
dx4/3

.

Proposition 3. Lets ∈ R andϕ ∈ Hs(R). ThenI[ϕ] ∈ Hs−4/3(R) and we have

||I[ϕ]||Hs−4/3(R) ≤ 4π2Γ(
2

3
)||ϕ||Hs(R). (10)

Proof. For alls ∈ R and allϕ ∈ Hs(R), we have, using remark 5

||I[ϕ]||Hs−4/3(R) =

(
∫

R

(1 + |ξ|2)s−4/3|F(I[ϕ])(ξ)|2 dξ
)1/2

,

= 4π2Γ(
2

3
)

(

∫

R

(1 + |ξ|2)s−4/3|1
2
− i sgn(ξ)

√
3

2
||ξ|8/3|F(ϕ)(ξ)|2 dξ

)1/2

,

= 4π2Γ(
2

3
)

(

∫

R

( |ξ|2
1 + |ξ|2

)4/3

(1 + |ξ|2)s|F(ϕ)(ξ)|2 dξ
)1/2

,

≤ 4π2Γ(
2

3
)

[
∫

R

(1 + |ξ|2)s|F(ϕ)(ξ)|2 dξ
]1/2

,

= 4π2Γ(
2

3
)||ϕ||Hs(R).

�
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Remark 6. From the previous Proposition, we deduce that for alls ∈ R and allϕ ∈ Hs(R),
I[ϕ] ∈ Hs−4/3(R). In particular, using the Sobolev embeddingH2/3 →֒ Cb(R) ∩ L2(R), we deduce
thatI : H2 → Cb(R) ∩ L2(R) is a bounded linear operator.

Proposition 4(Duhamel formula (8) is well-defined). LetT > 0, v0 ∈ L2(R) andw ∈ L∞((0, T );L1(R))∪
L∞((0, T );L2(R)). Then, the function

v : t ∈ (0, T ] → K(t, ·) ∗ v0 −
∫ t

0
∂xK(t− s, ·) ∗ w(s, ·)ds (11)

is well-defined and belongs toC([0, T ];L2(R)) ( being extended att = 0 by the valuev(0, ·) = v0 ).

Proof. From Proposition 1, it easy to see thatv is well-defined and that for anyt ∈ (0, T ],
v(t, ·) ∈ L2(R). Indeed,∀t > 0, ∂xK(t, ·) ∈ L1(R) ∩ L2(R) so by Young inequality∂xK(t, ·) ∗ w(t, ·)
exists and using the estimates on the gradient (item 3 and 4 ofProposition 1) we deduce thatv is well-
defined andv(t, ·) ∈ L2(R).

Let us prove the continuity ofv. By the second item of Proposition 1, we have that the function
t ∈ (0, T ] → K(t, ·) ∗ v0 is continuous and it is extended continuously up tot = 0 by the value
v(0, ·) = v0. We define the function

F : t ∈ [0, T ] →
∫ t

0
∂xK(t− s, ·) ∗ w(s, ·)ds.

Now, we are going to prove thatF is uniformly continuous. For anyh > 0, Young inequalities imply

||F (t+ h, ·)− F (t, ·)||L2(R) ≤
∫ t

0
||∂xK(t+ h− s, ·)− ∂xK(t− s, ·)||Li(R) ds ||w||L∞((0,T );Lj (R))

+

∫ t+h

t
||∂xK(t+ h− s, ·)||Li(R) ds ||w||L∞((0,T );Lj(R)), (12)

wherei, j ∈ N
∗ are such thati + j = 3. Since∂xK(t, ·) = F−1(ξ → 2iπξe−tψI (ξ)), the dominated

convergence theorem implies that

||∂xK(t− s+ h, ·) − ∂xK(t− s, ·)||Li(R) → 0, ash→ 0.

Moreover, using the estimates on the gradient (item 3 and 4 ofProposition 1), we have the following
inequality

∫ t+h

t
||∂xK(t− s+ h, ·)||Lj (R)ds ≤ cjh

αj ,

wherecj is a positive constant andαj =

{

1/2 if j = 1
1/4 if j = 2

.

Using (12), we obtain that||F (t + h, ·) − F (t, ·)||L2(R) → 0, ash → 0. Hence, the functionF is
continuous and this completes the proof of the continuity ofv. �

Remark 7. Using the semi-group property, one can easily check [1] thatfor all t0 ∈ (0, T ) and all
t ∈ [0, T − t0],

v(t+ t0, ·) = K(t, ·) ∗ v(t0, ·)−
∫ t

0
∂xK(t− s, ·) ∗ w(t0 + s, ·) ds.
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3 Uniqueness of a solution

Let us first establish the following Lemma.

Lemma 1. LetT > 0 andv0 ∈ L2(R). For i = 1, 2, letwi ∈ L∞((0, T );L1(R)) ∪ L∞((0, T );L2(R))
and definevi as in Proposition 4 by:

vi(t, ·) = K(t, ·) ∗ v0 −
∫ t

0
∂xK(t− s, ·) ∗ wi(s, ·) ds.

Then,

||v1 − v2||C([0,T ];L2(R)) ≤
{

4K0T
1/4||w1 − w2||L∞((0,T );L1(R)) if wi ∈ L∞((0, T );L1(R)),

2K1

√
T ||w1 − w2||L∞((0,T );L2(R)) if wi ∈ L∞((0, T );L2(R)).

Proof. For all t ∈ [0, T ], we have

v1(t, ·) − v2(t, ·) = −
∫ t

0
∂xK(t− s, ·) ∗ (w1 − w2)(s, ·) ds.

Hence with the help of Young inequalities, we get

||v1(t, ·)−v2(t, ·)||L2(R) ≤















∫ t
0 ||∂xK(t− s, ·)||L2(R)||(w1 −w2)(s, ·)||L1(R) ds

if wi ∈ L∞((0, T );L1(R)),
∫ t
0 ||∂xK(t− s, ·)||L1(R)||(w1 −w2)(s, ·)||L2(R) ds

if wi ∈ L∞((0, T );L2(R)).

It then follows that

||v1(t, ·)−v2(t, ·)||L2(R) ≤















∫ t
0 ||∂xK(t− s, ·)||L2(R) ds ||w1 − w2||L∞((0,T );L1(R))

if wi ∈ L∞((0, T );L1(R)),
∫ t
0 ||∂xK(t− s, ·)||L1(R) ds ||w1 − w2||L∞((0,T );L2(R))

if wi ∈ L∞((0, T );L2(R)).

Using again the estimates of the gradient ofK (see Proposition 1), we conclude the proof of this Lemma.
�

Proposition 5. LetT > 0 andv0 ∈ L2(R). There exists at most onev ∈ L∞((0, T );L2(R)) which is a
mild solution to(6).

Proof. Let v1, v2 ∈ L∞((0, T );L2(R)) be two mild solutions to (6) andt ∈ [0, T ]. Using the previous
Lemma, we get

||v1 − v2||C([0,t];L2(R)) ≤ 2K0t
1/4||v21 − v22||L∞((0,t);L1(R)) + 2K1

√
t||uφv1 − uφv2||L∞((0,t);L2(R)).

Since,
||v21 − v22||L∞((0,t);L1(R)) ≤M ||v1 − v2||C([0,t];L2(R)) (13)

with M = ||v1||C([0,T ];L2(R)) + ||v2||C([0,T ];L2(R)),
then

||v1 − v2||C([0,t];L2(R)) ≤ (2MK0t
1/4 + 2K1t

1/2||uφ||C1
b (R)

)||v1 − v2||C([0,t];L2(R)).

8



Therefore,v1 = v2 on [0, t] for any t ∈ (0, T ] satisfying2MK0t
1/4 + 2K1t

1/2||uφ||C1
b (R)

< 1. Since

v1 andv2 are continuous with values inL2(R), we have thatv1 = v2 on [0, T∗] whereT∗ is the positive
solution of the following equation

2MK0t
1/4 + 2K1t

1/2||uφ||C1
b (R)

= 1,

i.e. T∗ = (
−2MK0+

√

4M2K2
0+8K1||uφ||C1

b
(R)

4K1||uφ||C1
b
(R)

)4.

To prove thatv1 = v2 on [0, T ], let us define

t0 := sup{t ∈ [0, T ] s.tv1 = v2 [0, t]}

and we assume thatt0 < T . By continuity ofv1 andv2, we have thatv1(t0, ·) = v2(t0, ·). Using the
semi-group property, see remark 7, we deduce thatv1(t0 + ·, ·) = v2(t0 + ·, ·) are mild solutions to (6)
with the same initial datav1(t0, ·) = v2(t0, ·), which implies thatv1(t, ·) = v2(t, ·) for t ∈ [t0, T∗ + t0].
Finally, we get a contradiction with the definition oft0 and we infer thatt0 = T . This completes the
proof of this proposition. �

4 Global-in-time existence of a mild solution

Proposition 6 (local-in-time existence). Let v0 ∈ L2(R). There existsT∗ > 0 that only depends
on ||v0||L2(R) and ||uφ||C1

b (R)
such that(6) admits a unique mild solutionv ∈ C([0, T∗];L

2(R)) ∩
C((0, T∗];H

1(R)). Moreover,v satisfies

sup
t∈(0,T∗]

t1/2||∂xv(t, ·)||L2(R) < +∞.

Proof. The proof of this proposition is based on the Banach fixed point theorem.
Since the gradient of the kernel with theL2-norm explodes with a controlled rate, see item 4 of Proposi-
tion 1, we consider forv ∈ C([0, T ];L2(R)) ∩ C((0, T ];H1(R)), the following norm

|||v||| := ||v||C([0,T ];L2(R)) + sup
t∈(0,T ]

t
1
2 ||∂xv(t, ·)||L2(R) (14)

and we define the affine space

X :=
{

v ∈ C([0, T ];L2(R)) ∩ C((0, T ];H1(R)) s.t.v(0, ·) = v0 and|||v||| < +∞
}

.

It is readily seen thatX endowed with the distance induced by the norm||| · ||| is a complete metric
space. Forv ∈ X, we define the function

Θv : t ∈ [0, T ] → K(t, ·) ∗ v0 −
1

2

∫ t

0
∂xK(t− s, ·) ∗ v2(s, ·) ds −

∫ t

0
∂xK(t− s, ·) ∗ uφv(s, ·) ds.

From Proposition 4,Θv ∈ C([0, T ];L2(R)) and satisfiesΘv(0, ·) = v0.

First step: Θv ∈ X. Since

∂x(K(t, ·) ∗ v0) = ∂xK(t, ·) ∗ v0 = F−1(ξ 7→ 2iπξe−tψI (ξ)Fv0(ξ)),
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the dominated convergence theorem implies that for anyt0 > 0,
∫

R

4π2|ξ|2
∣

∣

∣
e−tψI(ξ) − e−t0ψI(ξ)

∣

∣

∣

2
|Fv0(ξ)|2dξ → 0, ast→ t0.

Therefore, the functiont > 0 → (ξ 7→ 2iπξe−tψI (ξ)Fv0(ξ)) ∈ L2(R) is continuous and sinceF is an
isometry ofL2, we deduce thatt > 0 → ∂xK(t, ·)∗v0 ∈ L2(R) is continuous. We then have established
thatt > 0 → K(t, ·) ∗ v0 ∈ H1(R) is continuous. Moreover, from Proposition 1, we have

||∂xK(t, ·) ∗ v0||L2(R) ≤ K1t
−1/2||v0||L2(R). (15)

Letw denote the function

w(t, ·) = 1

2

∫ t

0
∂xK(t− s, ·) ∗ v2(s, ·)ds +

∫ t

0
∂xK(t− s, ·) ∗ uφv(s, ·)ds.

Let us now prove thatw ∈ C((0, T ];H1(R)). We first have

∂xw(t, ·) =
∫ t

0
∂xK(t− s, ·) ∗ v∂xv(s, ·)ds +

∫ t

0
∂xK(t− s, ·) ∗ ∂x(uφv)(s, ·)ds.

Using Young inequalities and Proposition 1, we get

||∂xw(t, ·)||L2(R) ≤
∫ t

0
||∂xK(t− s, ·) ∗ v∂xv(s, ·)||L2(R)ds

+

∫ t

0
||∂xK(t− s, ·) ∗ ∂x(uφv)(s, ·)||L2(R)ds,

≤
∫ t

0
||∂xK(t− s, ·)||L2(R)||v∂xv(s, ·)||L1(R)ds

+

∫ t

0
||∂xK(t− s, ·)||L1(R)||∂x(uφv)(s, ·)||L2(R)ds,

≤ ||v||C([0,T ];L2(R))

∫ t

0
K0(t− s)−3/4s−1/2ds sup

s∈(0,T ]
s1/2||∂xv(s, .)||L2(R)

+

∫ t

0
K1(t− s)−1/2s−1/2ds sup

s∈(0,T ]
s1/2||∂x(uφv)(s, ·)||L2(R),

≤ K0I||v||C([0,T ];L2(R))T
−1/4 sup

s∈(0,T ]
s1/2||∂xv(s, ·)||L2(R)

+K1J sup
s∈(0,T ]

s1/2||∂x(uφv)(s, ·)||L2(R), (16)

whereI = B(12 ,
1
4) andJ = B(12 ,

1
2) = π,B being the beta function defined by

B(x, y) :=

∫ 1

0
tx−1(1− t)y−1dt.

As |||v||| < ∞ thensups∈(0,T ] s
1/2||∂xv(s, ·)||L2(R) < ∞ andsups∈(0,T ] s

1/2||∂x(uφv)(s, ·)||L2(R) <

∞. We then deduce that∂xw(t, ·) is inL2 and so∂xv(t, ·) ∈ L2(R) for all t ∈ (0, T ].
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Let us now prove that∂xw is continuous on(0, T ] with values inL2.
For δ > 0 andt ∈ (0, T ], we define

(∂xw)δ(t, ·) :=

∫ t

0
∂xK(t− s, ·) ∗ (1{s>δ}(v∂xv)(s, ·)) ds

+

∫ t

0
∂xK(t− s, ·) ∗ (1{s>δ}∂x(uφv)(s, ·)) ds.

Since 1{s>δ}(v∂xv)(s, ·) ∈ L∞([0, T ];L1(R)) and 1{s>δ}∂x(uφv)(s, ·) ∈ L∞([0, T ];L2(R)) then
Proposition 4 implies that(∂xw)δ : [0, T ] → L2(R) is continuous. Moreover, we have

||∂xw(t, ·) − (∂xw)δ(t, ·)||L2(R) ≤ K0

∫ δ

0
(t− s)−3/4s−1/2 ds||v||C([0,T ];L2(R)) sup

s∈(0,T ]
s1/2||∂xv(s, ·)||L2(R)

+K1

∫ δ

0
(t− s)−1/2s−1/2ds sup

s∈(0,T ]
s1/2||∂x(uφv)(s, ·)||L2(R).

It then follows that
sup
t∈(0,T ]

||∂xw(t, ·) − ∂xwδ(t, ·)||L2(R) → 0 asδ → 0.

We next infer that∂xw ∈ C((0, T ];L2(R)) because it is a local uniform limit of continuous function.
Hence, we have established thatΘv ∈ C([0, T ];L2(R)) ∩ C((0, T ];H1(R)). To prove thatΘv ∈ X, it
remains to show that|||Θv||| < +∞. Using (15) and (16), we have

sup
t∈(0,T ]

t1/2||∂xΘv(t, ·)||L2(R) ≤ K1||v0||L2(R) +K0IT
1/4 sup

s∈(0,T ]
s1/2||∂xv(s, ·)||L2(R)||v||C([0,T ];L2(R))

+ K1JT
1/2 sup

s∈(0,T ]
s1/2||∂x(uφv)(s, ·)||L2(R). (17)

Finally, we haveΘ : X −→ X.

Second step:We begin by considering a ball ofX of radiusR centered at the origin

BR := {v ∈ X / |||v(t, ·)||| ≤ R}

whereR > ||v0||L2(R) +K1||v0||L2(R). Takev ∈ BR and let us now prove thatΘ mapsBR into itself.
We have

||Θ(v)(t, ·)||L2(R) ≤ ||K(t, ·) ∗ v0||L2(R) +

∫ t

0
||∂xK(t− s, ·) ∗

(

v2

2
+ uφv

)

(s, ·)||L2(R) ds.

By remark 4, we get
||K(t, ·) ∗ v0||L2(R) ≤ eα0T ||v0||L2(R) (18)

whereα0 = −minRe(ψI) > 0. Moreover, since||v2||L∞((0,T );L1(R)) = ||v||2L∞((0,T );L2(R)) and with
the help of properties of Proposition 1, we get

||Θ(v)(t, ·)||L2(R) ≤ eα0T ||v0||L2(R) + 2K0T
1/4R2 + 2K1T

1/2||uφ||C1
b (R)

R. (19)
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Using (17) and (19), we deduce that

|||Θv||| ≤ eα0T ||v0||L2(R) +K1||v0||L2(R) + (2 + I)K0T
1/4R2 + (2 + J)RK1T

1/2||uφ||C1
b (R)

+K1J ||uφ||C1
b (R)

RT.

Therefore, forT > 0 sufficiently small such that

eα0T ||v0||L2(R)+K1||v0||L2(R)+(2+I)K0T
1/4R2+(2+J)RK1T

1/2||uφ||C1
b (R)

+K1J ||uφ||C1
b (R)

RT ≤ R,
(20)

we get that|||Θv||| ≤ R.

To finish with, we are going to prove thatΘ is a contraction.
Forv,w ∈ BR, we have for anyt ∈ (0, T )

||Θ(v) (t, ·)−Θ(w) (t, ·)||L2(R) ≤ 1

2

∫ t

0
||∂xK(t− s, ·)||L2(R)||(v2 −w2)(s, ·)||L1(R)ds

+

∫ t

0
||∂xK(t− s, ·)||L1(R)||uφ(v − w)(s, ·)||L2(R)ds,

≤ 2K0t
1/4||v2 −w2||C([0,T ];L1(R))

+2K1t
1/2||uφ||C1

b (R)
||v − w||C([0,T ];L2(R)),

and since,

||v2 − w2||C([0,T ];L1(R)) ≤ (||v||C([0,T ];L2(R)) + ||w||C([0,T ];L2(R)))||v − w||C([0,T ];L2(R)),

≤ 2R||v − w||C([0,T ];L2(R)),

we get

||Θ(v) (t, ·)−Θ(w) (t, ·)||L2(R) ≤ (4RK0t
1/4 + 2K1t

1/2||uφ||C1
b (R)

)||v − w||C([0,T ];L2(R)). (21)

Moreover

||∂x(Θv −Θw)(t, ·)||L2(R) ≤ 1

2

∫ t

0
||∂xK(t− s, ·) ∗ ∂x(v2 − w2)(s, ·)||L2(R)ds

+

∫ t

0
||∂xK(t− s, ·) ∗ ∂x(uφ(v −w))(s, ·)||L2(R)ds,

≤ K0It
−1/4 sup

s∈(0,T ]
s1/2||(v∂xv − w∂xw)(s, ·)||L1(R)

+K1J sup
s∈(0,T ]

s1/2||∂x (uφ(v − w)) (s, ·)||L2(R).

And since

||(v∂xv−w∂xw)(t, ·)||L1(R) ≤ ||∂xw(t, ·)||L2(R)||(v−w)(t, ·)||L2(R)+||v(t, ·)||L2(R)||∂x(v−w)(t, ·)||L2(R),

then

t1/2||(v∂xv − w∂xw)(t, ·)||L1(R) ≤ ||(v − w)(t, ·)||L2(R)|||w||| + |||v|||t1/2||∂x(v −w)(t, ·)||L2(R),

≤ 2R|||v − w|||.
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Therefore, we obtain

||∂x(Θv−Θw)(t, ·)||L2(R) ≤ 2K0It
−1/4R|||v−w|||+K1J ||uφ||C1

b (R)
T 1/2|||v−w|||+K1J ||uφ||C1

b (R)
|||v−w|||.

(22)
Finally, using (21) and (22), we get

|||Θv −Θw||| ≤ [(2 + I)2RK0T
1/4 + (2 + J)||uφ||C1

b (R)
K1T

1/2 + K1JT ||uφ||C1
b (R)

]|||v − w|||.

Last step: conclusion.For anyT∗ > 0 sufficiently small such that (20) holds true and

[(2 + I)2RK0T
1/4
∗ + (2 + J)||uφ||C1

b (R)
K1T

1/2
∗ +K1JT∗||uφ||C1

b (R)
] < 1,

Θ is a contraction fromBR into itself. The Banach fixed point theorem then implies thatΘ admits a
unique fixed pointv ∈ C([0, T∗];L

2(R)) ∩ C((0, T∗];H
1(R)) which is a mild solution to (6).

�

Lemma 2 (RegularityH2 of v(t, ·)). Let v0 ∈ L2(R). There existsT ′
∗ > 0 that only depends on

||v0||L2(R) and||uφ||C1
b (R)

such that(6)admits a unique mild solutionv ∈ C([0, T ′
∗];L

2(R))∩C((0, T ′
∗];H

2(R)).
Moreover,v satisfies

sup
t∈(0,T ′

∗]
t1/2||∂xv(t, ·)||L2(R) < +∞ and sup

t∈(0,T ′
∗]
t||∂2xxv(t, ·)||L2(R) < +∞.

Proof. To prove this result, we use again a contracting fixed point theorem. But this time, it is the
gradient of the solutionv which is searched as a fixed point.
From Proposition 6, there existsT∗ > 0 which depends on||v0||L2(R) and||uφ||C1(R) such that
v ∈ C([0, T∗];L

2(R)) ∩ C((0, T∗];H
1(R)) is a mild solution to (6). Sincev ∈ C((0, T∗];H

1(R)), we
can consider the gradient ofv(t, ·) for any t ∈ (0, T∗]. Let thent0 ∈ (0, T∗) andT

′

∗ ∈ (0, T∗ − t0]. We
consider the same complete metric spaceX defined in the proof of the Proposition 6 and we take the
norm ||| · ||| defined in (14):

X :=
{

w ∈ C([0, T
′

∗];L
2(R)) ∩ C((0, T

′

∗];H
1(R)) s.t.w(0, ·) = w0 and|||w||| < +∞

}

,

with the initial dataw0 = ∂xv(t0, ·).
We now wish to apply the fixed point theorem at the following function

Θw : t ∈ [0, T
′

∗] → K(t, ·) ∗ w0 −
∫ t

0
∂xK(t− s, ·) ∗ (v̄w) (s, ·)ds

−
∫ t

0
∂xK(t− s, ·) ∗ (∂x(uφ)v̄) (s, ·) ds

−
∫ t

0
∂xK(t− s, ·) ∗ (uφw) (s, ·) ds,

wherev̄(t, ·) := v(t0 + t, ·). First, we leave to the reader to verify thatΘ mapsX into itself. The proof
is similar to the first step of the proof of the Proposition 6.
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For anyw ∈ X, we have from Young inequalities

||Θw(t, ·)||L2(R) ≤ eα0T ′
∗ ||w0||L2(R) + ||v̄||C([t0,T ′

∗];H
1(R))|||w|||

∫ t

0
||∂xK(t− s, ·)||L2(R)ds

+ ||uφ||C1
b (R)

||v̄||C([t0,T ′

∗];H
1(R))

∫ t

0
||∂xK(t− s, ·)||L1(R)ds

+ ||uφ||C1
b (R)

|||w|||
∫ t

0
||∂xK(t− s, ·)||L1(R)ds,

and using item 3 and 4 of the Proposition 1, we get

||Θw(t, ·)||L2(R) ≤ eα0T ′
∗ ||w0||L2(R) + 4K0T

′1/4
∗ ||v̄||C([t0,T ′

∗];H
1(R))|||w|||

+2K1T
′1/2
∗ ||uφ||C1

b (R)
||v̄||C([t0,T ′

∗];H
1(R))

+ 2K1T
′1/2
∗ ||uφ||C1

b (R)
|||w|||. (23)

Moreover, we have the following estimate

||∂xΘw(t, ·)||L2(R) ≤ ||∂xK(t, ·)||L1(R)||w0||L2(R) +

∫ t

0
||∂xK(t− s, ·)||L2(R)||∂x(v̄w)(s, ·)||L1(R)ds

+ ||uφ||C1
b (R)

∫ t

0
||∂xK(t− s, ·)||L1(R)||∂xv̄(s, ·)||L2(R) ds

+

∫ t

0
||∂xK(t− s, ·)||L1(R)||∂x (uφw) (s, ·)||L2(R) ds,

and using again the estimates for the gradient of the kernel given in Proposition 1, we obtain the next
result for anyt ∈ (0, T ′

∗]

t1/2||∂xΘw(t, ·)||L2(R) ≤ K1||w0||L2(R) + 4K0T
′3/4
∗ ||v̄||C([t0;T

′

∗];H
1(R))|||w|||

+K0IT
′1/4
∗ ||v̄||C([t0;T ′′

∗ ];H1(R))|||w||| + 2K1T
′
∗||uφ||C1

b
||v̄||C([t0;T

′

∗];H
1(R))

+2K1T
′
∗||uφ||C1

b
|||w||| +K1JT

′1/2
∗ ||uφ||C1

b
|||w|||, (24)

whereI, J are two positive constants defined in the proof of the Proposition 6.
Hence, using (23) and (24), we get

|||Θw||| ≤ eα0T ′
∗ ||w0||L2(R) +K1||w0||L2(R) + 2K1||uφ||C1

b (R)
||v̄||C([t0;T

′

∗];H
1(R))(T

′
∗ + T

′1/2
∗ )

+C|||w|||(T ′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T ′

∗),

for some positive constantC which depends onK0,K1, ||v̄||C([t0;T
′

∗];H
1(R)) and||uφ||C1

b (R)
.

We leave to reader to verify that: for anyw1, w2 ∈ X,

|||Θw1 −Θw2||| ≤ C ′(K0,K1, ||uφ||C1
b (R)

, ||v̄||C([t0;T
′

∗];H
1(R)))(T

′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T ′

∗)|||w1 − w2|||,

whereC ′ is a non-negative constant which also depends onK0,K1, ||v̄||C([t0;T
′

∗];H
1(R)) and||uφ||C1

b (R)
.

Let us now takeR such thatR > ||w0||L2(R) +K1||w0||L2(R) . Then, ifT ′
∗ > 0 satisfies

eα0T ′
∗ ||w0||L2(R) +K1||w0||L2(R) + 2K1||uφ||C1

b (R)
||v̄||C([t0;T

′ ];H1(R))(T
′
∗ + T

′1/2
∗ )

+CR(T
′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T ′

∗) ≤ R,
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and
C ′(T

′1/4
∗ + T

′1/2
∗ + T

′3/4
∗ + T ′

∗) < 1,

Θ : BR(X) −→ BR(X) is a contraction, whereBR(X) is ball ofX of radiusR centered at the origin.
Using a contracting point fixed theorem, it exists a unique fixed point, which we denote byw. But it is
easy to see thatΘ∂xv̄ = ∂xv̄ taking into account the space derivated of the Duhamel formulation (8).
Thanks to an uniqueness argument, we deduce thatw = ∂xv̄ and thus thatv ∈ C((0, T ′

∗];H
2(R)), which

completes the proof of this lemma.
�

Let us now prove the global-in-time existence of mild solution v.

Proposition 7 (Global-in-time existence ). Let v0 ∈ L2(R) andT > 0. There exists a (unique) mild
solution v ∈ C([0, T ];L2(R)) ∩ C((0, T ];H2(R)) of (6). Moreover,v satisfies the PDE(6) in the
distribution sense.

Proof. First step: v is a distribution solution. Taking the Fourier transform w.r.t the space variable in
(8), we get for allt ∈ [0, T ] and allξ ∈ R,

F(v(t, ·))(ξ) = e−tψI (ξ)Fv0(ξ)−
∫ t

0
iπξe−(t−s)ψI (ξ)F(v2(s, ·))(ξ)ds−

∫ t

0
2iπξe−(t−s)ψI (ξ)F(uφv(s, ·))(ξ) ds.

(25)
Let us denoteG the following function:

G(t, ξ) = −
∫ t

0
2iπξe−(t−s)ψI (ξ)F

(

v2

2
+ uφv

)

(s, ·)(ξ) ds.

Classical results on ODE imply thatG is derivable w.r.t the time with

∂tG(t, ξ) + ψI(ξ)G(t, ξ) = −iπξF
(

v2(s, ·)
)

(ξ)− 2iπξF ((uφv)(s, ·)) (ξ),

= −F(∂x(
v2

2
)(t, ·))(ξ) −F(∂x(uφv)(t, ·))(ξ). (26)

Let us now prove that all terms in (26) are continuous with values inL2. Since,v ∈ C((0, T ];H1(R))

then∂x(v2), ∂x(uφv) ∈ C((0, T ];L2(R)). We thus deduce thatF
(

∂x(
v2

2 )(t, ·)
)

andF (∂x(uφv)(t, ·))
are continuous with values inL2(R). Moreover, equation (25) implies that

ψIG(t, ·) = ψI

(

F(v(t, ·)) − e−tψIFv0
)

,

and soψIG(t, ·) is continuous with values inL2. Indeed,
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∫

R

|ψI(ξ)G(t, ξ)|2 dξ =

∫ 1

−1
|ψI(ξ)G(t, ξ)|2 dξ +

∫

R\(−1,1)
|ψ(ξ)G(t, ξ)|2 dξ,

≤ sup
ξ∈[−1,1]

|ψI(ξ)|2||G(t, ·)||2L2(R) + C

∫

R\(−1,1)
|ξ2G(t, ξ)|2 dξ,

≤ sup
ξ∈[−1,1]

|ψI(ξ)|2||G(t, ·)||2L2(R)

+C

∫

R\(−1,1)
|F(∂2xxv(t, ·)) − ξ2e−tψI(ξ)Fv0|2 dξ,

≤ sup
ξ∈[−1,1]

|ψI(ξ)|2||G(t, ·)||2L2(R) + C̃||v(t, ·)||2H2(R)

+C̃||v0||2L2(R) + C||v(t, ·)||H2 ||v0||L2 ,

< ∞,

with C, C̃ two positive constants. Hence, we have clearly that the function t→ ψIG(t, ·) ∈ L2(R,C) is
continuous. Finally, we have proved that all the terms in (26) are continuous with values inL2. Therefore,
in particular, from (26), we get thatG ∈ C1([0, T ];L2(R,C)) and then

d

dt
(G(t, ·)) + ψIG(t, ·) = −F(∂x(

v2

2
)(t, ·)) −F(∂x(uφv)(t, ·)).

Moreover,t ∈ [0, T ] → e−tψIFv0 ∈ L2(R,C) isC1 with

d

dt
(e−tψIFv0) + ψIe

−tψIFv0 = 0.

From equation (25), we infer thatFv isC1 on [0, T ] with values inL2 with

d

dt
F(v(t, ·)) = −ψIF(v(t, ·)) −F(∂x(

v2

2
)(t, ·)) −F(∂x(uφv)(t, ·)).

SinceF is an isometry ofL2, we deduce thatv ∈ C1([0, T ];L2(R)) and by (3), we get

d

dt
(v(t, ·)) = −F−1(ψIF(v(t, ·))) − ∂x(

v2

2
)(t, ·) − ∂x(uφv)(t, ·),

= −I[v(t, ·)] + ∂2xxv(t, ·) − ∂x(
v2

2
)(t, ·) − ∂x(uφv)(t, ·).

We are now going to prove thatv satisfies the PDE (6) in the distribution sense. Let us note

w(t, ·) := −I[v(t, ·)] + ∂2xxv(t, ·) − ∂x(
v2

2
)(t, ·) − ∂x(uφv)(t, ·)

and let us show that
∂tv = w in D((0, T ) × R).

By definition, we have for anyϕ ∈ D(0, T ) andψ ∈ D(R):

< ∂tv, ϕψ >D((0,T )×R) = −
∫ T

0

∫

R

v(t, x)
dϕ

dt
ψ(x) dt dx,

= −
∫ T

0

(
∫

R

v(t, x)ψ(x) dx

)

dϕ(t)

dt
dt.
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Therefore, it is enough to prove that

∫ T

0

(
∫

R

w(t, x)ψ(x)dx

)

ϕ(t)dt = −
∫ T

0

(
∫

R

v(t, x)ψ(x)dx

)

ϕ′(t)dt,

i.e.
d

dt

∫

R

v(t, x)ψ(x)dx =

∫

R

w(t, x)ψ(x) dx,

in the sense ofD′

(0, T ). But, we have that the function

t ∈ (0, T ) 7−→
∫

R

w(t, x)ψ(x)dx ∈ R

isC1 and
d

dt

∫

R

v(t, x)ψ(x)dx =

∫

R

w(t, x)ψ(x)dx

in the classical sense, which proves that the mild solutionv is a distribution solution of (6).

Second step: A priori estimate.By the first step, we have

∂tv + ∂x(
v2

2
+ uφv) + I[v]− ∂2xxv = 0

in the distribution sense. Therefore, multiplying this equality by v and integrating w.r.t the space variable,
we get:

∫

R

vtv dx+

∫

R

(I[v]− vxx) v dx+

∫

R

(uφv)x v dx = 0 (27)

because the nonlinear term is zero. Indeed, integrating by parts, we have
∫

R

∂x(
v2

2
)vdx = −

∫

R

v2

2
∂xvdx = −1

2

∫

R

∂x(
v2

2
)vdx.

There is no boundary term from the infinity because for allt ∈ (0, T ], v(t, ·) ∈ H2(R). Using (3) and
the fact that

∫

R
(I[v]− ∂2xxv)v dx is real, we get

∫

R

(I[v]− ∂2xxv)vdx =

∫

R

F−1(ψIFv)vdx =

∫

R

ψI |Fv|2dξ =
∫

R

Re(ψI)|Fv|2dξ. (28)

Moreover, sinceuφv ∈ H1(R) we have

∫

R

(uφv)x v dx = −
∫

R

uφvvx dx = −
∫

R

uφ

(

v2

2

)

x

dx =

∫

R

(∂xuφ)
v2

2
dx. (29)

Using (27), (28) and (29), we obtain

1

2

d

dt
||v(t, ·)||2L2 ≤ (α0 + Cφ)||v(t)||2L2

whereα0 = −minReψI > 0 andCφ = 1
2 ||uφ||C1

b
. Finally, we get for allt ∈ [0, T ] the following

estimate
||v(t, ·)||L2(R) ≤ e(α0+Cφ)t||v0||L2(R). (30)
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Last step: global-in-time exitence.Up to this point, we know thanks to Proposition 6 and Lemma 2 that
there existsT∗ = T∗(||v0||L2(R), ||uφ||C1

b (R)
) > 0 such thatv ∈ C([0, T∗];L

2(R)) ∩ C((0, T∗];H
2(R))

is a mild solution of (6) on(0, T∗]. Let us define

t0 := sup {t > 0 / there exists a mild solution of (6) on(0, t) with initial conditionv0} .

To prove the global-in-time existence of a mild solution, wehave to prove thatt0 ≥ T , whereT is any
positive constant. Assume by contradiction thatt0 < T . With again the help of Proposition 6, there
existsT ′

∗ > 0 such that for any initial dataw0 that satisfy

||w0||L2(R) ≤ e(α0+Cφ)t||v0||L2(R), (31)

it exists a mild solutionw on(0, T ′
∗]. Using (30), we have thatw0 := v(t0−T

′

∗/2, ·) satisfies (31). There-
fore, using an argument of uniqueness, we deduce thatv(t0 −T

′

∗/2+ t, ·) = w(t, ·) for all t ∈ [0, T
′

∗/2).
To finish with, we definẽv by ṽ = v on [0, t0) and ṽ(t0 − T

′

∗/2 + t, ·) = w(t, ·) for t ∈ [T
′

∗/2, T
′

∗].
Hence,̃v is a mild solution on[0, t0 + T

′

∗/2] with initial datumv0, which gives us a contradiction.
�

5 Regularity of the solution

This section is devoted to the proof of the existence of classical solutionsv to (6).

Proposition 8 (Solution in the classical sense). Let v0 ∈ L2(R) andT > 0. The unique mild solution
v ∈ C([0, T ];L2(R)) ∩ C((0, T ];H2(R)) of (6) belongs toC1,2 ((0, T ]× R) and satisfies

∂tv + ∂x

(

v2

2
+ uφv

)

+ I[v]− ∂2xxv = 0,

on (0, T ]× R in the classical sense.

Proof. First step: C2-regularity in space. Let us take anyt0 ∈ (0, T ] as initial time and let
T ′ ∈ (0, T − t0]. Differentiating the Duhamel formulation (8) two times w.r.t the space, we get for any
t ∈ [0, T ′],

∂2xxv(t+ t0, ·) = K(t, ·) ∗ ∂2xxv(t0, ·)−
∫ t

0
∂xK(t− s, ·) ∗ (u1 + u2) (t0 + s, ·) ds

−
∫ t

0
∂2xxK(t− s, ·) ∗ (∂x(uφ)v) (t0 + s, ·) ds,

whereu1 := (∂xv)
2+v∂2xxv andu2 := ∂x (uφ∂xv). Sincev ∈ C((0, T ];H2(R)) thenu2 ∈ C

(

(0, T ];L2(R)
)

,
∂x(uφ)v ∈ C((0, T ];L2(R)) and using the Sobolev imbeddingH2(R) →֒ C1

b (R), we get that
u1 ∈ C((0, T ];L1(R) ∩ L2(R)). Let us now define the following functions

Fi(t, x) :=

∫ t

0
∂xK(t− s, ·) ∗ ui(t0 + s, ·)(x) ds, for i = 1, 2,
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and

G(t, x) :=

∫ t

0
∂2xxK(t− s, ·) ∗ (∂x(uφ)v) (t0 + s, ·) ds.

For allx, y ∈ R, we have thanks to Cauchy-Schwartz inequality

|∂xK(t− s, ·) ∗ ui(t0 + s, ·)(x)− ∂xK(t− s, ·) ∗ ui(t0 + s, ·)(y)|

≤
∫

R

|∂xK(t− s, z)| |ui(t0 + s, x− z)− ui(t0 + s, y − z)| dz,

≤ ||T(x−y) (ui(t0 + s, ·))− ui(s+ t0, ·)||L2(R)||∂xK(t− s, ·)||L2(R),

whereTzϕ denotes the translated functionx→ ϕ(x+ z).
Therefore, for allx, y ∈ R and allt ∈ [0, T ′], we deduce that

|Fi(t, x) − Fi(t, y)| ≤
∫ t

0
K0(t− s)−3/4||T(x−y) (ui(t0 + s, ·))− ui(t0 + s, ·)||L2(R) ds,

≤ 4K0T
′1/4 sup

s∈[0,T ]
||T(x−y) (ūi(s, ·)) − ūi(s, ·)||L2(R), (32)

with ūi(s, ·) = ui(t0+s, ·). Then,ūi is uniformly continuous with values inL2 as a continuous function
on a compact set[0, T ′]. Therefore, for anyǫ > 0, there exists a finite sequence0 = s0 < s1 < · · · <
sN = T ′ such that for anys ∈ [0, T ′], there existsj ∈ {0, · · · , N − 1} with

||ūi(s, ·) − ūi(sj, ·)||L2(R) ≤ ǫ.

Therefore, using (32) we have

|Fi(t, x)− Fi(t, y)| ≤ 4K0T
′1/4 sup

s∈[0,T ]
||T(x−y) (ūi(s, ·))− T(x−y) (ūi(sj, ·)) ||L2(R)

+ 4K0T
′1/4

{

||T(x−y) (ūi(sj , ·))− ūi(sj, ·)||L2(R) + sup
s∈[0,T ]

||ūi(s, ·)− ūi(sj , ·)||L2(R)

}

.

And since||T(x−y) (ūi(s, ·)) − T(x−y) (ūi(sj , ·)) ||L2(R) = ||ūi(s, ·)− ūi(sj , ·)||L2(R), we get

|Fi(t, x)− Fi(t, y)| ≤ 4K0T
1/4
{

||T(x−y) (ūi(sj, ·)) − ūi(sj , ·)||L2(R) + 2ǫ
}

.

By the continuity of the translation inL2(R), we have

||T(x−y) (ūi(sj, ·)) − ūi(sj, ·)||L2(R) → 0,

as(x− y) → 0. Hence,
lim sup
(x−y)→0

|Fi(t, x)− Fi(t, y)| ≤ 2ǫ.

Taking the infimum w.r.tǫ > 0, we infer thatFi is continuous w.r.t the variablex. And using the same
argument as the proof of Proposition 4, we get thatFi ∈ C

(

[0, T ′];L2(R)
)

. From classical results, we
then deduce thatFi is continuous w.r.t the couple(t, x) on [0, T ′]× R.
Let us now consider the functionG. Using again Cauchy-Schwartz inequality, we have for allx, y ∈ R,

|∂2xxK(t− s, ·) ∗ (∂x(uφ)v) (t0 + s, ·)(x) − ∂2xxK(t− s, ·) ∗ (∂x(uφ)v) (t0 + s, ·)(y)| ≤
||uφ||C1

b (R)
|∂xK(t− s, ·) ∗ ∂xv(t0 + s, ·)(x)− ∂xK(t− s, ·) ∗ ∂xv(t0 + s, ·)(y)|,
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and using the same arguments as previous forFi, we get thatG ∈ ((0, T ] × R).
Moreover, sincev(t0, ·) ∈ H2(R), we can easily check that(t, x) → K(t, ·) ∗ ∂2xxv(t0, ·)(x) is contin-
uous on(0, T ] × R. Finally, we get that∂2xxv ∈ C ([t0, T ]× R) and sincet0 is arbitrary in(0, T ], we
conclude that∂2xxv ∈ C ((0, T ] × R).

Second step:C1-regularity in time. From Proposition 7, we know that the terms∂tv and

−∂x
(

v2

2 + uφv
)

+ ∂2xxv−I[v] have the same regularity. Moreover, by the first step of this proposition,

we have that∂2xxv ∈ C((0, T ] × R) and from Sobolev embeddings and Remark 6, we deduce that

∂x

(

v2

2 + uφv
)

andI[v] belong toC((0, T ]×R). Finally, we obtain that∂tv ∈ C((0, T ]×R) and thus

v ∈ C1,2((0, T ] × R). The proof of this Proposition is now complete. �

Remark 8 (C∞-regularity). LetT > 0 andv0 ∈ L2(R). If v is solution to(6) on (0, T ) in the classical
sense, thenv is indefinitely derivable with respect tox andt. To get this result, we can used the bootstrap
method, already applied in [1, 5] for instance.

6 Instability of travelling-waves

In this section, we investigate the proof of the instabilityof travelling-waves solution stated in Theorem
2, which is an immediate consequence of the Duhamel formula (8).

Proof of Theorem 2.To prove the instability of travelling-waves solution of the Fowler equation, we use
the Duhamel formula (8) for the perturbationv:

v(t, x) = K(t, ·) ∗ v0(x)−
∫ t

0
∂xK(t− s, ·) ∗

(

v2

2
+ uφv

)

(s, ·)(x) ds. (33)

First, by Plancherel formula, we have

||K(t, ·) ∗ v0||2L2(R) = ||F(K(t, ·) ∗ v0)||2L2(R),

=

∫

R

|F(K(t, ·))(ξ)F(v0)(ξ)|2dξ,

=

∫ b

a
ε2e−2tRe(ψI)(ξ)dξ,

wherea, b > 0 are such that Re(ψI)(a) < Re(ψI)(b) = −α < 0 and∀ξ ∈ [a, b], Re(ψI)(ξ) ≤ −α (see
Figure 3). We then infer that

||K(t, ·) ∗ v0||2L2(R) ≥ ε2(b− a)e2αt = e2αt||v0||2L2(R). (34)

Moreover, by Young inequality

||
∫ t

0
∂xK(t− s, ·) ∗

(

v2

2
+ uφv

)

(s, ·) ds||L2(R) ≤

1

2

∫ t

0
||∂xK(t− s, ·)||L2(R) ds ||v||2C([0,t];L2(R))

+

∫ t

0
||∂xK(t− s, ·)||L1(R) ds ||uφ||C1

b (R)
||v||C([0,t];L2(R)),
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then from the properties of the gradient of the kernelK (Proposition 1), (33) and (34) we deduce

||v||C([0,t];L2(R)) ≥ eαt||v0||L2(R) − 2K0t
1/4||v||2C([0,t];L2(R)) − 2K1t

1/2||uφ||C1
b (R)

||v||C([0,t];L2(R)),

i.e.

2K0t
1/4||v||2C([0,t];L2(R)) + (1 + 2K1t

1/2||uφ||C1
b (R)

)||v||C([0,t];L2(R)) − eαt||v0||L2(R) ≥ 0. (35)

Let us denoteX = ||v||C([0,t];L2(R)). Basic algebra implies thatX solution of the previous inequality
(35) satisfiesX ≥ X0 where

X0 =
−(1 + 2K1||uφ||C1

b (R)
t1/2) +

√

(1 + 2K1||uφ||C1
b (R)

t1/2)2 + 8K0t1/4eαt||v0||L2(R)

4K0t1/4

is the positive solution of the following equation

2K0t
1/4X2 + (1 + 2K1t

1/2||uφ||C1
b (R)

)X − eαt||v0||L2(R) = 0.

Therefore, we have

||v||C([0,t];L2(R)) ≥
−(1 + 2K1||uφ||C1

b (R)
t1/2) + 2

√
2K0t

1/8e
α
2
t||v0||L2(R)

4K0t1/4
,

= −C1t
−1/4 −C2t

1/4 + C3t
−1/8e

α
2
t,

with C1, C2, C3 positive constants which depends onK0,K1, ||v0||L2(R) and||uφ||C1
b (R)

.
Let 0 < β < α

2 . Since
−C1t

−1/4 − C2t
1/4 + C3t

−1/8e
α
2
t

eβt
→ +∞,

ast → +∞ then∀M > 0, ∃t0 > 0 such that∀t > t0,

||v||C([0,t];L2(R)) ≥Meβt.

This completes the proof of the instability of travelling-waves.
�
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