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Abstract

We studied avalanches of cohesionless granular materials down a rough inclined plane and over-

flowing a wall normal to the incoming flow and to the bottom. This paper focuses on the transient

time-varying mean force exerted by the granular stream on the obstacle at various slope inclina-

tions. A nearly triangular dead zone is formed upstream of the obstacle. It largely contributes to

the overall force signal at low slope inclinations. It also drives the residual force corresponding to

the avalanche tail until its standstill whatever the slope inclination. An analytical hydrodynamic

model based on depth-averaged momentum conservation was successfully developed for steady-flow

conditions to predict the steady-state force computed from discrete numerical simulations [Faug,

Beguin, and Chanut, Phys. Rev. E 80, 021305 (2009)]. The basic equations of the model are

briefly reviewed and adapted to transient time-varying flows. The modified hydrodynamic model

quite accurately represents the force peak produced by the granular avalanche flows computed

from discrete numerical simulations reported in previous studies. A fitting procedure is needed to

represent the decrease of the force after the force peak, thus quantifying the different contributions

to the mean force on the wall. We show that the weight of each contribution is largely dependent

on the slope inclination.
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1. INTRODUCTION

Granular flows around obstacles and the force that granular flows are able to exert on

the obstacle are of major importance in several applications such as storage and conveying

of bulk solids in industrial processes [1] as well as protection dams against geophysical flows

[2–6]. Granular drag on objects was approached by the pioneering work of Wieghardt [7, 8]

and was followed by several studies in a relatively quasi-static granular regime on the one

hand [9–14] and in the rapid-dilute-granular regime on the other hand [15–18] including
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interstitial gas effects [19, 20]. Many studies on granular flows around obstacles focused on

the shock waves occurring in front of the obstacles in the rapid regime [17, 18, 21–26]. To

date, granular drag in the dense regime has received little attention, referring to the so-called

granular liquid regime mentioned in [27].

A condition to obtain such a dense regime is a rough bottom (typical size roughness

close to the diameter of the moving grains). In presence of obstacles, this complex dense

regime leads to the formation of large stagnant zones or “dead zones” [28, 29] in front of the

obstruction. The following conditions are needed for dead zone formation: (i) an obstacle of

typical size close to the incoming flow thickness, and (ii) a relatively low Froude number of

the incident flow (Fr ∼ 1 typically). When these dead zones occur, the grains that are not

trapped inside the dead zone continue to flow over the obstacle in the absence of what is called

a granular jump, i.e., a large discontinuity in flow and velocity. These granular jumps have

been outlined earlier for rapid flows on relatively smooth beds [30–33]. As shown for free-

surface gravity-driven granular flows overflowing a wall in the steady dense regime, a nearly

triangular dead zone, whose length depends on the slope inclination, is formed upstream of

the obstacle [see experimental evidence in 28]. This dead zone largely influences the force

on the wall, as shown by discrete numerical simulations in steady flow conditions [29]. In

this steady dense regime, a simple hydrodynamic analytical model has been proposed and

successfully tested to reproduce the mean force on the wall computed from discrete numerical

simulations [29]. In this paper, we propose to slightly modify the hydrodynamic model in

order to adapt it to transient, time-varying granular avalanches. This corresponds to the

situation typically encountered in geophysical flows when avalanches flow over protection

dams in the run-out zone [5].

The first section reviews the hydrodynamic model’s equations for the steady regime [see

details in 29] and describes the assumptions made to establish the time-varying model equa-

tions. In particular, exponential growth over time is postulated for the dead zone length.

In the second step, the exponential equation describing the dead zone length is successfully

validated on discrete numerical simulations briefly described in the present paper (and pre-

viously reported in [34]). The predicted force is then directly cross-compared to the mean

force derived from the discrete numerical simulations with a careful focus on the model’s

sensitivity to each of the various free parameters. The model’s predictions are in good

agreement with the numerical results to predict the force at short and intermediate times.
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In particular, the maximum force is accurately predicted by the hydrodynamic model. For

slopes greater than a critical angle θmax, we show that a calibration of the friction force

acting at the base of the dead zone is needed to be able to catch the numerical results with

the hydrodynamic model at larger times when the avalanche comes to a standstill. θmax is

the angle above which steady recirculating flows do not remain uniform [29, 35–37]. The

resulting basal friction force was found to vanish when the slope inclination is greater than

the angle θmax. The various contributions to the force derived from the model are also quan-

tified. A discussion on the usefulness of this avalanche force model within the framework

of depth-averaged equations, recently revisited for dense granular avalanches [38], is finally

given, and the possible model extension to more complex obstacle geometries is suggested.

2. HYDRODYNAMIC MODEL

2.1. Equations for steady flows

We consider a steady granular stream down a rough inclined slope θ characterized by

its flow depth h, its depth-averaged velocity ū = 1
h

∫ h
0
u(y)dy and its depth-averaged fluid

density ρ̄ = φ̄ρP . φ̄, respectively ρP , are the depth-averaged volume fraction and the particle

density of the granular material. The granular stream overflows an obstacle of height H, as

shown in Fig. 1(a). We define x, respectively y, as the unit vectors parallel, respectively

normal, to the bottom [Fig. 1(a)]. Based on momentum conservation applied to the control

volume V0 defined in Fig. 1(a), the hydrodynamic model proposed and described in detail

in [29] makes it possible to define the normal force Fn exerted on a wall by a steady dense

granular flow as the sum of a dynamic force Fd, a hydrostatic force Fp, and a force based on

the weight Fw of the control volume minus the basal friction Ff with the rough bottom:

Fn = Fd + Fp + Fw − Ff , (1a)

Fd = βρ̄ū2h[1− (1− κα0) cosα0], (1b)

Fp =
1

2
kρ̄gh2 cos θ, (1c)

Fw − Ff =

[
ρ̄

(
V0 −

1

2
LH

)
+

1

2
ρzmLH

]
g(sin θ − µzm cos θ), (1d)

where the β factor is related to the velocity profile and is defined by 1
h

∫ h
0
u2(y)dy = βū2,
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κ is a velocity reduction coefficient equal to (1− e)/(π/2) with e the restitution coefficient

[29], and k is the earth pressure coefficient classically introduced for granular flows [38, 39]

representing the ratio of the longitudinal normal stress σxx to the vertical normal stress σyy.

ρzm is the mean density inside the dead zone and should be greater than the density ρ̄ due

to the expected compression of the material trapped upstream of the wall.

To close the model, the following additional equations are needed to define the deflecting

angle α0, the dead zone angle α0
zm, the free-surface angle α0

sl, the control volume V0 (including

the upstream fluid volume disturbed by the obstacle), the length of the influence zone L

upstream of the obstacle, and the basal friction coefficient µzm:

α0 =
1

2

(
α0
zm + α0

sl

)
, (2a)

α0
zm = θ − θmin, (2b)

α0
sl(θ < θmax) =

θmin
θmax − θmin

(θ − θmin), (2c)

α0
sl(θ > θmax) =

π

2
−
(
θmin − π/2
θmax − π/2

)
(π/2− θ), (2d)

V0 =
1

2
hL

[
2 + tan

(
2α0 − arctan

H

L

)(
L

h
− δh sinα0

)
+
δh
L

(H − h) sinα0

]
, (2e)

L =
H

tan(θ − θmin)
, (2f)

µzm = tan θmin. (2g)

The angle α0
zm is the angle of the nearly triangular dead zone formed upstream of the

wall. The angle α0
sl denotes the angle of the upstream free surface disturbed by the presence

of the obstacle. The angle α0 is the resulting mean angle between the bottom and the

u∗ direction, where u∗ is the outgoing flow velocity at section (S∗) defined in Fig. 1(a).

All these variables can be seen in Fig. 1(a). The angles θmin and θmax define the slope

inclination range for which steady and uniform granular flows are possible [29, 35–37] if a

constant input discharge is supplied. Assuming that δh is simply inversely proportional to

the velocity reduction δu = ū∗/ū = 1 − κα [29], δh is defined by δh = h∗/h = 1/(1 − κα),

where h∗ is the thickness of the outgoing flow at section (S∗) defined in Fig. 1(a). The

entire calculation to derive the system of Eqs. (1) and (2) is detailed in [29].

The discrete numerical simulations on the steady flows presented in [29] show that the

dead zone angle with the horizontal, θ − α0
zm [see Fig. 1(a)], was found to be constant and
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equal to θmin for any slope, which gives Eq. (2b). Therefore, it was possible to derive the

length of the influence zone L according to Eq. (2f). It was also found that the basal friction

coefficient µzm was constant and equal to tan θmin, which gives Eq. (2g). Further details can

be found in [29]. These results must be modified for the granular avalanches investigated

in this paper, which are time-varying phenomena. This will be discussed in the following

section.

2.2. Equations for avalanches

In the case of finite volume granular avalanches, we have to consider the additional term

d
dt

(
∫∫

V
ρudV ) in the momentum balance (per unit width). This term must be taken into

account beside Eqs. (1b), (1c), and (1d) provided the time-varying values of the flow depth

h(t), the depth-averaged velocity ū(t), and the depth-averaged density ρ̄(t). The time t = 0

corresponds to the avalanche release. The average velocity inside the dead zone is nil, which

leads to d
dt

(
∫∫

V
ρudV ) = d

dt
[
∫∫

V0− 1
2
HL

ρudV ]. Let us consider the approximation dM
dt

=

d
dt

(
∫∫

V
ρudV ) ·x ' d

dt
[ρV uV (V0− 1

2
HL)], where uV and ρV are the mean velocity and density

inside the volume V0 − 1
2
HL. Then, neglecting the term dM

dt
is a reasonable assumption if

the variations of the momentum d
dt

(ρV uV ) and of the volume d
dt

(
V0 − 1

2
HL
)

are small. This

is almost true when the avalanche decelerates before coming to a standstill (avalanche tail

after the peak pressure), but this assumption may fail at short and intermediate times when

the avalanche front impacts the obstacle, with possibly large time-velocity, flow depth, and

pressure gradients. We will come back to this assumption in Sec. 3.3.

We call αzm the dead zone angle, αsl the free-surface angle, and α the deflection angle

which are time-varying in the avalanche regime considered here. Only at the first impact of

the avalanche front with the wall does the influence zone length remain at zero (the incident

flow is still undisturbed), corresponding to a limit value of the angles αzm and αsl equal to

π/2. If the avalanche volume is large enough, we can expect to reach a steady state similar to

the one investigated in [29]. This steady regime may lead to the angle value corresponding to

the steady regime defined by Eqs. (2b), (2c), and (2d). At this stage, and without accurate

experimental knowledge of these angles’ changes over time, we can expect to reproduce this

behavior by exponential laws in the following form as soon as the avalanche has reached the

wall:
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αzm(t) = α0
zm +

(π
2
− α0

zm

)
e(Ti−t)/τ , (3a)

αsl(t) = α0
sl +

(π
2
− α0

sl

)
e(Ti−t)/τ , (3b)

where α0
zm and α0

sl are the values in the steady state [Eqs. (2b), (2c) and (2d)] and τ is a

characteristic time. The time Ti corresponds to the impact of the avalanche with the wall.

Eqs. (3a) and (3b) are valid if t ≥ Ti. αzm(t) and αsl(t) are equal to π/2 when t < Ti. It

is reasonable to assume that τ is similar for αzm and αsl, since the latter angle is directly

influenced by the former angle. The value of τ will be discussed in the next section. The

time-varying deflecting angle α(t) is simply derived from Eq. (2a), which remains valid if the

above time-varying angles αzm(t) and αsl(t) are considered. The limit values of the angles

established for the steady regime may be inappropriate to describe the final state when the

avalanche comes to a standstill. This point will be discussed in Sec. 3.2. The time-varying

influence zone length L(t) is then defined as:

L(t) =
H

tan[αzm(t)]
, (4)

and the control volume V0 is time-varying and defined by Eq. (2e) provided the appro-

priate time-varying values of L(t) [Eq. (4)] and α(t).

In steady regime [29], the basal friction coefficient µzm was found constant for any slope

and equal to tan θmin on the one hand and the dead zone angle with the horizontal, θ−α0
zm,

was also found constant for any slope and equal to θmin on the other hand. This results

leads to the following equation in steady regime: µzm = tan(θ − α0
zm). This last equation

suggests a simple geometrical relation between the basal friction coefficient and the dead

zone angle with the horizontal. If such a statement holds for the time-varying avalanche, the

basal friction coefficient should be time-varying and is likely to be defined by the following

equation with respect to the dead zone geometry:

µzm(t) = tan[θ − αzm(t)]. (5)

Whether the above time-varying value of µzm from Eq. (5) should be chosen instead of

a constant value equal to tan θmin will be discussed in Sec. 3.3. It should be noted that

the basal friction coefficient defined here is used to describe a time-averaged macroscopic
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behavior without going into the details of the complex physical processes acting inside the

dead zone. The fluctuating force chain network observed inside the dead zone and leading

to high-frequency force fluctuations (Figure 4(a) in [29] and Figure 4 in [34]) is beyond the

scope of the depth-averaged hydrodynamic model presented in this paper.

3. MODEL PREDICTIONS COMPARED TO DISCRETE NUMERICAL SIMU-

LATIONS RESULTS

3.1. Discrete numerical simulations

Simulation method, contact law and microscopic parameters

Numerical simulations were carried out using the molecular-dynamics method as intro-

duced by Cundall [40] and successfully used to simulate dense granular flows [see, for example

36, 41, 42]. The method assumes rigid spheres interacting through a damped linear spring

for the normal force and a linear spring restricted to a threshold value according to friction

between grains described by a Coulomb condition for the tangential force. Four microscopic

parameters are needed for the model: the normal stiffness kn (= 104 N m−1 in our simu-

lations), the tangential stiffness kt (= 1/2kn), the local particle friction µ (=0.5), and the

damping coefficient related to the restitution coefficient e (=0.5). Further details on the

numerical method and the choice of the values given to the microscopic parameters are

presented in [29, 34] and references therein.

Simulated systems and measures

The simulated systems consisted of an inclined slope and an upstream reservoir of length

Lr = 300d, as shown in Fig. 1(b). The grains in motion were spheres with a slight polydis-

persity (±10% in size). The simulated system worked as a purely 2D system made of disks

but with spheres whose centers were forced to stay in the 2D plane (x, y) defined in Fig.

1(b). Because of the thickness of the spheres in the third dimension z [see Fig. 1(b)], we will

consider 3D volume fractions (see Sec. 3.3). The mean grain diameter was d = 1 mm and

the particle density was ρP = 2450 kg m−3 corresponding to glass material. The roughness

of the bottom was made with grains measuring d in diameter with the same properties as the
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grains in motion. A constant volume was initially released from the reservoir by an aperture

of constant height Hr = 35d. The results of the numerical tests are presented in greater

detail elsewhere [34]. The granular avalanches considered here differ from the stationary

flows generated from a recirculation system investigated in [29]. The avalanche flows are

more complex because they correspond to transient, time-varying granular flows.

First, we investigated flows with no obstacle in a large range of slope inclinations (16◦ ≤

θ ≤ 32◦) and we characterized the changes over time in flow depth h, depth-averaged velocity

ū and volume fraction φ̄ at various locations, x/d, from the reservoir. The typical changes

over time in flow depth and velocity are given in Fig. 2 for θ = 24◦ at the position x0/d = 500.

Second, we measured the force over time exerted by the granular avalanche on an obstacle

located at the position x0/d = 500. The obstacle is a wall of height H normal to the incoming

flow and normal to the bottom. The flow depth over time at location x0/d = 500 shows a

maximum (see example in Fig. 2). H was systematically set to be equal to this maximum

value of the flow depth at the location x0/d = 500. High-frequency force fluctuations were

observed, as shown in [34, Fig. 4]. In this paper, we focus on the time-averaged normal

force Fn only. Typical forces evolving with time are depicted in Fig. 3. The force-vs-time

signals are characterized by three phases: (i) a short-duration force increase, (ii) a force peak

whose width increases with decreasing slope inclination, (iii) a long-lasting force decrease

up to a residual force whose value decreases with decreasing slope inclination. Further

details and discussion of the numerical results can be found in [34]. Further results are also

given in Sec. 3.3 when these numerical results and the hydrodynamic model prediction are

cross-compared.

3.2. Measured and predicted dead zone lengths

Importantly, the dead zone length determines the magnitude of the control volume V0

and therefore the forces Fw and Ff in Eqs. (1a) and (1d). The empirical laws proposed to

estimate the change over time of the dead zone angle [Eq. (3a)] and the influence zone length

[Eq. (4)] were directly compared to the results of the numerical simulations. This helped the

model calibration before focusing on the mean force exerted on the wall. The so-called dead

zone was defined as the region inside which the grains had an individual velocity v smaller

than a threshold velocity vt. For steady recirculating flows investigated in [29], vt was chosen
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equal to 0.05ū, with ū the steady averaged velocity of the control flows with no obstacle. vt

was slope-dependent. In the avalanche regime here, the depth-averaged velocity ū was not

only slope-dependent but also time-varying. For the sake of simplicity, we used a constant

threshold velocity equal to 5 10−2 m s−1 whatever the slope and the time t. Furthermore,

the dead zone shape was calculated at a frequency of 10 Hz. This allowed us to roughly

estimate the average shape of the dead zone without consuming too much calculation time.

Figure 4 gives a typical example of the changes over time of the dead zone shape. This is

shown to be nearly triangular in spite of the observed fluctuations in the dead zone profiles

(choosing a time-varying threshold velocity vt also depending on the slope inclination and

increasing the acquisition frequency would have smoothed the results). Figure 5 displays

the change over time of the dead zone length for the following slopes: θ = 16◦, 24◦ and

30◦. The results for other slopes are very similar. We also reported the prediction from

Eq. (4). The comparison shows that the numerical data are relatively well reproduced at

short and intermediate times for any slope provided a value of τ = 0.40 s. At longer times,

the predictions remain satisfactory even if the dead zone length tends to increase slightly at

longer times, whereas the exponential law predicts a saturation to the value corresponding

to the steady regime. It may lead to a slight underestimation of the dead zone length by

the proposed empirical law at large times.

3.3. Measured and predicted forces

In this section is studied the model’s sensitivity to (i) the basal friction coefficient µzm, (ii)

the time-derivative term in momentum balance, (iii) the dead zone length and the model

parameters β, κ and k. First, we show that a time-varying value of the basal friction is

more efficient than a constant value derived from the steady regime to catch the force peak.

However, a gap between numerical results and model prediction exists at large times after

the force peak and this gap increases with increasing slope. Second, we show that taking

into account or not the time-derivative term in momentum balance has little effect on the

results. Third, the sensitivity of the model prediction to the dead zone length and to the

model parameters β, κ and k is investigated. It is shown that varying L, β, κ or k does not

improve the model predictions at large times (avalanche tail). Finally, we show that it is

needed to fit the basal friction in order to be able to catch the force not only at short and
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intermediate times (close to the force peak) but also at large times (avalanche tail). The

various steps of the sensitivity study are detailed below.

Influence of the basal friction µzm: a time-varying value?

Figure 6 gives the hydrodynamic model predictions compared to the numerical data using

the following set of the model’s free parameters: θmin = 14◦, θmax = 24◦ (both angle values

were previously determined in [29, 34] and are compatible with previous studies with the

same granular material in 2D geometry [37, 43]), k = 1, κ = 0.32 (e = 0.5) and β = 1.

Investigating in detail the possible influence of the slope at different times on the density of

the dead zone was beyond the scope of our study. We simply assume here that the mean

density of the dead zone is close to the random close packing: ρzm ' ρmax = φmaxρP where

φmax = 0.64 is the random close packing for a 3D system [44]. We use here φmax = 0.64

(real 3D system) instead of φmax = 0.82 (real 2D system) in order to be consistent with the

computed forces which depend on the density of the system made of 3D spherical particles.

In Fig. 6 are presented the results for the following slopes: θ = 18◦, 22◦ and 30◦. The results

for other slopes are similar.

If we consider a time-varying basal friction coefficient, i.e., µzm(t) = tan[θ − αzm(t)], the

predictions are shown to be relatively good at short and intermediate times for most of the

slope inclinations. The model predictions given in Fig. 6 are drawn without including the

term dM
dt

in momentum balance. This result tends to show that not considering this term may

be a reasonable assumption for the avalanche flows investigated here. In the following section

are discussed the model predictions including an approximation of this time-derivative term.

On the other hand, the force is generally underestimated at higher times (after the force

peak). We will come back to this discrepancy between model predictions and numerical

data later in the paper. Figure 6 also shows the model’s predictions with µzm = tan(θmin),

which give less satisfactory results to reproduce the force at short and intermediate times.

The maximum force, or force peak, exerted by the granular avalanche on the wall must be

considered. Figure 7 shows the maximum force Fmax normalized by a typical force F0 versus

the slope inclination where F0 is defined as: (i) the typical dynamic force of the control flow

with no obstacle, F dyn
0 = 1/2ρ̄mū

2
mhmax (where hmax is the maximum height, ūm and ρ̄m

are the corresponding depth-averaged velocity and fluid density, taken at same time t and
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same position x0/d = 500) and (ii) the typical hydrostatic force of the control flow with no

obstacle, F hydro
0 = 1/2ρ̄mgh

2
max cos θ. Model predictions to reproduce the numerical values

of the ratios Fmax/F
dyn
0 and Fmax/F

hydro
0 are better with µzm(t) = tan[θ − αzm(t)] than

with µzm = tan θmin. In the following, we will systematically keep the time-varying value

µzm(t) = tan[θ − αzm(t)] with respect to the changes over time in the dead zone angle.

The numerical results from Fig. 7 show that above θmax the maximum force is accurately

described by Fmax ' CuF
dyn
0 (with Cu = 1) while below θmax, it is clearly described by

Fmax ' ChF
hydro
0 (with Ch ' 6). Above θmax, the maximum force scales as Fmax ∝ um

2hmax

(dynamic force). Below θmax, the maximum force scales as F ∝ h2
max (hydrostatic force), but,

because of the influence of the dead zone, a force equal to around six times the incoming

hydrostatic force is mobilized. The hydrodynamic model is able to reproduce these two

regimes remarkably well. It should be noted that a similar behavior has also been evidenced

for steady-flow conditions [see Figure 8(b) in 29].

Influence of the time-derivative term in momentum balance

As previously discussed, the temporal variation of the momentum dM
dt

can be approxi-

mated with the following equation:

dM

dt
=

d

dt

(∫∫
V

ρudV

)
· x ' d

dt

[
ρV uV (V0 −

1

2
HL)

]
(6)

This term can be estimated if we consider the following assumptions: (i) ρV ' ρ̄ (the

overall density inside V0 − 1
2
HL is assumed equal to the depth-averaged density of the

incoming flow) and (ii) uV = 1
2
ū (1 + δu) (the overall velocity inside V0− 1

2
HL is close to the

mean value given by ū and ū∗). Figure 8 shows the comparison between the hydrodynamic

model predictions including the term dM
dt

or not for the following slopes: θ = 18◦, 24◦

and 30◦. The results for other slopes are very similar. The influence of this term remains

weak. However, we can detect a better accuracy of the model to describe the force signal

at small times, corresponding to the short-duration increase of the force before reaching the

maximum value. Figure 9 displays the maximum force Fmax normalized by the typical forces

F0 (dynamic and hydrostatic) versus the slope inclination. Model predictions including the

approximated value of dM
dt

or not are displayed. The model predictions on maximum force

are slightly influenced by the time-derivative term in momentum balance.
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Influence of L, k, κ and β

As previously mentioned and shown in Fig. 5, the value of the dead zone length L is

shown to be well predicted by the exponential law. However, it may be noticed a slight

underestimate of the dead zone length at long times in Fig. 5. Underestimating L leads to

underestimating V0, resulting in a lower force Fw. Hence, increasing L can reduce the gap

between the model predictions and the numerical data. However, we did not find reasonable

L values which allowed us to match the numerical data for any slope and time. As an exam-

ple, it is needed to multiply the dead zone length by a factor 1.5 to catch the measured force

at large times for θ = 22◦. The resulting dead zone length is then far from the measured

one and the good prediction at earlier times, before and at the force peak, is completely

lost (the force peak being largely overestimated). It can be concluded that the observed dis-

crepancies between the hydrodynamic model predictions and the discrete numerical results

at large times after the force peak are not explained by an error in estimating L with the

proposed exponential law.

Figure 10 gives the hydrodynamic model predictions compared to the numerical data

using various sets of the model’s free parameters k, κ (e), and β. Four triplets are considered:

(i) k = 1, κ = 0.32 (e = 0.5), and β = 1; (ii) k = 1.12, κ = 0.32 (e = 0.5), and β = 1; (iii)

k = 1, κ = 0.32 (e = 0.5), and β = 5/4; and (iv) k = 1, κ = 0.13 (e = 0.8), and β = 1.

The value β = 1 corresponds to the exact value for plug flows [39], whereas β = 5/4 refers

to a Bagnold-like velocity profile [45]. The value k = 1 corresponds to isotropic material

conditions whereas k = 1.12 is derived from a Mohr-Coulomb plasticity prediction [39] when

the basal and the internal friction coefficients are taken equal to tan θmin [46]. In Fig. 10 are

presented the results for three slope inclinations: θ = 16◦, 24◦, and 32◦. We found identical

trends for the slopes not depicted in Fig. 10.

The model’s sensitivity to β and κ is insignificant at low slopes whatever the time. The

model’s sensitivity increases with increasing slope inclination but only at short and interme-

diate times (close to the force peak). Varying β and κ does not change the model predictions

at larger times (avalanche tail). The model’s sensitivity to k is generally insignificant for any

slope whatever the time. It can be concluded that changing the values of k, κ (or e), and

β does not explain the observed discrepancies between the hydrodynamic model predictions

and the discrete numerical results at large times after the force peak.
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Influence of µzm: distinguishing flows below and above θmax?

In this section is investigated the influence of the basal friction µzm in greater detail. At

this stage, and for a lack of better knowledge on the frictional processes involved at the base of

the dead zone, we suggest using the basal friction coefficient µzm as a calibration parameter.

We simply assume that the real basal friction coefficient named µ∗zm is proportional to the

basal friction coefficient defined by Eq. (5) where the proportionality coefficient cµ is a

calibration parameter:

µ∗zm(t) = cµ tan[θ − αzm(t)] (7)

Figure 11 shows the results of the model’s calibration on the numerical data for the

following slopes: θ = 18◦, 22◦ and 28◦. The results for other slopes are similar. The best-

fitting curves have been obtained by a simple method of least squares. The hydrodynamic

model can match the numerical data well after the force peak if the following values for

cµ depending on the slope inclination are considered: cµ = 0.99 for θ = 16◦, cµ = 0.99

for θ = 18◦, cµ = 0.86 for 20◦, cµ = 0.52 for 22◦, cµ = 0.20 for θ = 24◦, and cµ = 0 for

θ = 26◦, 28◦, 30◦, and 32◦.

Importantly the angle θmax that defines a critical angle above which no steady and uniform

flows are possible even if a constant input discharge in granular materials is supplied. This

angle θmax is determined by measuring the thickness of the granular material left by the

granular stream and depends on the flowing grains and roughness properties (see [35, 37]

and references therein). θmax was estimated at 24◦ for the material studied [29, 34], which is

compatible with previous studies on similar 2D granular systems [37, 43]. Physically, θmax

can be interpreted as the critical friction angle above which grains cannot be trapped in

the bottom roughness. Thus, one can expect different friction processes at the base of the

dead zone if the slope inclination is below or above θmax. Figure 12 depicts the calibration

coefficient cµ versus the slope inclination. The curve shows a change in behavior, which,

remarkably, acts around the critical angle θmax. Above θmax, cµ vanishes, indicating that

the friction force at the base of the dead zone is nil. Below θmax, cµ sharply increases and

tends to reach a value equal to 1 when the slope inclination tends toward θmin.

At this stage, we are not able to explain this peculiar result derived from the fitting

process and showing a transition around θ = θmax. We can only suggest the idea or the

14

Physical Review E, Volume 82, Issue 4, 041302 (2010)
URL: http://link.aps.org/doi/10.1103/PhysRevE.82.041302
DOI: 10.1103/PhysRevE.82.041302



intuition that this behavior is related to the function hstop(θ) previously evidenced from

numerical and experimental simulations [27, 35, 37]. Indeed let us imagine a situation for

which the wall would be removed. Above θmax, all the grains stored upstream of the wall

will flow downward obeying hstop(θ > θmax) = 0 and suggesting that the average basal

friction (resulting from grain scale effects such as trapping) is nil. Below θmax, the grains

will form a deposit obeying hstop(θ < θmax) > 0 suggesting that the average basal friction

is non-zero. The thickness of this deposit will increase with decreasing slope inclination

(increase of hstop(θ) when decreasing θ) suggesting that the basal friction increases. In the

inset of Fig. 12 is shown the hstop function to illustrate the possible link with cµ. We did not

measure the basal friction directly and further investigations are needed on the influence of

roughness. Whether this correlation between the function hstop and the fitting parameter cµ

is simply a coincidence or results from more fundamental physical phenomena remains an

open question.

3.4. Various contributions to the total force

As illustrated in Fig. 13 and already mentioned in the paper, the typical time-varying

force from the granular avalanche can be split into three phases: (i) a rapid, short-duration

increase, (ii) a more or less pronounced force peak depending on the slope inclination, and

(iii) a long-lasting force decrease (avalanche tail) until the avalanche comes to a standstill

in the presence of a residual force. Figure 13 gives the model’s predictions compared to

the numerical data (using the calibration value of cµ) for the two extreme slopes θ = 16◦

and θ = 32◦, and for the intermediate slope θ = 24◦. Figure 13 also shows the different

contributions to the total force: the dynamic force Fd, the hydrostatic force Fp, and the

weight of the control volume V0 minus the basal friction force Fw−Ff . The cross-comparison

of the graphs given in Fig. 13 is highly informative on the flow–obstacle interaction.

First, during the avalanche phases (i) and (ii) previously mentioned, the distribution

of the various contributions to the total force depends on the slope inclination. At high

slope values (rapid-dilute regime), the dynamic contribution Fd is dominant and largely

contributes to the peak force: the contributions from Fp and Fw − Ff are insignificant. In

this regime, the force is proportional to a purely dynamic force 1/2ρ̄ū2h. Here it is crucial to

estimate the depth-averaged velocity and fluid density accurately to calculate the dynamic
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force. Accurate estimations of the deflecting angle α and the coefficient β (related to the

velocity profile in depth) and κ (related to velocity reduction) are also of crucial importance

to derive the so-called drag coefficient 2β[1 − (1 − κα) cosα]. At this stage, we only used

empirical arguments to derive the deflecting angle α and the velocity reduction coefficient κ

[29]. At low slope values (a dense regime close to the quasi-static regime), the contribution

of Fw − Ff is dominant: the contribution Fp is also important but to a lesser extent. The

dynamic contribution is here largely inconsequential. In this regime, it is crucial to estimate

the hydrostatic force (flow depth h, fluid density ρ̄, and coefficient k) accurately as well as

the properties of the control volume upstream of the obstacle (dead zone length L and basal

friction µzm also derived here from simple empirical arguments).

Second, during the avalanche phase (iii) previously mentioned (avalanche tail), the con-

tribution to the total force mainly stems from Fw − Ff , whatever the slope inclination.

Consequently, the conclusions drawn immediately above for the dense regime close to the

quasi-static regime at low slope values are also valid here for any slope.

Third, the so-called granular liquid regime corresponds to a transition state between these

two asymptotic behaviors for which all the contributions should be taken into account to

determine the total time-varying force exerted on the wall by a dense granular avalanche. The

hydrodynamic model presented in this paper is a good candidate to fulfill this requirement.

4. CONCLUSION

This paper has described a simple depth-averaged hydrodynamic model allowing one to

derive the time-averaged force exerted by finite volume granular avalanches on a wall normal

to the incident flow. Basic model equations were derived from a previous analytical model

proposed for steady flow conditions [29]. The interaction of the granular stream with the

wall is characterized by the formation of a dead zone upstream of the obstacle. This dead

zone largely influences the resulting force on the wall. In the case of granular avalanches,

we had to take into account the dead zone changes over time. This was described by an

exponential variation in time. The proposed exponential law was shown to predict the dead

zone length, roughly estimated from discrete numerical simulations, relatively well.

The hydrodynamic model predicted that the force was the sum of three contributions: (i)

a dynamic force Fd, (ii) a hydrostatic force Fp, and (iii) the difference between the weight
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of the control volume (fluid volume disturbed by the wall) and its basal friction with the

bottom, Fw − Ff . The first two forces were accurately determined. The third one largely

influenced the total force (i) at low slope inclinations and (ii) the residual force for all slope

values. It was shown to depend mainly on the value of the control volume (related to the

dead zone length) and the basal friction coefficient. As the control volume was accurately

estimated, the basal friction coefficient between the dead zone and the bottom remained

to be evaluated. The model’s prediction was first found to be in good agreement with the

numerical values for most of the slopes in terms of the maximum force. The basal friction

coefficient was then used as a fitting parameter. It was possible to accurately match the force

decrease over time obtained from the discrete numerical simulations. The fitting process gave

a basal friction coefficient depending on the slope. Above the critical maximum angle θmax,

no frictional force seems to be mobilized at the base. The wall is submitted to the dynamic

and hydrostatic forces plus the weight of the control volume. Below θmax the frictional force

sharply increases when the slope inclination decreases. The basal frictional force contributes

to decreasing the force to which the wall is submitted. At this stage, we were not able to

explain this peculiar behavior. We suggested relating it to the existence of the function

hstop(θ) evidenced from previous experimental and numerical simulations [27, 35, 37].

Today, advanced models based on depth-averaged equations initiated by the pioneering

work of Savage and Hutter [39], recently revisited [38], are able to reproduce the dynamics

of granular avalanches observed in small-scale experiments. With these models, it is not

possible to compute the force exerted by the granular stream on a wall. The model proposed

herein is encouraging in that it provides a simple analytical approach to derive the force if

the flow features (flow depth, depth-averaged velocity, and density) are determined a priori

by a depth-averaged model. Further research is needed to investigate the parameters derived

from empirical arguments and needed to close the model. This paper has been restricted to

a wall spanning the flow and consisting of a flat obstacle normal to the incident flow. Future

investigations are needed on more complex flow geometries with possible 3D effects including

lateral fluxes and other obstacles when the flow conditions correspond to the granular liquid

regime for which stagnant zones can occur in the absence of a granular jump.
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FIG. 1: (a) Sketch of the control volume V0 (hatched zone) inside which momentum conservation is

applied. h and u are the flow depth and the mean velocity of the incoming flow at section (S). The

section (S) is normal to the bottom and represents the beginning of the influence zone (length L)

of the obstacle (height H). L is the distance between the section (S) and the foot of the obstacle.

h∗ and u∗ are the flow depth and the mean velocity of the flow at section (S∗). Section (S∗) is

normal to the main direction of the outgoing flow of velocity u∗. We defined the deflecting angle

α between u∗ and the bottom. θ is the bottom slope. Assuming a triangular shape for the dead

zone, we also defined αzm as the angle of the dead zone with the bottom and αsl as the angle of

the free-surface (inside V0) with the bottom. (b) Sketch of the simulated system. A finite volume

(hatched area) of an assembly of about 18 000 spheres (mean diameter, d) is suddenly released

from the reservoir (length Lr = 300d) by an aperture of height Hr = 35d, and the grains flow down

the inclined slope.
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FIG. 2: Flow depth and velocity versus time measured at the position x0/d = 500 (see Fig 1b):

example for θ = 24◦.

FIG. 3: Time-averaged normal force Fn versus time (moving average over 0.2 s). The results

presented in this figure were obtained for θ = 16◦, 24◦ and 32◦. The complete results are presented

in [34] and in Sec. 3.3 when the numerical results and the hydrodynamic model prediction are

cross-compared.
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FIG. 4: Change over time of the dead zone shape: example for θ = 28◦. The arrow indicates the

propagation of the dead zone upstream of the obstacle (x/d < 0).

FIG. 5: Normalized dead zone length L/H versus time t (s): comparison between the numerical

data and the predictions from Eq. (4) with τ = 0.40 s. Examples for θ = 16◦, 24◦ and 30◦.
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FIG. 6: Time-averaged force versus time for various slope inclinations: comparison between the

numerical data (circles) and the model predictions using µzm(t) = tan[θ − αzm(t)] (black line) or

µzm = tan θmin (gray line) with the following values: θmin = 14◦, θmin = 24◦, k = 1, κ = 0.32

(e = 0.5), β = 1, and φmax = 0.64. Examples for θ = 16◦, 22◦ and 30◦.
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FIG. 7: Normalized maximum force Fmax/F0 vs slope inclination θ with F0 = F0
hydro (gray) or

F0 = F0
dyn (black). Model predictions (curves) compared to discrete numerical data (points).

Model predictions are given for two values of µzm: µzm = tan θmin (dash line) and µzm(t) =

tan[θ − αzm(t)] (solid line).
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FIG. 8: Time averaged force versus time for various slope inclinations: comparison between the

numerical data (circles) and the model’s predictions including the time-derivative term in the mo-

mentum balance (black line) or not (gray line). The following values of the model’s free parameters

are used: θmin = 14◦, θmin = 24◦, k = 1, κ = 0.32 (e = 0.5), β = 1, and φmax = 0.64. The friction

is defined with respect to the time-varying geometry of the dead zone: µzm(t) = tan[θ − αzm(t)].

Examples for θ = 18◦, 24◦ and 30◦.
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FIG. 9: Normalized maximum force Fmax/F0 vs slope inclination θ with F0 = F0
hydro (gray) or

F0 = F0
dyn (black). Model predictions (curves) compared to discrete numerical data (points). The

model predictions include the time-derivative term in the momentum balance (solid line) or not

(dashed line).
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FIG. 10: Time-averaged force versus time: comparison between the numerical data (circles) and the

model predictions using various sets of the model’s free-parameters: (i) k = 1, κ = 0.32 (e = 0.5)

and β = 1 (solid black line); (ii) k = 1.12, κ = 0.32 (e = 0.5), and β = 1 (solid gray line); (iii)

k = 1, κ = 0.32 (e = 0.5), and β = 5/4 (dashed gray line); (iv) k = 1, κ = 0.13 (e = 0.8), and β = 1

(dashed black line). The results are displayed for three slope inclinations: (a) θ = 16◦, (b) 24◦, and

(c) 32◦. The model predictions are given using θmin = 14◦, θmin = 24◦, and µzm = tan[θ−αzm(t)].
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FIG. 11: Time-averaged force versus time for various slope inclinations: comparison between the

numerical data (circles) and the model’s predictions using µzm(t) = tan[θ−αzm(t)] (black line) or

µ∗zm(t) = cµ tan[θ − αzm(t)] (gray line) with the following values: θmin = 14◦, θmin = 24◦, k = 1,

κ = 0.32 (e = 0.5), β = 1 and φmax = 0.64. Examples for θ = 18◦, 22◦ and 28◦. The best fit (least

squares method) was obtained with: cµ = 0.99 for θ = 18◦, cµ = 0.52 for 22◦ and cµ = 0 (no basal

friction force) for θ = 28◦.
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FIG. 12: Calibration coefficient cµ, defined by Eq. (7), versus the slope inclination θ. The vertical

dashed line marks the value of θmax. Inset: function hstop/d versus θ.
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FIG. 13: Time-averaged force versus time: the model’s predictions using the fitting coefficient cµ

(black line) compared to numerical data (circles), including the curves showing each contribution

to the total force: Fd (solid gray line), Fp (dashed gray line) and Fw−Ff (dashed black line). The

results are presented for three slope inclinations: (a) θ = 16◦ (low slope), (b) θ = 24◦ (intermediate

slope), and (c) θ = 32◦ (high slope).
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