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Abstract

Background: Microorganisms display vast diversity, and each one has its own set of genes, cell components and

metabolic reactions. To assess their huge unexploited metabolic potential in different ecosystems, we need high

throughput tools, such as functional microarrays, that allow the simultaneous analysis of thousands of genes.

However, most classical functional microarrays use specific probes that monitor only known sequences, and so fail

to cover the full microbial gene diversity present in complex environments. We have thus developed an algorithm,

implemented in the user-friendly program Metabolic Design, to design efficient explorative probes.

Results: First we have validated our approach by studying eight enzymes involved in the degradation of polycyclic

aromatic hydrocarbons from the model strain Sphingomonas paucimobilis sp. EPA505 using a designed microarray

of 8,048 probes. As expected, microarray assays identified the targeted set of genes induced during biodegradation

kinetics experiments with various pollutants. We have then confirmed the identity of these new genes by

sequencing, and corroborated the quantitative discrimination of our microarray by quantitative real-time PCR.

Finally, we have assessed metabolic capacities of microbial communities in soil contaminated with aromatic

hydrocarbons. Results show that our probe design (sensitivity and explorative quality) can be used to study a

complex environment efficiently.

Conclusions: We successfully use our microarray to detect gene expression encoding enzymes involved in

polycyclic aromatic hydrocarbon degradation for the model strain. In addition, DNA microarray experiments

performed on soil polluted by organic pollutants without prior sequence assumptions demonstrate high specificity

and sensitivity for gene detection. Metabolic Design is thus a powerful, efficient tool that can be used to design

explorative probes and monitor metabolic pathways in complex environments, and it may also be used to study

any group of genes. The Metabolic Design software is freely available from the authors and can be downloaded

and modified under general public license.

Background
Assessing the metabolic potential of microorganisms in

variable ecosystems is a novel and stimulating challenge

in biology. Microorganisms are present in all environ-

mental habitats, even the most extreme, yet despite

their ubiquity, we know relatively little about these com-

munities. Microorganisms display vast diversity, each

one having its own set of genes, cell components and

metabolic reactions [1]. Thus 1 g of soil may contain up

to 109 bacteria cells, which may represent between 1,000

and 10,000 different species [2,3]. Assuming 3,000

genes per single bacteria genome, there will thus be up

to 3 × 1012 genes mediating huge and various biological

processes [3,4]. To overcome the limits of cultivation,

several high throughput approaches have been devel-

oped to explore genetic contents, such as metagenomics

or DNA microarrays [1,5,6]. Numerous random shotgun

metagenomic projects have caused the publicly available

sequence data to increase exponentially, giving us a

basis to study complex ecosystems [1,5]. In some cases,
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these sequence data were used to identify different spe-

cies in environmental or clinical samples with DNA

microarrays [5]. Moreover, these data should improve

our knowledge not only of genome organization and

genome evolution but also of biological processes and

biological activities. However, although such sequencing

approaches can rapidly generate large amounts of data,

they give only a snapshot of genetic information and

can be laborious and costly when complex ecosystems

are to be studied. Also, DNA sequencing is not informa-

tive on gene expression and regulation. Metatranscrip-

tomic studies are promising, but several obstacles have

to be crossed before they can be widely used [1,7].

Indeed, sequencing approaches highlight the difficulties

of accurate functional annotation of unknown proteins

without experimental data; unsupervised annotation of

proteins by software pipelines suffers from very high

error rates. Spurious functional assignments are usually

caused by species homology-based transfer of informa-

tion from existing database entries to new target

sequences [8,9]. Such functional annotation errors are

due to local similarities between the query and function-

ally annotated sequences. Hence, two protein sequences

may have two different biological functions, but a same

protein domain. This approach, based on homologous

gene prediction, presents another major drawback: it

can fail to identify novel enzymes that have the same

function, but a different primary structure from known

enzymes [10]. Today, the main sources for such protein

sequence data are Swiss-Prot, TrEMBL and GenPept.

This last should be considered as an equivalent to the

Swiss-Prot/TrEMBL databases with a high level of

redundancy in terms of protein sequences [11]. Unlike

TrEMBL, the Swiss-Prot database contains curated data-

sets of high quality [12].

Another high throughput tool, functional DNA

microarrays, can also be used for monitoring metabolic

diversity of microbial populations in environmental

samples. In a single experiment, thousands of genes

can be simultaneously detected. Several studies already

demonstrate the usefulness of functional DNA micro-

arrays for exploring various ecosystems [13-15]. Hybri-

dization of microarrays with mRNA targets permits

low-cost, easy quantitative estimates of gene expression

levels [16]. Monitoring environmental metabolic pro-

cesses can be made more powerful, and so more use-

ful, by designing explorative probes to ensure the

detection of genes not already discovered and depos-

ited in databases. However, microarray probe design

software determines specific probes to monitor only

known sequences [17]. Thus only a small fraction of

genes encoding microbial enzymes can be studied with

these probes. To solve this problem, degenerate probes

need to be defined, as for PCR-based applications [18].

Probe design also has to allow for the constraints of

cross-hybridization. Specificity is a measure of the

inability of a probe to bind strongly to non-target

sequences that may be present in a biological sample.

This can be accomplished by avoiding probes with

excessive sequence similarity to a non-target sequence

that may be present during the hybridization [19,20].

These problems of cross-hybridization emphasize the

need to take into account the fact that the studies are

conducted on complex environments. As thermody-

namic constraints are not yet completely understood

[21], sequence similarity is currently the prime para-

meter used to check probe specificity. A previously

reported and extensively cited work by Kane and cowor-

kers [22] on 50-mer probes, shows that a probe must

meet two conditions to be specific: (i) the oligonucleo-

tide sequence must have no more than 75% similarity

(among all sequences) with a non-targeted sequence

present in the hybridization pool, and (ii) the oligonu-

cleotide sequence must not include a stretch of identical

sequence longer than 15 contiguous bases.

Here we describe a new algorithm, implemented in a

user-friendly program, named Metabolic Design, which

will generate efficient explorative probes using a simple

convenient graphical interface. The practical utility of

this approach was demonstrated by studying several

genes encoding enzymes involved in the degradation of

diverse polycyclic aromatic hydrocarbons from the

model strain Sphingomonas paucimobilis sp. EPA505

(strain EPA505) and assessing metabolic capacities of

microbial communities in a soil contaminated with aro-

matic hydrocarbons.

Results
The Metabolic Design software

Our aim is to build a graphical display of given biologi-

cal processes and perform exhaustive sequence mining

of all available protein sequences for each biological step

studied. The graphical user interface (GUI) allows for

example the graphical reconstruction of tailor-made

metabolic pathways, with metabolites and enzymes

represented respectively with nodes and edges (Figure

1). Using appropriate keywords, correctly annotated pro-

tein sequences are extracted from a curated database (by

default Swiss-Prot potentially enriched with personal

data) for each edge of the graph. The user can freely

select the most suitable protein as a reference sequence

query. This sequence is then used to carry out exhaus-

tive mining of similar proteins from public and/or per-

sonal databases. The strategy of probe design using

Metabolic Design software is described in Figure 2 and

detailed in Methods under ‘Software implementation’.

In our study, reference sequences are extracted from

the highly curated database Swiss-Prot formatted for the
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application to ensure efficient mining. In addition, the

reference database is enriched with TrEMBL protein

sequences biologically validated when a non-studied

orthologous protein sequence was found in the Swiss-

Prot database. For every listed protein, data are

extracted using a homologous approach with a BLASTp

program against concatenated Swiss-Prot and TrEMBL

databases. Thus the selection of candidate protein

sequences based on similarity criteria bypasses func-

tional annotation errors. Extracted sequences are then

automatically filtered and displayed in graphical edges

for each studied enzyme. The results are finally orga-

nized according to increasing expected value, or organ-

ism origin, and miscellaneous functions are also

implemented in the toolbar to facilitate additional data

extraction and visualization (Figure 1).

This multiple alignment is then used to design specific

explorative oligonucleotide probes targeting studied pro-

teins (Figure 3A), using the following procedure. To

reduce insertion-deletion (indel) regions in multiple

alignments, a first filtering step is carried out to exclude

sequences with high size divergence compared with

the reference query. A degenerate nucleic consensus

sequence based on the IUPAC (International Union of

Pure and Applied Chemistry) nomenclature is defined

from the protein multiple alignment using the backtran-

slation approach [23]. For each molecular site, potential

amino acids are backtranslated taking into account all

Figure 1 Results window produced by Metabolic Design. Each metabolite is represented by small yellow squares, called nodes, and enzymes

as edges between nodes. Inner windows give the parsing of BLASTp results ordered by increasing Expected Value and obtained for each

reference protein as query. For each extracted homologous protein sequence, data such as sequence in EMBL format (f button), sequence in

FASTA format (s button), or split BLASTp alignment results (a button) are directly available through the inner window toolbar buttons. The w

button, allows the execution of ClustalW alignment on pre-selected protein sequences. Such sequences can also be saved in a single file in

FASTA format (s+ button), and/or used to launch the probe design module (o button). Additional functions have also been implemented. The

user can automatically highlight potential metabolic capacities of a given organism (species name) subsequently using the ‘catch’ and ‘view’

buttons at the top of the window.
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genetic code redundancy (Figure 3B). Probes are then

extracted from this consensus sequence, according to

three defined user parameters: probe size, degeneracy

and inosine composition thresholds. Along the consen-

sus sequence, the algorithm extracts all probes by incre-

menting the constant defined probe size in a window.

All probes with degeneracy and inosine composition

under the set thresholds are then listed in an inner win-

dow in the GUI. Thus the user can select all or some

pre-selected potential probes for specificity testing. To

reduce computing time, during this test the algorithm

generates all peptide combinations for each degenerate

probe. Thus the degeneracy code redundancy is

bypassed and the number of comparisons is greatly

reduced. This test is carried out using tBLASTn against

the ‘Cross-hybridization database’ using Kane’s algo-

rithm criteria [22]. Indeed, those parameters are used to

check all positive results by comparison at the nucleo-

tide level with BLASTn. If those criteria are in agree-

ment with a potential cross-hybridization this may also

reflect hybridization with a member of the targeted

enzyme family. To avoid this bias, the algorithm extracts

Multiple alignment

ClustalW

Backtranslation

Probe generation and

filtering

Specificity checking

tBLASTn

• Divergent size Filter

• Probe size 

• Inosine (%) threshold

• Degeneracy threshold

• Expected value threshold

‘Cross-hybridization

database’

All transcribed regions

ENV, PRO and FUN

5’-UTR + CDS + 3’-UTR

‘Cross-hybridization

database’

All transcribed regions

ENV, PRO and FUN

5’-UTR + CDS + 3’-UTR

• Expected value threshold

‘Protein database’

Swiss-Prot, 

trEMBL

+ personal data

‘Protein database’

Swiss-Prot, 

trEMBL

+ personal data

Extraction of candidate

protein sequences

BLASTp

Reference protein 

selection 

Cross-hybridizations

confirmation
BLASTx

BLASTn

• Kane’s criteria 

• Enzyme family comparison

• Clustering cross-hybridizations

Displayed results

Figure 2 Strategy to design explorative probes for functional microarrays used in Metabolic Design. After extraction of potential

candidate sequences by BLASTp using query reference protein to compare against concatenated Swiss-Prot and TrEMBL databases, a multiple

alignment with selected protein sequences and the reference protein is performed. The next step is in two parts: (i) for each molecular site,

amino acids are backtranslated, taking into account all genetic code redundancy to determine a degenerate nucleic consensus sequence, (ii)

probes are then extracted from this consensus sequence, according to defined user parameters. The program then searches for all potential

cross-hybridizations for each selected probe against the ‘Cross-hybridization database’ by tBLASTn. Kane’s criteria are then checked for all positive

results by BLASTn. If Kane’s criteria are in agreement with a potential cross-hybridization, the program also checks whether it is a potential

member of the targeted enzyme family using a BLASTx comparison against the reference protein. Cross-hybridization results are then clustered

by BLASTn, stored and visualized in an output file.
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the complete sequence of the gene harboring the poten-

tial cross-hybridization region and compares it with the

reference protein using the BLASTx program. Finally, a

file containing all potential cross-hybridizations for

every candidate probe is automatically clustered, created

and displayed.

Data mining and probe selection for microarray

experiments using Metabolic Design

To validate our probe design strategy, we focus on

metabolic pathways involved in the biodegradation of

polycyclic aromatic hydrocarbons (PAHs). PAHs are a

class of fused-ring aromatic compounds that are ubiqui-

tous environmental pollutants known to be toxic, muta-

genic and/or carcinogenic. Many researchers have

therefore focused on the biodegradation of these pollu-

tants by microorganisms, especially bacteria. Several

enzymes involved in these critical biodegradation steps

have been characterized and their sequences deposited

in databases [24-28].

In this study, we choose to target eight genes

(phnA1a, phnA2a, bphC, bphA3, ahdA1c, ahdA2c,

ahdA4 and bphB) (Table 1) known to be involved in the

degradation of several PAHs (such as phenanthrene

(PHE) and fluoranthene (FLA)). Using our defined data

mining strategy, we first construct the metabolic path-

way with respective substrates and products of each

metabolic step. Secondly, for each of these metabolic

steps, one reference enzyme is extracted from our

curated database (Swiss-Prot and trEMBL validated

data). Homologous proteins are then retrieved from

complete databases (Swiss-Prot and TrEMBL). Based on

defined expected threshold values, different sequences

are selected (Table 1) and multiple alignments are then

performed to ensure probe design step.

To improve our probe design, we have applied two

different strategies, using the same multiple alignments.

In these strategies, we set the probe length at 24-mer,

representing the best compromise between probe speci-

ficity and sensitivity criteria [29]. In the first strategy,

(degeneracy threshold: 129, inosine threshold: 25%), we

have determined a first set of probes for each targeted

enzyme. However, owing to high percentages of inosine,

these probes generally show a high degree of total

degeneracy. Indeed, like the inosine residues are not

taken into account for the degeneracy threshold deter-

mination, probes may present a maximum total degen-

eracy of 528,384. To reduce the number of potential

specific probes derived from each degenerate defined

probe, a second strategy with more stringent parameters

is applied (degeneracy threshold: 258, inosine threshold:

9%, maximum total degeneracy of 4 128). Using these

parameters, we have found another set of probes for

each targeted enzyme. We then choose among the two

probe sets obtained with these two strategies, the best

probes based on several sequentially evaluated criteria:

(1) the total number of potential cross-hybridizations to

decrease possibilities of non-homologous hybridizations,

(2) the probe total degeneracy (including inosine com-

position) to restrict the number of specific probes in the

microarray, and (3) the position of each probe in the

reference sequence to target different regions for each

Figure 3 Probe determination with Metabolic Design. A: The inner window of Metabolic Design showing results for designing probes with

Metabolic Design and parameters (such as probe size, degeneracy or inosine composition) defined by the user. The user’s chosen parameters

are visible on the left, and potential probes are listed on the right. The program also displays all potential peptide combinations for each

degenerate probe (named as oligopeptides) with probe listing. B: Example of probe design approach, degeneracy calculation and inosine

percentage determination for the third probe in the inner window. Note that inosine residues are not taken into account for the degeneracy

calculation step.
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enzyme. Also, to reduce the number of specific probes

synthesized on the microarray, the last nucleotide of

each probe (generally a degenerate base or an inosine

due to degeneracy of the genetic code) is also manually

eliminated.

Thus by these strategies, two degenerate probes tar-

geting two different regions are selected per targeted

gene (Table 2). Based on these sixteen 23-mer degener-

ate probes, we finally obtain 8,048 specific probes.

Explorative probe validation

Strain EPA505 is known to utilize PHE and FLA as sole

sources of carbon and energy for growth [30]. However,

for this strain, the enzymes involved in the catabolism

Table 1 Reference enzyme information

REFERENCE PROTEIN BLAST THRESHOLD AND SEQUENCES USED

Gene Enzyme Organism Accession
Number

Reference BLASTp
e-value

Chosen enzymes for the probe design

phnA1a Putative alpha subunit of ring-
hydroxylating dioxygenase

Sphingomonas
sp. CHY-1

Q65AT1 [24] 1e-40 B2Z3Z2, A2TC87, A4XDY3, 085843, A9Y004,
B5L7S0, B5L7R9, Q1HCP6, Q7WUA0

phnA2a Putative beta subunit of ring-
hydroxylating dioxygenase

Sphingomonas
sp. CHY-1

Q65AT0 [24] 1e-30 A2TC88, A4XDY2, 085842, B5L7R8

ahdA1c Putative large subunit of
oxygenase

Sphingomonas
sp. P2

Q83VL2 [27,32] 1e-40 A2TC29, A9XZZ2, Q65AS5

ahdA2c Putative small subunit of
oxygenase

Sphingomonas
sp. P2

Q83VL1 [27,32] 1e-30 A9XZZ3, Q65AS6, A4XDV1, 085992, A2TC30,
Q9Z4T6

bphB Putative 1, 2-dihydrodiol-l, 2-
dihydroxy-dehydrogenase

Sphingobium
xenophagum

Q9X9Q9 [25] 1e-40 Q14RW3, 085972

bphC Putative biphenyl-2,3-diol 1,2-
dioxygenase

Sphingobium
xenophagum

P74836 [25] 1e-40 PI 1122, Q6LCU9, Q7DG81, A4XDU9, 085990,
A9XZZ5, Q65AS8, Q9KWI2

bphA3 Putative ferredoxin component of
dioxygenase

Sphingomonas
yanoikuyae

A2TC31 [24,32] 1e-20 034128, Q65AS7, A9XZZ4, A4XDV0, 085991,
Q83VL0

ahdA4 Putative ferredoxin reductase
component of dioxygenase

Sphingomonas
yanoikuyae

A2TC59 [24,32] 1e-40 Q83VI9, A4XDS3, 085962

Organism name and source, accession number and bibliographic reference for each reference protein. BLASTp expected threshold values used and selected

sequences for multiple alignments for the probe design are given.

Table 2 Selected probe information

Targeted
Gene

Probe name Sequence Number of unique
DNA sequences used for the

probe design

Number of
specific probes

Positions on the reference
gene sequence

phnA1a phnA1a_MD_A GTITGYAAYTAYCAYGGITGGGT 5 256 294 - 316

phnA1a_MD_B CAYGARATHGARGTITGGACITA 4 384 957 - 979

phnA2a phnA2a_MD_A GARGAYATHCAYTAYTGGATGCC 2 48 123 - 145

phnA2a_MD_B GGICARGTITGGATGGARGAYCC 3 128 261 - 284

ahdA1c ahdA1c_MD_A GARTGYGTITAYCAYCARTGGGC 3 128 318 - 340

ahdA1c_MD_B GAYGCIGCIGAYAARCARGCITA 2 1024 771 - 793

ahdA2c ahdA2c_MD_A GAYGAYMGIYTIGARGARTGGCC 3 1024 081 - 103

ahdA2c_MD_B ATHGAYACIATGATGGTIMGICC 3 768 459 - 481

bphB bphB_MD_A AAYGTIGGIATHTGGGAYTWYAT 3 768 261 - 283

bphB_MD_B AAYBTIAARGGITAYTTYTTYGG 3 384 348 - 370

bphC bphC_MD_A CCITAYTTYATGCAYTGYAAYGA 5 128 558 - 580

bphC_MD_B TGGYTITGGGARTTYGGITGGGG 4 128 777 - 799

bphA3 bphA3_MD_A ATHATHGARTGYCCITTYCAYGG 2 576 180 - 202

bphA3_MD_B ATHGAIGAYGGITGGGTITGYAT 3 768 279 - 302

ahdA4 ahdA4_MD_A GCIAAYGTICCIGAYAAYTTYTT 2 1024 159 - 181

ahdA4_MD_B CARGARACITAYCARAAYGCIGC 2 512 867 - 889

Total number of specific probes from the probe degenerate sequence and relative positions on the reference gene sequence for each targeted gene are

described._Numbers of unique DNA sequences, coding for studied enzymes are also given to highlight that our probes target known genes but also unknown

ones. Nomenclature: M: A and C; R: A and G; W: A and T; S: G and C; Y: C and T; H: A, C and T; D: A, G and T; B: G, T and C; I: A, C, G and T.
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of PHE and FLA have not been fully characterized. Only

gene fragments for the ferredoxin component of dioxy-

genase (pbhB equivalent to bphA3) and for the 1,2-dihy-

droxy-biphenyl-2,3-diol 1,2-dioxygenase (pbhA

equivalent to bphC) are available in public databases

[31] for the studied enzymes. This strain is thus an

excellent model to validate our approach, as we could

work with no prior assumptions using explorative

probes to ensure the detection of unidentified genes.

With this aim, growth kinetics experiments with PHE,

FLA and a mix of both pollutants as sole carbon and

energy source are carried out to evaluate the targeted

gene expression. As expected, for the eight genes stu-

died, we have detected positive hybridizations (SNR’ >

3) on the DNA microarray using mRNA as targets

extracted after 3 h of culture (Table 3). Surprisingly, we

do not observe positive signals with the probes targeting

one region of the phnA2a gene. However, one probe

targeting the second region of this gene allow the detec-

tion of strong hybridization signals (SNR’ = 22.64 ±

3.21) indicating a potentially high level of gene expres-

sion induced by PAHs. Additionally, control experi-

ments with glucose as sole carbon and energy source do

not give positive hybridizations for most of the targeted

genes (Table 3). The SNR’ value indicating positive

hybridization is close to the threshold reflecting a low

gene expression. These results suggest that all the stu-

died genes can be induced in response to the mix of

PAH exposure. The same results are obtained for

growth kinetics with one PAH (PHE or FLA) as sole

carbon and energy source. The same specific probes

give the highest SNR’ for the eight targeted genes, but

with different levels of induction. For example, for the

same specific probe (named bphA3_MD_B_0333) target-

ing the region B of the gene bphA3 in all PAH-cultures

we find: 9.79 ± 1.39 with a mixture of two pollutants,

20.00 ± 5.84 with PHE alone, 7.50 ± 2.03 with FLA

alone and no positive signal with glucose. We note that

the number of probes giving a positive signal is low for

targeted genes (between 1 for phnA2a and 5 for bphB

after 3 h of culture with the mix of PAHs) reflecting

variable levels of similarity between targets and probes

deduced from variably degenerate regions.

Based on these results, we can also predict the most

likely gene sequence of the targets interacting with

probes. Among the positive probes, one shows a strong

signal (e.g. one targeting bphA3 with a median SNR’ =

36.87 ± 7.83) compared with the others targeting the

same region. We hypothesize that the strongest SNR’

probe perfectly matched, or is the closest sequence to

targeted genes. Using sequences of bphA3 and bphC

genes available in databases [EMBL: AF259397 and

AF259398], we demonstrate that only two probes

among the four have identical sequences with bphC and

bphA3 genes. These data do not confirm the efficiency

of our approach, and so to validate our first observa-

tions, we decide to isolate and characterize these genes

and the others by a combination of amplification, clon-

ing and sequencing strategies. Four gene clusters of 4.47

kb, 2.13 kb, 1.20 kb, and 0.32 kb, respectively [EMBL:

FM882255, FM882254, FM882253 and FN552592] are

thereby obtained. The complete nucleotide sequence of

the 4.47 kb contig [EMBL: FM882255] shows six puta-

tive non-overlapping open reading frames (ORFs).

Among these, four are targeted with our microarray

probes. The first encodes a polypeptide 98% similar to a

putative biphenyl-2,3-diol 1,2-dioxygenase known to

degrade various dihydroxy-PAHs, and named BphC

[EMBL: BAC65429]. The second encodes a polypeptide

90% similar to a putative ferredoxin component of diox-

ygenase, named BphA3 [EMBL: BAC65428], involved in

various steps of the process of PAH degradation for the

electron transfer from reductase to dioxygenase complex

[26]. Interestingly, these two ORFs are highly similar to

Table 3 Results obtained with designed probes for a mixture of phenanthrene and fluoranthene.

Gene name phnAla phnA2a ahdAlc ahdA2c bphB bphC bphA3 ahdA4

Targeted region A B A B A B A B A B A B A B A B

Total number of specific probes 256 384 48 128 128 1024 1024 768 768 384 128 128 576 768 1024 512

Number of specific probes giving a
positive signal (SNR’ > 3)

1 2 0 1 3 1 2 1 4 1 1 1 3 1 0 0

Highest median SNR’ obtained for
each targeted region

18.32
±

3.64

6.62
±

0.31

X 22.64
±

3.21

8.61
±

1.59

9.93
±
1.32

8.92
±

1.52

16.26
±

2.45

5.79
±
1.73

4.09
±

0.66

4.47
±

0.30

4.54
±

0.81

36.87
±

7.83

9.79
±

1.39

X X

Specific probe for EPA505 gene
giving highest median SNR’

Yes No No Yes No Yes Yes Yes Yes No Yes No Yes Yes No No

For comparison, total number of
specific probes giving a positive
signal with glucose

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

For each degenerate probe defined targeting two different regions (A and B) of genes (phnA1a, phnA2a, ahdA1c, ahdA2c, bphB, bphC, bphA3 and ahdA4), total

number of specific probes stemming from the degenerate sequence, total number of specific probes giving a ‘positive’ signal (with a SNR’ > 3), highest median

SNR’ visualized for each targeted region of each gene and whether the probe specific to the strain EPA505 gene gives this highest signal median SNR’.
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available sequences for strain EPA505 [31], but a com-

parison with our sequences reveals some mismatches.

The two last genes encode two polypeptides respectively

88% and 95% similar to AhdA2c [EMBL: BAC65427]

and AhdA1c [EMBL: BAC65426], two components of a

terminal oxygenase involved in the monooxygenation of

salicylate, a metabolic intermediate of PHE, to catechol

[32,33]. Two genes identified on the 2.13 kb contig

(FM882254) encode polypeptides of 455 and 175 resi-

dues. These polypeptides resemble in length and

sequence the alpha (99% sequence identity) and beta

(100% sequence identity) subunits [EMBL: CAG17576

and CAG17577] of the ring-hydroxylating dioxygenase

(phnA1a and phn2a respectively) of Sphingomonas sp.

CHY-1, involved in the conversion of several PAHs into

their corresponding dihydrodiols [28,34]. The third con-

tig of 1.20 kb (FM882253) encompasses a single partial

ORF encoding a polypeptide displaying 95% similarity

with the ferredoxin reductase component of a dioxygen-

ase, named AhdA4 [EMBL: BAC65450] of Sphingobium

sp. P2 and involved in the electron transfer in associa-

tion with BphA3 [35]. The last contig of 0.32 kb [EMBL:

FN552592] encodes a partial 107 amino acid sequence

97% similar to a 1,2-dihydrodiol-1,2-dihydroxy-dehydro-

genase named BphB [EMBL: ABM79802] of Sphingo-

bium yanoikuyae B1.

Comparison of these gene sequences with the micro-

array probes shows that our design strategy is efficient

to detect, with no prior sequence assumptions, tar-

geted genes from complete metabolic pathways. As

expected, for each gene, different probes give positive

signals in agreement with the gene sequence composi-

tion. Furthermore, among the thirteen probes (target-

ing both regions of the eight genes) giving the highest

signals, nine probes perfectly match strain EPA505 tar-

geted gene regions (Table 3). Thus the two regions (A

and B) selected for bphA3 and ahdA2c genes probe

designs allow the specific identification of these genes.

For the genes phnA1a, phnA2a, ahdA1c, bphB and

bphC, only one region can be considered specific for

the identification of the genes. Finally, for ahdA4 gene,

as no probes give positive signals, we can then

hypothesize that ahdA4 is not expressed or is weakly

expressed (under the detection threshold) in our cul-

ture conditions. We can also postulate that absence of

signal might reflect a low sensitivity of these selected

probes targeting ahdA4.

To conclude, these results confirm that our design

strategy is useful and efficient for the targeted genes stu-

died. These data also show that it is essential to select at

least two specific regions for each studied gene that

should be experimentally validated to ensure accurate

identification. Nevertheless, a majority of selected

regions is useful for the design of efficient probes that

perfectly hybridize with their targets and show the

strongest signal on the microarray.

Gene expression analysis with microarray and

quantitative real-time PCR experiments

As described previously, the applied design strategy lets

us to detect targeted genes from the studied metabolic

pathway without prior assumptions. It is thus of interest

to test whether our DNA microarray is able to evaluate

mRNA levels semi-quantitatively during biodegradation

kinetics with PHE, FLA and a mixture of the two pollu-

tants as sole carbon and energy source. A control

experiment with glucose as sole carbon and energy

source is also conducted. For these four conditions, total

RNAs are extracted from pure cultures of strain EPA505

at different times of the kinetics (0, 3, 6, 10 and 21 h).

According to the explorative probe validation conclu-

sions (see previous section), only the most efficient

probes targeting each of the eight genes in response to

pollutant exposure are considered. In addition, to evalu-

ate the gene expression level, a quantitative reverse tran-

scription PCR approach is also developed for the

selected genes during the same times of the kinetics.

Transcript hybridizations obtained with only glucose-

amended cultures give no positive probe signals (SNR’ >

3) for the different times of the kinetics studied as

shown in Additional file 1. Under PHE-growth condi-

tions, specific probes give positive signals (SNR’ > 3)

after 3 h of growth for all the studied genes (Additional

file 1). Detected signals largely decrease at 6 h of culture

to reach SNR’ values under the set threshold. Same

SNR’ values, in agreement with absence or low abun-

dance of targeted mRNA, are also obtained after 10 h

and 21 h of culture (Additional file 1). With FLA as car-

bon source, except for ahdA1c, bphC and bphB probes,

positive SNR’ values are also obtained with specific

probes after 3 h of growth. After 6 h of culture with

FLA, no positive probe signal (SNR’ > 3) is detected, as

in glucose-growth conditions (Additional file 1). Surpris-

ingly, a positive signal for the specific probe targeting

bphB is detected after 6 h of culture (SNR’ = 3.43 ±

0.70) with FLA, but not after 3 h of culture. Finally,

with a mixture of the two pollutants, high positive sig-

nals are detected, except for the ahdA4 gene, under the

SNR’ threshold and for bphC and bphB, just above the

SNR’ threshold, after 3 h of culture (Additional file 1).

After a large decrease in SNR’ values after 6 h of cul-

ture, positive signals for most of the probes are visua-

lized after 10 h of culture, indicating a new gene

expression induction. Finally, at 21 h of culture, the

detected signals have the same SNR’ values as those

obtained with glucose. Gene expression results obtained

with microarray assays show an up-regulation of all the

studied genes with different mRNA levels according to

Terrat et al. BMC Bioinformatics 2010, 11:478
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PAH exposure (Additional file 1). For ahdA4, no posi-

tive signals are detected except with PHE after 3 h of

culture with a SNR’ close to the threshold (SNR’ = 3.19

± 0.40).

At the same time, a quantitative reverse transcription

PCR based approach is used to precisely describe the

gene expression during the growth kinetics. Results

show the same expression profiles as those observed

with DNA microarray experiments (Additional file 1).

Low mRNA levels are detected during growth on glu-

cose, indicating a very low basal gene expression in the

absence of PAH substrates. With PHE or FLA as sole

carbon and energy source, a high level of targeted

mRNA is detected after 3 h of growth. However, a

higher mRNA level is detected with PHE exposure. For

these two cultures, after 10 h of culture, gene transcript

number decreases to reach mRNA levels close to or

below the control copy number detected in glucose-

grown cells, as with results visualized with the DNA

microarrays. With a mixture of the two pollutants, the

same expression profile is detected with the quantitative

reverse transcription PCR approach and with the DNA

microarrays. High mRNA levels are measured after 3 h

of culture, and besides a large decrease after 6 h of cul-

ture, another mRNA up-regulation is detected at 10 h of

culture for the studied genes. Finally, mRNA levels

decrease to reach transcript levels close to growth

experiments performed with glucose. In conclusion,

similar expression profiles are obtained for phnA1a,

phnA2a, ahdA1c, ahdA2c, bphB, bphC and bphA3 with

DNA microarray and quantitative reverse transcription

PCR approaches, demonstrating the efficiency of probes

designed using Metabolic Design software. Thus DNA

microarrays using Metabolic Design can be used to per-

form semi-quantitative monitoring of gene expression.

Characterization of potential metabolic capacities in a

PAH contaminated soil

As we developed explorative probes to detect key genes

coding for enzymes involved in PAH degradation, we

assess the metabolic capacities of endogenous microbial

communities in a polluted ecosystem. Owing to the dif-

ficulty in extracting microbial RNA in such environ-

ments, we hybridize total extracted microbial DNA from

a highly contaminated soil (contamination details in

Additional file 2). This ecosystem is selected because it

harbors high concentrations of PAHs (2,300 mg/kg of

dry soil). Also, PHE and FLA are detected as major con-

taminants (respectively 430 and 270 mg/kg of dry soil).

Among the 8,048 designed probes targeting the eight

genes, 358 give positive signals (SNR’ > 3) after hybridi-

zation with total DNA (Table 4). For each gene, probe

sets show strong signals, but with variable intensities,

identifying the most probable target sequence. To

evaluate the explorative capacities of our probes, we first

focus on the phnA2a gene. We compare the signal

intensities between mRNA hybridization of strain

EPA505 and the DNA extract from the polluted soil

(Figure 4). We clearly identify the probe signature for

strain EPA505 and a specific probe signature for the

polluted soil. Using a BLASTn approach with complete

databases (EMBL), 21 positive probe sequences have

high similarities (0, 1 or 2 mismatches) with phnA2a

genes from known PAH degraders (such as Novosphin-

gobium sp. H25, Cycloclasticus sp. NY93E or Sphingo-

monas sp. CHY-1) (data not shown). We can then

hypothesize that other positive probe sequences present-

ing a slight homology with available phnA2a sequences

might have targeted phnA2a unknown genes, consistent

with the explorative purpose of these probes.

The highest SNR’ signal is given for a probe targeting

ahdA1c (42.85 ± 5.83) among 204 other positive probes

for this gene. As for phnA2a positive probes, several are

potentially explorative. Interestingly, specific probe tar-

geting ahdA1c gene from strain EPA505 also gives a

positive signal (median SNR’ = 7.45 ± 0.34). The same

positive results are obtained with probes specific to

strain EPA505 genes: 3.12 ± 1.00 for phnA2a, 4.07 ±

0.27 for ahdA2c, 4.33 ± 1.14 for bphC and 7.06 ± 1.22

for bphA3, suggesting the presence of bacteria closely

related to strain EPA505.

Surprisingly, no probe can detect phnA1a gene in the

polluted soil. We choose to amplify, with a PCR

approach, phnA1a genes using degenerate primers (data

not shown). The PCR products are then cloned, and

eight clones are sequenced. Among these eight

sequences, seven showing high similarities with phnA1a

genes are then compared with our probe sequences.

This comparison reveals multiple mismatches (data not

shown), impeding hybridizations with our probes. This

result indicates a marked divergence of this gene family.

Our first design focused on phnA1a genes related to

Sphingomonas. For a broader discovery of gene diversity,

we will need to design probes that take into account

more exhaustively the most complete sequence diversity

in databases (international and/or personal).

Discussion
We have developed and validated a new algorithm

named Metabolic Design. This software can be used to

design efficient explorative probes for functional DNA

microarrays. Previously to probe design, users have to

extract from public (Swiss-Prot and TrEMBL) or perso-

nal databases, protein sequences of interest. Results are

then integrated in a user-friendly, intuitive interface. All

databases used for the application can be selected by the

users and they can also integrate personal data. Such

flexibility is generally not available, for example with
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current metabolic reconstruction tools, such as the

‘Pathway Tools Software’, initially developed for the

EcoCyc project [36], or KEGGanim [37]. These are gen-

erally based on static databases and predefined meta-

bolic pathways (such as KEGG [38], MetaCyc [39] or

BRENDA [40]).

In order to bypass the faulty annotations found in

automatically filled databases, and to allow the exhaus-

tive exploitation of all the currently available protein

sequences, the mining step is performed using similarity

search. However, such approach presents another major

drawback. Indeed, in some cases, not all proteins with a

similar function have similar primary structures. Thus a

future development of Metabolic Design will be the

replacement of the BLASTp step by a Pattern Hit

Initiated BLAST (or PHI-BLAST) step coupled with

PRODOM data (defined as a comprehensive set of pro-

tein domain families automatically generated from the

UniProt Knowledge Database) [41]. PHI-BLAST analysis

is useful for identifying the distant members of a protein

family, whose relationship is not recognizable by straight

sequence comparison, but only by patterns contained in

sequences (such as catalytic sites or substrate recogni-

tion sites). We also intend to integrate a new module

for high-throughput ortholog prediction (using for

example Ortho-MCL or Ortholuge) to improve homolo-

gous protein selection for complex and divergent

protein families [42,43].

The ultimate aim of Metabolic Design is to define

explorative probes and estimate their specificity

in silico. Specific probes deduced from defined degen-

erate probes thus allow the targeting not only of

known gene sequences but also of new ones that

encode the same protein sequences. These explorative

features are not offered by other tools such as Oli-

goArray 2.0, YODA or HPD [17]. In addition, Meta-

bolic Design takes into consideration both ex situ and

in situ DNA microarray synthesis. The inosine compo-

sition is taken into account in the total degeneracy, as

an ex situ microarray can hold inosine nucleotide

probes, and/or degenerate probes in one spot, reducing

probe degeneracy.

Table 4 Results obtained with designed probes with total DNA extracted from the contaminated soil S3

Gene name phnAla phnA2a ahdAlc ahdA2c bphB bphC bphA3 ahdA4

Targeted region A B B A B A B B A

Total number of specific probes 256 128 1024 1024 768 768 128 768 1024

Number of specific probes giving a positive signal (SNR’ > 3) 0 37 204 18 1 36 16 44 2

Percentage of probes giving a positive signal (SNR’ > 3) 0 28.90 19.92 1.75 0.13 4.68 12.50 5.72 0.19

Highest median SNR’ obtained for each targeted region 0
±

0.00

9.47
±

0.70

42.85
±

5.83

7.05
±
1.37

4.29
±

1.71

6.33
±

2.05

4.43
±

1.31

8.84
±

2.15

3.48
±

0.98

For each degenerate probe defined targeting one particular region (A or B) of genes (phnA1a, phnA2a, ahdA1c, ahdA2c, bphB, bphC, bphA3 and ahdA4), total

number of specific probes stemming from the degenerate sequence, total number of specific probes giving a ‘positive’ signal (with a SNR’ > 3), probe

percentage giving a ‘positive’ signal and highest signal median SNR’ visualized for each targeted region of each gene.

Figure 4 Median SNR’ for the contaminated soil with 128 specific probes targeting the phnA2a gene. This graphic represents the

detected median SNR’ for each specific probe (ordered by sequence) derived from the degenerate defined probe phnA2a_MD_B targeting one

particular region of phnA2a gene. Black squares: signals obtained with the model strain EPA505 with a mix of both pollutants (the highest signal

is given by the specific probe targeting the strain EPA505 specific gene). Gray diamonds: signals obtained with total DNA extracted from the soil

S3 (clearly showing a particular probe signature). The dotted line represents the defined threshold for SNR’ values.

Terrat et al. BMC Bioinformatics 2010, 11:478
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Probe specificity is then evaluated in silico using a

proprietary database, giving us a close glimpse of poten-

tial cross-hybridizations found in complex environ-

ments. In addition, in Metabolic Design, this database

can be modified to consider complete DNA data, or

only fragmented data (for example, only one genome).

Estimation and validation of potential cross-hybridiza-

tions are performed by a BLASTn analysis. However,

one possible improvement would be to take into

account optimized BLASTn parameters recently

described as allowing a more efficient detection of

potential cross-hybridizations [44].

Another update of Metabolic Design will add thermo-

dynamic calculations to improve probe selection,

although these parameters are not fully described at pre-

sent [21,45]. Also, it will be essential to take into

account probe sensitivity due to sequence nature [46].

In view of these difficulties in precisely predicting probe

behavior during DNA microarray hybridizations, we

suggest that users first validate the quality of the DNA

microarrays (probe specificity and sensitivity), with a

simple biological model as we did in this study.

Based on Metabolic Design defined probes, targeting

eight genes coding for enzymes involved in the degrada-

tion of various PAHs by strain EPA505, we demonstrate

that our design strategy is useful for most of the deter-

mined probes. Furthermore, these results highlight the

capacity of our probes for semi-quantitative monitoring

of gene expression or gene detection, confirming the

quantitative capability of our microarrays for environ-

mental applications [14]. Finally, we demonstrate the

explorative ability of our probes, studying a complex

environment. Indeed, most classical functional microar-

rays (such as GeoChip) using specific probes will moni-

tor only known sequences and cannot appraise the

complete microbial gene diversity of complex environ-

ments [13,14,47,48]. Additionally, considering the high

complexity of environmental samples, it will be interest-

ing to improve again probes specificity and sensitivity,

using for example the ‘GoArrays’ strategy [29].

To allow the identification of complete sequences of

targeted genes, a further application of these explorative

DNA microarrays will be the capture of ‘unknown’

sequences for further next-generation sequencing

[49,50]. Some new techniques have been reported for

performing selective capture of sequence fragments

from complex mixtures based on hybridization to DNA

microarrays. Combining our explorative DNA microar-

rays and next-generation sequencing will, for example,

bypass a critical bottleneck in microbial ecology, namely

the difficulty of specifically exploring some biochemical

pathways or specific biomarkers without the need to

sequence the complete metagenome or PCR products

(not reflecting reality due to PCR artifacts). Most often

in complex environments even with high throughput

sequencing, we obtain only a partial view of the extre-

mely broad microbial diversity. In addition, using

mRNA or large DNA fragments as targets can allow all

the genes included in a transcriptional unit to be cap-

tured. So, in prokaryotes, like genes involved in the

same biological process are generally associated in the

same transcriptional unit, this capture would allow to

assign of new gene functions.

Conclusions
This study evaluates the efficiency of a new probe

design software tool, Metabolic Design, dedicated to

DNA functional microarrays. This software, which can

be used to study any group of genes, was successfully

applied to define probes able to detect with high specifi-

city and sensitivity genes encoding enzymes involved in

PAH degradation. In addition, DNA microarray experi-

ments performed on soil polluted by organic pollutants,

without prior sequence assumptions, demonstrate

explorative abilities of our probes. So, probe design per-

formed with Metabolic Design ensures to precisely

monitor metabolic regulations during various processes

in complex environments.

Methods
Software implementation

The Metabolic Design application can be obtained on

request via FTP and runs only on MS-WINDOWS (32-

bit) platforms. The Java runtime environment (JRE) Ver-

sion 1.4 or higher, Perl Version 1.5 or higher and an

SQL database such as Oracle 9i must be installed. Latest

Swiss-Prot and TrEMBL database versions have also to

be downloaded for local installation of data from ftp://

ftp.ebi.ac.uk/pub/databases/uniprot/current_release/

knowledgebase/complete. Metabolic Design is a stand-

alone multilayered tool comprising a relational database,

a data object layer and a graphical user interface (GUI).

For the data mining step, curated information associated

with enzymes (systematic name and source organism)

come from the international protein database Swiss-

Prot/TrEMBL and/or personal data. Swiss-Prot/TrEMBL

data are parsed using PERL scripts allowing extraction

of files including sequences from prokaryotes and fungi.

To evaluate potential cross-hybridization of candidate

probes, microbial related sequences from the EMBL

database, which include environmental samples (ENV),

fungi (FUN) and prokaryote (PRO) taxonomic divisions,

are selected. DNA sequences corresponding to CDSs

with their respective putative 5’ and 3’ UTR flanking

regions (arbitrarily set at 100 nt each) are then extracted

and formatted to perform the cross-hybridization check-

ing step by a tBLASTn approach (’cross-hybridization

database’). For particular BLAST steps, some parameters
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are defined for the Metabolic Design program: tBLASTn

for the specificity step (-e 10000000 -w 2 -b 5000 -v

5000), BLASTx for the comparison with the reference

protein sequence (-e 1e-10 -F F), BLASTn for Kane’s cri-

teria evaluation (-e 10 -w 7 -F F -q -1), and BLASTn for

cross-hybridization clustering (-e 10e-10 -w 7).

A JAVA classes package is developed to implement

the data object layer and GUI. Object persistence is

guaranteed at both text file and SQL levels.

Chemicals

PHE, FLA, Tween 80, HPLC grade solvents and acetone

are purchased from Sigma-Aldrich (Saint-Quentin-Falla-

vier, France). For degradation experiments, stock solu-

tions of each PAH (PHE and FLA) are prepared in

acetone at a final concentration of 2 g/L and sterilized

as described above. A mixture of PHE and FLA (1 g/L

each) is prepared in the same way.

DNA extraction from soil

Total DNA is extracted from 5 g of contaminated soil

(S3) following the protocol described by Zhou [51].

Three extracts are made and pooled to minimize poten-

tial biases. DNA quality is checked on a 0.8% agarose

gel.

Bacteria, growth conditions and kinetic experiments

Strain EPA505 (DSM7526) is purchased from DSMZ

(Braunschweig, Germany). Cells are first grown over-

night at 37°C on a shaker table (150 rpm) in 70 mL of

Luria-Bertani medium (LB) containing streptomycin

(100 mg/L) to produce biomass. They are then centri-

fuged at room temperature for 2 min at 5,000 g and

transferred to a sterile minimum mineral medium 457

containing, for 1 L of distilled water, 2,440 mg of

Na2HPO4, 1,520 mg of KH2PO4, 500 mg of (NH4)2SO4,

200 mg of MgSO4 - 7H2O, 50 mg of CaCl2 - 2H2O, 200

mg of Tween 80 and 10 mL of SL-4 solution as

described by DSMZ [30,33]. Cultures are prepared as

follows: 2 mL of the PAH stock solutions is evaporated

in sterile 250 mL conical flasks, 100 mL of sterile med-

ium 457 is added, and the flasks are inoculated with 7.5

× 107 cells prepared as above. These cultures are incu-

bated at 28°C on a shaker table (150 rpm) for 27 h and

bacterial growth is monitored spectrophotometrically at

620 nm using an Ultraspec 2000 spectrophotometer

(Pharmacia Biotech AB, Uppsala, Sweden). A culture is

also grown with glucose (15 g/L) as sole carbon source

and energy to define the basal expression of genes

implicated in PAH degradation.

RNA extraction from strain EPA505

Total RNA from a pure culture of strain EPA505 is

extracted at different times of the PAH degradation

kinetics (0, 3, 6, 10, and 21 h) with the RNeasy Mini kit

(Qiagen GmbH), and treated with 1.5 U of DNase I

(Invitrogen) to eliminate DNA contamination. RNA

sample concentration and purity are then estimated

using a Nanodrop spectrophotometer (Nanodrop).

Microarray experiments

Samples of 15 μL of strain EPA505 total RNA of four

PAH degradation kinetics data points (0, 3, 6, 10 and 21

h) are enriched using the MICROBExpress™ Bacterial

mRNA Enrichment Kit (Ambion) as recommended by

the suppliers. Each enriched mRNA is then amplified

using the MessageAmp™ II-Bacteria RNA Amplification

Kit (Ambion) with a modified protocol for the in vitro

transcription step. Briefly, the purified double-stranded

template (~14 μL) is transcribed in vitro with 12 μL of

ATP, CTP and GTP mix (25 mM each) (Ambion), 3 μL

of UTP (75 mM) (Ambion), 3 μL of amino-allyl-UTP

(50 mM) (Ambion), 4 μL of 10 × reaction buffer

(Ambion) and 4 μL of T7 enzyme mix (Ambion) at 37°

C for a 14 h incubation period. Finally, the aRNA is

purified using the MessageAmp™ II-Bacteria RNA

Amplification Kit (Ambion) following the manufac-

turer’s instructions.

In the next step, 10 μg of purified aRNA for each

sample are vacuum-dried and labeled using the Amer-

sham CyDye™Post-Labeling Reactive Dye Packs (GE

Healthcare, Little Chalfont, United Kingdom) with Cya-

nine3 or Cyanine5 dyes as recommended by the sup-

plier. Briefly, the aRNA pellet is resuspended in 20 μL

of 0.1 M bicarbonate buffer (pH 8.7) and incubated for

90 min with 40 nM of dye compound (coupling the dye

to amino-allyl-UTP) dissolved in 20 μL of DMSO

(dimethyl sulfoxide) in the dark at room temperature.

Excess dye is quenched by adding 15 μl of 4 M hydroxy-

lamine solution incubated for 15 min in the dark at

room temperature. The labeled aRNA is then purified

with NucleoSpin RNA Clean-Up kit (Macherey-Nagel,

Düren, Germany) according to the manufacturer’s

instructions. After each step (total RNA enrichment,

RNA amplification and aRNA labeling), the quantity

and integrity of RNA are estimated using the RNA 6000

Nano kit (Agilent Technologies), the Agilent 2100 Bioa-

nalyzer (Agilent Technologies) and the Nanodrop spec-

trophotometer (Nanodrop) as recommended by

protocols.

Total DNA is amplified and labeled using the Bio-

Prime® Total Genomic Labeling System (Invitrogen) fol-

lowing the manufacturer’s instructions. The quantity

and quality of labeling are estimated using a Nanodrop

spectrophotometer (Nanodrop) as recommended by

protocols.

NimbleGen custom arrays of 8,048 probes are used

(Roche NimbleGen, Madison, USA). All the probes
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are randomly distributed across the array to minimize

spatial effects as far as possible during the hybridiza-

tion step. The microarray also contains thousands of

random probes (randomly defined length and

sequence) which can serve to measure technical back-

ground noise. For each hybridization experiment, 3.33

μg of labeled RNA for kinetic experiments (one sam-

ple in Cy3 and another in Cy5) or 12 μg of labeled

DNA (in Alexa Fluor® 5) for soil are mixed, vacuum-

dried and resuspended in 5.6 μL of water. The

hybridization mix (Roche NimbleGen) is then made

according to the manufacturer’s protocols. The arrays

are hybridized on a 4-bay NimbleGen Hybridization

System (Roche NimbleGen) at 42°C for 72 h. The

arrays are washed with NimbleGen wash buffers I, II

and III according to vendors’ protocols and scanned

using a Scanner Innoscan 900AL (Innopsys, Carbonne,

France) at 2 μm resolution. Individual array images

are acquired independently, adjusting the PMT gain

for each image as recommended using Mapix® soft-

ware (Innopsys).

For each array image, raw expression data are

extracted using the NimbleScan software v2.1. (Roche

NimbleGen) and feature intensities are exported as .pair

files. The background noise is then determined using

random probes present on the microarrays (8,863

probes in our experiment) with the method described in

the Additional file 3. This background noise is defined

by two components: the background median intensity

(Bposition) and its dispersion (Bdispersion). Finally, a

modified signal-to-noise ratio termed SNR’ and based

on the formula of Verdik [52] is calculated as follows in

order to reduce-centralize our data: SNR’ = (probe sig-

nal intensity - Bposition)/Bdispersion (see Supplemen-

tary Data S1).

However, spatial effect across the array surface is a

predominant within-slide experimental artifact that

needs to be eliminated before any other normalization

procedure [53]. Accordingly, for all array images

obtained in this work, the surface is segmented into 16

sub-squares according to probe position (X, Y) indicated

in the pair report. A Perl script is developed to calculate

local background noise in all sub-squares and the med-

ian SNR’ retrieved from the three replicates of each

probe. Finally, another Perl script is implemented to

summarize each replicate probe treated and determine

the median value of the three replicates. ‘Positive’ hybri-

dization is considered significant for probes with SNR’ >

3 (value to avoid all false positives) [54]. The data dis-

cussed in this publication have been deposited in

NCBI’s Gene Expression Omnibus and are accessible

through GEO Series accession number GSE21402:

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

token=rjmhhgoaqyqqinw&acc=GSE21402

DNA extraction, PCR amplification and cloning

Total DNA from a pure culture of strain EPA505 is

extracted by heat shocking cells [55]. All PCR reactions

are carried out in 50 μL of mixtures containing 20 ng of

the previous strain EPA505 DNA extract, 0.5 U of

GoTaq DNA polymerase (Promega Corp., Madison,

USA), Promega buffer, 1.25 mM MgCl2, 1 μM of each

primer depending on the targeted gene (Additional files

4 and 5) and 0.5 mM of each deoxynucleotide. The

reactions are performed in a iCycler thermal cycler

(Biorad Laboratories, Marnes-la-Coquette, France) using

an initial denaturation step consisting of 95°C for 5 min,

followed by 35 cycles of 95°C for 1 min, an annealing

step with temperature and time depending on primers

(Additional Files 4 and 5) and an elongation step of 72°

C for 1 min. A final treatment of 72°C for 7 min is then

applied. The size and purity of PCR products are

checked on 1.2% gel agarose. The PCR products are

purified with a Qiaquick Gel Elution kit (Qiagen GmbH,

Hilden, Germany), and then ligated into the pCRII-

TOPO® vector supplied with the TA cloning kit (Invitro-

gen Corp., Merelbeke, Belgium) and transformed into

E. coli One Shot® TOP10 cells (Invitrogen Corp.) follow-

ing the manufacturer’s instructions. White colonies are

picked and grown in LB medium supplemented with

kanamycin at 50 μg/ml final concentration. Plasmid

template DNA is prepared by the alkaline lysis method

[55]. The clone inserts are sequenced by the MWG Bio-

tech Company (Ebersberg, Germany) using both SP6

and T7 sequencing primers. Sequence treatment and

joining are performed using the pregap4 and the gap4

tools of the Staden Package Program [56]. The gene

sequences are then compared with Swiss-Prot and

TrEMBL databases using the BlastX program [57].

Real-time PCR experiments

The reverse transcription reactions are carried out at 42°

C for 2 h with 50 ng of total RNA using bphC, bphA3,

ahdA2c and ahdA1c (0.625 μM of each primer) mix

primers, and ahdA4, phnA1a, phnA2a and bphB mix

primers respectively (see Additional file 6) in order to

minimize manipulation biases. These reactions are car-

ried out in a final volume of 20 μL with 100 U of Super-

ScriptIII reverse transcriptase (Invitrogen Corp.), 1 U of

RNasin+ Inhibitor (Promega Corp.), 0.25 mM of dNTPs

mix (Invitrogen Corp.), 0.1 M DTT (Invitrogen Corp.)

and Invitrogen buffer, according to the manufacturer’s

instructions. Reverse transcription reactions are per-

formed in triplicate. cDNA is then diluted ten-fold for

quantitative real-time PCR assays. Reactions are carried

out with the MESA Green qPCR for SYBR assays kit

(Eurogentec) according to the manufacturer’s instruc-

tions. All amplifications are carried out in a final volume

of 20 μL containing 5 μL of sample described above or 5
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μL of standard cDNA (from 4.37 × 107 copies/μL to

4.37 copies/μL, covering 8 log of dynamic range for

each gene), 10 μL of 2× MESA Green qPCR for SYBR

assays mixture and the corresponding primers sets

described in the Additional file 6 at 0.2 μM final con-

centration each. The reverse transcription product in

kinetic experiment samples is quantified twice. As every

reverse transcription experiment is done in triplicate, six

measurements are obtained for each sample. Each point

on the standard curve (corresponding to serially diluted

cDNA) is quantified in triplicate. PCR is carried out in

the Mastercycler Realplex (Eppendorf, Le Percq, France)

for 1 cycle at 95°C for 5 min followed by 40 cycles con-

sisting of 95°C for 15 s (denaturation step) and 68°C for

45 s (annealing and elongation steps). At the end of the

real-time PCR, a melting curve is defined by measure-

ment of SYBR Green signal intensities for 20 min from

68°C to 95°C. Size of the amplified products is checked

on 2.5% agarose gel. Data analysis is carried out with

realplex software (version 1.5; Eppendorf).

Nucleotide sequence accession numbers

The nucleotide sequences reported in this study have

been deposited in the database under accession num-

bers: [EMBL: FM882255] (encompassing bphC, bphA3,

ahdA2c and ahdA1c gene sequences), [EMBL:

FM882254] (encompassing phnA1a and phnA2a gene

sequences), [EMBL: FM882253] (encompassing ahdA4

gene sequences) and [EMBL: FN552592] (encompassing

bphB gene sequences).

List of abbreviations
GUI: graphical user interface; IUPAC: international

union of pure and applied chemistry; PAH: polycyclic

aromatic hydrocarbon; PHE: phenanthrene; FLA: fluor-

anthene; SNR’: signal to noise ratio; ORF: open reading

frame; CDS: coding DNA sequence; RT-PCR: reverse

transcription- polymerase chain reaction; FTP: file trans-

fer protocol; JRE: java runtime environment; SQL: struc-

tured query language; UTR: untranslated region, aRNA:

antisense RNA; DMSO: dimethyl sulfoxide; cDNA: com-

plementary DNA.

Availability and Requirements
Project name: Metabolic Design

Project homepage: ftp://195.221.123.90/

Operating system: Windows (32-bit) only

Programming language: Java and Perl

Others: The Java runtime environment (JRE) Version

1.4 or higher, Perl Version 1.5 or higher and an SQL

database such as Oracle 9i must be installed.

License: Free for non-commercial use. Source code

available upon request.

Additional material

Additional file 1: SNR’ profiles detected with microarray

experiments and transcript numbers profiles detected with

quantitative RT-PCR assays. SNR’ profiles detected with microarray

experiments (LEFT), and transcript copy number detected per ng of total

RNA with quantitative RT-PCR assays (RIGHT) for eight genes: (A) phnA1a;

(B) phnA2a; (C) ahdA1c; (D) ahdA2c; (E) bphB; (F) bphC; (G) bphA3; and

ahdA4 (H) during PAH biodegradation at different times with strain

EPA505. PHE: grey squares, FLA: triangles, PHE + FLA: circles, glucose:

open diamond. Error bars indicate the standard deviation of measures.

Additional file 2: PAH composition detected in the contaminated

soil S3. These data are proprietary data given by BioBasic Environnement

and give the quantity of detected PAHs in mg/kg of dry soil in the

contaminated soil studied.

Additional file 3: Background noise calculation description.

Background noise is determined according to ‘RANDOM probes

response’ of Nimblegen microarrays. Our method takes into account the

background noise which is characterized by two components: its

position and its dispersion.

Additional file 4: Identification of four catabolic genes clusters from

the model strain EPA505. Physical maps of four clusters (A, B, C and D)

of catabolic genes involved in PAHs biodegradation from strain EPA505.

Size of genes and intergenic spaces is indicated as well as position of

primers used for PCR amplifications.

Additional file 5: Primer sets used for detecting catabolic genes

involved in PAHs degradation and to generate the gene DNA

matrix. The DNA matrix is used to build the standard curve for

quantitative real-time PCR assays in strain EPA505. *: xylX and nahD are

used to characterize complete sequences of bphC and ahdA1c.

Nomenclature: M: A and C; R: A and G; W: A and T; S: G and C; Y: C and

T; K: G and T; V: A, G and C; H: A, C and T; D: A, G and T; B: G, T and C;

I: A, C, G and T.

Additional file 6: Primers used for reverse transcription and

quantitative real-time PCR assays. List of primers used for reverse

transcription and subsequent quantitative real-time PCR assays.

Amplification sizes are also given for each targeted gene.
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