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(Day Month Year)

We treat the problem of diffusion of solute atoms around screw dislocations. In particular, we
express and solve the diffusion equation in 2-dimensions with radial symmetry in an elastic
field of a screw dislocation subject to conservation of flux at the interface of a new phase. We
consider an incoherent second-phase precipitate growing under the action of the stress field
of a screw dislocation. The second-phase growth rate as a function of the supersaturation
and a strain energy parameter is evaluated in spatial dimensions d = 2. Our calculations
show that an increase in the amplitude of dislocation force, e.g. the magnitude of the Burgers
vector, enhances the second-phase growth in an alloy. Moreover, we calculate reduction in
concentration of solute atoms as a function of radius around a second-phase which grows
cylindrically (radial direction) so that its radius varies as a square root of time for various
levels of the dislocation force amplitude.

1. Introduction

Dislocations can alter different stages of the precipitation process in crystalline
solids, which consists of nucleation, growth and coarsening [1, 2]. Distortion of
the lattice in proximity of a dislocation can enhance nucleation in several ways
[3, 4]. The main effect is the reduction in the volume strain energy associated with
the phase transformation. Nucleation on dislocations can also be helped by so-
lute segregation which raises the local concentration of the solute in the vicinity
of a dislocation, caused by migration of solutes toward the dislocation, the Cot-
trell atmosphere effect. When the Cottrell atmosphere becomes supersaturated,
nucleation of a new phase may occur followed by growth of nucleus. Moreover,
dislocation can aid the growth of an embryo beyond its critical size by providing a
diffusion passage with a lower activation energy.

Precipitation of second-phase along dislocation lines has been observed in a num-
ber of alloys [5, 6]. For example, in Al-Zn-Mg alloys, dislocations not only induce
and enhance nucleation and growth of the coherent second-phase MgZn2 precipi-
tates, but also produce a spatial precipitate size gradient around them [7–9]. Cahn
[10] provided the first quantitative model for nucleation of second-phase on dislo-
cations in solids. In Cahn’s model, it is assumed that a cross-section of the nucleus
is circular, which is strictly valid for a screw dislocation [1]. Also, it is posited that
the nucleus is incoherent with the matrix so that a constant interfacial energy can
be allotted to the boundary between the new phase and the matrix. An incoherent
particle interface with the matrix has a different atomic configuration than that
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of the phases. The matrix is an isotropic elastic material and the formation of
the precipitate releases the elastic energy initially stored in its volume. Moreover,
the matrix energy is assumed to remain constant by precipitation. In this model,
besides the usual volume and surface energy terms in the expression for the total
free energy of formation of a nucleus of a given size, there is a term representing
the strain energy of the dislocation in the region currently occupied by the new
phase. Cahn’s model predicts that both a larger Burgers vector and a more neg-
ative chemical free energy change between the precipitate and the matrix induce
higher nucleation rates, in agreement with experiment [5, 6].

Segregation phenomenon around dislocations, i.e. the Cottrell atmosphere effect,
has been observed among others in Fe-Al alloys doped with boron atoms [11] and
in silicon containing arsenic impurities [12], in qualitative agreement with Cottrell
and Bilby’s predictions [13]. Cottrell and Bilby considered segregation of impurities
to straight-edge dislocations with the Coulomb-like interaction potential of the
form φ = A sin θ/r, where A contains the elasticity constants and the Burgers
vector, and (r, θ) are the polar coordinates. Cottrell and Bilby ignored the flow
due concentration gradients and solved the simplified diffusion equation in the
presence of the aforementioned potential field. The model predicts that the total
number of impurity atoms removed from solution to the dislocation increases with
time t according to N(t) ∼ t2/3, which is in good agreement with the early stages
of segregation of impurities to dislocations, e.g. in iron containing carbon and
nitrogen [14]. A critical review of the Bilby-Cottrell model, its shortcomings and
its improvements are given in [15].

The object of our present study is the diffusion-controlled growth of a new phase,
i.e., a post nucleation process in the presence of dislocation field rather than the
segregation effect. As in Cahn’s nucleation model [10], we consider an incoherent
second-phase precipitate growing under the action of a screw dislocation field.
This entails that the stress field due to dislocation is pure shear. The equations
used for diffusion-controlled growth are radially symmetric. These equations for
second-phase in a solid or from a supercooled liquid have been, in the absence of
an external field, solved by Frank [16] and discussed by Carslaw and Jaeger [17].
The exact analytical solutions of the equations and their various approximations
thereof have been systematized and evaluated by Aaron et al. [18], which included
the relations for growth of planar precipitates. Applications of these solutions to
materials can be found in many publications, e.g. more recent papers on growth of
quasi-crystalline phase in Zr-base metallic glasses [19] and growth of Laves phase in
Zircaloy [20]. We should also mention another theoretical approach to the problem
of nucleation and growth of an incoherent second-phase particle in the presence of
dislocation field [21]. Sundar and Hoyt [21] introduced the dislocation field, as in
Cahn [10], in the nucleation part of the model, while for the growth part the steady-
state solution of the concentration field (Laplace equation) for elliptical particles
was utilized.

The organization of this paper as follows. The formulation of the problem, the
governing equation and the formal solution are given in section 2. Solutions of spe-
cific cases are presented in section 3, where the supersaturation as a function of
the growth coefficient is evaluated as well as the spatial variation of the concen-
tration field in the presence of dislocation. In section 4, besides a brief discourse
on the issue of interaction between point defects and dislocations, we calculate the
size-dependence of the concentration at the curved precipitate/matrix for the prob-
lem under consideration. We have carried out our calculations in space dimensions
d = 2 corresponding to growth of a second-phase cylinder in radial direction. Some
mathematical analyses are relegated to appendix A.
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2. Formulation and general solutions

We consider the problem of growth of the new phase, with radial symmetry (radius
r), governed by the diffusion of a single entity, u ≡ u(r, t), which is a function of
space and time (r, t). u can be either matter (solvent or solute) or heat (the latent
heat of formation of new phase). The diffusion in the presence of an external field
obeys the Smoluchowski equation [22] of the form

∂u

∂t
= −∇ · J, (1)

J = −D(∇u− βFu), (2)

where D is the diffusivity, β = 1/kBT , kB the Boltzmann constant, T the temper-
ature, and F is an external field of force. The force can be local (e.g., stresses due
to dislocation cores in crystalline solids) or caused externally by an applied field
(e.g., electric field acting on charged particles). If the acting force is conservative,
it can be obtained from a potential φ through F = −∇φ. The considered geometric
condition applies to the case of second-phase particles growing in a solid solution
under phase transformation [20] or droplets growing either from vapour or from
a second liquid [16]. A steady state is reached when J = const. = 0, resulting in
u = u0 exp(−βφ).

Combining equations (1) and (2) and expressing it in terms of the potential field
φ, we write

∂u

∂t
= D(∇2u+ βu∇2φ+ β∇u · ∇φ). (3)

Let us suppose, for the sake of a generality, a topological defect in a medium with
a potential energy in the form

φ = Arδ ln
r

r0
, for r ≥ r0, (4)

where r is a distance, δ a topological exponent, r0 the defect core size, and A a
medium dependent constant. Putting δ = d−n, where d is the spatial dimensional-
ity and n an integer n ≤ d, then equation (4) with d = 2 and n = 2 represents the
dislocation elastic energy in a crystalline plane or vortex-antivortex pair energy in
condensed matter [23], and d = 3, n = 2 the vortex ring energy in a Bose liquid
[24], to give a few examples. Curiously, δ = 1 gives the grain boundary energy in a
polycrystalline, where r stands for the spacing of a wall of edge dislocations [25].

Substituting for φ from equation (4) with δ = d−2, equation (3) in a rotationally
symmetric system can be written in the form

1

D

∂u

∂t
=
∂2u

∂r2
+
[d− 1

r
+ βArd−3

(
1 + (d− 2) ln

( r
r0

))]∂u
∂r

+

+βA(d− 2)rd−4
[
3 + 2(d − 2) ln

( r
r0

)]
u, (5)

with the boundary conditions u(r =∞) = um and u(r = R) = us for d ≥ 2, where
um is the mean (far-field) solute concentration in the matrix, us is the concentration
in the matrix at the new-phase/matrix interface determined from thermodynamics
of new phase, i.e., phase equilibrium and the capillary effect, and R is the radius
of a platelet in a d = 2 setting or the radius of spherical particle in case of d = 3.
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Moreover, the conservation of flux at the interface radius R gives

KdR
d−1|J|r=R = q

dVd
dt

, (6)

where Kd = 2πd/2/Γ(d/2), Γ(x) the usual Γ-function, Vd = 2πd/2Rd/dΓ(d/2), and
q the amount of the diffusing entity ejected at the boundary of the growing phase
per unit volume of the latter (new phase) formed.

We consider the case d = 2 when A 6= 0 and assume that the diffusion is toward
the core of dislocation line. Also, we suppose that a cross-section of the precipitate
(nucleus) perpendicular to the dislocation is circular, i.e., the precipitate surrounds
the dislocation. Furthermore, we treat the matrix and solution as linear elastic
isotropic media. The elastic potential energy of a stationary dislocation of length
l is then given by φ = A ln (r/r0), where A = Gb2l/4π for screw dislocation, G is
the elastic shear modulus of the crystal, b the magnitude of the Burgers vector, ν
Poisson’s ratio, and r0 is the usual effective core radius. Also, we assume that the
dislocation’s elastic energy is relaxed within the volume occupied by the precipitate
and that the precipitate is incoherent with the matrix. Hence the interaction energy
between the elastic field of the screw dislocation and the elastic field of the solute is
zero. In the case of an edge dislocation and coherent precipitate/matrix interface,
this interaction is non-negligible. In our reatment, we have tacitly assumed that
the molar volume of the second-phase is equal to that of the matrix phase.

Hence, for d = 2 (cylindrical symmetry) equation (5) is considerably simplified,
namely

1

D

∂u

∂t
=
∂2u

∂r2
+ (1 +B)

1

r

∂u

∂r
. (7)

where B ≡ βA. Now making a usual change of variable to the dimensionless reduced
radius s = r/

√
Dt, the partial differential equation (7) is reduced to an ordinary

differential equation of the form

d2u

ds2
+
(s

2
+

1 +B

s

)du

ds
= 0, (8)

with the boundary conditions, u(s =∞) = um, and u(s = 2λ) = us.
In s-space, the flux conservation equation (6) with R = 2λ

√
Dt is written as

(du

ds

)
s=2λ

= −
(Bus

2λ
+ qλ

)
. (9)

The boundary condition u(2λ) = us and equation (9) will provide a relationship
between us and um through λ.

The diffusion problem considered here describes the growth of cylinder (circular
plate) on a dislocation line. We note that the present model does not account for
the fast diffusion of atoms along the dislocation line. Diffusion of atoms takes place
only in the matrix and the diffusion coefficient D can be considered as the bulk
diffusivity. So, when the atoms reach the dislocation core they precipitate and grow
according to R = 2λ

√
Dt. Our aim is to calculate λ as a function supersaturation

for various values of the dislocation force amplitude (see the next section).
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Equation (8) has a general solution in the form

u(s) = um +
(Bum + 2qλ2)λBeλ

2

Γ(−B/2, s2/4)

2−BλBeλ2Γ(−B/2, λ2)
, (10)

where we utilized u(∞) = um and equation (9). Here Γ(a, z) is the incomplete
gamma function defined by the integral Γ(a, z) =

∫∞
z ta−1e−tdt [26]. The yet un-

known parameter λ is found from relation (10) at u(2λ) = us for a set of input
parameters us, um q, and B, through which the concentration field, equation (10),
and the growth of second-phase particle are determined. Note that our problem
formulation supposes that at time t = 0, the particle radius is zero. In addition,
the capillarity of the second-phase is neglected, both in the boundary conditions
and in equation (9) as in the free diffusion case treated in [16, 18].

3. Computations

To study the growth behavior of a second-phase in a solid solution under the action
of screw dislocation field, we attempt to compute the growth rate constant as a
function of the supersaturation parameter k, defined as k ≡ (us − um)/q with
q = up − us, where up is the composition of the nucleus [18]. Equation (10) with
u(2λ) = us yields

k =

[
2λ2 +Bum(up − us)−1

2−BλBeλ2Γ
(
−B/2, λ2

)
]
λBeλ

2

Γ
(
−B/2, λ2

)
. (11)

For B = 0, the relations obtained by Frank [16] are recovered, namely

u(z) = um + qλ2eλ
2

E1(z2/4), (12)

k = λ2eλ
2

E1(λ2), (13)

where E1(x) is the exponential integral of order one, related to the incomplete
gamma function through the identity En(x) = xn−1Γ(1 − n, x); and E1(x) =
−Ei(−x), where Ei(x) = −

∫∞
−x e

−tt−1dt [26].
From equation (11), it is seen that a complete separation of the supersaturation

parameter k ≡ (us − um)(up − us)
−1 is not possible for B 6= 0. However, for

us << up (a reasonable proviso) we write

k =
[
λ2 +

B

2

(
ε+O(ε2)

)]
λBeλ

2

Γ
(
−B/2, λ2

)
, (14)

with ε ≡ us/up. We can then calculate the spatial variation of the concentration as
a function of the amplitude of the dislocation force B and the growth coefficient λ
(cf. appendix A). For B = 1, equations (10) and (14) yield, respectively

u(z) = um +
2λ eλ

2

(um + 2qλ2)E3/2(z2/4)

[2− eλ2
E3/2(λ2)]z

, (15)

k =
(
λ2 +

ε

2

)
eλ

2

E3/2(λ2) +O(ε2). (16)
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Similarly for B = 2, we have

u(z) = um +
4λ2eλ

2

(um + qλ2)E2(z2/4)

[1− eλ2E2(λ2)]z2
, (17)

k = (λ2 + ε)E2(λ2) +O(ε2). (18)

We have plotted the growth coefficient λ = R/(2
√
Dt) as a function of the su-

persaturation parameter k in figure 1 and the spatial variation of the concentration
field in figure 2 for several values of B. The computations are performed to O(ε2)
with ε = 0.01. Figure 1 shows that λ is an increasing function of k; and also, as B
is raised λ is elevated. This means that an increase in the amplitude of dislocation
force (e.g., the magnitude of the Burgers vector) enhances second-phase growth in
an alloy.

Figure 2 displays the reduced concentration versus the reduced radius z = r/
√
Dt

for λ = 1. The reduced concentration is calculated via equation (10). The curves
in figure 2 show decrease in concentration as a function distance around a new
phase growing cylindrically so that its radius R is proportional to t1/2, when λ =
R/(2

√
Dt) = 1. For the sake of precision, a few data points from these plots are

listed in table 1. Our results for B = 0 match those obtained by Frank [16]. It is
seen that for z . 1.6 the concentration is enriched with increase in B, whereas for
z & 1.6, it is vice versa. So, for λ = 1, the crossover z-value is zc ≈ 1.6. Also, as λ
is reduced, zc is decreased. Large and small z behaviours of u(z) are calculated in
appendix A.

Table 1. Reduced concentration vs. distance z at several values of the force amplitude B and at λ = 1, cf. figure

2. Computations were carried out up to and including O(ε2) with ε = 0.01.

z B = 0 B = 1 B = 2 B = 3 B = 4
0.5 6.1349 13.5233 35.0732 101.4977 315.7501
1 2.8387 3.8669 5.6862 8.8579 14.4066

1.5 1.3333 1.3537 1.4346 1.5731 1.7725
2 0.5963 0.4867 0.4077 0.349 0.3042

2.5 0.2479 0.1696 0.118 0.0833 0.0595
3 0.0945 0.0557 0.0332 0.02 0.0121

3.5 0.0328 0.017 0.0088 0.0046 0.0025
4 0.0103 0.0047 0.0022 0.001 0.0005

4. Discussion

The potential energy in equation (4) with δ = 0 describes the elastic energy of the
dislocation relaxed within the volume occupied by the second-phase precipitate
[10]. It was treated here as an external field affecting the diffusion-limited growth
of second-phase precipitate. The interaction energy of impurities in a crystalline
with dislocations depends on the specific model or configuration of a solute atom
and a matrix which is used. Commonly, it is assumed that the solute acts as an
elastic center of dilatation. It is a fictitious sphere of radius R ′ embedded concen-
trically in a spherical hole of radius R cut in the matrix. If the elastic constants
of the solute and matrix are the same, the work done in inserting the atom in the
presence of dislocation is w = p∆v, where p is the hydrostatic pressure and ∆v is
the difference between the volume of the hole in the matrix and the sphere of the
fictitious impurity. For a screw dislocation p = 0, while near an edge dislocation
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p = (1+ν)bG sin θ
3π(1−ν)r for an impurity with polar coordinates (r, θ) with respect to the

dislocation 0z, hence w ∝ ∆v sin θ/r [13]. Using a nonlinear elastic theory [27],
a screw dislocation may also interact with the spherical impurity with the inter-
action energy w ∝ ∆v/r2. Moreover, accounting for the differences in the elastic
constants of a solute and a matrix, the solute will relieve shear strain energy as
well as dilatation energy, which will also interact with a screw dislocation with a
potential w ∝ ∆v/r2 [28]. Indeed, Friedel [28] has formulated that by introducing
a dislocation into a solid solution of uniform concentration c0, the interaction en-
ergy between the dislocation and solute atoms can be written as w w w0(b/ρ)nf(θ),
where ρ is the distance between the two defects, w0 the binding energy when ρ = b,
and f(θ) accounts for the angular dependence of the interaction along the disloca-
tion. Also, n = 1 for size effects and n = 2 for effects due to differences in elastic
constants. The discussed model for the interaction energy between solute atoms
and dislocations has been used to study the precipitation process on dislocations
by number of workers in the past [29, 30] and thoroughly reviewed in [15]. These
studies concern primarily the overall phase transformation (precipitation of a new
phase) rather than the growth of a new phase considered in our note. That is, they
used different boundary conditions as compared to the ones used here.

As alluded in section 1, the solute-dislocation potential energy of the form A/r
in the diffusion equation, during the early stages of segregation, would predict that
the Cottrell cloud solute number evolves as N ∼ t2/3, and consequently its radius as
R ∼ t1/3 [15]. Our calculations deal with the growth of circular plate according to
R ∼ t1/2. Hin et al.’s investigations [31, 32] utilizing this kind of potential (A/r) and
a kinetic Monte Carlo simulation in three dimensions, qualitatively indicate that
at the beginning of an isothermal-annealing experiment, e.g. on the Fe-C system,
the radius of the Cottrell cloud grows roughly as ∼ t1/3, during which small ovoid
precipitates nucleate. After some lapse of time, the ovoid particles grow lengthwise
along the dislocation line and coalesce, completely wetting the dislocation line
by forming a cylindrical shaped precipitate [31]. Then the radius of this cylinder
is expected to grow parabolically with time, R ∼ t1/2. Our calculations may be
pertinent to this stage of precipitate evolution. Hin et al.’s simulations show that
at much longer times, the precipitate de-wets the dislocation re-forming to ovoid
particles.

Let us now link the supersaturation parameter k to an experimental situation.
For this purpose, the values of us, i.e. the concentration at the interface between
the second-phase and matrix should be known. The capillarity effect leads to a
relationship between us and the equilibrium composition ueq (solubility line in a
phase diagram). To obtain this relationship, we consider an incoherent nucleation of
second-phase on a dislocation à la Cahn [10]. A Burgers loop around the dislocation
in the matrix material around the incoherent second-phase (circular plate) will have
a closure mismatch equal to b. Following Cahn, on forming the incoherent plate of
radius R, the total free energy change per unit length is

G = −πR2∆gv + 2πγR −A′ ln(R/r0), (19)

where ∆gv is the volume free energy of formation, γ the interfacial energy and the
last term is the dislocation energy, A′ = Gb2/4π for screw dislocations. Setting
dG/dR = 0, yields

R =
γ

2∆gv

(
1±
√

1− α
)
, (20)
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where α = 2A′∆gv/πγ2. So, if α > 1, the nucleation is barrierless, i.e., the phase
transition kinetics is only governed by growth kinetics, which is the subject of our
investigation here. If, however, α < 1, there is an energy barrier and the local
minimum of G at R = R0, which corresponds to the negative sign in equation
(20), ensued by a maximum at R = R∗ corresponding to the positive sign in this
equation. The local minimum corresponds to a subcritcal metastable particle of
the second-phase surrounding the dislocation line, and it is similar to the Cottrell
atmosphere of solute atoms in a segregation problem. When α = 0, corresponding
to B = 0, the two phases are in equilibrium and the maximum in G is infinite, as
for homogeneous nucleation.

For a dilute regular solution, ∆gv = (kBT/Vp) ln(us/ueq), where Vp is the
atomic volume of the precipitate compound, us is the concentration of the ma-
trix at a curved particle/matrix interface and ueq that of a flat interface, which
is in equilibrium with the solute concentration in the matrix. Equation (20) gives
∆gv = γ/R−A′/2πR2. Hence, for a dilute regular solution, we write

us = ueq exp
[ ζ
R

(
1− η

R

)]
, (21)

where ζ = βVpγ, β = 1/kBT and η = A′/2πγ. Subsequently, the supersaturation
parameter is expressed by

k =
ueq exp[ ζR (1− η

R)]− um
up − ueq exp[ ζR (1− η

R)]
. (22)

Taking the following typical values: γ = 0.2 Jm−2, G = 40 GPa, and b = 0.25 nm,
then A′ ≈ 2.0× 10−10 N and η = 0.16 nm. Figure 3 depicts us/ueq, from equation
(21), as a function of scaled radius R/ζ for Vp = 1.66×10−29 m3, η = 0 and η = 0.16
nm at T = 600 K. Equation (21) is analogous to the Gibbs-Thomson-Freundlich
relationship [4] comprising a dislocation defect. Recalling now the values used for
the interaction parameter B in the computations presented in the foregoing section,
we note that for B = 2 and the above numerical values for G and b at T = 1000
K, we find l ≈ 0.14 nm, which is close to the calculated value of η.

We should, however, recall that in our problem formulation of the diffusion-
controlled growth (section 2), we neglected the capillarity effect of the second-phase,
corresponding to γ = 0, which simplifies equation (21) to

us = ueq exp
[
− βVpGb

2

8π2R2

]
. (23)

If now 8π2R2 >> βVpGb
2, or alternatively, us(t→∞) = ueq, equation (22) reduces

to

k =
ueq − um
up − ueq

. (24)

In Cahn’s model, the assumption that all the strain energy of the dislocation within
the volume occupied by the nucleus can be relaxed to zero demands that the nucleus
is incoherent. For a coherent nucleus forming on or in proximity of dislocations, this
supposition is not true. Instead, it is necessary to calculate the elastic interaction
energy between the nucleus and the matrix, which for an edge dislocation is in
the form Gb2/[4π(1− ν)r] for the energy density per unit length [33]. In the same
manner, to extend our calculations for growth of coherent precipitate, we must
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employ this kind of potential energy, i.e. the potential energy of the form φ(r) =
−A ln(r/r0) +C sin θ/r, in the governing kinetic equation rather than relation (4).
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Figure captions

Figure 1. Growth coefficient λ as a function of supersaturation k at various levels of dislocation force
amplitude B for a circular plate (d = 2) and us = 0.01up.

Figure 2. Reduced concentration field as a function of reduced distance from the surface of the circular
plate (d = 2) at various levels of dislocation force amplitude B and at λ = 1.

Figure 3. The size dependence of the concentration at the curved precipitate/matrix interface us relative
to that of the flat interface ueq for a set of parameter values given in the text, cf. eq. (21).

Page 10 of 16

http://mc.manuscriptcentral.com/pm-pml

Philosophical Magazine & Philosophical Magazine Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

July 9, 2009 4:30 Philosophical Magazine Manuscript

Philosophical Magazine 11

Appendix A. Evaluation of solution of equation (8)

The general solution of equation (8) subject to the flux conservation relation (6)
and the assigned boundary conditions (with z ≡ s) can be expressed as

u(z) = um + qA2Γ
(
− B

2
,
z2

4

)
(A1)

A2 ≡
(B2

um
q + λ2)λBeλ

2

1− B
2 λ

Beλ2Γ(−B
2 , λ

2)
. (A2)

As can be seen, the spatial dependence of the concentration field u(z) is expressed
by the incomplete gamma function Γ(−B/2, z2/4), which is a sharply decreasing
function z and it tends to zero at large z, resulting u(z →∞) = um. Since u(2λ) =
us and q = up − us, we write

u(z)− um
up − us

= A2Γ
(
− B

2
,
z2

4

)
, (A3)

For us << up, ε = us/up, and k = (us − um)/q, we find

A2 =

[
B
2 (ε+O(ε2)− k) + λ2

]
λBeλ

2

1− B
2 λ

Beλ2Γ(−B
2 , λ

2)
. (A4)

Substituting for k from equation (14) in equation (A4) yields

A2 =
[B

2

(
ε+O(ε2)

)
+ λ2

]
λBeλ

2

(A5)

Let us investigate the solution equation (A1) in the limit of small z and large z.
For small values of z, series expansion of the incomplete gamma function gives

Γ
(
− B

2
,
z2

4

)
= Γ

(
− B

2
) + z−B

[2B+1

B
− 2B−1

B − 2
z2+

+
2B−4

B − 4
z4 − 2B−6

3(B − 6)
z6 +O(z8)

]
.

(A6)

Note that in the limit B → 0, Frank’s result is recovered, viz

Γ
(
0,
z2

4

)
= −γ + ln 4− 2 ln z+

+
z2

4
− z4

64
+

z6

1152
+O(z8),

(A7)

where γ is Euler’s constant. Hence, in this limit, equation (A1) reduces to

u(z) − um
up − us

= 2λ2eλ
2

ne
(
1− 1

ne
ln z
)

+O(z2), (A8)

with ne = (−γ + ln 4)/2.
For large z, we use the asymptotic expansion, and obtain
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Γ
(
− B

2
,
z2

4

)
=
e−

1

4
z2

zB

[4B/2+1

z2
− 2B+3(B + 2)

z4
+

+
2B+4(B2 + 6B + 8)

z6
+O(

1

z7
)
]
.

(A9)

Hence, for very large z, equation (A1) may be written as

u(z)− um
up − us

≈ A2
e−

1

4
z2

zB+2
, (A10)

Equation (A10) shows that as z increases, the concentration field u(z) falls rapidly
toward um for B ≥ 0.
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