## Spectral triples for finitely generated groups.

Sébastien Palcoux

## To cite this version:

Sébastien Palcoux. Spectral triples for finitely generated groups.. 2010. hal-00529553v5

## HAL Id: hal-00529553 <br> https://hal.science/hal-00529553v5

Preprint submitted on 9 Nov 2010 (v5), last revised 14 Jan 2011 (v8)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# SPECTRAL TRIPLES FOR FINITELY GENERATED GROUPS 

SÉBASTIEN PALCOUX


#### Abstract

Using Cayley graphs and Clifford algebras, we are able to give, for every finitely generated groups, a uniform construction of spectral triples with a generically non-trivial phase for the Dirac operator. We are naturally led to a classification of such groups into three types.


## Contents

1. Introduction
2. Basic definitions
3. Geometric construction
4. Clifford algebra
5. Class $\mathcal{C}$ and Dirac operator
6. Homogenization and general case

References

## 1. Introduction

In this paper, we define spectral triples for every finitely generated groups such that the phase of the Dirac operator is generically non-trivial. We just generalize the unbounded version of the construction of the Fredholm module for the free group given by Connes [1] and M. Pimsner-Voiculescu [5]. For so, we use the Clifford algebra in the same spirit that Julg-Valette do in [4]. We also use topics in geometric group theory (see [3]) as the Cayley graph. We start giving a first construction running for a particular class of group called $\mathcal{C}$; then for the general case, we homogenize the construction. The idea is that the more we need to homogenize, the more it increases the chances that the Dirac phase is trivial. We are then led to classify the finitely generated groups into three types $A_{0}, A_{\lambda}$ and $A_{1}$ according to the need of homogenization; $\mathcal{C}$ is a particular class of type $A_{0}$.

[^0]
## 2. Basic definitions

Definition 2.1. A spectral triple $(\mathcal{A}, H, D)$ is given by a unital $\star$-algebra $\mathcal{A}$ representated on the Hilbert space $H$, and an unbounded operator $D$, called the Dirac operator, such that:
(1) $D$ is self-adjoint.
(2) $\left(D^{2}+I\right)^{-1}$ is compact.
(3) $\{a \in \mathcal{A} \mid[D, a] \in B(H)\}$ is dense in $\mathcal{A}$.

See the article [6] of G. Skandalis, dedicated to A. Connes and spectral triple.
Definition 2.2. A group $\Gamma$ is finitely generated if it exists a finite generating set $S \subset \Gamma$. We always take $S$ equals to $S^{-1}$ and the identity element $e \notin S$.
We can also defined a group by generators and relations: $\Gamma=\langle S \mid R\rangle$.

## 3. Geometric construction

Definition 3.1. Let $\ell: \Gamma \rightarrow \mathbb{N}$ be the word length related to $S$. Let $\mathcal{G}$ be the Cayley graph with the distance $d(g, h)=\ell\left(g h^{-1}\right)$, see [3].

Definition 3.2. Let $p: \Gamma \rightarrow \mathbb{N}$ with $p(g)$ the number of geodesic paths from $g$ to the identity element $e$, on the Cayley graph $\mathcal{G}$.

Definition 3.3. Let $p_{s}: \Gamma \rightarrow \mathbb{N}$ with $p_{s}(g)$ the number of geodesic paths from $g$ to $e$, starting by $s \in S$. Then $\sum_{s \in S} p_{s}=p$.

Remark 3.4. If $p_{s}(g) \neq 0$ then $p_{s}(g)=p(g s)$.
Definition 3.5. Let $\ell^{2}(\Gamma)$ be the canonical Hilbert space of base $\left(e_{g}\right)_{g \in \Gamma}$ and let $\partial_{s}(s \in S)$ be the unbounded operator definited by:

$$
\partial_{s} . e_{g}=\frac{p_{s}(g)}{p(g)} \ell(g) e_{g} .
$$

$\partial_{s}$ is a diagonal positive operator, so $\partial_{s}^{\star}=\partial_{s}$ and $\partial_{s} \partial_{s^{\prime}}=\partial_{s^{\prime}} \partial_{s}$.
Example 3.6. Let $\Gamma=\mathbb{Z}^{2}, S=\left\{a, a^{-1}, b, b^{-1}\right\}, R=\left\{a b a^{-1} b^{-1}\right\}$. Let $g=a^{n} b^{m}=(n, m)$ with $n, m \in \mathbb{N}$, then $\ell(g)=n+m, p(g)=C_{n+m}^{n}$, $p_{a^{-1}}(g)=C_{n+m-1}^{n-1}, p_{b^{-1}}(g)=C_{n+m-1}^{m-1}$, and so $\frac{C_{n+m-1}^{n-1}}{C_{n+m}^{n}}(n+m)=n$.
Let $\partial_{1}=\partial_{a^{-1}}$ and $\partial_{2}=\partial_{b^{-1}}$, then:

$$
\partial_{1} e_{(n, m)}=n e_{(n, m)} \quad \text { and } \quad \partial_{2} e_{(n, m)}=m e_{(n, m)},
$$

as for the canonical derivations !
Example 3.7. Let $\Gamma=\mathbb{F}_{2}, S=\left\{a, a^{-1}, b, b^{-1}\right\}, R=\emptyset$. Let $g \in \mathbb{F}_{2}, g \neq e$, then $p(g)=1$, let $s \in S$ with $p_{s}(g)=1$, then $\partial_{s} . e_{g}=\ell(g) . e_{g}$.

## 4. Clifford algebra

We quickly recall here the notion of Clifford algebra, for a more detailed exposition, see the course of A. Wassermann (7).

Definition 4.1. Let $\Lambda\left(\mathbb{R}^{S}\right)$ be the exterior algebra equals to $\oplus_{k=0}^{2 d} \Lambda^{k}\left(\mathbb{R}^{d}\right)$, with $2 d=\operatorname{card}(S)$ and $\Lambda^{0}\left(\mathbb{R}^{d}\right)=\mathbb{R} \Omega$. We called $\Omega$ the vacuum vector. Recall that $v_{1} \wedge v_{2}=-v_{2} \wedge v_{1}$ so that $v \wedge v=0$.

Definition 4.2. Let $a_{v}$ be the creation operator on $\Lambda\left(\mathbb{R}^{S}\right)$ defined by:

$$
a_{v}\left(v_{1} \wedge \ldots \wedge v_{r}\right)=v \wedge v_{1} \wedge \ldots \wedge v_{r} \text { and } a_{v}(\Omega)=v
$$

Reminder 4.3. The dual $a_{v}^{\star}$ is called the annihilation operator, then:

$$
\begin{gathered}
a_{v}^{\star}\left(v_{1} \wedge \ldots \wedge v_{r}\right)=\sum_{i=0}^{r}(-1)^{i+1}\left(v, v_{i}\right) v_{1} \wedge \ldots v_{i-1} \wedge v_{i+1} \wedge \ldots \wedge v_{r} \text { and } \\
a_{v}^{\star}(\Omega)=0
\end{gathered}
$$

Reminder 4.4. Let $c_{v}=a_{v}+a_{v}^{\star}$, then $c_{v}=c_{v}^{\star}$ and $c_{v} c_{w}+c_{w} c_{v}=2(v, w) I$.
Definition 4.5. The operators $c_{v}$ generate the Clifford algebra Cliff( $\left.\mathbb{R}^{S}\right)$.
Note that the operators $c_{v}$ are bounded and that $\operatorname{Cliff}\left(\mathbb{R}^{S}\right) . \Omega=\Lambda\left(\mathbb{R}^{S}\right)$.
Remark 4.6. $\mathbb{R}^{S}$ admits the orthonormal basis $\left(v_{s}\right)_{s \in S}$.
We will write $c_{s}$ instead of $c_{v_{s}}$, so that $\left[c_{s}, c_{s^{\prime}}\right]_{+}=2 \delta_{s, s^{\prime}} I$.

## 5. Class $\mathcal{C}$ and Dirac operator

Definition 5.1. Let $H$ be the Hibert space $\Lambda\left(\mathbb{R}^{S}\right) \bar{\otimes} \ell^{2}(\Gamma)$, we define a selfadjoint operator $D$ on a dense domain of $H$ by:

$$
D=\sum_{s \in S} c_{s} \otimes \partial_{s}
$$

Lemma 5.2. $D^{2}=I \otimes\left(\sum_{s \in S} \partial_{s}^{2}\right)$.
Proof. $D^{2}=\sum_{s, s^{\prime} \in S} c_{s} c_{s^{\prime}} \otimes \partial_{s} \partial_{s^{\prime}}=\frac{1}{2} \sum\left(c_{s} c_{s^{\prime}}+c_{s^{\prime}} c_{s}\right) \otimes \partial_{s} \partial_{s^{\prime}}=I \otimes\left(\sum \partial_{s}^{2}\right)$
Lemma 5.3. $\left(D^{2}+I\right)^{-1}$ is compact.
Proof. First of all $\operatorname{dim}\left(\Lambda\left(\mathbb{R}^{S}\right)\right)=2^{2 d}<\infty$.
Next $\sum_{s \in S} \frac{p_{s}(g)}{p(g)}=1$, then it exists $s_{o} \in S$ such that $\frac{p_{s}(g)}{p(g)} \geq \frac{1}{2 d}$.
Now $\sum_{s \in S}\left[\ell(g) \frac{p_{s}(g)}{p(g)}\right]^{2} \geq\left[\ell(g) \frac{p_{s_{o}}(g)}{p(g)}\right]^{2} \geq\left[\frac{\ell(g)}{2 d}\right]^{2}$.
Definition 5.4. Let $\mathcal{C}$ be the class of finitely generated group $\Gamma$ such that it exists a finite generating set $S \subset \Gamma$ (with $S=S^{-1}$ and $e \notin S$ ) such that $\forall s \in S$ and $\forall g, h \in \Gamma \quad$ (with $h \neq e):$

$$
\left|\frac{p_{s}(g h)}{p(g h)}-\frac{p_{s}(h)}{p(h)}\right| \leq \frac{K_{g}}{\ell(h)}
$$

with $K_{g} \in \mathbb{R}_{+}$depending only on $g$.

Examples 5.5. The class $\mathcal{C}$ is stable by direct or free product, it contains $\mathbb{Z}^{n}, \mathbb{F}_{n}$, the finite groups, and probably every amenable or automatic groups (containing the hyperbolic groups, see [2]).
Warning 5.6. From now, the group $\Gamma$ is in the class $\mathcal{C}$.
Definition 5.7. Let $\mathcal{A}=C_{r}^{\star} \Gamma$, acting on $H$ by $I \otimes u_{g}, g \in \Gamma$.
Proposition 5.8. $\{a \in \mathcal{A} \mid[D, a] \in B(H)\}$ is dense in $\mathcal{A}$.
Proof. $\left[D, u_{g}\right]\left(\Omega \otimes e_{h}\right)=\ldots=\left(\sum_{s \in S}\left\lceil\ell(g h) \frac{p_{s}(g h)}{p(g h)}-\ell(h) \frac{p_{s}(h)}{p(h)}\right] v_{s}\right) \otimes e_{g h}$.
Now $\left|\ell(g h) \frac{p_{s}(g h)}{p(g h)}-\ell(h) \frac{p_{s}(h)}{p(h)}\right| \leq \ell(g h)\left|\frac{p_{s}(g h)}{p(g h)}-\frac{p_{s}(h)}{p(h)}\right|+|\ell(g h)-\ell(h)| \frac{p_{s}(h)}{p(h)}$
$\leq K_{g} \frac{\ell(g h)}{\ell(h)}+\ell(g) \leq K_{g}(\ell(g)+1)+\ell(g)$. It's bounded in $h$.
Now let $v \in \Lambda\left(\mathbb{R}^{S}\right)$ then it exists $X \in \operatorname{Cliff}\left(\mathbb{R}^{S}\right)$ with $v=X \Omega$. By linearity we can restrict to $X=c_{s_{1}} \ldots c_{s_{r}}$ with $s_{i} \in S$ and $i \neq j$ implies $s_{i} \neq s_{j}$.
Warning, the following commutant $[., X]$ is a graded commutant:
$\left[D, u_{g}\right]\left(v \otimes e_{h}\right)=\left(\left[\left[D, u_{g}\right], X\right]+(-1)^{r} X\left[D, u_{g}\right]\right)\left(\Omega \otimes e_{h}\right)$
$\left[\left[D, u_{g}\right], X\right]=\left[[D, X], u_{g}\right]$
$[D, X]=\left[\sum_{s \in S} c_{s} \otimes \partial_{s}, X\right]=\sum_{s \in S}\left[c_{s}, X\right] \otimes \partial_{s}$
$\left[c_{s}, X\right]=2 \sum(-1)^{i+1} \delta_{s, s_{i}} c_{s_{1}} \ldots c_{s_{i-1}} c_{s_{i+1}} \ldots c_{s_{r}}, s_{i} \neq s_{j}$ if $i \neq j$, then:
$[D, X]=\sum X_{i} \otimes \partial_{s_{i}}$ with $X_{i}=(-1)^{i+1} 2 c_{s_{1}} \ldots c_{s_{i-1}} c_{s_{i+1}} \ldots c_{s_{r}}$
$\left[[D, X], u_{g}\right]\left(\Omega \otimes e_{h}\right)=\sum\left[\ell(g h) \frac{p_{s_{i}}(g h)}{p(g h)}-\ell(h) \frac{p_{s_{i}}(h)}{p(h)}\right] X_{i} \Omega \otimes e_{g h}$.
Now $X$ and $X_{i}$ are bounded; the result follows.
Theorem 5.9. $(\mathcal{A}, H, D)$ is a spectral triple; the phase of $D$ is generically non-trivial.

Proof. We use lemma 5.3 and proposition 5.8. The phase is generically non-trivial, because it's non-trivial for $\Gamma=\mathbb{Z}^{2}$ or $\mathbb{F}_{2}$.

## 6. Homogenization and general case

The class $\mathcal{C}$ doesn't contain every finitely generated group, we have the following non-automatic (see [2]) counterexample:

Counterexample 6.1. Baumslag-Solitar group $B(2,1), S=\left\{a, a^{-1}, b, b^{-1}\right\}$, $R=\left\{a^{2} b a^{-1} b^{-1}\right\}, a^{2^{n}}=b^{n-1} a^{2} b^{1-n}, \ell\left(a^{2^{n}}\right)=2 n$ with $n>1$,

$$
\left|\frac{p_{b}\left(a \cdot a^{2^{n}}\right)}{p\left(a \cdot a^{2^{n}}\right)}-\frac{p_{b}\left(a^{2^{n}}\right)}{p\left(a^{2^{n}}\right)}\right|=\left|\frac{2}{4}-\frac{2}{2}\right|=\frac{1}{2}
$$

It should rest to prove that such a failure is independant of the presentation...

Then, to obtain a construction in the general case, we need to operate a little homogenization. Let $\Gamma=\langle S \mid R\rangle$ be a finitely generated group.
Definition 6.2. Let $\mathbb{B}_{\Gamma}^{n}=\{g \in \Gamma \mid \ell(g) \leq n\}$ the ball of radius $n$.
Definition 6.3. Let $\mathbb{S}_{\Gamma}^{n}=\{g \in \Gamma \mid \ell(g)=n\}$ the sphere of radius $n$.

Definition 6.4. Let $\mu$ be the probability measure on $\Gamma$ defined by:

$$
\mu(g)=\left(\#\left(\mathbb{S}_{\Gamma}^{\ell(g)}\right) 2^{\ell(g)+1}\right)^{-1} .
$$

Definition 6.5. Let $E_{\Gamma, S}$ be the set of smooth functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ with:
(1) $f(0)=0, f \geq 0, f^{\prime} \geq 0$ and $f^{\prime \prime} \leq 0$.
(2) $\lambda_{f}:=\lim _{x \rightarrow \infty}\left(f^{\prime}(x)\right) \leq 1$.
(3) $\forall s \in S$ and $\forall g, h \in \Gamma$ (with $h \neq e$ ):

$$
\left|\sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(g h))}} \frac{p_{s}(\gamma g h)}{p(\gamma g h)} \frac{\mu(\gamma g h)}{\mu\left(\mathbb{B}_{\Gamma}^{f(\ell(g h))} . g h\right)}-\sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(h))}} \frac{p_{s}(\gamma h)}{p(\gamma h)} \frac{\mu(\gamma h)}{\mu\left(\mathbb{B}_{\Gamma}^{f(\ell(h))} . h\right)}\right| \leq \frac{K_{g}}{\ell(h)}
$$

with $K_{g} \in \mathbb{R}_{+}$depending only on $g$.
Remark 6.6. The condition (2) is well-defined because $f^{\prime}$ is decreasing and minorated by 0 , so convergent at infinity.

Remark 6.7. Let $f \in E_{\Gamma, S}$, if $\exists \alpha>0$ with $f(\alpha)=0$ then $f=0$.
Lemma 6.8. $E_{\Gamma, S}$ is non empty.
Proof. We will show that $f(x)=x+\log _{2}(x+1)$ defines a fonction in $E_{\Gamma, S}$. First of all $\mathbb{B}_{\Gamma}^{\log _{2}(\ell(g))} \subset\left(\mathbb{B}_{\Gamma}^{f(\ell(g))} . g\right)$, then $\mu\left(\mathbb{B}_{\Gamma}^{f(\ell(g))} . g\right) \geq \mu\left(\mathbb{B}_{\Gamma}^{\log _{2}(\ell(g))}\right) \geq$ $1-\frac{1}{\ell(g)}$.

$$
\begin{aligned}
& \left|\sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(g h))}} \frac{p_{s}(\gamma g h)}{p(\gamma g h)} \frac{\mu(\gamma g h)}{\mu\left(\mathbb{B}_{\Gamma}^{f(\ell(g h))} . g h\right)}-\sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(h))}} \frac{p_{s}(\gamma h)}{p(\gamma h)} \frac{\mu(\gamma h)}{\mu\left(\mathbb{B}_{\Gamma}^{f(\ell(h))} . h\right)}\right| \leq \\
& \left|\left(1 / \mu\left(\mathbb{B}_{\Gamma}^{f(\ell(g h))} . g h\right)-1\right) \sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(g h))}} \frac{p_{s}(\gamma g h)}{p(\gamma g h)} \mu(\gamma g h)\right|+ \\
& \left|\left(1 / \mu\left(\mathbb{B}_{\Gamma}^{f(\ell(h))} . h\right)-1\right) \sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(h))}} \frac{p_{s}(\gamma h)}{p(\gamma h)} \frac{\mu(\gamma h)}{\mu\left(\mathbb{B}_{\Gamma}^{f(\ell(h))} . h\right)}\right| \\
& +\left|\sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(g h))}} \frac{p_{s}(\gamma g h)}{p(\gamma g h)} \mu(\gamma g h)-\sum_{\gamma \in \mathbb{B}_{\Gamma}^{f(\ell(h))}} \frac{p_{s}(\gamma h)}{p(\gamma h)} \mu(\gamma h)\right| \leq \\
& 1 / \ell(g h)+1 / \ell(h)+\left|\sum_{\gamma \in \Gamma \backslash \mathbb{B}_{\Gamma}^{f(\ell(g h))}} \frac{p_{s}(\gamma g h)}{p(\gamma g h)} \mu(\gamma g h)-\sum_{\gamma \in \Gamma \backslash \mathbb{B}_{\Gamma}^{f(\ell(h))}} \frac{p_{s}(\gamma h)}{p(\gamma h)} \mu(\gamma h)\right|+ \\
& \left|\sum_{\gamma \in \Gamma} \frac{p_{s}(\gamma g h)}{p(\gamma g h)} \mu(\gamma g h)-\sum_{\gamma \in \Gamma} \frac{p_{s}(\gamma h)}{p(\gamma h)} \mu(\gamma h)\right| \\
& \leq 2 / \ell(g h)+2 / \ell(h) \leq 2 /(\ell(g) \ell(h)+\ell(h))+2 / \ell(h)=\frac{1 /(\ell(g)+1)}{\ell(h)}
\end{aligned}
$$

The others conditions for $f$ to be in $E_{\Gamma, S}$ are evidents.
Remark 6.9. The class $\mathcal{C}$ is the class of group $\Gamma$ for which $\exists S$ with $0 \in$ $E_{\Gamma, S}$.

We are led to a classification of finitely generated groups into three types:
Definition 6.10. Let $\lambda_{\Gamma}:=\min _{S \subset \Gamma} \min _{f \in E_{\Gamma, S}} \lambda_{f}$, with $S$ and $\lambda_{f}$ as previouly. By definition $\lambda_{\Gamma} \in[0,1]$ then:
$\mathbf{A}_{\mathbf{0}}: \Gamma$ is a type $A_{0}$ group if $\lambda_{\Gamma}=0$ and $\exists f$ with $\lambda_{f}=0$.
$\mathbf{A}_{\lambda}: \Gamma$ is a type $A_{\lambda}$ group if it is not $A_{0}$ and $0 \leq \lambda_{\Gamma}<1$.
$\mathbf{A}_{1}: \Gamma$ is a type $A_{1}$ group if $\lambda_{\Gamma}=1$.
Definition 6.11. Let $A_{0}^{+}$be the subclass of type $A_{\lambda}$ groups with $\lambda_{\Gamma}=0$.
Remark 6.12. Every groups of the class $\mathcal{C}\left(\right.$ as $\mathbb{Z}^{n}, \mathbb{F}^{n}$ etc...) are of type $A_{0}$.
Conjecture 6.13. Every Baumslag-Solitar groups $B(n, m)$ are of type $A_{0}$.
Problem 6.14. Existence of type $A_{0}^{+}, A_{\lambda}$ or $A_{1}$ groups .
Definition 6.15. Let $\Gamma=\langle S \mid R\rangle$ be a finitely generated group, let $f \in E_{\Gamma, S}$ be a function with (almost) minimal growth, we define $\widetilde{D}$ as $D$ using:

$$
\widetilde{\partial}_{s} . e_{g}=\left[\sum_{\gamma \in \mathbb{B}_{f(\ell(g))}^{\Gamma}} \frac{p_{s}(\gamma g)}{p(\gamma g)} \frac{\mu(\gamma g)}{\mu\left(\mathbb{B}_{\Gamma}^{f(\ell(g))} . g\right)}\right] \ell(g) e_{g}
$$

Remark 6.16. For the class $\mathcal{C}$, we can take $f=0$ and so $\widetilde{D}=D$.
Theorem 6.17. $(\mathcal{A}, H, \widetilde{D})$ is a spectral triple; the phase of $\widetilde{D}$ is generically non-trivial.

Proof. The proof runs exactly as for theorem 5.9.
Definition 6.18. Let $\mathcal{C}^{\perp}$ be the class of groups $\Gamma$ such that $\forall S, \forall f \in E_{\Gamma, S}$, the phase of $\widetilde{D}$ is always trivial.

Problem 6.19. Existence of groups of class $\mathcal{C}^{\perp}$.

## References

[1] A. Connes, Noncommutative differential geometry. Inst. Hautes tudes Sci. Publ. Math. No. 62 (1985), 257360.
[2] D. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word processing in groups. Jones and Bartlett Publishers, Boston, MA, 1992.
[3] P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 2000.
[4] P. Julg, A. Valette, Fredholm modules associated to Bruhat-Tits buildings. Miniconferences on harmonic analysis and operator algebras (Canberra, 1987), 143155, Proc. Centre Math. Anal. Austral. Nat. Univ., 16, Austral. Nat. Univ., Canberra, 1988.
[5] M. Pimsner, D. Voiculescu, K K-groups of reduced crossed products by free groups. J. Operator Theory 8 (1982), no. 1, 131156.
[6] G. Skandalis Géométrie non commutative d'après Alain Connes: la notion de triplet spectral. Gaz. Math. No. 94 (2002), 4451.
[7] A. Wassermann, Lecture notes on Atiyah-Singer index theorem, Lent 2010 course, http://www.dpmms.cam.ac.uk/~ajw/AS10.pdf

Institut de Mathématiques de Luminy, Marseille, France.
E-mail address: palcoux@iml.univ-mrs.fr, http://iml.univ-mrs.fr/~palcoux


[^0]:    2000 Mathematics Subject Classification. 46L87.
    Key words and phrases. non-commutative geometry; spectral triple; geometric group theory; Clifford algebra; Cayley graph; Dirac; finitely generated group.

