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Spectral triples for finitely generated groups.

Sébastien Palcoux∗

Abstract

Using Cayley graphs and Clifford algebras, we are able to give,
for every finitely generated groups, a uniform construction of spectral
triples with a generically non-trivial phase for the Dirac operator. We
are naturally led to a classification of such groups into three types.
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1 Introduction

In this paper, we define even spectral triples for every finitely generated
groups. We just generalizes the unbounded version of the construction of the
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Fredholm module for the free group given by Connes [1] and M. Pimsner-
Voiculescu [4]. For so, we use the Clifford algebra in the same spirit that
Julg-Valette do in [3]. We also use topics in geometric group theory (see
[2]) as the Cayley graph. The construction runs for every finitely generated
groups and the phase of the Dirac operator is generically non-trivial.

2 Basic definitions

Definition 2.1. A spectral triple (A, H,D) is given by a unital ⋆-algebra A
representated on the Hilbert space H, and an unbounded operator D, called
the Dirac operator, such that:

1. D is self-adjoint.

2. (D2 + I)−1 is compact.

3. {a ∈ A | [D, a] ∈ B(H)} is dense in A.

See the article [5] of G. Skandalis, dedicated to A. Connes and spectral triple.

Definition 2.2. A group Γ is finitely generated if it exists a finite generating
set S ⊂ Γ. We always take S equals to S−1 and the identity element e 6∈ S.
We can also defined a group by generators and relations: Γ = 〈S | R〉.

3 Geometric construction

Definition 3.1. Let ℓ : Γ → N be the word length related to S. Let G be the
Cayley graph with the distance d(g, h) = ℓ(gh−1), see [2].

Definition 3.2. Let p : Γ → N with p(g) the number of geodesic paths from
g to the identity element e, on the Cayley graph G.

Definition 3.3. Let ps : Γ → N with ps(g) the number of geodesic paths from
g to e, starting by s ∈ S. Then

∑
s∈S ps = p.

Remark 3.4. If ps(g) 6= 0 then ps(g) = p(gs).
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Definition 3.5. Let ℓ2(Γ) be the canonical Hilbert space of base (eg)g∈Γ and
let ∂s (s ∈ S) be the unbounded operator definited by:

∂s.eg =
ps(g)

p(g)
ℓ(g)eg.

∂s is a diagonal positive operator, so ∂⋆
s = ∂s and ∂s∂s′ = ∂s′∂s.

Example 3.6. Let Γ = Z2, S = {a, a−1, b, b−1}, R = {aba−1b−1}.
Let g = anbm = (n,m) with n,m ∈ N, then ℓ(g) = n + m, p(g) = Cn

n+m,

pa−1(g) = Cn−1
n+m−1 , pb−1(g) = Cm−1

n+m−1, and so
Cn−1

n+m−1

Cn
n+m

(n+m) = n.

Let ∂1 = ∂a−1 and ∂2 = ∂b−1 , then:

∂1e(n,m) = ne(n,m) and ∂2e(n,m) = me(n,m),

as for the canonical derivations !

Example 3.7. Let Γ = F2, S = {a, a−1, b, b−1}, R = ∅. Let g ∈ F2, g 6= e,
then p(g) = 1, let s ∈ S with ps(g) = 1, then ∂s.eg = ℓ(g).eg.

4 Clifford algebra

We quickly recall here the notion of Clifford algebra, for a more detailed
exposition, see the course of A. Wassermann [6].

Definition 4.1. Let Λ(RS) be the exterior algebra equals to ⊕2d
k=0Λ

k(Rd),
with 2d = card(S) and Λ0(Rd) = RΩ. We called Ω the vacuum vector.
Recall that v1 ∧ v2 = −v2 ∧ v1 so that v ∧ v = 0.

Definition 4.2. Let av be the creation operator on Λ(RS) defined by:

av(v1 ∧ ... ∧ vr) = v ∧ v1 ∧ ... ∧ vr and av(Ω) = v

Reminder 4.3. The dual a⋆v is called the annihilation operator, then:

a⋆v(v1 ∧ ...∧ vr) =
∑r

i=0(−1)i+1(v, vi)v1∧ ...vi−1 ∧ vi+1 ∧ ...∧ vr and a⋆v(Ω) = 0

Reminder 4.4. Let cv = av + a⋆v, then cv = c⋆v and cvcw + cwcv = 2(v, w)I.

Definition 4.5. The operators cv generate the Clifford algebra Cliff(RS).
Note that the operators cv are bounded and that Cliff(RS).Ω = Λ(RS).

Remark 4.6. RS admits the orthonormal basis (vs)s∈S.
We will write cs instead of cvs, so that [cs, cs′]+ = 2δs,s′I.
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5 Class C and Dirac operator

Definition 5.1. Let H be the Hibert space Λ(RS)⊗ℓ2(Γ), we define a self-
adjoint operator D on a dense domain of H by:

D =
∑

s∈S

cs ⊗ ∂s.

Lemma 5.2. D2 = I ⊗ (
∑

s∈S ∂
2
s ).

Proof. D2 =
∑

s,s′∈S cscs′⊗∂s∂s′ =
1
2

∑
(cscs′+cs′cs)⊗∂s∂s′ = I⊗(

∑
∂2
s )

Lemma 5.3. (D2 + I)−1 is compact.

Proof. First of all dim(Λ(RS)) = 22d < ∞.

Next
∑

s∈S
ps(g)
p(g)

= 1, then it exists so ∈ S such that pso (g)
p(g)

≥ 1
2d
.

Now
∑

s∈S[ℓ(g)
ps(g)
p(g)

]2 ≥ [ℓ(g)pso(g)
p(g)

]2 ≥ [ ℓ(g)
2d

]2.

Definition 5.4. Let C be the class of finitely generated group Γ such that
it exists a finite generating set S ⊂ Γ (with S = S−1 and e 6∈ S) such that
∀s ∈ S and ∀g, h ∈ Γ (with h 6= e):

|
ps(gh)

p(gh)
−

ps(h)

p(h)
| ≤

Kg

ℓ(h)

with Kg ∈ R+ depending only on g.

Examples 5.5. The class C is stable by direct or free product, it contains
Zn, Fn, the finite groups, and probably every amenable or hyperbolic groups.

Warning 5.6. From now, the group Γ is in the class C.

Definition 5.7. Let A = C⋆
rΓ, acting on H by I ⊗ ug, g ∈ Γ.

Proposition 5.8. {a ∈ A | [D, a] ∈ B(H)} is dense in A.

Proof. [D, ug](Ω⊗ eh) = ... = (
∑

s∈S[ℓ(gh)
ps(gh)
p(gh)

− ℓ(h)ps(h)
p(h)

]vs)⊗ egh.

Now |ℓ(gh)ps(gh)
p(gh)

− ℓ(h)ps(h)
p(h)

| ≤ ℓ(gh)|ps(gh)
p(gh)

− ps(h)
p(h)

|+ |ℓ(gh)− ℓ(h)|ps(h)
p(h)

≤ Kg
ℓ(gh)
ℓ(h)

+ ℓ(g) ≤ Kg(ℓ(g) + 1) + ℓ(g). It’s bounded in h.

Now let v ∈ Λ(RS) then it exists X ∈ Cliff(RS) with v = XΩ. By linearity
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we can restrict to X = cs1 ...csr with si ∈ S and i 6= j implies si 6= sj .
Warning, the following commutant [., X ] is a graded commutant:
[D, ug](v ⊗ eh) = ([[D, ug], X ] + (−1)rX [D, ug])(Ω⊗ eh)
[[D, ug], X ] = [[D,X ], ug]
[D,X ] = [

∑
s∈S cs ⊗ ∂s, X ] =

∑
s∈S[cs, X ]⊗ ∂s

[cs, X ] = 2
∑

(−1)i+1δs,sics1 ...csi−1
csi+1

...csr , si 6= sj if i 6= j, then:
[D,X ] =

∑
Xi ⊗ ∂si with Xi = (−1)i+12cs1 ...csi−1

csi+1
...csr

[[D,X ], ug](Ω⊗ eh) =
∑

[ℓ(gh)
psi(gh)

p(gh)
− ℓ(h)

psi(h)

p(h)
]XiΩ⊗ egh.

Now X and Xi are bounded; the result follows.

Theorem 5.9. (A, H,D) is a spectral triple; the phase of D is generically
non-trivial.

Proof. We use lemma 5.3 and proposition 5.8. The phase is generically non-
trivial, because it’s non-trivial for Γ = Z2 or F2.

6 Homogenization and general case

The class C doesn’t contain every finitely generated group, we have the fol-
lowing counterexample:

Counterexample 6.1. Baumslag-Solitar group B(2, 1), S = {a, a−1, b, b−1},
R = {a2ba−1b−1}, a2

n

= bn−1a2b1−n, ℓ(a2
n

) = 2n with n > 1,

|
pb(a.a

2n)

p(a.a2n)
−

pb(a
2n)

p(a2n)
| = |

2

4
−

2

2
| =

1

2

It should rest to prove that such a failure is independant of the presentation...

Then, to obtain a construction in the general case, we need to operate a
little homogenization. Let Γ = 〈S | R〉 be a finitely generated group.

Definition 6.2. Let Bn
Γ = {g ∈ Γ | ℓ(g) ≤ n} the ball of radius n.

Definition 6.3. Let Sn
Γ = {g ∈ Γ | ℓ(g) = n} the sphere of radius n.

Definition 6.4. Let µ be the probability measure on Γdefined by:

µ(g) = (#(S
ℓ(g)
Γ )2ℓ(g)+1)−1.
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Definition 6.5. Let EΓ,S be the set of smooth functions f : R+ → R with:
(1) f(0) = 0, f ≥ 0, f ′ ≥ 0 and f ′′ ≤ 0.
(2) λf := limx→∞(f ′(x)) ≤ 1.
(3) ∀s ∈ S and ∀g, h ∈ Γ (with h 6= e):

|
∑

γ∈B
f(ℓ(gh))
Γ

ps(γgh)

p(γgh)

µ(γgh)

µ(B
f(ℓ(gh))
Γ .gh)

−
∑

γ∈B
f(ℓ(h))
Γ

ps(γh)

p(γh)

µ(γh)

µ(B
f(ℓ(h))
Γ .h)

| ≤
Kg

ℓ(h)

with Kg ∈ R+ depending only on g.

Remark 6.6. The condition (2) is well-defined because f ′ is decreasing and
minorated by 0, so convergent at infinity.

Remark 6.7. Let f ∈ EΓ,S, if ∃α > 0 with f(α) = 0 then f = 0.

Lemma 6.8. EΓ,S is non empty.

Proof. We will show that f(x) = x+ log2(x+ 1) defines a fonction in EΓ,S.

First of all B
log2(ℓ(g))
Γ ⊂ (B

f(ℓ(g))
Γ .g), then µ(B

f(ℓ(g))
Γ .g) ≥ µ(B

log2(ℓ(g))
Γ ) ≥ 1− 1

ℓ(g)
.

|
∑

γ∈B
f(ℓ(gh))
Γ

ps(γgh)

p(γgh)

µ(γgh)

µ(B
f(ℓ(gh))
Γ .gh)

−
∑

γ∈B
f(ℓ(h))
Γ

ps(γh)

p(γh)

µ(γh)

µ(B
f(ℓ(h))
Γ .h)

| ≤

|(1/µ(B
f(ℓ(gh))
Γ .gh)− 1)

∑

γ∈B
f(ℓ(gh))
Γ

ps(γgh)

p(γgh)
µ(γgh)|+

|(1/µ(B
f(ℓ(h))
Γ .h)− 1)

∑

γ∈B
f(ℓ(h))
Γ

ps(γh)

p(γh)

µ(γh)

µ(B
f(ℓ(h))
Γ .h)

|

+|
∑

γ∈B
f(ℓ(gh))
Γ

ps(γgh)

p(γgh)
µ(γgh)−

∑

γ∈B
f(ℓ(h))
Γ

ps(γh)

p(γh)
µ(γh)| ≤

1/ℓ(gh) + 1/ℓ(h) + |
∑

γ∈Γ\B
f(ℓ(gh))
Γ

ps(γgh)

p(γgh)
µ(γgh)−

∑

γ∈Γ\B
f(ℓ(h))
Γ

ps(γh)

p(γh)
µ(γh)|+

|
∑

γ∈Γ

ps(γgh)

p(γgh)
µ(γgh)−

∑

γ∈Γ

ps(γh)

p(γh)
µ(γh)|
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≤ 2/ℓ(gh) + 2/ℓ(h) ≤ 2/(ℓ(g)ℓ(h) + ℓ(h)) + 2/ℓ(h) =
1/(ℓ(g) + 1)

ℓ(h)

The others conditions for f to be in EΓ,S are evidents.

Remark 6.9. The class C is the class of group Γ for which ∃S with 0 ∈ EΓ,S.

We are led to a classification of finitely generated groups into three types:

Definition 6.10. Let λΓ := minS⊂Γminf∈EΓ,S
λf , with S and λf as previouly.

By definition λΓ ∈ [0, 1] then:

A0: Γ is a type A0 group if λΓ = 0 and ∃f with λf = 0.

Aλ: Γ is a type Aλ group if it is not A0 and 0 ≤ λΓ < 1 .

A1: Γ is a type A1 group if λΓ = 1 .

Definition 6.11. Let A+
0 be the subclass of type Aλ groups with λΓ = 0.

Remark 6.12. Every groups of the class C (as Zn, Fn etc...) are of type A0.

Conjecture 6.13. Every Baumslag-Solitar groups B(n,m) are of type A0.

Problem 6.14. Existence of type A+
0 , Aλ or A1 groups.

Definition 6.15. Let Γ = 〈S | R〉 be a finitely generated group, let f ∈ EΓ,S

be a function with (almost) minimal growth, we define D̃ as D using:

∂̃s.eg = [
∑

γ∈BΓ
f(ℓ(g))

ps(γg)

p(γg)

µ(γg)

µ(B
f(ℓ(g))
Γ .g)

]ℓ(g)eg.

Remark 6.16. For the class C, we can take f = 0 and so D̃ = D.

Theorem 6.17. (A, H, D̃) is a spectral triple; the phase of D̃ is generically
non-trivial.

Proof. The proof runs exactly as for theorem 5.9.

Definition 6.18. Let C⊥ be the class of groups Γ such that ∀S, ∀f ∈ EΓ,S,

the phase of D̃ is always trivial.

Problem 6.19. Existence of groups of class C⊥.
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[5] G. Skandalis Géométrie non commutative d’après Alain Connes: la no-
tion de triplet spectral. Gaz. Math. No. 94 (2002), 4451.

[6] A. Wassermann, Lecture notes on Atiyah-Singer index theorem, Lent
2010 course, http://www.dpmms.cam.ac.uk/∼ajw/AS10.pdf

8


	1 Introduction
	2 Basic definitions
	3 Geometric construction
	4 Clifford algebra
	5 Class C and Dirac operator
	6 Homogenization and general case

