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Spectral triples for finitely generated groups.

Sébastien Palcoux∗

Abstract

Using Cayley graphs and Clifford algebras, we are able to give
spectral triples for a large class of finitely generated groups (perhaps
all), such that the phase of the Dirac operator is generically non-trivial.
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1 Basic definitions

Definition 1.1. A spectral triple (A, H,D) is given by a unital ⋆-algebra A
representated on the Hilbert space H, and an unbounded operator D, called
the Dirac operator, such that:

1. D is self-adjoint.

2. (D2 + I)−1 is compact.

3. {a ∈ A | [D, a] ∈ B(H)} is dense in A.

See the article [2] of G. Skandalis, dedicated to A. Connes and spectral triple.

Definition 1.2. A group Γ is finitely generated if it exists a finite generating
set S ⊂ Γ. We always take S equals to S−1 and the identity element e 6∈ S.
We can also defined a group by generators and relations: Γ = 〈S | R〉.

2 Geometric construction

Definition 2.1. Let ℓ : Γ → N be the word length related to S. Let G be the
Cayley graph with the distance d(g, h) = ℓ(gh−1), see [1].

Definition 2.2. Let p : Γ → N with p(g) the number of geodesic paths from
g to the identity element e, on the Cayley graph G.

Definition 2.3. Let ps : Γ → N with ps(g) the number of geodesic paths from
g to e, starting by s ∈ S. Then

∑
s∈S ps = p.

Remark 2.4. If ps(g) 6= 0 then ps(g) = p(gs).

Definition 2.5. Let ℓ2(Γ) be the canonical Hilbert space of base (eg)g∈Γ and
let ∂s (s ∈ S) be the unbounded operator definited by:

∂s.eg =
ps(g)

p(g)
ℓ(g)eg.

∂s is a diagonal positive operator, so ∂⋆
s = ∂s and ∂s∂s′ = ∂s′∂s.
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Example 2.6. Let Γ = Z
2, S = {a, a−1, b, b−1}, R = {aba−1b−1}.

Let g = anbm = (n,m) with n,m ∈ N, then ℓ(g) = n + m, p(g) = Cn
n+m,

pa−1(g) = Cn−1
n+m−1 , pb−1(g) = Cm−1

n+m−1, and so
Cn−1

n+m−1

Cn

n+m

(n+m) = n.

Let ∂1 = ∂a−1 and ∂2 = ∂b−1 , then:

∂1e(n,m) = ne(n,m) and ∂2e(n,m) = me(n,m),

as for the canonical derivations !

Example 2.7. Let Γ = F2, S = {a, a−1, b, b−1}, R = ∅. Let g ∈ F2, g 6= e,
then p(g) = 1, let s ∈ S with ps(g) = 1, then ∂s.eg = ℓ(g).eg.

3 Clifford algebra

We quickly recall here the notion of Clifford algebra, for a more detailed
exposition, see the course of A. Wassermann [3].

Definition 3.1. Let Λ(RS) be the exterior algebra equals to ⊕2d
k=0Λ

k(Rd),
with 2d = card(S) and Λ0(Rd) = RΩ. We called Ω the vacuum vector.
Recall that v1 ∧ v2 = −v2 ∧ v1 so that v ∧ v = 0.

Definition 3.2. Let av be the creation operator on Λ(RS) defined by:

av(v1 ∧ ... ∧ vr) = v ∧ v1 ∧ ... ∧ vr and av(Ω) = v

Reminder 3.3. The dual a⋆v is called the annihilation operator, then:

a⋆v(v1 ∧ ...∧ vr) =
∑r

i=0(−1)i+1(v, vi)v1∧ ...vi−1 ∧ vi+1 ∧ ...∧ vr and a⋆v(Ω) = 0

Reminder 3.4. Let cv = av + a⋆v, then cv = c⋆v and cvcw + cwcv = 2(v, w)I.

Definition 3.5. The operators cv generate the Clifford algebra Cliff(RS).
Note that the operators cv are bounded and that Cliff(RS).Ω = Λ(RS).

Remark 3.6. RS admits the orthonormal basis (vs)s∈S.
We will write cs instead of cvs, so that [cs, cs′]+ = 2δs,s′I.
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4 Dirac operator and class C

Definition 4.1. Let H be the Hibert space Λ(RS)⊗ℓ2(Γ), we define a self-
adjoint operator D on a dense domain of H by:

D =
∑

s∈S

cs ⊗ ∂s.

Lemma 4.2. D2 = I ⊗ (
∑

s∈S ∂
2
s ).

Proof. D2 =
∑

s,s′∈S cscs′⊗∂s∂s′ =
1
2

∑
(cscs′+cs′cs)⊗∂s∂s′ = I⊗(

∑
∂2
s )

Lemma 4.3. (D2 + I)−1 is compact.

Proof. First of all dim(Λ(RS)) = 22d < ∞.

Next
∑

s∈S

ps(g)
p(g)

= 1, then it exists so ∈ S such that pso (g)
p(g)

≥ 1
2d
.

Now
∑

s∈S[ℓ(g)
ps(g)
p(g)

]2 ≥ [ℓ(g)pso(g)
p(g)

]2 ≥ [ ℓ(g)
2d

]2.

Definition 4.4. Let C be the class of finitely generated group Γ such that
it exists a finite generating set S ⊂ Γ (with S = S−1 and e 6∈ S) such that
∀s ∈ S and ∀g, h ∈ Γ (with h 6= e):

|
ps(gh)

p(gh)
−

ps(h)

p(h)
| ≤

Kg

ℓ(h)

with Kg ∈ R+ depending only on g.

Examples 4.5. The class C is stable by direct or free product, it contains
Z
n, Fn, the finite groups, and probably every amenable or hyperbolic groups.

Question 4.6. Does C contains every finitely generated groups ?

From now, the group Γ is in the class C.

Definition 4.7. Let A = C⋆
rΓ, acting on H by I ⊗ ug, g ∈ Γ.

Proposition 4.8. {a ∈ A | [D, a] ∈ B(H)} is dense in A.

Proof. [D, ug](Ω⊗ eh) = ... = (
∑

s∈S[ℓ(gh)
ps(gh)
p(gh)

− ℓ(h)ps(h)
p(h)

]vs)⊗ egh.

Now |ℓ(gh)ps(gh)
p(gh)

− ℓ(h)ps(h)
p(h)

| ≤ ℓ(gh)|ps(gh)
p(gh)

− ps(h)
p(h)

|+ |ℓ(gh)− ℓ(h)|ps(h)
p(h)

≤ Kg
ℓ(gh)
ℓ(h)

+ ℓ(g) ≤ Kg(ℓ(g) + 1) + ℓ(g). It’s bounded in h.

Theorem 4.9. (A, H,D) is a spectral triple.
The phase of D is generically non-trivial.
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5 The class C̃

Definition 5.1. Let α ≥ 1, let p(g, α) be the number of paths of lenght
≤ αℓ(g), from g to e, and let ps(g, α) be the number of such paths starting
by s ∈ S.

Definition 5.2. Let C̃ be the class of finitely generated group Γ such that it
exists a finite generating set S ⊂ Γ (with S = S−1 and e 6∈ S), ∃α ≥ 1, such
that ∀s ∈ S and ∀g, h ∈ Γ (with h 6= e):

|
ps(gh, α)

p(gh, α)
−

ps(h, α)

p(h, α)
| ≤

Kg

ℓ(h)

with Kg ∈ R+ depending only on g.

Theorem 5.3. Let Γ be a group on the class C̃ for a fixed α ≥ 1,
and let Dα defined as previously using ∂s,α.eg :=

ps(g,α)
p(g,α)

ℓ(g)eg, then (A, H,Dα)
is a spectral triple and the phase of Dα is generically non-trivial.

Remark 5.4. The class C̃ contains the class C, but it’s not clear that it
contains anything else. The same question is asked: does C̃ contains the
amenable groups, the hyperbolic groups or every finitely generated groups ?
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