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Abstract

In this paper, we present a new formalism for nonlinear and non-separable
multi-scale representations. We first show that most of the one-dimensional
nonlinear multi-scale representations described in the literature are based on
prediction operators which are the sum of a linear prediction operator and
a perturbation defined using finite differences. We then extend this point of
view to the multi-dimensional case where the scaling factor is replaced by a
non-diagonal dilation matrixM . The new formalism we propose brings about
similarities between existing nonlinear multi-scale representations and also
enables us to alleviate the classical hypotheses made to prove the convergence
of the multi-scale representations.
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1. Introduction

Multi-scale algorithms such as wavelet-type pyramid transforms for hier-
archical data representation [1] and subdivision methods in computer-aided
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geometric design [11] have completely changed the domain of data and ge-
ometry processing. Linear multi-scale representations of functions is a well
understood subject in terms of approximation performance and limitations
have also been brought about [6]. While in the univariate case the wavelet-
type pyramid transforms provide optimal algorithms, in the multivariate case
almost all algorithms fail in the treatment of nonlinear constraints that are
inherent to the analyzed objects (e.g. singularities/edges in digital images).
For complex objects such as digital images, where nonlinearities arise natu-
rally, one clearly needs to develop data-adaptive algorithms.

Roughly speaking, the development of this emerging nonlinear theory is
based on the design of four kinds of data-dependent multi-scale representa-
tions: the first one are quasi-linear multi-scale representations for piecewise
smooth functions [20], the second one are median-interpolating schemes [23],
the third one are normal multi-resolutions of curves and surfaces [10] and the
fourth one are PPH or power-P representations [5].

The quasi-linear multi-scale representations were early introduced in [14],
motivated by a better treatment of jumps which served as a simplified model
for edges in image analysis. The theoretical analysis of these representations
is available in [7]. The PPH and power-P schemes introduced in [5] to de-
sign multi-scale representations were also motivated by a better treatment
of edges in image compression applications but do not lead to quasi-linear
multi-scale representations. The median-interpolating scheme was motivated
by applications to non-Gaussian noise removal ( see [23]), while the nor-
mal multi-resolution was defined in [10] for optimal geometry compression of
curves and surfaces. These last two multi-scale representations are examples
of geometric nonlinear multi-scale transforms.

In general, the analysis of nonlinear representations naturally extends
existing results for linear representations and is deeply related to the study
of the difference operators associated to the underlying nonlinear prediction
operators. The key point for such an analysis is the study of the joint spectral
radius of these difference operators.

In what follows, we propose a new formalism for nonlinear prediction
operator that enables to embed classical ENO (Essentially Non Oscillatory)
prediction operators [20], the PPH and power-P schemes [4]. In a nutshell,
the main idea is to write the classical nonlinear prediction operators as the
sum of a linear one plus a perturbation term, which is a Lipschitz func-
tion of the differences. The order of the perturbation will be related to the
polynomial reproduction order of the linear prediction operator. We call
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Lipschitz-Linear these nonlinear prediction operators. With this formalism,
the existence of the difference operators follows from the hypothesis made on
the perturbation term.

After having introduced some generalities and notations for our model on
Lipschitz-Linear prediction operators (section 2 and section 4), we show that
ENO prediction operator and PPH scheme fit into this model in (section 5).

Nonlinear multi-scale representations are naturally defined using non-
linear prediction operators. These one-dimensional multi-scale representa-
tions are based on dyadic scales and therefore naturally extend to the multi-
dimensional case by tensor product [20]. However, for applications it may be
of interest to define multi-scale representations that are not based on a dyadic
grid. Several examples exist in image processing where the use of represen-
tations built using non-dyadic grids significantly improves the compression
performance [8],[19] and [18]. For that reason, we study the extension of
the proposed formalism for nonlinear prediction operators to the case where
the scales are defined using non-diagonal dilation matrices (section 6). We
see that it is again possible to define Lipschitz-Linear prediction operators
in that context, and we give several examples of such operators, namely the
recently introduced PPH and power-P scheme. Sections 7 and 8 are devoted
to the convergence and stability properties of the nonlinear multi-scale rep-
resentations based on Lipschitz-Linear prediction operators both in Lp and
Besov spaces. These results are very similar to that developed in [21], but
some new important aspects for applications are brought about, especially
the exact reproduction of polynomials is no longer necessary. A new aspect is
introduced in section 9, namely the notion of prediction operators compatible
with a set of differences. The results on the convergence and the stability of
the corresponding multi-scale representations are identical to those obtained
for representations based on Lipschitz-Linear prediction operators. For ap-
plications, the interesting aspect of this notion of compatibility is that it
enables to reduce the complexity of the study of the joint spectral radius.
In section 10, we conclude the paper showing the convergence of some non-
linear multi-scale representations associated with Lipschitz-Linear prediction
operators, namely the PPH scheme.

2. Notations

Before we start, we need to introduce some standard multi-index nota-
tions. For example, for α = (α1, · · · , αd) ∈ N

d
0 we write |α| =

∑d
i=1 αi and for
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x ∈ R
d we write xα = xα1

1 · · ·xαd

d , monomial with degree |α|. By (e1, · · · , ed)

we denote the canonical basis on Z
d. There are rdN =

(

N + d− 1
N

)

mono-

mials xα with degree N . We then introduce
∏

N the space of polynomials of
degree N generated by

{xα =

d
∏

i=1

xαi

i , |α| ≤ N}.

In what follows, we will write deg(p) for the degree of any polynomial p. With
that in mind, we denote, for any multi-index α and any sequence (vk)k∈Zd:

∆αvk = ∆α1

e1 · · ·∆
αd
ed
vk

where ∆αd
ed
vk is defined recursively by:

∆αd
ed
vk = ∆αd−1

ed
vk+ed −∆αd−1

ed
vk.

For a given multi-index α, we will say that ∆α is a difference of order |α|.
For any N ∈ N, we will denote

∆Nvk = {∆αvk, |α| = N}. (1)

3. Multi-scale Representations

We assume that we are given the data vj , associated to some grids Γj ,
j ≥ 0. We also consider that there exist two interscale operators: (i) D-the
downsampling operator and (ii) S-the prediction operator. The operator D
gives a coarse version vj−1 of vj . The operator S computes v̂j = Svj−1, an
approximation of vj. Then, we define the prediction error as ej = vj − v̂j .
The information contained in vj is completely equivalent to (vj−1, ej). By
iterating this procedure from the initial data vJ , we obtain its nonlinear

multi-scale representation

MvJ = (v0, e1, · · · , eJ). (2)

Conversely, assume that the sequence (v0, (ej)j≥0) is given, we are interested
in studying the convergence of the following nonlinear iteration:

vj = Svj−1 + ej , (3)
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to a limit function v, which is defined as the limit (when it exists) of:

vj(x) =
∑

k∈Zd

vjkϕj,k(x),

where ϕj,k(x) denotes ϕ(M
jx− k) and ϕ is some specific function satisfying

the scaling equation:

ϕ(x) =
∑

n∈Zd

gnϕ(Mx− n) with
∑

n

gn = m := |detM |, (4)

where M is a dilation matrix, (i.e. an invertible matrix in Z
d ×Z

d satisfying
lim

n→+∞
M−n = 0). When the sequence of functions (vj)j≥0 is convergent to

some limit function in some functional space, by abusing a little bit termi-
nology, we say that the multi-scale representations (v0, (ej)j≥0) is convergent
in that space.

4. Lipschitz-Linear Prediction Operators

In the following a prediction operator is a map v ∈ ℓ∞(Zd) 7→ Sv ∈
ℓ∞(Zd). We need to recall the definition of a local and linear prediction
operator Sl which is as follows:

(Slv)k =
∑

l∈Zd

gk−Mlvl (5)

where ∃K > 0 such that gk−Ml = 0 if ‖k −Ml‖∞ > K and we put F (k) =
{l ∈ Z

d, ‖k−Ml‖ < K}. In the following, we assume that the linear predic-
tion operator Sl is such that (gn)n∈Zd defines a scaling function ϕ satisfying
the scaling equation (4). In this paper, we study a particular type of nonlin-
ear prediction operator which is the sum of a linear prediction operators and
a perturbation term. The linear prediction operator shall satisfy polynomial
reproduction property which we now recall:

Definition 4.1. We say that a prediction operator S reproduces polynomials
of degree N if for uk = p(k) for any p ∈

∏

N , we have

Suk = p(M−1k) + q(k)

where q is a polynomial such that deg(q) < deg(p). When q = 0, we say that
the prediction operator exactly reproduces polynomials.
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With this in mind, we introduce the definition of Lipschitz-Linear predic-
tion operator:

Definition 4.2. A prediction operator S is Lipschitz-Linear of order N+1, if
there exists a local and linear prediction operator Sl reproducing polynomials
of degree N , and Lipschitz functions Φi i = 0, · · · , m− 1 such that:

(Sv)Mk+i = (Slv)Mk+i + Φi(∆
N+1vk+p1, · · · ,∆

N+1vk+pq) ∀i ∈ coset(M)

where {p1, · · · , pq} is a fixed set and where a M is a dilation matrix.

Remark 4.1. From the above definition, we remark that when Sl reproduces
polynomials of degree N so does S.

5. One-Dimensional Lipschitz-Linear Prediction Operators

5.1. Preliminaries

We start by considering the one-dimensional case with M = 2. Given
a set of embedded grids Γj = {2−jk, k ∈ Z} we consider discrete values vjk
defined on each vertex of these grids. These quantities shall represent a
certain function v at level j. Typical examples of such discretizations are:
point-values, where vjk = v(2−jk) for some function v and cell-averages, where
vjk is the average of v over a neighborhood of 2−jk. We call them point-values
(resp. cell-average) multi-scale representation. Assuming a certain type of
multi-scale representation, we define a nonlinear prediction operator that in
turn leads to a nonlinear multi-scale representation.

Let us now recall some properties of Lagrange interpolation useful to
show that some classical nonlinear prediction operators are Lipschitz-Linear.
Consider the interpolation polynomial pN of degree N of v at x0, · · · , xN

and pN,r (where r stands for right) the interpolation polynomial of v at the
same set as pN but shifted to the right (i.e. x1, · · · , xN+1). Using standard
arguments, we write the difference between the two polynomials as:

pN,r(x)− pN (x) = ∆N+1v0
1

N !hN

N
∏

i=1

(x− xi), (6)

where h = xi+1 − xi. The same kind of result can be obtained considering
pN,l, the interpolation polynomial at x−1, · · · , xN−1.
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5.2. Quasi-Linear Prediction Operators Using Polynomial Interpolation

Here, we use identity (6) to analyze nonlinear prediction operators in the
context of point-values multi-scale representations. These operators compute
the approximation v̂jk of vjk = v(2−jk) using only vj−1

k = v(2−j+1k) ∈ Z. In
this framework, since vj2k = vj−1

k (also called consistency property), only v̂j2k+1

need be computed. To do so, we consider the Lagrange polynomial p2N+1 of
degree 2N +1 defined on the 2N+2 closest neighbors of 2−j(2k+1) on Γj−1,
i.e.

p2N+1(2
−j+1(k + n)) = vj−1

k+n = v(2−j+1(k + n)), n = −N, · · · , N + 1.

This polynomial is used to compute v̂j2k+1 through the so-called centered
prediction as follows:

v̂j2k+1 = p2N+1(2
−j(2k + 1)). (7)

When N = 1, we obtain the four points scheme:

v̂j2k+1 =
9

16
(vj−1

k + vj−1
k+1)−

1

16
(vj−1

k−1 + vj−1
k+2)

which is exact for cubic polynomials. The four point scheme was widely
studied in litterature (see [12]). Now, consider the polynomial p2N+1,1 whose
interpolation set is that of p2N+1 shifted by 2−j+1 to the right. This leads,
for instance, when N = 1, to the prediction:

v̂j2k+1,1 := p3,1(2
−j(2k + 1)) =

5

16
vj−1
k +

15

16
vj−1
k+1 −

5

16
vj−1
k+2 +

1

16
vj−1
k+3. (8)

Now, if we compute the difference between the above predictions we obtain:

v̂j2k+1,1 − v̂j2k+1 =
1

16
∆4vj−1

k−1, (9)

which corresponds to (6), with xi = 2−j+1(k + i − 1), i = 0, · · · , 2 and
x = 2−j(2k + 1).

The same conclusion is also valid for the polynomial p2N+1,−1, for N = 1,
whose interpolation set is that of p2N+1 but shifted to the left by 2−j+1. We
now show how to generalize the above formula to any N :
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Proposition 5.1. For any N , assume that v̂jk (resp. v̂jk,1) is obtained using
the polynomial p2N+1 (resp. p2N+1,1), then:

v̂j2k+1,1 − v̂j2k+1 = (−1)N−1∆2N+2vj−1
k−N

1

24N

(

2N − 1
N

)

Proof. Let us put y0 = vj−1
k−N , · · · , y2N+1 = vj−1

k+N+1, and x0 = 2−j+1(k −
N), · · · , x2N+1 = 2−j+1(k + N + 1). Then, using (6) the difference between
p2N+1 and p2N+1,1 evaluated at 2−j(2k + 1), reads as follows:

v̂j2k+1,1 − v̂j2k+1 = −∆2N+2y0
1

(2N + 1)!22N+1

N+1
∏

i=−N+1

(2i− 1)

= (−1)N−1∆2N+2vj−1
k−N

1

24N
(2N − 1)!

N !(N − 1)!

Remark 5.1. Note that we can define other polynomials p2N+1,q for −N ≤
q ≤ N , that are obtained by shifting the centered interpolation set by q2−j+1,
and then predict using one of these polynomials. In any case, the difference
between this prediction and the centered one will be a linear function of the
differences of order 2N + 2, since we can write (assuming q > 0, but still
true for any q) that:

v̂j2k+1,q − v̂j2k+1 =

q−1
∑

l=1

v̂j2k+1,l+1 − v̂j2k+1,l + v̂j2k+1,1 − v̂j2k+1,

and then apply Proposition 5.1.

The different prediction operators defined above satisfy the exact poly-
nomial reproduction of degree 2N + 1. To define a so-called quasi-linear
prediction operator, at each location k we choose between the 2N +1 predic-
tions according to some criterion. The nonlinearity is thus contained in the
choice of the stencil used to predict. An example of such prediction operator
is the essentially non-oscillatory (ENO) prediction operator introduced by
Harten in [15]. Given the prediction operator defined using p2N+1,q and by
considering as its linear part the centered prediction, Proposition 5.1 says
that it is a Lipschitz-linear prediction operator.
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Assume that p2N+1,q̃ is the chosen polynomial by ENO criterion for pre-
diction at 2−j(2k+1) and note that the support of interpolation polynomial
contains 2−j(2k + 1). By using shifted stencils, we improve the precision in
the vicinity of the singularity and avoid Gibbs oscillations. Nevertheless, the
prediction is still unsatisfactory within the interval containing a potential
singularity. This is the origin of the subcell resolution strategy, which im-
proves the prediction within the interval by using extrapolation techniques.
Since the polynomials used in the extrapolation are built using a shifted sten-
cil as previously, it leads again to a Lipschitz-linear prediction operator (cf.
Remark 5.1).

5.3. Quasi-Linear Prediction Operators Using Cell-Average Interpolation

We now show how relation (6) still enables to prove that quasi-linear
prediction operators designed on cell-average multi-scale representations are
Lipschitz-Linear. In the cell-average setting the data vjk is the average of
some function v over the interval Ij,k = [2−jk, 2−j(k + 1)] as follows:

vjk = 2j
∫

Ij,k

v(t)dt (10)

In that framework, we have the so-called consistency property :

vj−1
k =

1

2
(vj2k + vj2k+1). (11)

Now, we design a nonlinear prediction operator on this multi-scale represen-
tation considering the interpolation polynomial p2N of degree 2N defined as
follows:

2j−1

∫

Ij−1,k+n

p2N(t)dt = vj−1
k+n n = −N, · · · , N.

We then define the centered prediction by:

v̂j2k = 2j
∫

Ij,2k

p2N,k(t)dt and v̂j2k+1 = 2j
∫

Ij,2k+1

p2N,k(t)dt.

For instance, when N = 1, this leads to:

v̂j2k = vj−1
k +

1

8
(vj−1

k−1 − vj−1
k+1) and v̂j2k+1 = vj−1

k −
1

8
(vj−1

k−1 − vj−1
k+1).
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Still for N = 1, the prediction operator built using the polynomial p2N,1

that interpolates the average on intervals Ij−1,k, Ij−1,k+1, Ij−1,k+2 leads to the
following predictions:

v̂j2k,1 =
11

8
vj−1
k −

1

2
vj−1
k+1 +

1

8
vj−1
k+2 and v̂j2k+1,1 =

15

8
vj−1
k +

1

2
vj−1
k+1 −

1

8
vj−1
k+2.

Now, if we compute the difference between this shifted prediction and the
centered one, we get:

v̂j2k+1,1 − v̂j2k+1 = −
1

8
∆3vj−1

k−1 and v̂j2k,1 − v̂j2k =
1

8
∆3vj−1

k−1. (12)

Similarly, we can define a prediction using the set of intervals shifted to
the left and obtain the same kind of result. The equality (12) can then be
generalized to any N :

Proposition 5.2. Consider the prediction v̂jk (resp. v̂jk,1) obtained using p2N
(resp. p2N,1), then we may write:

v̂j2k,1 − v̂j2k = (−1)N−1∆2N+1vj−1
k−N

1

24N−1

(

2N − 1
N

)

v̂j2k+1,1 − v̂j2k+1 = −(v̂j2k,1 − v̂j2k)

Proof. To consider the interpolation of the average on Ij−1,k+n, n = −N, · · · , N
using the polynomial p2N is equivalent to consider the primitive P2N of
p2N such that P̄2N = 2j−1P2N interpolates y0 = 0, y1 = vj−1

k−N , y2 = y1 +

vj−1
k−N+1, · · · , y2N+1 = y2N + vj−1

k+N respectively at x0 = 2−j+1(k − N), x1 =
2−j+1(k − N + 1), x2 = 2−j+1(k − N + 2), · · · , x2N+1 = 2−j+1(k + N +
1). Similarly, the interpolation of the average computed on the intervals
Ij−1,k+n, n = −N + 1, · · · , N + 1 using polynomial p2N,1 is equivalent to
consider its primitive P2N,1 such that P̄2N,1 = 2j−1P2N,1 interpolates ỹ1 =
0, ỹ2 = vj−1

k−N+1, ỹ3 = ỹ2 + vj−1
k−N+2, · · · , ỹ2N+2 = ỹ2N+1 + vj−1

k+N+1 respectively
at x1, x2, · · · , x2N+2 = 2−j+1(k + N + 2). Using the Newton form for each
polynomial P̄2N and P̄2N,1 and remarking that the divided differences are
such that: [ỹ1, ỹ2, · · · , ỹk] = [y1, y2, · · · , yk] for all k ≤ 2N + 2, we write:

P̄2N,1(x)− P̄2N (x) = −vj−1
k−N + [y0, · · · , y2N+2](x2N+2 − x0)

2N+1
∏

i=1

(x− xi)

= −vj−1
k−N +∆2N+1vj−1

k−N

1

(2N + 1)!(2−j+1)2N+1

2N+1
∏

i=1

(x− xi).
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In that framework, we also have:

vj−1
k = P̄2N (2

−j+1(k + 1))− P̄2N (2
−j+1k) = P̄2N,1(2

−j+1(k + 1))− P̄2N,1(2
−j+1k).

The centered prediction following (10) is:

v̂j2k = 2
(

P̄2N(2
−j+1(k + 1/2))− P̄2N(2

−j+1k)
)

v̂j2k+1 = 2
(

P̄2N(2
−j+1(k + 1))− P̄2N (2

−j+1(k + 1/2)
)

.

Considering the leading coefficient of the polynomial P2N , one can check
that the corresponding prediction operator reproduces polynomials of degree
2N + 1. The definition of v̂j2k,1 and v̂j2k+1,1 are identical to that of v̂j2k and

v̂j2k+1 replacing P2N by P2N,1. Then, computing the difference between P2N,1

and P2N and applying it at putting x = 2−jk, we get:

v̂j2k,1 − v̂j2k = ∆2N+1vj−1
k−N(−1)N−1 1

24N−1

(

2N − 1
N

)

As in the point-values setting, we can define p2N,q, for any q, by shifting
the computation intervals and then predict using this polynomial. Following
the same argument as previously, it leads to a Lipschitz-Linear prediction
operator.

5.4. PPH scheme as Lipschitz-Linear Prediction Operator
In this section, we show that PPH and power-P schemes are examples of

Lipschitz-Linear prediction operators ([4]). The PPH scheme is defined by:
{

v̂j2k+1 =
vj−1

k+1
+vj−1

k

2
− 1

8
H(∆2vj−1

k−1,∆
2vj−1

k )

v̂j2k = vj−1
k

(13)

where H(x, y) := xy
x+y

(sign(xy) + 1). Since H satisfies |H(x, y)−H(x′, y′)| ≤

2max {|x− x′|, |y − y′|}, it is Lipschitz with respect to (x, y) and since the

linear scheme
vj−1

k+1
+vj−1

k

2
reproduces polynomials of degree 1, the PPH-scheme

is a Lipschitz-Linear prediction operator of order 2. The power-P scheme
[26], is a generalization of the PPH-scheme replacing H by

Hp(x, y) =

{

x+y
2

(

1− |x−y
x+y

|p
)

, xy > 0

0, xy ≤ 0,

where Hp is still Lipschitz (see [26] for details on power-P scheme), and it is
also a Lipschitz-Linear prediction operator of order 2.
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6. Multi-Dimensional Lipschitz-Linear Prediction Operators on Non-
Dyadic Grids

To illustrate the notion of Lipschitz-Linear prediction operators in the
multivariate case, we introduce the concept of nonlinear prediction on non-
dyadic grids. The motivation to consider this type of grids are, for instance,
better image compression results (see [8] and [19]). Having defined the grid
Γj =

{

M−jk, k ∈ Z
d
}

using a dilation matrix M , we consider discrete

quantities vjk defined on each of these grids. They shall represent a certain
approximation of a function v at level j. As in the one-dimensional case, we
will first evoke two kinds of examples: the point-values setting, corresponding
to v(M−jk) and the cell-average setting where vjk corresponds to a local
average of v over a neighborhood of M−jk.

6.1. Quasi-Linear Prediction Operators Using Point-Values Interpolation
In what follows, we consider point-valuesmulti-scale representations based

on scales defined by the quincunx matrix:

M =

(

1 1
1 −1

)

. (14)

To build a nonlinear prediction operator, we first consider the polynomial p2
of degree 2 which interpolates v on Γj−1 on the stencil V 1 = M−j+1{k, k +
e1, k+e2, k+e1+e2, k+2e1, k+2e2}. Note that such a polynomial exists but
this may not be the case with another stencil. Since m = 2, there are two
cosets associated with M (i.e. Z2 = {Mk, k ∈ Z

2}
⋃

{Mk + e1, k ∈ Z
2}) and

since we consider point-values multi-scale representations, we have v̂jMk =
vj−1
k . We predict vjMk+e1

for k ∈ Z
2 using p2:

v̂j,1Mk+e1
=

1

2

(

vj−1
k+e1

+ vj−1
k+e2

)

−
1

8

(

vj−1
k+2e1

+ vj−1
k+2e2

)

+
1

4
vj−1
k+e1+e2

. (15)

Now, if we move the stencil by −e1 or by −e2, we obtain the respective
stencils:

V 2 = M−j+1{k − e1, k, k + e1, k − e1 + e2, k + e2, k − e1 + 2e2}

V 3 = M−j+1{k − e2, k − e2 + e1, k − e2 + 2e1, k, k + e1, k + e2},

and the corresponding predictions:

v̂j,2Mk+e1
=

3

8
vj−1
k+e1

+
3

4
vj−1
k+e2

−
1

8
vj−1
k−e1+2e2

v̂j,3Mk+e1
=

3

8
vj−1
k+e2

+
3

4
vj−1
k+e1

−
1

8
vk+2e1−e2.
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After some simple computations, we obtain:

v̂j,1Mk+e1
− v̂j,2Mk+e1

= −
1

8
∆e1∆

2
e2
vj−1
k +

1

8
∆2

e1
∆e2v

j−1
k+e1−e2

+
1

8
∆2

e1
∆e2vk−e1 −

1

8
∆3

e1
vj−1
k−e1

v̂j,1Mk+e1
− v̂j,3Mk+e1

= −
1

8
∆e2∆

2
e1v

j−1
k +

1

8
∆2

e2∆e1v
j−1
k+e1−e2

+
1

8
∆2

e2∆e1v
j−1
k−e2

−
1

8
∆3

e1v
j−1
k−e2

.(16)

Note that the prediction operators just introduced, exactly reproduce poly-
nomials of degree 2 and that the difference between v̂j,1 and v̂j,2 (resp. v̂j,3)
is a linear function of the differences of order 3. Therefore these prediction
operators are Lipschitz-Linear.

We generalize (16) through the following Proposition:

Property 6.1. Let Sl and S̃l be two local and linear prediction operators
satisfying exact polynomial reproduction of degree N and defined by using g
and g̃ respectively. Then the difference between predictions Sl and S̃l can be
expressed as a linear combination of differences of order N + 1

Proof. If vj−1
l = p(l) for some p ∈

∏

N we have:
∑

l∈Zd

(gk−Ml − g̃k−Ml)v
j−1
l = 0 ∀k ∈ Z

d.

From this, we deduce that (gk−Ml− g̃k−Ml)l∈Zd is orthogonal to
∏

N . Accord-
ing to [17], Theorem 4.3, a potential basis is {∆µδ.−l, |µ| = N + 1, l ∈ Z

d},
so that we may write:

gk−Ml − g̃k−Ml =
∑

|µ|=N+1

∑

l∈Zd

cµl ∆
µδk−l

and then by composition we obtain, for any vj−1:
∑

l∈F (k)

(gk−Ml − g̃k−Ml)v
j−1
l =

∑

l∈F (k)

∑

|µ|=N+1

cµk∆
µvj−1

l .

6.2. Quasi-Linear Prediction Operators Using Cell-Average Interpolation

We now introduce a special version of multi-dimensional cell-average in-
terpolation that leads to a Lipschitz-Linear prediction operator. Indeed, let
us consider the following discretization:

vjk = mj

∫

v(x)ϕ̃(M jx− k)dx,

13



where M is the quincunx matrix and ϕ̃ is the characteristic function of {λe1+
βMe1, 0 ≤ λ ≤ 1, 0 ≤ β ≤ 1}. We define the polynomial p2 of degree 2 such
that:

vj−1
k+n = mj−1

∫

p2(x)ϕ̃(M
j−1x− k − n)dx n = −e1 − e2, 0, e1 + e2 (17)

and then, we choose three other values for n in the set {−e1,−2e1−e2, e2, e1, 2e1+
e2,−e2} to define the polynomial p2 completely (following the same interpo-
lation condition as (17)). The prediction is then computed by:

v̂jk = mj

∫

p2(x)ϕ̃(M
jx− k)dx.

In this particular case, regardless of the last three points chosen to define p2,
we obtain the so-called centered prediction:

v̂jMk = vj−1
k +

1

8

(

vj−1
k−e1−e2

− vj−1
k+e1+e2

)

(18)

and then by consistency:

v̂jMk+e1
= vj−1

k −
1

8

(

vj−1
k−e1−e2

− vj−1
k+e1+e2

)

. (19)

Now, let us consider the following stencils for prediction:

V 1 = {−2e1 − e2,−e1, e2, 0, e1 + e2, q} for any q ∈ {−e2, e1, 2e1 + e2}

V 2 = {−2e1 − e2,−e1, e2,−e1 − e2, 0, q} for any q ∈ {−e2, e1, 2e1 + e2}

V 3 = {q,−e1 − e2, 0,−e2, e1, 2e1 + e2} for any q ∈ {−2e1 − e2,−e1, e2}

V 4 = {q, 0, e1 + e2,−e2, e1, 2e1 + e2} for any q ∈ {−2e1 − e2,−e1, e2}.

This leads to the predictions:

vjMk,1 =
1

8
(vj−1

k−2e1−e2
+ vj−1

k+e2
)−

1

4
(vj−1

k−e1
+ vj−1

k+e1+e2
) +

5

4
vj−1
k

vjMk,2 = −
1

8
(vj−1

k−2e1−e2
+ vj−1

k+e2
) +

1

4
(vj−1

k−e1
+ vj−1

k−e1−e2
) +

3

4
vj−1
k

vjMk,3 = −
1

8
(vj−1

k−e2
+ vj−1

k+2e1+e2
) +

1

4
(vj−1

k+e1
+ vj−1

k−e1−e2
) +

3

4
vj−1
k

vjMk,4 =
1

8
(vj−1

k+2e1+e2
+ vj−1

k−e2
)−

1

4
(vj−1

k+e1+e2
+ vj−1

k+e1
) +

5

4
vj−1
k .

14



Then, if we compute the difference between these predictions and the centered
one, we get:

vjMk − vjMk,1 =
1

8
∆e1∆

2
Me1

vj−1
k−2e1−e2

vjMk − vjMk,2 = −
1

8
∆e1∆

2
Me1

vj−1
k−2e1−e2

vjMk − vjMk,3 =
1

8
∆e1∆

2
Me1

vj−1
k−e1−e2

vjMk − vjMk,4 = −
1

8
∆e1∆

2
Me1

vj−1
k−e1−e2

. (20)

The differences at Mk+ e1 are derived using the consistency property. Note
that these prediction operators reproduce polynomials of degree 2, and con-
sidering the centered one as their linear part we deduce that any of these
prediction operators are Lipschitz-Linear.

6.3. Multi-Dimensional PPH Scheme as Lipschitz-Linear Prediction Opera-
tors

In this section, we consider the bi-dimensional PPH-scheme which is:

v̂jMk+e1
=

{

vj−1

k
+vj−1

k+Me1

2
− 1

8
H(∆2

Me1
vj−1
k ,∆2

Me1
vj−1
k−Me1

)

v̂jMk = vj−1
k .

Note that the linear part of the prediction operator is obtained by consid-
ering an affine interpolation polynomial at vj−1

k , vj−1
k+e1

and vj−1
k+e1+e2

and thus
reproduces polynomials of degree 1. Since the perturbation is a Lipschitz
function of the differences of order 2, this multi-dimensional prediction op-
erator is Lipschitz-Linear of order 2. In [2], another generalization of the
PPH-scheme to the bidimensional case is proposed:

v̂j,1Mk+e1
=

vj−1
k + vj−1

k+Me1

2
−

1

8
H(∆2

Me1
vj−1
k ,∆2

Me1
vj−1
k−Me1

)

v̂j,2Mk+e1
=

vj−1
k+e1

+ vj−1
k+e2

2
−

1

8
H(∆2

Me2
vj−1
k+e2

,∆2
Me2

vj−1
k+e2−Me2

), (21)

and vjMk = vj−1
k . The choice between the first and the second prediction is

a function of the finite differences of order 3 in the direction Me1 or Me2.
Note that

vj−1
k + vj−1

k+Me1

2
=

vj−1
k+e1

+ vj−1
k+e2

2
+

1

2
∆e2∆e1v

j−1
k ,
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which again means that the prediction (2) corresponds to a Lipschitz-Linear
prediction operator assuming its linear part corresponds to prediction (1).

7. Convergence Theorems

In what follows, for two positive quantities A and B depending on a set of
parameters, the relation A <

∼ B implies the existence of a positive constant
C, independent of the parameters, such that A ≤ CB. Also A ∼ B means
A <

∼ B and B <
∼ A.

The convergence theorems are obtained by studying the difference oper-
ators associated to Lipschitz-Linear prediction operators. The existence of
such difference operators is ensured by the following theorem:

Theorem 7.1. Let S be a Lipschitz-Linear prediction operator of order N+1
then there exists a multi-dimensional local operator S(N+1) such that:

∆N+1Sv = S(N+1)∆N+1v

Proof. Since S reproduces polynomials of degree N , the existence of S(N+1)

was already proved in [21]. What is particular here is the form for the
differences of order N + 1:

∆N+1(SvMk+i) = ∆N+1(SlvMk+i) + ∆N+1Φi(∆
N+1vk+p1, · · · ,∆

N+1vk+pq)

= (S
(N+1)
l )i∆

N+1vk +∆N+1Φi(∆
N+1vk+p1, · · · ,∆

N+1vk+pq).

From which, we deduce:

S
(N+1)
i wk = (S

(N+1)
l )iwk +∆N+1Φi(wk+p1, · · · , wk+pq)

Note that the previous theorem shows the existence of the operator for
the differences of order k for all k ≤ N + 1. To study the convergence of
the iteration (3), we introduce the definition of the joint spectral radius for
difference operators:

Definition 7.1. Let us consider a Lipschitz-Linear prediction operator S of
order N + 1. The joint spectral radius in (ℓp(Zd))r

d
k of Sk, for k ≤ N + 1 is
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given by

ρp(S
k) := inf

j≥0
‖(Sk)j‖

1/j

(ℓp(Zd))
rd
k→(ℓp(Zd))

rd
k

= inf{ρ, ‖∆kSjv‖
(ℓp(Zd))

rd
k

<
∼ ρj‖∆kv‖

(ℓp(Zd))
rd
k
, ∀v ∈ ℓp(Zd)}. (22)

In all the theorems that follows vj(x) =
∑

k∈Zd

vjkϕj,k(x), where ϕ satisfies

(4) with g associated to the linear prediction operator Sl (see (5)). We
first need to establish some extensions to the non-separable case of results
obtained in [20]:

Lemma 7.1. Let S be a Lipschitz-linear prediction operator of order N +1.
Then, for any k ≤ N + 1

‖vj+1 − vj‖Lp(Rd) <
∼ m−j/p

(

‖∆kvj‖
(ℓp(Zd))

rd
k
+ ‖ej+1‖ℓp(Zd)

)

. (23)

Moreover, if ρ > ρp(S
(k)),

‖∆kvj‖
(ℓp(Zd))

rd
k

<
∼ ρj

(

‖v0‖ℓp(Zd) +

j
∑

l=1

ρ−l‖el‖ℓp(Zd)

)

. (24)

Proof. Using the definition of functions vj(x) and the scaling equation (4),
we get that vj+1(x)− vj(x) is given by:

=
∑

k

vj+1
k ϕj+1,k(x)−

∑

k

vjkϕj,k(x)

=
∑

i∈ coset (M)

∑

k

((Svj)Mk+i + ej+1
Mk+i)ϕj+1,Mk−i(x)−

∑

k

vjk
∑

l

gl−Mkϕj+1,l(x)

=
∑

i∈ coset (M)

∑

k

((Svj)Mk+i −
∑

l

gM(k−l)+iv
j
l )ϕj+1,Mk−i(x) +

∑

k

ej+1
k ϕj+1,k(x).

Since S is a Lipschitz-Linear prediction operator of order N + 1, we get:

‖
∑

k

((Svj)Mk+i −
∑

l

gM(k−l)+iv
j
l )ϕj+1,Mk−i(x)‖Lp(Rd)

<
∼ m−j/p‖Φi(∆

N+1vj·+p1, · · · ,∆
N+1vj·+pq)‖ℓp(Zd)

<
∼ m−j/p‖Φ̄i(∆

kvj·+p̄1, · · · ,∆
kvj·+p̄q̄)‖ℓp(Zd) <

∼ m−j/p‖∆kvj‖ℓp(Zd).

17



The proof of (23) is thus complete. Note that we have used

‖Φi(∆
N+1vj·+p1, · · · ,∆

N+1vj·+pq)‖ℓp(Zd) = ‖Φ̄i(∆
kvj·+p̄1, · · · ,∆

kvj·+p̄q̄)‖ℓp(Zd),
(25)

where Φ̄i is Lipschitz with respect to its argument. This is due to the fact
that higher order finite differences can be expressed as linear combinations
of lower order differences. To prove (24), we note that:

‖∆kvj‖
(ℓp(Zd))

rd
k

<
∼ ‖S(k)∆kvj−1‖

(ℓp(Zd))
rd
k
+ ‖∆kej‖

(ℓp(Zd))
rd
k

<
∼ ρ‖∆kvj−1‖

(ℓp(Zd))
rd
k
+ ‖∆kej‖

(ℓp(Zd))
rd
k

<
∼ ρj

(

‖v0‖ℓp(Zd) +

j
∑

l=1

ρ−l‖el‖ℓp(Zd)

)

.

Now, using the above lemma, we are able to prove:

Theorem 7.2. Let S be a Lipschitz-Linear prediction operator of order N+1.
Assume that ρp(S

(k)) < m1/p, for some k ≤ N + 1 and that

‖v0‖ℓp(Zd) +
∑

j>0

m−j/p‖ej‖ℓp(Zd) < ∞.

Then, the limit function v belongs to Lp(Rd) and

‖v‖Lp(Rd) ≤ ‖v0‖ℓp(Zd) +
∑

j>0

m−j/p‖ej‖ℓp(Zd) (26)

Proof. From estimates (23) and (24) one has, in particular

‖vj+1 − vj‖Lp(Rd) <
∼ m−j/pρj

(

‖v0‖ℓp(Zd) +

j+1
∑

l=1

ρ−l‖el‖ℓp(Zd)

)

(27)

for ρ > ρp(S
(k)). Considering k such that ρp(S

(k)) < m1/p and then by

18



choosing ρ such that ρp(S
(k)) < ρ < m1/p we get successively:

‖v‖Lp(Rd) ≤ ‖v0‖Lp(Rd) +
∑

j≥0

‖vj+1 − vj‖Lp(Rd)

<
∼ (27)

‖v0‖ℓp(Zd) +
∑

j≥0

m−j/pρj

(

‖v0‖ℓp(Zd) +

j+1
∑

l=1

ρ−l‖el‖ℓp(Zd)

)

<
∼ ‖v0‖ℓp(Zd)

(

∑

j≥0

(m−1/pρ)j + 1

)

+
∑

l>0

‖el‖ℓp(Zd)ρ
−l
∑

j>l

(m−1/pρ)j

<
∼ ‖v0‖ℓp(Zd) +

∑

l>0

‖el‖ℓp(Zd)m
−l/p.

Remark 7.1. Usually the convergence in Lp is associated to the condition
ρ(S(1)) < m1/p. With a Lipschitz - Linear prediction operator of order N+1,
the convergence in Lp(Rd) is ensured provided ρ(S(k)) < m1/p, for some k ≤
N +1. This remark is of interest since there is no link between upper bounds
of ρ(S(k)) and of ρ(S(k+1)).

The above remark, leads to a new inverse theorem in Besov spaces.

Theorem 7.3. Let S be a Lipschitz-Linear prediction operator of order N+1.
Assume that ρp(S

(k)) < m1/p−s/d for some s ≥ N and some k ≤ N + 1, and
also that (v0, e1, e2, . . .) satisfies

‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(ejk)k∈Zd‖ℓp(Zd))j>0‖ℓq(Zd) < ∞.

Then, the limit function v belongs to Bs
p,q(R

d) and

‖v‖Bs
p,q(R

d) <
∼ ‖v0‖ℓp(Zd) + ‖(m(s/d−1/p)j‖(ejk)k∈Zd‖ℓp(Zd))j>0‖ℓq(Zd). (28)

The proof of (28) is similar to that of Theorem 3 [21] replacing ∆N+1 by
∆k, so we will not expand on this here. The novelty of the approach is, on
the one hand, that the property on the spectral radius has to be verified only
for some k ≤ N + 1 but not necessarily for k = N + 1 and, on the other
hand, that the prediction operator does not necessarily reproduce exactly
polynomials (this is directly due to Lemma 7.1).
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8. Stability in Lp and Besov spaces

In applications, the multi-scale data may be corrupted by some process.
Since our model is nonlinear the inverse theorems does not ensure the sta-
bility. We develop here the stability results for our new nonlinear formalism.
To this end, we consider two data sets (v0, e1, e2, · · · ) and (ṽ0, ẽ1, ẽ2, · · · )
corresponding to two reconstruction processes:

vj = Svj−1 + ej and ṽj = Sṽj−1 + ẽj .

In that context, we recall the definition of v as the limit of vj(x) =
∑

k∈Zd

vjkϕj,k(x),

with ϕj,k(x) = ϕ(M jx− k) (and similarly for ṽ).

8.1. Stability in Lp spaces

First, we study the stability of the multi-scale representation in Lp(Rd),
which is stated by the following theorem:

Theorem 8.1. Let S be a Lipschitz-Linear prediction operator of order N+1,
and suppose that ρp(S

(k)) < m1/p for some k ≤ N + 1. Assume that vj and
ṽj converge to v and ṽ in Lp(Rd) respectively and also that:

‖∆k(vj − ṽj)‖
ℓp(Zd)

rd
k

<
∼ ρj

(

‖v0 − ṽ0‖ℓp(Zd) +

j−1
∑

l=0

ρ−l‖el − ẽl‖ℓp(Zd)

)

(29)

holds for some ρp(S
(k)) < ρ < m1/p. Then, we have:

‖v − ṽ‖Lp(Rd) <
∼ ‖v0 − ṽ0‖Lp(Rd) +

j
∑

l=1

ρ−l‖el − ẽl‖ℓp(Zd) (30)

Proof. Note that the difference vj − ṽj is given by:

∑

i∈ coset(M),p∈Zd

(

Sl(v
j−1 − ṽj−1)Mp+i + Φ̄i(∆

kvj−1
p+p̄1, · · · ,∆

kvj−1
p+p̄q̄) + (ejMp+i − ẽjMp+i)

)

ϕj,Mp−i(x),
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where we have used the identity (25). It follows that vj − ṽj is

=
∑

i∈Zd,p∈Zd

gk−Mi(v
j−1
i − ṽj−1

i )ϕj,p(x)

+
∑

i∈ coset(M),p∈Zd

(

Φ̃i(∆
kvj−1

p+p1, · · · ,∆
kvj−1

p+pq) + (ejMp+i − ẽjMp+i)
)

ϕj,Mp−i(x)

=
∑

p∈Zd

(vj−1
p − ṽj−1

p )ϕj−1,p(x)

+
∑

i∈ coset(M),p∈Zd

(

Φ̃i(∆
kvj−1

p+p1, · · · ,∆
kvj−1

p+pq) + (ejMp+i − ẽjMp+i)
)

ϕj,Mp−i(x).

From this we deduce that:

‖vj − ṽj‖Lp(Rd) ≤ ‖vj−1 − ṽj−1‖Lp(Rd) +m−j/p(‖∆k(vj−1 − ṽj−1)‖
(ℓp(Zd))

rd
k
+ ‖ej − ẽj‖ℓp(Zd)),

using the fact that Φ̄i is lipschitz and the inequality

m(−j+1)/p‖vj−1 − ṽj−1‖ℓp(Zd) ≤ ‖vj−1 − ṽj−1‖Lp(Rd).

Then using hypothesis (29), we get:

‖vj − ṽj‖Lp(Rd) ≤ ‖vj−1 − ṽj−1‖Lp(Rd) +m−j/pρj

(

‖v0 − ṽ0‖ℓp(Zd) +

j
∑

l=1

ρ−l‖el − ẽl‖ℓp(Zd)

)

.

Since ρm−1/p < 1:

‖v − ṽ‖Lp(Rd) <
∼ ‖v0 − ṽ0‖ℓp(Zd) +

∑

l>0

ρ−l‖el − ẽl‖ℓp(Zd)

Remark 8.1. Similarly to the convergence theorem, to use a Lipschitz -
Linear operator of order N +1 implies that the stability in Lp(Rd) is ensured
as soon as ρ(S(k)) < m1/p for some k ≤ N +1. Let us stress that we have the
same condition ρ(S(k)) < m1/p for inverse and stability theorems (see Remark
7.1). Furthermore, we still not require the exact polynomial reproduction of
degree N contrary to the results in [21].
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8.2. Stability in Besov spaces

In view of the inverse inequality (28), to show the stability, it seems
natural to seek an inequality of type:

‖v−ṽ‖Bs
p,q(R

d) <
∼ ‖v0−ṽ0‖ℓp(Zd)+‖(m(s/d−1/p)j‖ej. −ẽj. ‖ℓp(Zd))j>0‖ℓq(Zd). (31)

We now state without proof a stability theorem in Besov space Bs
p,q(R

d):

Theorem 8.2. Let us assume that S is a Lipschitz-Linear prediction operator
of order N + 1 such that ρp(S

(k)) < m1/p−s/d for some s > N and some
k ≤ N + 1 and assume that

‖∆k(vj − ṽj)‖
(ℓp(Zd))

rd
k

<
∼ ρj

(

‖v0 − ṽ0‖ℓp(Zd) +

j
∑

l=1

ρ−l‖el − ẽl‖ℓp(Zd)

)

(32)

for some ρp(S
(k)) < ρ < m1/p−s/d. Then, the function v − ṽ belongs to

Bs
p,q(R

d). Moreover, we obtain for that ρ:

‖v− ṽ‖Bs
p,q(R

d) <
∼ ‖v0− ṽ0‖ℓp(Zd)+‖(ρ−j‖(ejk− ẽjk)k∈Zd‖ℓp(Zd))j>0‖ℓq(Zd). (33)

The proof is the same as that of Theorem 3 of [21] except that we do not
require the exact polynomial reproduction.

9. (A, I)-Compatible Nonlinear Prediction Operators

Given families of multi-indices I and of vectors A, we define:

∆AI =
{

∆i1
a1 · · ·∆

ıp
ap , ak ∈ A, ik ∈ I

}

.

In other words, ∆AI is a difference operator computed with respect to the
family of vectors A and orders given by I. Then, we have the definition of
(A, I)-compatible nonlinear prediction operator:

Definition 9.1. A nonlinear prediction operator S is called (A, I)-compatible
if there exists a local linear prediction operator Sl and if it satisfies

(Sv)Mk+i = (Slv)Mk+i + Φi(∆
AIvk+p1, · · · ,∆

AIvk+pq) ∀i ∈ coset(M)

where {p1, · · · , pq} is a fix set, Φi are Lipschitz functions and if there exists
an operator SAI

l satisfying:

∆AISlv = SAI

l ∆AIv.
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From its definition, the operator S admits an operator SAI . We also
remark that Lipschitz - Linear operators of order N+1 are (A, I)-compatible
with I = {i; |i| = N + 1} and A = {e1, . . . , ed}.

Note that we can extend all the notions described in the previous sec-
tions for Lipschitz-Linear prediction operators to (A, I)-compatible predic-
tion operators (i.e. multi-scale representation, joint spectral radius of SAI ,
convergence and stability theorems). For instance, in Theorem 7.3, if the pre-
diction operator is (A, I)-compatible, then the result is true provided that
ρp(S

AI ) < m1/p−s/d.
The interest of using the notion of (A, I)-compatibility is to provide proofs

of convergence where the classical approach fails, as shown in the next section.
The (A, I)-compatibility also enables to significantly reduce the number of
computed differences in the study of joint spectral radius for convergence the-
orems. Note also that the compatibility notion is not related to polynomial
reproduction for prediction operator, which makes it a new tool for analysis.
From practical point of view, given a prediction operator we first identify
its type (i.e. Lipschitz-Linear or (A, I)-compatible) and then proceed to the
analysis of the corresponding multi-scale representation.

10. Applications

10.1. Convergence of One-Dimensional Scheme

In one dimension, the notion of (A, I)-compatibility does not make sense.
Our point is to give an illustration of the new convergence Theorem 7.1
on the multi-scale representation based on PPH Lipschitz-Linear prediction
operator. Since the PPH prediction operator is Lipschitz-Linear of order 2,
the convergence in L∞ occurs when ρ∞(S(k)) < 1 for k = 1 or k = 2. It
is shown in [4] Proposition 2, that the PPH-scheme is uniformly convergent
because ρ∞(S(1)) ≤ 1

2
. However, the proof involves complex computations

whereas the expression of S(2) is particularly simple:

(S(2)w)2i =
1

4
H(wi−1, wi)

(S(2)w)2i+1 =
wi

2
−

1

8
(H(wi−1, wi) +H(wi, wi+1)) .

As in [5], since |H(x, y)| ≤ |max(x, y)|, we immediately get: ρ∞(S(2)) < 3
4
,

which is a much simpler proof for L∞ convergence.
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Based on this simple expression of S(2) we propose a new proof of Lp

convergence. Indeed, we may write assuming that p ≥ 1:

|(S(2)w)2i|
p ≤

1

4p
max(|wi−1|, |wi|)

p

|(S(2)w)2i+1|
p ≤

(

1

2
|wi|+

1

8
max(|wi−1|, |wi|) +

1

8
max(|wi|, |wi+1|

)p

≤

(

1

2
|wi|+

1

4
(
1

2
max(|wi−1|, |wi|+

1

2
max(|wi|, |wi+1|)

)p

≤
1

2
|wi|

p +
1

4

1

2p
max(|wi−1|, |wi|)

p +
1

4

1

2p
max(|wi|, |wi+1|)

p.

The last inequality being obtained because we have a convex combination.
Now, to obtain an upper bound, we note:
∑

i∈Z

1

4p
max(|wi−1|, |wi|)

p+
1

2
|wi|

p+
1

4

1

2p
max(|wi−1|, |wi|)

p+
1

4

1

2p
max(|wi|, |wi+1|)

p.

The larger coefficient in the sum is obtained when |wi| is larger than |wi−1|
and |wi+1|, leading to the coefficient 1

4p
+ 1

2
+ 1

2
1
2p

. The multi-scale is Lp

convergent for p ≥ 1, if p satisfies 1
2
+ 1

2
1
2p

+ 1
4p

< 2, which is true for any
p ≥ 1.

10.2. Convergence of Bidimensional PPH Multi-scale Representations

We study the convergence of bidimensional PPH multi-scale represen-
tations with prediction operator given by (34). We already noticed that
the prediction operator is Lipschitz-Linear, we now notice that it is (A, I)-
compatible with A = {e1,Me1} and I = {(0, 2), (2, 0)}, where M is the
quincunx matrix. Therefore, to prove the convergence we only study the
joint spectral radius of SAI . To this end, we compute the differences of order
2 in the directions {e1,Me1}, which are given by:

∆2
e1
vjMk =

1

4
H(∆2

Me1
vj−1
k ,∆2

Me1
vj−1
k−Me1

)

∆2
e1
vjMk+e1

=
1

2
∆2

Me1
vj−1
k −

1

8

(

H(∆2
Me1

vj−1
k ,∆2

Me1
vj−1
k−Me1

) +H(∆2
Me1

vj−1
k+Me1

,∆2
Me1

vj−1
k )

)

∆2
Me1v

j
Mk = ∆2

e1v
j−1
k

∆2
Me1

vjMk+e1
=

1

2
(∆2

1v
j−1
k +∆2

1v
j−1
k+Me1

) +
1

4
H(∆2

Me1
vj−1
k+e1

,∆2
Me1

vj−1
k+e1−Me1

)

−
1

8

(

H(∆2
Me1v

j−1
k ,∆2

Me1v
j−1
k−Me1

) +H(∆2
Me1v

j−1
k+2e1

,∆2
Me1v

j−1
k+2e1−Me1

)
)

.
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We then compute ρ∞(SAI ). Remarking as previously that |H(x, y)| ≤ max(|x|, |y|)
and also that this upper bound is attained for x = y, we get ρ∞(SAI ) =
√

(1
2
+ 1

4
)(1 + 1

2
) =

√

9
8
> 1. The first term of the product corresponds to

the difference in the direction e1, while the second to the direction Me1. It is
essential to note that the direction e1 at level j becomes the direction Me1 at
level j + 1 which makes, in this case, the computations particularly simple.

Going further, we modify the PPH scheme defined in (34) as follows

v̂jMk+e1
=

{

vj−1

k
+vj−1

k+Me1

2
− ωH(∆2

Me1
vj−1
k ,∆2

Me1
vj−1
k−Me1

)

v̂jMk = vj−1
k ,

(34)

where 0 < ω <
√
2−1
4

. With this choice for ω, the convergence in L∞ of the
multi-scale representation immediately follows. Note that it does not involve
the mixed differences ∆e1∆Me1 .

For the Lp convergence, we study:

a :=
∑

k∈Z2

(∆2
Me1

vjMk+e1
)p + (∆2

Me1
vjMk)

p + (∆2
e1
vjMk)

p +∆2
Me1

vjMk+e1
)p. (35)

As in the one-dimensional study, straightforward computations give the fol-
lowing upper bound for a:

(
1

2
+ 2

1

2p
)
∑

k∈Z2

(∆2
1v

j
k)

p + (6
1

8p
+ 4

1

4p
+

1

2p
+ (

3

4
)p)
∑

k∈Z2

(∆2
Me1v

j
k)

p.

Recalling that m = 2, we get a Lp convergent representation when ρp(S
AI ) <

2
1

p , for which a sufficient condition is:

max(
1

2
+ 2

1

2p
, 6

1

8p
+ 4

1

4p
+

1

2p
+ (

3

4
)p) < 2.

This is always true when p ≥ 1.37. To get the convergence property for any
p, it suffices to make the same reasoning as for L∞ convergence, and replace
the factor 1

8
in the definition of the PPH scheme by an appropiate ω.

11. Conclusion

In this paper, we have introduced a new formalism for nonlinear and non-
separable multi-scale representations. The introduced formalism includes
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classical nonlinear multi-scale representations such as ENO and those based
on PPH or power-P schemes. In our context, the nonlinear prediction op-
erators are perturbations of some linear prediction operator. These pertur-
bations are modeled by Lipschitz functions depending on finite differences
whose order depends on the degree of the polynomials reproduced by the lin-
ear prediction operator plus one. In the paper, we called these particular kind
of prediction operators Lipschitz-Linear. We gave several illustrations in one
and multi-dimensional cases of such prediction operators and also enounced
the convergence and stability theorems associated to these representations.
We put forward new conditions on the joint spectral radii of difference op-
erators for both convergence and stability. We also introduced the notion of
(A, I)-compatible prediction operators which behaves like Lipschitz-Linear
ones in terms of convergence and stability. We saw in applications that
the (A, I)-compatibility of prediction operators sometimes makes the proofs
of convergence easier. In spite the convergence and stability theorems ap-
ply to non-interpolatory prediction operators, future works should involve
the search for convergent examples of non-interpolatory multi-scale repre-
sentations based on either Lipschitz-Linear or (A, I)-compatible prediction
operators.
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[23] Oswald, P., Smoothness of nonlinear median-interpolation subdivision,
Adv. Comput. Math. 20, 401-423, (2004).

[24] T. Sauer and Y. Xu, On Multivariate Lagrange Interpolation, Mathe-
matics of Computation, 64, 211, 1147-1170, (1995).

[25] T. Sauer and Y. Xu, A Case Study in Multivariate Lagrange Interpola-
tion, Preprint 2004.

[26] S. Serna and A. Marquina, Power ENO Methods: a Fifth-order Accurate
Weighted Power ENO method, Journal of Computational Physics, 194,
632-658, (2004).

28


