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Abstract

We present a new formalism for nonlinear and non-separable multiscale repre-
sentations. We show that the most commonly used one-dimensional nonlinear
multiscale representations can be defined using prediction operators which
are the sum of a linear prediction operator and of a perturbation defined using
finite differences. We then extend this point of view to the multi-dimensional
case where the scaling factor is replaced by a non-diagonal dilation matrix
M. The new formalism that we propose allows us to provide simple proofs
of stability and convergence of the multiscale representations.
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1. Introduction

Multiscale algorithms such as wavelet-type pyramid transforms for hier-
archical data representation [[[] and subdivision methods for computer-aided
geometric design [[[1]] have completely changed the domains of data and ge-
ometry processing. Linear multiscale representations or equivalently wavelet
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expansions of functions are now well understood in terms of approximation
performance and limitations are well known [[]. While in the univariate case
the wavelet-type pyramid transforms provide optimal algorithms [[], in the
multivariate case almost all algorithms fail in the treatment of nonlinear con-
straints that are inherent to the analyzed objects (e.g. singularities/edges in
digital images). This is directly reflected by the poor decay O(N~'/2) of the
L? error of the best N-term approximation for a cartoon image, i.e. the char-
acteristic function of bounded domain having smooth boundary. Improving
this rate through a better representation of images near edges has moti-
vated the study of ridgelets [[j], curvelets [f] and bandelets [[7. These are
bases or frames allowing anisotropic refinement close to the edges. Nonlinear
multiscale representations are another possibility [§] to perform anisotropic
refinement and are closely related to linear ones. In contrast to linear ones,
here the detail coefficients are not computed using a linear rule, but a data
dependent rules. These data dependent rules define a nonlinear prediction
operator. Let us mention, in a nutshell, the main difference between ridgelets,
curvelets or bandelets and the nonlinear multiscale representations: to de-
fine these bases/frames a functional point of view is used while to define the
nonlinear multiscale representations a discrete point of view is adopted.

In some sense, these bases/frames representations inherit all the good
functional properties of wavelet basis since they are wavelet basis having
an angular selectivity. On the contrary, the analysis of prediction operators
require to define a new and different mathematical framework. From the
mathematical point of view, the analysis of the nonlinear multiscale repre-
sentations is related to the analysis of subdivision algorithms.

Roughly speaking, the development of the theory of nonlinear predic-
tion operators has enabled to design four kinds of data-dependent multiscale
representations: the first one are quasi-linear multiscale representations for
piecewise smooth functions [IJ], the second one are median-interpolating
schemes 2], the third one are normal multi-resolutions of curves and sur-
faces [I[(] and the fourth one are PPH or power-P representations [H.

The quasi-linear multiscale representations were early introduced in [[4],
motivated by a better treatment of jumps which served as a simplified model
for edges in image analysis. The theoretical analysis of these representations
is available in [§]. The PPH scheme, introduced in [{]] to design multiscale
representations, was also motivated by a better treatment of edges for image
compression. The median-interpolating scheme was motivated by applica-
tions to non-Gaussian noise removal ( see [2]), while the normal multi-
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resolution was defined in [[J for optimal geometry compression of curves
and surfaces. These last two representations are examples of nonlinear and
multiscale geometric transforms.

In general, the analysis of such nonlinear multiscale representations natu-
rally extends the results obtained in the linear case by studying the difference
operators associated to the underlying nonlinear prediction operators. The
key point for such an analysis is the study of the joint spectral radius of these
difference operators.

In what follows, we propose a new formalism for nonlinear prediction op-
erators that enables to embed classical WENO (Weighted Essentially Non
Oscillatory) prediction operators [I9], and the PPH scheme [B]. In a nut-
shell, the main idea is to write the classical nonlinear prediction operators
as the sum of a linear one plus a perturbation term, which is a Lipschitz
function of the differences. The order of the perturbation will be related to
the polynomial reproduction order of the linear prediction operator. We will
call Lipschitz-Linear these nonlinear prediction operators.

After having introduced some notations and the definition of Lipschitz-
Linear prediction operators (section P and section H), we show that the
WENO prediction operator, the PPH scheme and a modified version of the
power-P scheme fit into that framework (section f]). These one-dimensional
prediction operators are based on dyadic scales and naturally extend to the
multi-dimensional case by tensor product [[J]. However, in applications, it
may be of interest to define multiscale representations that are not based
on a dyadic grid. Several examples exist in image processing where the
use of representations built using non-dyadic grids significantly improves the
compression performance [[],[I§ and [[6]. For that reason, we study the
extension of the Lipschitz-Linear formalism for prediction operators to the
multi-dimensional case and where the scales are defined using non-diagonal
dilation matrices (section [§). Sections [] and § are then devoted to the study
of the convergence and stability of nonlinear multiscale representations based
on Lipschitz-Linear prediction operators both in L” and Besov spaces. A new
aspect is then introduced in section [}, through the notion of prediction oper-
ators compatible with a set of differences, which proves to be interesting in
practice. The results on the convergence and the stability of the correspond-
ing multiscale representations are identical to those based on Lipschitz-Linear
prediction operators. In section [LJ, we conclude the paper showing some new
results on the stability and the convergence in LP of some nonlinear multiscale
representations associated with Lipschitz-Linear prediction operators.



2. Notations

Before we start, we need to introduce some standard multi-index no-

tations. For a = (a1, ,aq) € N% we write |a] = Y27 ay, and for

r € R we write z* = z{*---25%, monomial of degree |a|. There are
N+d-1 : : .

rd = +N monomials z¢ with degree N. We then introduce

[ Iy the space of polynomials of degree N generated by

d

{l’a = H.ﬁlj‘lal, |Oé‘ S N}

=1

In what follows, we will write deg(p) the degree of any polynomial p. By
(e1,--- ,eq) we denote the canonical basis on Z?. With that in mind, we
denote, for any multi-index o and any sequence (vy),ezd:

ay = A% ... A%
A%y, = AZL - Afdyy,
where A%y, for any vector a in Z¢ is defined recursively by:
« ag—1 ag—1
Aad’l}k = Aad Vk+a — Aad Vi-

For a given multi-index «a, we will say that A® is a difference of order |«|.
For any N € N, we will denote

ANy, = {A%y, |a| = N}. (1)

3. Multiscale Representations

We assume that the data v’, associated to some grids IV, j > 0 are given.
We also assume the existence of a prediction operator S which computes
09 = Sv/~!, an approximation of v/. Then, we define the prediction error as
el = vJ — 9. The information contained in v7 is completely equivalent to
(v, e7). By iterating this procedure from the initial data v/, we obtain its
nonlinear multiscale representation

MUJ = ('an 617 e aeJ)' (2)

Conversely, assume that the sequence (v°, (€7),50) is given, we are interested
in studying the convergence of the following nonlinear iteration:

v = SviT e (3)
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to a limit function v, which is defined as the limit (when it exists) of:

vj(z) = Z Ui@j,k(l’),

kezd

where @; 1 (x) denotes (M’ z —k) with ¢ some compactly supported function
satisfying the scaling equation:

o(z) = Z gnp(Mx — n) with Zgn =m := |detM]|, (4)

neza n

where M is a dilation matrix, (i.e. an invertible matrix in Z?¢ x Z¢ satisfying

lim M~™ = 0). When the sequence of functions (v;);>o is convergent to
n—+oo =

some limit function in some functional space, by abusing a little bit terminol-
ogy, we say that the multiscale representation (v°, (€7);50) is convergent in
that space. The construction of the multiscale representation is thus based
on the definition of the prediction operator.

4. Lipschitz-Linear Prediction Operators

A prediction operator is a map v € £>°(Z%) — Sv € £>°(Z%). Let us first
recall the definition of a local and linear prediction operator S; which is:

(Sw)y, = Z Gk—M1V1 (5)

A

where the sequence (g,),cze defining S; satisfies 3K > 0 such that gx_p; =
0 if ||k — Ml||c > K. In the following, we assume that the linear prediction
operator S; constructed trough the sequence (g, ),cze defines a scaling func-
tion ¢ satisfying the scaling equation (). In this paper, we study a particular
type of nonlinear prediction operator which is the sum of a linear prediction
operators and a perturbation term.

For our study we first need to recall the polynomial reproduction property.

Definition 4.1. We say that a prediction operator S reproduces polynomials
of degree N if for uy = p(k) for any p € [[5, we have

Sup = p(M~'k) + q(k)

where q is a polynomial such that deg(q) < deg(p). When q =0, we say that
the prediction operator exactly reproduces polynomials.



Note that the linear prediction operator shall satisfy polynomial repro-
duction property. With this in mind, we introduce the definition of Lipschitz-
Linear prediction operator:

Definition 4.2. A prediction operator S is Lipschitz-Linear of order N+1, if
there exists a local and linear prediction operator S; reproducing polynomials
of degree N, and Lipschitz functions ®;, 1 =0,--- ,m — 1 such that:

(SV)pkri = (S0) ki + Dy (AN+1vk+pl,~ . ,AN+1vk+pq), Vi € coset(M)
where {p1,--- ,ps} is a fized set and where a M is a dilation matriz.

Remark 4.1. From the above definition, we remark that when S; reproduces
polynomials of degree N so does S.

We recall that in [[[3], the concept of one-dimensional prediction operators
that are local, r-shift invariant and off-set invariant for polynomials of degree

N is introduced. It consists in prediction operators S defined for any v €
(>(Z%) as follows:

Svrk-l—i = \I/i(vk-f—pla T ,Uk+p2) (6)

where » € N and V; is a Lipschitz function, S being also such that for any
polynomial sequence p of degree N there exists a polynomial g of degree at
most N — 1 satisfying:

(Sw+p))i = (Sv); +pli/r)+q(@) i€ Z. (7)

It is clear that the above notion can easily be extended to the multi-
dimensional case through the concept of local, M-shift and off-set invariant
prediction operators, replacing r by the matrix M. It is then easy to check
that Lipschitz-Linear prediction operators are local, M-shift invariant and
off-set invariant for polynomial of degree N. Indeed, to show the off-set

invariance for polynomial sequences p of degree N, we write for all v €
0°(Z.%):

(SW+p)mrri = (S04 D) arks + Pi(AN gy, A oy,
(S(+p)ueri = (Si(v ))Mk+z‘+¢i(AN+1vk+pu“' A )

+ plk+ M)+ q(k)
(Sw+p)mrri = (S ))Mk+i+p(/f)+Qz(k)-
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Lipschitz-Linear prediction operators make up a sub-class of local, M-
shift and off-set invariant prediction operators. To consider such a restriction
on prediction operators will allow us to write simpler proofs of convergence
and stability for the multiscale representations.

5. One-Dimensional Lipschitz-Linear Prediction Operators

5.1. Preliminaries

We start by considering the one-dimensional case with M = 2. Given a
set of embedded grids IV = {277k, k € Z}, we consider discrete values v;, de-
fined on each vertex of these grids. These quantities shall represent a certain
function v at level j. Typical examples of such discretizations are: (i) point-
value, where v} are points values of some function v, v/ = v(2~7k) and (ii)
cell-average, where vi are the average of some function v over a neighborhood
of 277k. Assuming a certain type of discretization, we define a nonlinear pre-
diction operator that in turn leads to a nonlinear multiscale representation.
We call them point-value (resp. cell-average) multiscale representation.

Let us now recall some useful properties on Lagrange interpolation. Con-
sider the interpolation polynomial py of degree N of v at zg,---,xn and
pn1 the interpolation polynomial of v at xy, - ,2y41. Using standard ar-
guments, we write the difference between the two polynomials as:

N

1

pva(@) = px(x) = Ao T - ), (8)
i=1

where h = z;117 — ;. The same kind of result can be obtained considering

DPN,—1, the interpolation polynomial at x_q, -+, xn_;.

5.2. Quasi-Linear Prediction Operators Using Polynomial Interpolation

Here, we use identity (§) to analyze nonlinear prediction operators in the
context of point-value multiscale representations. These operators compute
the approximation 9] of vj = v(277k) using only v] ' = v(277*k) € Z.
In that framework, since vy = viil (also called consistency property), only
03,1 needs to be computed. To do so, we consider the Lagrange polynomial
pan 41 of degree 2N + 1 defined on the 2N + 2 closest neighbors of 277 (2k +1)
on IV ie.

pon41(27 TN (k +n)) = Ui;l@ =027 (k+n)), n=-N,--- ,N+1.
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This polynomial is used to compute @%k ., through the so-called centered
prediction as follows:

W1 = Pav 1 (277(2k + 1)), (9)
When N = 1, we obtain the four points scheme:

Y 9 i i—1 1, i—1
v%k-{-l = 1_6(% + Ui+ ) — E(Uiq + Ué+2)

which is exact for cubic polynomials. The four point scheme was widely
studied in literature (see [[J]). Now, consider the polynomial pay11 whose
interpolation set is that of poy,; shifted by 277! to the right. This leads,
for instance, when N = 1, to the prediction:

N _; 5 ;1 15,4 5 ;4 1 ;4
U%kﬂ,l =p31(277(2k+ 1)) = 1_6% E%H o 1_6%+2 + 1_6%+3- (10)

Now, if we compute the difference between the above predictions we obtain:
N L oaai
Vogy11 = Vopy1 = 16 Vk—1> (11)
which corresponds to (B), with z; = 277" (k +4i —1), i = 0,---,2 and
T =272k +1).
The same conclusion holds for the polynomial poy 41,1, for N = 1, whose
interpolation set is that of poy,; but shifted to the left by 2791, We can
generalize the above formula to any N through the following proposition:

Proposition 5.1. For any N, assume that @i (resp. @i’lj is obtained using
the polynomial pani1 (resp. pani11), then:

; ; 1 2N —1
R R _ 1
U;k+1,1 - “§k+1 = (—1)N 1A2N+2”i—1\/ AN N
2
Proof. Let us put zg = 277" (k — N), -+, xony1 = 2777 (k + N + 1). Then,

using (B) the difference between poy i1 and pany1 evaluated at 277(2k + 1),
reads as follows:

N+1
~ ~ N -1 .
U;k—f—l,l - U;k—f—l = _A2 +2vi—N (2N + 1)!22N+1 H (2Z - 1)
i=—N+1
1 (2N —1)!

_ (_1\N-1A2N+2_ j-1
= U AT N G Ny = 1)



Remark 5.1. Note that we can define other polynomials pani1,4 for —N <
q < N, that are obtained by shifting the centered interpolation set by 2=+,
and then predict using one of these polynomials. In any case, the difference
between this prediction and the centered one will be a linear function of the
differences of order 2N + 2, since we can write (assuming q > 0, but still
true for any q) that:

q—1
~J ~J _ ~J ~J ~J ~J
Uokt1,g — Vor+1 — E :v2k+1,l+1 — Udpg1y T Vopg11 — Vg
=1

and then apply Proposition [5.1.

5.8. Quasi-Linear Prediction Operators Using Cell-Average Interpolation

We now show how Proposition p.T extends to cell-average multiscale rep-
resentations. In the cell-average setting, the data v} is the average of some
function v over the interval I, = [277k,277(k + 1)] as follows:

vl = 2j/ v(t)dt (12)

Ik

In that framework, we have the so-called consistency property:

1 .
vt = 5(”%/& + Vpy1)- (13)

Now, we design a nonlinear prediction operator on this multiscale represen-
tation considering the interpolation polynomial pon of degree 2N defined as
follows:

2]‘—1/ pon(t)dt =v),) n=-N,--- N.
I.

j—1,k+n

We then define the centered prediction by:
'{}2k = QJ/ pgNJg(t)dt and f)%kJrl = 2j/ p2N7k(t)dt.
I; ok I 941

For instance, when N = 1, this leads to:

. . 1 . ) ) ) 1 . )
Ay _ ,J-1  ~. -1 j-1 ~J _ g1 ~d-1 -1
Uy, =V 8(%—1 V1) and Oy = v 8(%—1 Vip1)-



Still for N = 1, the prediction operator built using the polynomial pan
that interpolates the average on intervals I;_q x, ;1 k41, [j—1,k+2 leads to the
following predictions:

. T - L 15 .., 1 .4 i1

U%k,l = g“i - évi-i-l + gvim and 'U%k-i-l,l = g“i + §Ui+1 - gvim-

Now, if we compute the difference between this shifted prediction and the
centered one, we get:

) . 1 . . . 1 .
~J ~J _ 3,71 ~J ~J 3,71
Uokt1,1 — Vop41 = _gA Uy and Uy | — Uy, = gA Vk—1- (14)

Similarly, we can define a prediction using the set of intervals shifted to
the left and obtain the same kind of result. The equality ([4) can then be
generalized to any N:

Proposition 5.2. Consider the prediction @i (resp. 6271) obtained using pan
(resp. pani), then we may write:

- - . 1 2N —1
. . _ 1
U%m _'U%k = (_1)N 1A2N+1vi—N24N—1 ( N )

~J ~J _ ~J ~J
Vop+1,1 — Vo1 = _(%k,l — Ty,

The proof is available in Appendix A.
As in the point-values setting, we can define pyy 4, for any ¢, by shifting
the computation intervals and then predict using this polynomial.

5.4. WENO-Prediction as Lipschitz-Linear Prediction Operator

Given a type a multiscale representation (i.e. either point-value or cell-
average), the ENO prediction consists in predicting at a given point using
a polynomial poyi1; (in the point value case or pon; in the cell average
case) defined on one of the potential stencils. This kind of prediction op-
erator introduced by Harten in [[F] is known to be numerically unstable.
The instability of the method can be overcome by the use of weighted-ENO
(WENO) interpolation which provides a smooth transition between different
prediction rules . The WENO formulation is based on a convex combina-
tion of the potential prediction operators given by the ENO method, that is

m m
we write: @i = > a?k@i’r with ozf;,k >0and > ozf;,k = 1. The
r=—m,r#0 r=—m,r#0
weights depends on v/~! and on the corresponding rule 7.
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As an illustration, let us consider the point values setting (using cubic
polynomials to interpolate), for which we have:

1
ig (0

To fit into the proposed Lipschitz-Linear model, we consider that oz{ 1S

N ] 4 j—1 4 1)
Vok+1 — Vg1 0‘1 kA Vg 1+O‘ lkA ”k 2

a function a(A%!_), A*]"1) and that aiLk equals to 1 — aik. We then
determine ai . such that a(x,y)(x —y) is a Lipschitz function which implies
that « is bounded on R? (Which is always the case since we consider a convex
combination) and that (z—y)(%2(z,y), a—y(:c y)) is bounded on R%. A typical
example of such function is when a(z,y) = +(1E)3, where [ is some even
integer larger than 2. The motivation for such a weight function is that it
favors the smoothest predlctlon operator that is the one based on the least
oscillating polynomial: if A*v/ ] is small compared to A*v)~} the weight o] k
should be close to 1 and to zero in the opposite case. This model corresponds
to a small change in the traditional WENO method and it preserves its main
properties as we will see in the application section.

5.5. PPH scheme as Lipschitz-Linear Prediction Operator

We first show that PPH is an example of Lipschitz-Linear prediction
operator ([B]). The PPH scheme is defined by:

. J—1 -1 . .
~J Y%t 1 2,01 A2, -1
{ Uok41 = 2 8H(A Vi1, A%y ) (15)
A~ o ]—1
Vo = Uk

where H(z,y) := 2 (Hy) X{zy>0}(Z,¥), where xx is the characteristic func-
tion of X. Since H satisfies |H(z,y) — H(2',y')| < 2max{|z — 2’|, |y —y |}

M
it is Lipschitz with respect to (x,y) and, since the linear scheme VeV

reproduces polynomials of degree 1, the PPH-scheme is a Lipschitz-Linear
prediction operator of order 2. The power-P scheme [2], is a generalization
of the PPH-scheme replacing H by

Hy(x,y) = (‘”;y(l_

The main difference between the PPH and the power-P scheme is that
H,(z,y) is not a Lipschitz function but is only piecewise Lipschitz as re-
marked in [[[J]. This scheme does not therefore correspond to a Lipschitz-
Linear prediction operator. However, a careful look at the model shows that

€r —

v )) e (@) (16)

r+vy
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the power-P scheme is very close to a Lipschitz-Linear prediction operator.
Indeed, consider the following definition for x # y:

A (ry) = (l’;y@_

where p. > 0 is a C*™°(R?) compactly supported function with support em-
bedded in B(0,¢), the ball with center (0,0) and with radius e, and such
that [ p. = 1. Tt is clear that H,(z,y) = H,(z,y) as soon as (z,y) does not
belong to the set

r—=yYy
Tr+y

q)) X (P * Xgaysop) (@ y),  (17)

Vo = {Ja] < e} Jllyl < e} (18)

Note that £ <1 - |i—;z|q> is differentiable for x # y, and that this differen-

tial is bounded (see Lemma 3.6 of [[3] for the computation). Then H,(z,v)
is Lipschitz when = # y. By taking into account the definition set for ﬁq, we
deduce that it is Lipschitz on R?\ {(x, z), |z| < v/2¢}. Finally, since ¢ can be
chosen arbitrarily small the new model is very close to the original power-P
scheme. The two models differ on an arbitrarily small band depending on €.

6. Multi-Dimensional Lipschitz-Linear Prediction Operators on Non-
Dyadic Grids

To illustrate the notion of Lipschitz-Linear prediction operators in the
multivariate case, we introduce the concept of nonlinear prediction on non-
dyadic grids. The motivation to consider this type of grids are, for instance,
better image compression results (see [J] and [[§]). Having defined the grid
IV = {M~k, ke Z using a dilation matrix M, one considers discrete

quantities vi defined on each of these grids. A typical example of this is the
bidimensional PPH-scheme, associated to the quincunx dilation matrix, i.e.:

v (1) (19)

and where the prediction is defined by:
Jj—1 Jj—1
< j Uk T Vkim 1 2 -1 A2 -1
ngkJrel - 9 < — gH(AMelvi 7AMelvi7Mel)

W = vl (20)
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Note that the linear part of the prediction operator is obtained by consid-
. . . . j—1 7—1

ering an affine interpolation polynomial at v}, v ve, and v, o and thus

reproduces polynomials of degree 1. Since the perturbation is a Lipschitz

function of the differences of order 2, this multi-dimensional prediction op-

erator is Lipschitz-Linear of order 2. In [P, another generalization of the

PPH-scheme to the bidimensional case is proposed, namely:

_ j—
v +v 1 . ,
~J,1 _ k k+Mey 2 j—1 A2 j—1
UMkte, = T o gH(AMelvk s Ao, Vi e,
Jj—1 Jj—1

5,2 _ Uity + Uk tes . 1 (A A )
ka+e1 - 2 8 MesV k+62’ M€2vk+62 Me2

Y S B

b= (21)

The choice between the first and the second prediction is a function of the
finite differences of order 3 in the direction Me; or Mey, namely [A3 /. vi_ }\461 |
and ‘AMGQU]{:-FEQ Meg|

Since

Jj—1 Jj— Jj—
1 Vkpme;  Vkder T Vktes 1A N
2 2 g e Sl

- : . - Ul e
both prediction operators are perturbation of the linear prediction m
the perturbation being a function of the second order differences A2 |, A2 and
A¢, A.,. Therefore we can rewrite the model as follows:

v + vl
~7 k+e k+e
,U]Mk+61 = % ((AQ vk+p’ Az vk+p’ A61A62vk+p)p€‘/)
where V' is a fixed neighborhood of (0 0) in Z* and where @, is defined as
follows: if |AMelvk Mey| > |AMer/LC+62 Me,| then

2 2 1 7j—1 1 2 7j—1 2 7j—1
((Ael k:+p’ Aeg k+p’ AelAeQUker)pEV) Ae1 A622}& - gH(AMelvk ) AMelvk—M
otherwise

1

@1((A2, vk;—i—p’ A Uk‘-i—p’ AGIAGQUk‘—i-p)pEV) 8H<A?\462v£1227 A?Wegvilig—Meg)'(Q?))

We prove that the model defined in (BY) is not Lipschitz-Linear since @,
is discontinuous and therefore cannot be Lipschitz. Indeed, consider v/}

13
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2 J=1 _ A2 Jj—1 — A2 J—
such that A3, v = A Vi are, = Alse,Viy

sume that AGIASQUfl is non-zero. In such a case, the prediction (B3) is
used. Now, consider an e-perturbation of v/~! such that the prediction (P2)
is used. Since H is a Lipschitz function, thus continuous, and by considering
the just defined e-perturbation, the function ®; jumps by %Ael A@vi_l. For
that reason, the function ®; is discontinuous and also not Lipschitz. The
proposed method, called quincunx-PPH, was profitably used in image pro-
cessing in [f], and the stability was studied through a so-called error-control
strategy. This strategy consists in considering that the perturbation of the
multiscale representation only arises from quantization error at the encoding
of the representation. Controlling the level of quantization makes the repre-
sentation stable. However, perturbation in the multiscale representation may
come from noise that have nothing to do with quantization therefore more
general notion of stability is used for instance in [[3] and [§]. This is the
latter point of view that we will adopt in our study of stability of multiscale
representations based on Lipschitz-Linear prediction operators.

1

A2 j—1
o = AM62vk+62_Me2, and as-

7. Convergence Theorems

In what follows, for two positive quantities A and B depending on a set of
parameters, the relation A < B implies the existence of a positive constant
C, independent of the parameters, such that A < CB. Also A ~ B means
A < Band B < A

The convergence theorems are obtained by studying the difference oper-
ators associated to Lipschitz-Linear prediction operators. The existence of
such difference operators is ensured by the following theorem:

Theorem 7.1. Let S be a Lipschitz-Linear prediction operator of order N +1
then there exists a multi-dimensional local operator SNV such that:

AN+1S'U — S(N+1)AN+1U

Proof. Since S reproduces polynomials of degree N, the existence of S(V+1)
was already proved in [P0]. What is particular here is the form for the
differences of order N + 1:

AN (Soagrs) = AN (Sponrrys) + ANTIO (A oy AV )

= (SJ(NH))iANHUk + ANH(I)i(ANHUkeru T 7AN+1vk+pq)'
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From which, we deduce:

Si(NH)wk = (SZ(NH))zwk + AN, (Wi Whip,)

O

Note that the previous theorem shows the existence of the operator for
the differences of order k for all £ < N + 1. To study the convergence of the
iteration v/ = Sv/~! + ¢/, we introduce the definition of the joint spectral
radius for difference operators:

Definition 7.1. Let us consider a Lipschitz-Linear prediction operator S of
order N+1. The joint spectral radius in ((?(Z4))™ of S (where rf = #{a €
72, la| = k} and where #X stands for the cardinal of X ), for k < N + 1 s
given by

pp(8W) = inf SV |19 (24)

(r ()R (0 ()"

- 1,gg{p,ay ARSI o < PN e € P(Z),
J

(ep(Z4))

In all the theorems that follows v;(z) = 3 vl;r(x), where ¢ satisfies
kezd
(@) with ¢ associated to the linear prediction operator S; (for more details

see (B)). We first need to establish some extensions to the non-separable case
of results obtained in [I9]:

Lemma 7.1. Let S be a Lipschitz-linear prediction operator of order N + 1.
Then, for any k < N 4+ 1

losi = villomey S M7 (I8 4y o+ 1€ ) (25)

e (@)™
Moreover, if p,(S®)) < m'/P then for any p such that p,(S®) < p < m!/P,
there exists an n such that:

s—1 l=j—rn

(2 (Z4))"k rd 5 5j|’UOHZP(Zd) + Z o Z mil/p”engp(Zal)<26)

r=0 I=j—(r+1)n+1

I

where § = pm™? and s = |j/n].
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Proof. Using the definition of functions v;(z) and the scaling equation (fl),
we get that v,41(z) — v;(z) is given by:

= Z%H%’H,k(ﬂf) - Z%%’,k(ﬂf)
- Z Z SO ) tits + i) i1, Mk kazgz MEPj+1,(T)

i€ coset (M) k

= Z Z Sv] ) Mkti — Zng l—Hvl Pi+1, Miri(T )+Z€2 <Pj+1,k(37)
k

i€ coset (M) k

Since S is a Lipschitz-Linear prediction operator of order N + 1, we get:

DI D DU L I
k
N _]/pH(I) (AN+1U +p17 AN+1U “+pg )HKP(Zd)
<m0, (AR TR ,AF U-+ﬁq>Hé’P<Zd)
< m J/p||Aka|| d
~ (P (z4))"®

The proof of (BF) is thus complete. Note that we have used

[0 (AN, e ANl = B (A - AR,
e7)
where ®; is a Lipschitz function.Indeed, higher order finite differences can be
expressed as linear combinations of lower order finite differences. To prove
(BE), we note that for any p,(S®) < p < m!/P, there exists an n such that
for all v:
1(s™)"o]

< p*|lvll (28)

B

(e (z))" (er(z))

Using the boundedness of the operator S*), we obtain:

k .n k, n—1 k: n
AR S ISOAST AR
< (SO AR, g D Z €z
<

A o+ DZ ez

16



Then for any j, define s := |j/n], after s iterations of the above inequality,
we get:

s—1 (r+1)n—1
S [ IR el DI ER e

Then putting as in [[3], § = pm =7, and A; = m*j/p||Akvj||(£p(Zd))rg, we get:

s—1 I=(r+1)n—1

Aj S 5nsAj—ns + DZénT‘ Z m j l /pHe] l||£p Zd

r=0 l=nr

Then, we may write, due the boundedness of S®) for j’ < n:

-/

Ay S HUOHZP(ZUZ) + Zmil/pHel”fp(Zd)
1=0

which finally leads to:

s—1 l=j—nr

m AR 2 S O leen + Y6 D> mT e e

(£p(Z))"*
r=0 l=j—n(r+1)+1
O
Now, using the above lemma, we are able to prove:

Theorem 7.2. Let S be a Lipschitz-Linear prediction operator of order N+1.
Assume that p,(S®) < m'/? for some k < N + 1 and that

[0° | go 2y + Z m /P ||e?| p(zay < 0.

>0
Then, the limit function v belongs to LP(R?) and

0]l oray < N|00]|er(zay + Zm_j/pH@szp(zd) (29)

3>0

17



Proof. From estimates (PJ) and (P@) one has, in particular

l=j—nr

[vj41 — Vil oy < (|00l enzay + Z5m Z m =Pl wzay (30)
r=0 lI=j—n(r+1)+1

Considering that p,(S®) < m!? and then p,(S®) < p < m!/P, and then
using (B0), we get:

0] Loay < ||vol|Lomay + Z [vj41 = vjll Lo ey

j=0
s l=j—nr
N ”UOHZP(Zd) + Z o’ HUOHZP(Z"Z) + Z o Z mfl/pHelep(zd)
Jj=0 r=0 I=j—n(r+1)+1
o n—1 s I=r'n+q
Sz + 3D D 8T TPy
s=0 ¢q=0 r'=0 I=r'n—n+q+1

n—1 I=r'n+q

Sz + DD 0TI S T ey

r’'=0 s>r' q=0 I=r'n—n+q+1

< N le@s + mel/p”elHép(zd)
.

n(s—r’) _ 1
orem) = L= O

Remark 7.1. Usually the convergence in LP is associated to the condition
,op(S(l)) < m!?. With a Lipschitz - Linear prediction operator of order
N + 1, the convergence in LP(R?) is ensured provided p,(S™) < m!'/P for
some k < N+1. This remark is of interest since there is no relation between
pp(S®) and p,(S*V).

The above remark, leads to a new inverse theorem in Besov spaces.

The last equality being obtained remarking that >

s>r!

Theorem 7.3. Let S be a Lipschitz-Linear prediction operator of order N+1.
Assume that p,(S®)) < m¥/P=5/? for some s > N and some k < N + 1, and
also that (v°,e',€?,...) satisfies

||UO||£P(Zd) + ||(m(s/d_1/p)j||(ei)kezd||zp(zd))j>0||zq(zd) < Q.

Then, the limit function v belongs to B (R%) and

[vllBs ) < 10°] 0 20y + ||(m(s/d71/p)j||(efg)kezd||zp(zd))j>0||zq(zd)- (31)
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The proof of (B])) is similar to that of Theorem 5.3 of [B{], so we will
not expand on this here. The novelty of the approach is, on the one hand,
that the property on the spectral radius has to be verified only for some
k < N + 1 but not necessarily for K = N + 1 and, on the other hand, that
the prediction operator does not necessarily reproduce exactly polynomials

(because of Lemma [.1]).

8. Stability in L? and Besov spaces

In applications, the multiscale data may be corrupted by some process.
Since our model is nonlinear the inverse theorems does not ensure the sta-
bility. We develop here the stability results for our new nonlinear formalism.
To this end, we consider two data sets (v° el e ---) and (2% é',¢2 --+)
corresponding to two reconstruction processes:

v =S 4 el and o = S0 4 &

In that context, we recall the definition of v as the limit of v;(x) = 3 vl@;r(z),
kezd
with ¢;x(z) = o(M?z — k) (and similarly for 0).

8.1. Stability in LP spaces

First, we study the stability of the multiscale representation in LP(R?),
which is stated by the following theorem:

Theorem 8.1. Let S be a Lipschitz-Linear prediction operator of order N+1,
and suppose that there exist an n € N and a p < m'/P such that:

(5@ — (S® e ¢ <o = wll e 0w € (CZ)E,

(eP(Z4)"* tr(24))"k

for some k < N + 1. Assume also that v; and v; converge to v and v in
LP(R?) respectively. Then, we have:

J
[v =0l @) < (e z~JOHLP(Rd) + mel/pﬂel - él”zp(zd) (32)
=1
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Proof. We note that for all v and using the boundedness of the operator S*)
we obtain:

|A* (" — 5" (@) ¢ 1A% = M oyt

(k) Ak, n—1 __ k~n—1
Mooyt < ISEOADT = 50 A51)

k)\n Ak, 0 k)\n Ak, .0 I sl
< SWPARS — (SRR L+ DY e = s
TN k~0 I sl
< p'[|A%T — AT ||(zp(Zd +Dlz:||€ — &1 ¢rz9)
—1

Then for any j, define s := [j/n|, after s iterations of the above inequality,
we get:

s—1 (r+1)n—1
||Ak(vﬂ — f)J)H(zp(Z(i))rg < pnsHAk(vﬂ—ns _ vj_ns)”(gp(zd))rg + sznr Z ||ej—l _ éj—ngp(ch)
r=0 l=rn

Then by using the same reasoning as in the proof of (), we get:

mI/P|| AR (v — @J)H(Mzd))rg < )00 = 8z

s l=j—rn
+ Z(snr Z m*l/p”el _ él”zp(zd)
r=0 I=j—(r+1)n+1
(33)
Now, note that:

v =0llzr@aey < [lvo = Tolloay + X2 llvj — 05 — vj—1 + Vj-1| Lo (ay

- 5>0 - .
< [lvo = Tollzoray + 22 [V = ST + €@ — & — Sj—1 + Sij-1 | o)

i>0
< 0° = Oy + ) |
Z ”(I) (Akv +p1o Akv +Pg ) qu(Akﬁ]—i—plv T Ak@-]-;;q) +el —¢€ HL"(Rd)
j>0,i€ coset(M)
< 00 = gy + X M (ww—l — 51|
>0 N
< [0 = Dl pgzay + 3o mTIP||ed — €| o (zay,
>0

oyt 167 =&l

the last inequality being obtained using (BJ) and then making the same
computation as in Theorem [.2]. O
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With our formalism, the convergence and the stability of the nonlinear
multiscale decomposition is based on the study of S® for some k. On the
contrary, in [[J], the study is carried out in L>° and the stability and the con-
vergence are proved through the study of two different spectral radii. More
precisely, the convergence of the multiscale representation is based on the
study of the joint spectral radius of S®) while the stability is based on the
study of the joint spectral radius of the differential of S® (noted DS®).
Such a differential may sometimes be hard to compute. The formalism we
propose enables simpler proofs for the stability. However, we are aware that
the more complex mathematical framework developed in [[3] aims at dealing
with a wider class of prediction operators (for instance, the median interpo-
lating scheme studied in is not Lipschitz-Linear).

8.2. Stability in Besov spaces

In view of the inverse inequality (BI]), to show the stability, it seems
natural to seek an inequality of type:

HU_{JHB;’Q(RUZ) S HUO—@OHMZd)ﬂLH(m(s/dfl/p)jﬂe.j— 7”@(2%)»0”@(%)- (34)
We now state without a proof a stability theorem in Besov space B (R?):

Theorem 8.2. Let us assume that S is a Lipschitz-Linear prediction operator
of order N + 1 such that there exist an n in N and a p < m?=5/* for some
s > N such that:

n n (0 Td
for some k < N + 1. Also assume that v; and v; converge to v and v in
Bs (R?) respectively. Then, we have:

HU_T}’B;,Q(Rd) N HUO—fJOHzP(Zd)"‘H(mj(s/dfl/p)”(ei_éi)kezd”ep(zd))bonq(zd)-

(35)
The proof is the same as that of Theorem 6.2 of [P{], except that we do
not require the exact polynomial reproduction property.
9. (A, I)-Compatible Nonlinear Prediction Operators

Given families of multi-indices I and of vectors A, we define:
AN — {Af;l---A‘P an € A, iy, € 1}.

ap’
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In other words, A is a difference operator computed with respect to the
family of vectors A and orders given by I. Then, we have the definition of
(A, I)-compatible nonlinear prediction operator:

Definition 9.1. A nonlinear prediction operator S is called (A, I)-compatible
if there exists a local linear prediction operator S; and if it satisfies

(SU)MkJrZ' = (Slv)Mk+fL' + (I)Z'(AAIUkerl, ce, AA’vk+pq) Vi € COS(Et(M)

where {p1,- -+ ,pq} 1s a fived set, ®; are Lipschitz functions and if there exists
an operator SlA’ satisfying:

AN Sy = SAAMY,

From the definition of S, there exists an operator S*7. We also remark
that Lipschitz - Linear operators of order N + 1 are (A, I')-compatible with
I'={i;]i|=N+1} and A= {ey,...,eq}.

Note that we can extend all the notions described in the previous sec-
tions for Lipschitz-Linear prediction operators to (A, I')-compatible predic-
tion operators (i.e. multiscale representation, joint spectral radius of S,
convergence and stability theorems). For instance, in Theorem [[.3, if the pre-
diction operator is (A, I)-compatible, then the result is true provided that
pp(SAT) < mH/p=eld,

The interest of using the notion of (A, I)-compatibility is to provide proofs
of convergence where the classical approach fails, as shown in the next sec-
tion. The (A, I)-compatibility also enables to significantly reduce the num-
ber of computed differences to compute the joint spectral radius. Note also
that the compatibility notion is not linked to polynomial reproduction for
prediction operators, which makes it a new tool for analysis. From a practi-
cal point of view, given a prediction operator we first identify its type (i.e.
Lipschitz-Linear or (A, I)-compatible) and then proceed to the analysis of
the corresponding multiscale representation.

10. Applications

10.1. Convergence and Stability of One-Dimensional Multiscale Representa-
tion: the PPH scheme

In one dimension, the notion of (A, I')-compatibility does not make sense.
Our point is to give an illustration of the new convergence and stability
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theorems ([/-] and B.]] respectively). The novelty of the proposed approach is
two-fold. First, it enables to characterize the stability in LP not only in L> as
in [[3] (Theorem 2.3) or in [f] (Proposition 1, for the PPH scheme). Second,
the convergence and the stability of the multiscale representation is based
on the study of S®*) for some k& < N + 1), while in [[3] the convergence in
L™ is related to the study of po,(S™®) for some k and the stability is related
t0 poo(DS™) where D stands for the Fréchet differential. This latter joint
spectral radius is harder to study than p..(S®)) and requires that S*) is
indeed differentiable. However, we must confess that the class of prediction
operators studied in [[J] is wider therefore the proofs for the stability are
different.

Now, let us give an illustration of how Theorems [7]] and B.J] apply to the
PPH Lipschitz-Linear prediction operator (we will then see how the proof of
convergence extends to the slightly modified power-P scheme introduced in
(I7)). Since the PPH prediction operator is Lipschitz-Linear of order 2, the
convergence in LP occurs when p,(S®)) < 2V/7 for k =1 or k = 2.

Here, we study the convergence of the PPH scheme by finding an upper
bound for p,(S®), whose expression is particularly simple since:

1
(S(z)w)zz‘ = ZH(wiA,wi)
(SPw)pipr = 2 "3 (H (wi—1, w;) + H(w;, wiy1)) - (36)

Remarking that |H(z,y)| < |max(z,y)|, we immediately get: poo(S®) < 2,
which leads the convergence of the multiscale representation in L> according
to the Theorem [7.]. Now as far as the stability is concerned, is was proved
in [f], Proposition 1 that:

3
(52w = (S Vol < Jllo = wlo Vo,w € 12(22),
which proves the stability of the scheme in L*> using the Theorem 8.1 (a
different proof of that result is given by the Theorem 1 of [H]).

Based on the simple expression of S, we propose a new proof for the
convergence of the PPH-scheme in LP. Indeed, we may write assuming that
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[(SPw)ylP < max(|w;-1|, [wil)”

1 1 P
[(SPwhaial” < { Slusl + g max(fwial, fwil) + g max(fwil, Iwi+1|))

1.1 1 P
[wil + 7 (5 max(fwii], [wi) + 5 max(jwil, \wml)))

IN
= N T N

1
Jwil)” 4 5 o5 max(fwil, [wiga[)”.

420
(37)

IN
Al
g
=
_I_
!
|
=]
]
=
g
|

The last inequality being obtained because we have a convex combination.
Now, to obtain an upper bound for p,(S®), we note:

1 1
||S(2)w||§p(zd) S Z@maxﬂwz—lh|wl|)p+§|wz|p+
iE€EZ
11 » »
19 max(|w;_1|, |w;|) +Z§max(|wi|a|wz‘+1|) .

The largest coefficient in front of |w;|? in the above sum is obtained when
|w;| is larger than |w;_1| and |w;y1]|. In such a case, one can easily check
that the coefficient in front of |w;|? is then 2 + 1 + &, which means that

1S || o (zay—er(zay < (3 + 55 + 4%)% This in turn implies that the multiscale
1

representation is convergent in LP provided that 5 + 2%, + 4% < 2, which is

true for any p > 1.

As far as the stability of the scheme in LP is concerned we may write

(assuming p > 1),
(5P w)as — (SPv)yi?

|(S(2)w)2i+1 - (S(z)v)2i+1|p

o max(|w; 1 — vi_1l, |w; — )

1 1
é‘wi —u|? + 5 max(|w;—1 — Vi—1|, |Wiy1 — vig1])?,

the last inequality being a consequence of Lemma 2 of []. Now, as in the
study of the convergence, we write:

1 1
||5(2)w - S(Z)UHZ(W) < Z » max (|w;—1 — v, |w; — vi] )P + §|wi —ulP +
€L
1 P
) maX(‘wz‘q - Ui71|7 |wi+1 - Ui+1‘)
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The largest coefficient in front of |w; —v;|P in the above sum is obtained when
|w; — v;| is larger than |w;y, — viy,| 7 = —2,—1,2. In such a case, one can
check that the coefficient in front of |w; — v;|P in the right term of the above
inequality is % + 2%7, so that we may deduce:
3 1
15®w = SPv||gzay < (5 + ﬁ)l/pﬂw — 0|er(za)

which proves that the scheme is stable whenever p > 1 (i.e.% + 2%, < 2, since
m = 2 in that case), using Theorem 8.1.

The above proof does not extend to the power-P scheme which is proved
to be unstable for ¢ > 4. However, if one replaces H, by ﬁq defined in ([[7)
and assumes that (w;, w;1) belongs to R?\ V. (see ([)), then H, is Lipschitz
on that set. Now, remarking that |H,(z,y)| < max(|z|,|y|) and making the
same reasoning as for the PPH-scheme, we obtain that the modified power-P
scheme leads to a convergent multiscale representation in LP for any p > 1.

10.2. Convergence of One-dimensional Multiscale Representations: the WENO
Case

We consider here the model defined in section p.4. In this case, one can
show the following Lemma:

Lemma 10.1. One has

sup [|S0 () S (w)]i, <1

U,WE oo

and therefore p.(SW) < 1

The proof is identical to that of Lemma 4 of [f], therefore we do not
expand on it here. The multiscale representation based on the proposed
WENO model is therefore convergent in L*°.

10.3. Convergence and Stability of Bidimensional PPH multiscale Represen-
tations

We study the convergence and the stability of bidimensional PPH multi-
scale representations where the prediction operator is given by:

Jj—1 Jj—1
N _ Ut Ukime EH(AQ wiTL A2, il
Mk+er 9 8 Mei1 "k > Mey Yk—Meq

o, = vl (38)

25



for some 0 < w < 1. To consider w < 1 instead of w = 1 as in (B0)
will appear clearer a bit later. We already noticed that the prediction op-
erator is Lipschitz-Linear, we now remark that it is (.4, I)-compatible with
A = {e;,Me;} and I = {(0,2),(2,0)}, where M is the quincunx matrix.
Therefore, to prove the convergence of the multiscale representation, we study
the joint spectral radius of S“7. To this end, we compute the differences of
order 2 in the directions {e;, Me;}, which are given by:

Aglﬁghk = ZH<AM€1 AMelvé Mel>
Ail A?V[k—f—el = AMel
- gH(AMq LAY U ey
- 8H<AM61UIC+M617AM61UIC 1)
AMelka = Az
Ao, Whphrer = (Az Y A ) ZH(AM61Uk+617 A ey U er ey
- §H<AM€1 AMel | Mel)
- gH(AMq é+2elvAMe1“é+2el Mey)- (39)

We now study more in detail A? U?&k +e,» the following cases can appear:
1A%, ol PA viTh > 0and A2 ol AL vl > 0 we have
|A2 UMk+e1| <
max( |AMel it ‘H(AMelvk AR Vo) + H (AR, 0 ey Ay v )

1 -1
2. AMelvk A3, vl ve, < 0and A3, Uk-i—MelAMelvk < 0 we have

|Azl ,[}‘]7\414:-{-61 | = A]\461 vk‘

1 A2 —1 — 2 7—1
3. AMelvk A3 e Vi_ae, <0 and AMelkarMelAvak > 0 we have

|A2 ka+el| < max( |AM61 | 8| (AMelkarMel?AMelvk )|)

A snmlar equation is obtained assumlng
1
AMelvk AMelvk Me, > 0 and AMelkarMelAMelvk <0.
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Now, remarking as previously that |H (z,y)| < max(|z|, |y|), we immediately
obtain that

IA

1AZ, 7l

_HAMel v o

1A% e, 7l < ALY oo + —HAMEI [

From these inequality we immediately deduce that poo(SAI) < ,/HT“’ <1,
which proves that the bidimensional PPH defined by (BY) is convergent in
L.

For the LP convergence, we do not need the restriction on w and we
consider the model defined by (BQ), therefore we study:

At = ISA A, s

~7
Vi @y ))?

= Z |AMelka+e1|p + | A%, Bhel” + 1203, + A2 O ey

keZ?

As in the one-dimensional study, and assuming p > 1, we have the following
majorations (using the property of convex functions):

Aty el < 42p|A T 42p‘Ael Ukt
+ imaX(|AMelvk+€1| |AM€1vk+el e )
+ %manAMelvk |, [ AR ey Vr-ae )7
gmaX(|AMelvk+261| |AMelvk+2€1 Mer|)”
A Ohl” < A2
A, il < %manAMelvk k ‘AMelvk }Vf@le
A2 O e P < |AM61 ol P
+ Q_i’imaxﬂAMelvk E |AMe1vk Mel|)p
+ %i ax(| A e, U hren s [ A%y 0L )P
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Now, as in the one-dimensional case, we consider the largest possible coeffi-
cients in front of each differences, to obtain:

1 2 1 ~
IS4 AN Ry < D (L4 I ALG P + (L4 5+ I vl
keZ?
< max(lt g 1 o+ ) AR
= 2% o0’ o (e(29)

Recalling that m = 2, we get the LP convergence and stability as soon as
max(1+ 55,1+ 55 + &) < 2, which is always true for p > 1.

To finish with, let us study the stability of the PPH-scheme defined by
(BY) in LP. We may indeed write:

s w\P i1 ~i—1 1 ~j—1
A2 @ = Fa)l? < (5) max(A3, 07 = F 718 (ke = B b))
24 1 i1 ~j—1
‘Ael (UMk—i—el U?\/lk-ﬁ-el ) ‘p S 5 |A?\461 (Ui o ,Ui ) |
wP 1 ~j—1 1 ~j—1
+ T (manAMel(Uk _Ui )E ‘AMq(Uk Mey — Ui pre, )Y
1 ~j-1 1 ~j—1
+ maX(|AM61(vi+Mel vi+Mel)| |AMel(vi —Ui )|))
|AMe1(ka 65\4k)|p < |Ael( k _f)k )|p
as 1 i—1 ~j—1 (2w)p
|AM61 (ka—l—el v?\/fk+el)|p < 4(21)) (|A31 (Ué - )|p + |Ael (vk-l—Mel vi+Mel)|p) + T X
~j—1
(2 maX(|AMel<Uk+el _Uk-i—el)‘ ‘AM61(,U]<;+61 Me1 Ui+e1 Mel)‘)p
1 ~j-1 1 -1
+ maX(‘AMel(Ui _Ui B ‘AMq(Ui Mer _Ui e’
1 1 -1
maX(|AMe1(vi+261 vk+2el)| |AM61(vk+2el Meq vi+261 Mel)|)p
From this we deduce that:
WP 1 ; ;

keZ?

(w + @y +2(%)") 18300] - Adre, P

1 1 j
S max (]_ + W’wp(l + 2P + 25)) ||AAI(’U] 1 ’U] 1)” (ep(24))2

Since max (1 + 2(2p) JwP(1+2F + 22%)> < 2forallp>1assoonasw<1/2,

we deduce that the scheme defined by (Bg) is stable in that case.
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11. Conclusion

In this paper, we have introduced a new formalism for nonlinear and
non-separable multiscale representations. The introduced formalism includes
classical nonlinear multiscale representations such as WENO and those based
on PPH or power-P schemes. In our context, the nonlinear prediction op-
erators are perturbations of some linear prediction operator. These pertur-
bations are modeled by Lipschitz functions depending on finite differences
whose order depends on the degree of the polynomials reproduced by the lin-
ear prediction operator plus one. We called these particular kind of prediction
operators Lipschitz-Linear. After having illustrated the proposed formalism
on one and multi-dimensional cases, we stated the convergence and stability
theorems in I” and Besov spaces. The novelty of the result is that these
theorems are based on the study of the same difference operator. We also in-
troduced the notion of (A, I)-compatible prediction operators which behaves
like Lipschitz-Linear ones in terms of convergence and stability. We saw in
applications that the (A, I')-compatibility of prediction operators sometimes
makes the proofs of convergence easier. In terms of perspectives, we are
currently investigating how to apply the model of Lipschitz-Linear predic-
tion operator to design new convergent and stable multiscale representations
with application to image compression.

Appendix A

To consider the interpolation of the average on I;_1 j4p, n = =N, - | N
using the polynomial pyy is equivalent to consider the primitive Py of
pan such that Py = 297 1P,y interpolates yo = 0,41 = vl _n,y2 = 41 +
vij\,ﬂ, C L YaNgl = Yon vil}v respectively at zg = 279k — N),z; =
279k — N + 1),20 = 279 (k= N +2),- ,mony1 = 2777k + N +
1). Similarly, the interpolation of the average computed on the intervals

Ii iksn, n = =N +1,--- N + 1 using polynomial pyy; is equivalent to
consider its primitive Pon,; such that Py = 2j*1P2N,1 interpolates g, =
0,92 = Uijvﬂags =Yz + Uijwza L YoN42 = Yon41 ’Ui;}\H»l respectively

at w1, T2, , Tanto :72_j+1(k; + N +2). Using the Newton form for each
polynomial Poy and Psy; and remarking that the divided differences are
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such that: [g1, 99, -, U] = [Y1, Y2, -+ ,yx] for all k < 2N + 2, we write:

2N+1
PQN,1($) - PQN(!E) = —Uijv + [y07 T 792N+2](!E2N+2 - IEO) H (IE - %)
i=1
2N+1

, , 1
. -1 ON+1, j—1
= —vy_yt+A Ui N (2N + 1)1(2-7+1)2N+1 I l (@ — ).

i=1
In that framework, we also have:

vt = Pon(279 (k4 1)) — Py (277 E) = Pon i (279K + 1)) — Poya (277TR).
The centered prediction following ([[2) is:

0, = 2(Pn(277T (K +1/2)) — Pon(277k))
O = 2(Pan(@7T (k1)) = Pon (2771 (k 4+ 1/2)) .

Considering the leading coefficient of the polynomial Py, one can check
that the corresponding prediction operator reproduces polynomials of degree
2N + 1. The definition of @3, , and 93, are identical to that of 3, and

@;k 41 replacing Poy by Poyi. Then, computing the difference between Poy 1
and P,y and applying it at putting x = 277k, we get:

- - - 1 2N —1
~ ~ 1 _
,U%k,l ,U%k = A2N+1Ué—N( 1>N ! 24]\[_1 ( N )
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