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ABSTRACT

Built from a need for modelling cognitive processes, a
modular neural network is designed as the “brain” of a
virtual robot moving in a prey-predator environment. The
robot decides its path from the animals it identifies around.
Both a parallel implementation of distributed processes and
a temporal coding of spiking neurons allow the robot to de-
velop multimodal perception with attentional mechanisms
and to react in real-time to its dynamic environment.
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1 Introduction

On the one hand, parallel and distributed algorithms are
usually designed to speed up scientific computations [1, 2]
or artificial neural networks training [3, 4, 5, 6, 7]. On the
other hand, cognitive processes are highly concurrent and
distributed in the brain, but in a different way than in par-
allel computers. In this article, we propose to take advan-
tage of parallel computing for simulating a brain-like in-
tegration of multimodal informations (image, sound, etc).
Starting from a cognitive point of view, a modular neural
network has been previously designed for modelling a mul-
timodal associative memory simulating multisensory inte-
gration [8, 9]. The model has been implemented as the
“brain” of a virtual robot moving in a prey-predator envi-
ronment, as described in section 2. The parallel implemen-
tation of the virtual robot and the simulation of a dynamic
environment are presented in section 3. Section 4 proposes
the implementation of real-time attention shifting mecha-
nisms. In section 5, we show how crossmodal interaction
can be simulated, due to the combination of spiking neu-
rons and distributed processing.

2 Virtual robot, prey-predator environment

Starting from a functionnal architecture designed for vision
by cognitive psychologists [10] and the hypothesis stat-
ing that this architecture can be replicated for other sen-
sory modalities, we have designed a modular neural net-
work modelling a multimodal associative memory [11].
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Built from several neural networks as basic bricks, the
model computes the low-level perceptive processes (one
prototype-based incremental classifier for each perceptive
modality), the central data fusion (a uniqgue BAM - Bidi-
rectionnal Associative Memory - adapted for multiple in-
put vectors coming from the different perceptive modules)
and an output network (incremental classifier) computing
the object identified by the whole model. An experimen-
tal platform has been developed for testing the behaviour
of the model embedded in a virtual robot moving among
static animals, in a virtual zoo [12, 13, 14]. For the robot,
animals are either predators to be avoided, preys to be eaten
or neutral animals.

Only visual
perception

Audition
and j vision

Auditory
perception
only

Figure 1. Perceptive fields of the virtual robot.

An image and a sound are associated to each animal.
The robot has two sensory modalities, vision and audition
(figure 1). The robot is designed as a head with a mouth
and one eye. It has only a partial vision of the environment
since its visual field is forward oriented, within an obtuse
angle (from —75° to +75°). The auditory field extends all
around the robot, but with a smaller reach. Hence, the robot
can sometimes see one animal and hear another one.

Robot 2 i I =1
Identified : elephant
confidence : 43.33
Seen : elephant Heard : elephant
confidence : 1.67 confidence : Z.90

Sound to be heard
position (3,-2)

Image to be seen
position (3,-2)

Figure 2. Auditory and visual recognition of noisy patterns,
plus name of the animal identified by the robot.
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Figure 3. Two virtual robots moving in a virtual prey-predator environment.

The closer the robot is to an animal, the better the sen-
sory information that could be perceived, on both modali-
ties. This effect is simulated by adding noise to the im-
age or the sound in relation with the distance between the
robot and the animal, inside the receptive fields. The effec-
tive perceptions of the robot are the results of the low-level
computations of the noised stimuli by the model. The out-
put prototypes are the inputs of the BAM and the result of
the computation of the whole model is either the animal
identified by the robot (with a degree of confidence) or a
non-answer in doubtful cases. On figure 2, an elephant has
been identified, with a rather low confidence. Since an ele-
phant is a neutral animal, the robot will continue moving in
front of it (the direction of the mouth), with a low probabil-
ity to change its direction randomly.

The purpose of this article is to present several im-
provements making the virtual robot closer than an actual
robot evolving in a real-world environment, with a cogni-
tively plausible behaviour and real-time reactivity to a dy-
namic environment.

3 Dynamic environment, distributed system

First, the dynamic feature of the environment results from
giving life to all the animals in the zoo. The animals move
according to their nature with regards to the robot. With
a probability of moving less or equal to 0.1 and within
a threshold distance to the robot, a predator (crocodile or
wolf) becomes closer to the robot and a prey flees from it.
Neutral animals (in light gray on figure 3), or preys and
predators that are outside the threshold distance, can move
randomly, with the same probability of moving [15].
Second, the robot becomes able to manage this dy-
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namic environment by the means of a parallel implementa-
tion of its “brain”. The sequential execution of the model is
not realistic, from a cognitive point of view. For instance,
in sequential simulations, visual recognition is computed
first, auditory recognition is computed afterwards, and then
the BAM processes both resulting information. In parallel
versions of the model, all the neural network modules can
run continuously, e.g. visual and auditory recognitions are
processed concurrently [16]. Moreover, the parallel model
will make it possible to take advantage of temporal proper-
ties in the distributed neural architecture, even if, in this ar-
ticle, the distribution of processes is slightly different from
the mapping proposed in [16]. The computing tasks are dis-
tributed according to cognitive concerns (see figure 4), but
not in the aim of reaching an optimal speedup. The parallel
implementation of the model has been developed for a net-
work of PC-computers, considered as a virtual MIMD par-
allel machine with distributed memory. All the processors
run a Linux operating system, using the LAM (Local Area
Multicomputer) high-quality open-source implementation
of the MPI (Message Passing Interface) specification.

One process is devoted to the management of the
zoo: Image and sound that the robot can perceive, ani-
mals moves, graphical windows providing information to
the experimenter, etc.... Five other processes implement
the different cognitive modules of a robot: Vision, audi-
tion, multimodal associative memaory, output network com-
puting the model answer, and a motor module computing
the next action of the robot. Figure 4 clarifies the informa-
tion exchanged by communications (hon-blocking message
passing) between the different processes. Several robots
can move simultaneously in the environment (five concur-
rent processes for each robot).
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Figure 4. Distributed system: Mapping of cognitive processes and message passing.

4 Visual attention

In computer vision, the importance of modelling attentional
mechanisms has been highlighted, for time saving [17]. For
instance, selecting a region of interest reduces the process-
ing complexity. A model of visual attention, proposed by
Itti and Koch [18], has motivated part of our work.

4.1 Orientation of the look

In the preliminary version of the zoo [12], the robot could
see only in a conical space in front of it, i.e. in the direc-
tion pointed by its mouth. A first improvement has been to
disconnect the direction of move and the orientation of the
look. In order to precise this additional information on the
graphical representation, a bar has been added to the robot
head, in the direction of the look. Moreover, in case of sev-
eral robots in a same environment, the colour of the bar is
an indication of the nature of one robot for the others. On
figure 5, top right, a prey robot (light blue bar) is looking at
a predator robot (dark red bar) in its back, and it is running
away. Bottom left, the predator robot is going after the prey
robot that it has just identified at the previous step.

Figure 5. Robots with bars for the orientation of their look.

Thanks to this improvement, the robot is more able to
follow a prey it has just detected. Performance augmenta-
tion has been measured on experiments. Starting near the
center of the environment, the robot moves around, accord-
ing to the animals it identifies and how much it trusts its
decisions. If eaten by a predator, a robot can start a new
life from a place defined by the experimenter. On a run of
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275 moves, we observe that a robot with directed visual at-
tention usually eats twice as many preys as a robot with a
fixed look in front of it (means on 10 experiments in ran-
domly evolving environment). Note that the efficiency of
the device cannot be measured for the predators because
the robot runs away as soon as it has identified a vicious
animal, hence the predator soon disappears from the visual
field.

4.2 Modelling attentional mechanisms

Even if the robot is able to point its look according to its
previous observations, there can be several animals inside
its visual field. In the preliminary version of the zoo [12],
only the image (or sound) of the closest animal in the visual
(auditory) field was sent to the robot. However, Wolfe [19]
explains that a region of interest can be defined quickly,
from a few specific features only and at a low level of
cognitive processing. We have exploited the knowledge of
psychologists for modelling attentional mechanisms in the
robot behaviour:

o the nature (prey or predator) of an animal can be dis-
tinguished at a pre-attentive level,

e predators can be made more salient than all other an-
imals, and preys can be more salient than neutral ani-
mals (e.g. colour as selective feature),

o this selectivity is possible only inside a small limit of
proximity (threshold distance).

A visual buffer has been added to the vision module of
the distributed system (cf. figure 4). Among all the animals
present at a given time in the visual field of the robot, only
one is processed by the visual recognition module, in order
to preserve a real-time processing. The image is selected
with respect to the principles above. For instance, for a prey
and a neutral animal at equal distances, the attention will
focus on the prey (figure 6, left). Moreover, even if a prey



is in front of the robot, the robot can perceive a predator
at a short distance behind the prey (figure 6, right). In the
graphical platform of the zoo, a square box has been added
to circle the animal taken into account by the robot, at each
step.
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Figure 6. Selection of the more salient animal in the visual
buffer.

The effects of modelling attentional mechanisms have
been measured with several experiments. The influence of
the attentional capacities on the robot behaviour is clearly
positive. At each run, several variables are recorded:

1. the number of successive lives of the robot,

2. the total number of moves,

3. the number of moves forward,

4. the number of different places visited by the robot,

In a first experiment, the total number of moves has
been fixed. The program is started 10 times, for 200
moves each run, at first for a robot with attentional mecha-
nisms, and then for a robot with a plain orientation of look,
whithout selection of a salient animal. The mean num-
ber of lives is significatively lower (Student statistical test,
p < 0.05) for the robot attentive to the surrounding animals
(figure7), proving that the attentive robot is able to survive
for longer.
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Figure 7. A robot with attentional mechanisms stays alive
for longer.

Second experiments have been carried out, with a
fixed number of lives for the robot. The numbers of
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moves, both all around and forward moves, and the num-
ber of visited places are significatively higher (Student test,
p < 0.05) for the robot with attentional mechanisms (fig-
ure 8).

Quality of exploration
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Figure 8. A robot with attentional mechanisms explores
better the environment.

So, we have improved the capacity of the robot to
manage a dynamic environment and to avoid the traps.
Moreover, the simplicity of how attentional mechanisms
are modelled (even if based on cognitive processing) pre-
serves the real-time feature of the system and does not seri-
ously unbalances the computational load of the concurrent
processors.

5 Real-time crossmodal interactions

Recent advances in neuroscience prove that early cross-
modal interactions take place in multisensory processing,
both in animal and human brain [20, 21, 22]. More pre-
cisely, the neuroscientists observed that the brain has a ca-
pacity to redirect the visual attention towards a peripheral
sound source. Our distributed system is a good candidate
for modelling such interaction, especially if a “spiking-
BAM?” [23] replaces the initial BAM module (cf. figure 4).
The spiking-BAM is an emulation of BAM in temporal
coding, based on spiking neurons [24, 25] instead of clas-
sical threshold neurons. Spiking neural networks can inte-
grate information through time. Each spiking neuron inte-
grates the spikes of upstream neurons as soon as they are
communicated. In the distributed system, the combination
of non-blocking message passing and spiking neurons in
the BAM module gives way to an actual real-time process-
ing of variable information flows, since the BAM receives
on-line the patterns processed by the visual and auditory
modules.

In a situation like the one shown in figure 9, the sim-
ulation of crossmodal interactions is realized as follows:

e the robot receives the image of an animal V, in its vi-
sual field,

o simultaneously, the robot receives the sound of a very
close animal A,
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Figure 9. The robot sees a bison (animal V) and hears a
crocodile (animal A). The robot will redirect its look im-
mediately towards the crocodile.

recognition procedures are started simultaneously by
the vision and audition modules,

the robot redirects its look towards the animal A
(salient for audition),

the image of animal A is sent to the vision module,

the BAM module integrates the newly seen animal
during the on-going process of data fusion.

The new information is taken into account in real
time, as presented in figure 10 showing activity of the neu-
rons through time. For each neuron, a point is plotted each
time a postsynaptic spike is emitted by the neuron. The di-
agram represents the variation of the activity patterns of the
BAM neural network, during a short time.

Visio 2Audio Internal
Rl
R2 =
R3 5
R4 L

Figure 10. Diagram of spikes emitted through time, in the
spiking-BAM. The new visual input modifies the patterns.

From left to right, the first 400 neurons (*“visio”) rep-
resent the visual input of the spiking-BAM, the next 256
neurons (“audio™) represent the auditory input and the last
neurons (“internal”) are for the internal representation built
by the BAM in four consecutive recurrent iterations. At it-
eration R1, the robot sees and hears animal V. At iteration
R2, the sound of animal A is perceived. The robot redirects
its look: The image of animal A is perceived as soon as it-
eration R3. The BAM processing goes on (iteration R4),
with modified patterns. Hence, we can see that the input
pattern is changed before the BAM stabilisation, since the
newly seen animal is received during the BAM processing,
thanks to the new message communicated by the incom-
ing visual process. The robot can perceive, in real-time,
the danger of being close to a predator, even if it was just
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looking elsewhere, since the patterns are modified on-line
before the BAM converges towards a stable state. Hence
the animal identified by the whole system at this step will
be a crocodile and the robot will be able to run away from
this predator.

6 Conclusion and per spectives

We have presented a distributed system capable of simulat-
ing the “brain” of a virtual robot moving in a dynamic prey-
predator environment, with a cognitive behaviour. The par-
allel processing of the cognitive modules and the on-line
message passing of the information are the ingredients of
the real-time and clever reactivity of the robot to the traps
of the virtual zoo. This article has presented several im-
provements to the preliminary version of the virtual robot
in the zoo:

e Since all the animals can move, the environment is
dynamic.

e The orientation of the look is independent of the di-
rection of move.

e A salient image can be selected in the visual buffer by
implementing attentional mechanisms.

e A crossmodal interaction between audition and vision
enhances the identification of traps.

All these improvements make the robot more efficient and
its behaviour becomes more realistic, from the cognitive
point of view. Moreover, the speed of the robot moving is
totally compatible with real-time constraints.

The system is still far from being directly imple-
mentable on a real-world robot. However, in the long path
of research required to realize a performant cognitive robot,
we addressed a part of the problem that is not studied usu-
ally. Mixing our results with the advances of researchers
working on computer vision, for instance, could lead to a
very efficient real robot in the short term. For instance, the
model developed by Machrouh, Liénard and Tarroux [26],
or other work based on the Itti & Koch’s model, could be
used for replacing the vision buffer of the virtual robot by
a device selecting an animal in a real-world visual scene.
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