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Abstract. Human vision rely on attention to select only a few regions to
process and thus reduce the complexity and the processing time of visual
task. Artificial vision systems can benefit from a bio-inspired attentional
process relying on neural models. In such applications, what is the most
efficient neural model: spiked-based or frequency-based? We propose an
evaluation of both neural model, in term of complexity and quality of
results (on artificial and natural images).

1 Introduction

Biological inspiration aims at adapting biological mechanisms to design efficient
artificial systems benefiting from the natural solutions. An essential mechanism
of the human visual system is visual attention, which allows higher cognitive
processes (such as learning or recognition) to concentrate on few regions of the
visual scene, selected by the attention. Adapting attention in artificial systems
may be a way to reduce the computational cost of visual tasks [10]. There is a
large number of applications for such artificial attentional systems, e.g. driver
assistance [15], retinal prostheses [17] or robotics [9]. Several artificial systems
propose an adaptation of attentional process on a neural level, i.e. biologically
plausible efficient artificial systems implemented with neural networks [1, 4, 6, 14,
19]. Based on the time scale of the description, one can distinguish two ways of
representing encoded information in neural models. In spiking neuron networks
(SNN), information is encoded and exchanged between neurons with spikes, i.e.
transient voltage pulses. With frequency-based neural network (FNN), informa-
tion is encoded in the activation of each neuron, a quantity expressing the mean
frequency of spiking rate [13]. The choice of the model type has a major influence
both on the computational cost of the system and on its possibilities, i.e. mech-
anisms which can be adapted from biological observations. Which neural model,
between SNN and FNN, is the best suited to implement an efficient bio-inspired
attentional system? We propose a comparison of the computational complex-
ity of these two type of networks and an evaluation of their performances on
artificial and natural images.

The different psychological theories of the human attention, such as [7, 18,
20], agree that several local visual features (e.g. color, orientation, contrast or
movement) are detected in a parallel process and then combined on a saliency



map. This saliency map indicates potentially interesting regions, called saliencies.
The attentional process then selects the most salient regions.

In bio-inspired attentional systems, the detection of visual is usually achieved
with difference of Gaussians (DOG) filters to reproduce the spatial transforma-
tion of retinal ganglion cells [8] and Gabor wavelets to detect orientations, as
observed in the simple cells of the primary visual cortex [11]. Systems imple-
mented with FNN [1, 14, 19] use neural networks to combine features on the
saliency map and to select the most important saliencies. This selection stage is
realized with a Winner-Take-All (WTA) mechanism [21], which allow to select
only the most salient region. In order to determine the next salient regions, an
inhibition of return (IOR) mechanism is used to inhibit the previously selected
regions. When relying on spiking neurons to simulate visual processing, it is
possible to take advantage of the precise timing of spike firing to implement an
anytime system. Anytime systems [2] may be stopped at any instant and return
a response. The quality of response depends on the computation time allowed to
the system: quality of response increases with the computation time. An anytime
SNN for visual attention, as described in [5, 4], is able to extract a number of
saliencies which depends on the CPU time allowed to the SNN. The saliencies
are detected in the order of their importance, e.g. the first saliency found is the
most salient, hence there is no need of a WTA.

In Sect. 2, an architecture of attentional system and its implementation with
FNN and SNN are described. A complexity analysis of the FNN and SNN im-
plementation is detailed in Sect. 3.1 and a performance comparison on artificial
and natural are proposed respectively in Sect. 3.2 and 3.3. Conclusions and per-
spectives are detailed in Sect. 4.

2 Models and Implementations

We use a a multiscale and multi-feature attentional architecture similar to ar-
chitecture proposed by [10]. This attentional architecture uses local contrast of
luminance, orientations and colors to extract saliencies. Figure 1 displays the
organisation of this architecture, which is composed of 2D neural map. The
luminance and colors of an input image are fed in Input maps. Detections of
contrasts, orientations and color opponency are realized for a high and a low
spatial frequencies. Local luminance contrasts are obtained with a DOG filter-
ing. Orientation information are detected with Gabor wavelets filtering for four
distinct orientations (0, π

4
, π

2
and 3π

4
). Color opponency uses a combination of

DOG filtering to detect red-green and blue-yellow opponency. . The high and
low spatial frequency information are combined on the saliency map.

The SNN implementation of the attentional architecture is described in [4]
and uses Leaky Integrate-and-Fire neural model. The LIF model describes the
evolution of an internal parameter V and when V exceeds a threshold ϑ, the
neuron fires a spike. The LIF model is characterized by the following differential
equation:

{

dV
dt

= −λ(V (t) − Vrest) + Iinput(t), if V < ϑ

else fires a spike and V is set to Vreset

(1)
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Fig. 1. Preattentive visual architecture, multiscale and multi-features (local luminance
contrasts, detection of orientations and color opponency). Neural maps used in the SNN
and FNN implementation are displayed in green and neural maps used only with FNN
are in yellow.

where λ is the membrane relaxation constant and Iinput(t) is an input term. This
SNN realizes an anytime neural filtering, leading to a gradual response which
get closer to the convolution response as the computation time increases [3].
The early responses of neural filtering exhibit a bias which overvalue filtering
responses for high luminance values. The saliency map gathers the neural filter-
ing responses in order to determine the saliencies. Saliencies are thus obtained
gradually and the most salient region are detected first. As the SNN extract
salient regions already sorted in the order of their importance, there is no WTA.
It is important to note that the result of the SNN depends on the simulated
network time t.

In FNN implementation, frequency-based neural model are used to imple-
ment a classical convolution algorithm. It is computationally equivalent to filter
the image with a classical algorithm and then convert the resulting image values
in neuronal activity. When the input image is filtered for both spatial frequencies,
the resulting activation are summed on the saliency map. To sort the saliencies
in the order of their importance, the FNN relies on a WTA map coupled with
an inhibition of return map (see Fig. 1). As realistic biological WTA have a high
computation cost [21], we use a WTA implementation relying on a ARGMAX
function which gives the same results as biologically plausible WTA but with a
lower computational cost.



3 FNN and SNN Comparisons

3.1 Complexity Analysis

The most important computational cost for FNN implementation is the image
filtering cost. The image filtering is realized with a classical convolution algo-
rithm. As the input image and the filter are relatively small, this is a acceptable
choice. Hence, for an architecture processing f features at s spatial scales, with
filters of size M and an input image of N pixels, the time complexity is in
O(f × s × M × N). The WTA algorithm used in this FNN as a time com-
plexity of O(N). The overall time complexity is thus O(f × s × M × N). The
FNN implementation uses Promethe [12], a distributed real-time neural network
simulator.

The time and space complexity of a SNN heavily depends on implementa-
tion choices. The SNN is implemented on a simulator developed by the authors,
which uses a simulation strategy called hybrid-synchronous [16]. Synchronous
simulators rely on an internal clock with a time step ∆t to update the state
variables of every neurons in the network. The choice of the time step value
is crucial as it influences the computational and the precision of the obtained
results. Smaller ∆t value offers more precise results but higher computational
cost. Here, ∆t = 0.1ms which is sufficiently small to obtain precise and repro-
ducible results. With a hybrid-synchronous strategy, only the “active” neurons
are updated, i.e. neurons with non null input term Iinput(t) at instant t.

The computational cost of a simulation can be expressed as the sum of the
spike propagation cost and the neuron update cost. Here, it is:

cp × F × N × M + cu ×
A

∆t
(2)

The total propagation cost depends on the unitary propagation cost cp, the
mean number of fired spike which depends of the mean frequency rate F and
the number of neurons N and the mean number of connection per neuron (which
depends on the filter size M , see [4]). The total update cost rely on the unitary
update cost cu, the mean number of active neurons A and ∆t. Here the unitary
update cost requires 10 FLOP.

The computational cost is dependent of the input image: a complex image
(in the meaning of filter used in the SNN) induced a large number of spikes and
the simulation cost is high. To illustrate this fact, we construct test images with
various complexity, i.e. with different number of features. These test images are
set up by converting impulse response of DOG and Gabor filter in small images
(called patches). The amplitude and spatial position of these patches are drawn
randomly. Left part of Fig. 2 shows a test image used to evaluate the influence of
an image complexity on the required processing CPU time. CPU time (measured
in CPU cycles) required to process image of growing complexity (with 1, 10, 50
or 100 patch’s) is recorded and shown on the right part of Fig. 2. One can see
CPU cycles needed to extract saliencies increases with the image complexity.
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Fig. 2. Left:A test image with 100 patches. Each patch is the impulse response of a
DOG or a Gabor filter. Right: CPU cycles needed to extract saliencies on images with
growing complexity, i.e. different number of patches. CPU cycles are measured for each
simulated time step in the SNN.

3.2 Artificial Images

We propose a comparison of saliency detected on pop-out images [18], where a
target among distractors is easily identifiable. This is the case when the target
differs from distractors for a given feature. Figure 3 shows the most salient region
obtained on two pop-out test images.

Fig. 3. Pop-out images (160x120 pixels) used for saliency detection. On the left, target
differs from distractors by its color and, on the right, by its orientation. The most
salient region detected by FNN is represented as an orange circle and for SNN by blue
pixels.

The Figure 3 shows that both SNN and FNN are able to detect saliencies, but
results take different forms. With FNN, a saliency correspond to the position of
the winner neuron in the WTA, i.e. neuron with the highest activation on saliency
map. As the winner location and its direct neighborhood is then inhibited by



the IOR, we indicate saliency as a circle centered on the winner location. The
SNN extract salient regions already sorted in the order of their importance. The
first neurons to fire on the saliency map indicate the most salient regions, so
there can be several points with an identical saliency value. On the left image of
Figure 3, the edges of the green target are salient and on the right image four
salient dots are detected on the bottom part of the target.

3.3 Natural Images

We propose a comparison based on 19 natural images of 160x120 pixels acquired
with a standard webcam. Figure 4 shows two of the 19 images and the three
most salient region detected by the FNN and the SNN. On few images, salient
regions are not extracted in the same order in SNN and FNN (as on the right
image). These differences are due to the fact that SNN present a bias toward
high luminance value. On the right image, luminance and color contrasts of the
blue can (white on light background) are surevaluated compared to contrasts of
cans on the bottom (light grey on dark background).

Fig. 4. Examples of saliencies obtained on natural images. For each image, the three
most salient regions are respectively indicated in yellow, green and blue. FNN saliencies
are indicated with circles and SNN saliencies are indicated by colored pixels.

To evaluate the computational performance of FNN and SNN, we measured
the number of CPU cycles needed for each neural networks to find the most
important salient region. Each measure is repeated 10 times to compute a mean
number of CPU cycle and its standard deviation. CPU cycle measurements are
almost constant on the 19 natural images for FNN: it required 2.68414 ×106

CPU cycles (with a standard deviation of 0.008 ×106) to find the most salient
region. As an example, on a computer equipped with 4 AMD Opteron 2.4 GHz,
the mean execution time is 0.62 sec, that is 1.6 frame per second.

The Table 1 shows the mean number of CPU cycles measured with the SNN
and the difference in percent with the FNN. As previously explained, SNN uses
an iterative simulation, so we chose to stop the simulation as soon as the SNN



find the first salient region (usually after 45 time steps). It appears that the
mean CPU cycles required to find the most salient region varies from one image
to another. This effect is due to the fact that the 19 images have different com-
plexity, in term of the filters used in the architecture. One can see that for one
fourth of the images, the SNN find the most salient region before the FNN does.
For the image on the right part of Fig. 4 (denoted as image #6 in Table 1), the
SNN find the most important saliency, indicated in yellow, before the FNN.

4 Conclusions

This contribution proposes a comparison of two neural model, spike-based and
frequency based, to implement an artificial attentional system. FNN have a lesser
computational cost than SNN but require a WTA to extract the saliencies. The
SNN is an anytime system and saliencies are extracted gradually, in the order
of their importance. Both neural networks indicate the same saliencies and the
SNN find the first saliency before FNN in one fourth of the natural images
used in the evaluation. One can note that if a FNN relies on a biologically
realistic implementation of WTA, the computational cost of the FNN will be
greatly increased. To implement a bio-inspired attentional system, FNN is an
efficient solution. An possible solution to benefit from the advantage of both
neural models is to use both FNN and SNN, running in parallel on different
computers, to process visual input.

Image SNN (106 CPU cycles) Difference with FNN

1 3.389 ± 0.041 23.62 %
2 2.359 ± 0.049 -12.74 %

3 2.409 ± 0.006 -11.66 %

4 3.487 ± 0.010 28.27 %
5 3.682 ± 0.076 38.42 %
6 2.530 ± 0.006 -3.68 %

7 2.944 ± 0.005 12.00 %
8 2.830 ± 0.004 7.56 %
9 2.816 ± 0.004 6.01 %
10 3.336 ± 0.107 25.39 %
11 3.520 ± 0.004 32.74 %
12 2.868 ± 0.002 7.80 %
13 4.157 ± 0.006 53.07 %
14 3.994 ± 0.003 46.86 %
15 3.737 ± 0.004 35.43 %
16 4.144 ± 0.036 53.48 %
17 2.992 ± 0.097 12.46 %
18 2.348 ± 0.010 -12.74 %

19 2.264 ± 0.011 -15.77 %

Table 1. Number of CPU cycles required to find the most salient region on each of
the 19 images with the SNN. For the FNN, the mean number of CPU cycles required
is 2.68414 106. The difference between SNN and FNN is shown in the last column.
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