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On-line Distributed Bayesian Decision and Diagnosis of Wireless
Networked Mobile Robots

Amine MECHRAOUI, Jean-Marc THIRIET and Sylviane GENTIL

Abstract— This paper deals with the problem of co-design of
Wireless Networked Control systems (WNCS). The integration
of the Wireless Network (WN) in the control loop influences
the Quality of Control (QoC) of the system in terms of the
Quality of Service (QoS) of the WN. In this paper, a new model
of the QoS and its influence on the QoC is proposed. This
model is based on a distributed Bayesian Network (BN). The
main objective of this model is to diagnose on-line problems
related to the QoS and the QoC. According to the diagnosis
results and the situation, the system makes on-line decision to
reconfigure both the WN in a multi-station environment and
the controller in order to avoid the degradation of the QoC.
This reconfiguration is justified by the need of adapting the
WN to the requirements of the control and diagnosis, and also
adapting the control and diagnosis to the capabilities of the WN.
The proposed reconfiguration permits to guarantee a sufficient
QoC under network limits.

Index Terms— Wireless networked control system, IEEE
802.11, Distributed Bayesian network, Distributed diagnosis,
Decision making, Reconfiguration, Mobile robot, Quality of
Service, Quality of Control.

I. INTRODUCTION

Nowadays Networked Control Systems (NCS) is an
emerging domain, especially in robotics, which is receiv-
ing increasing attention. Introducing a wireless network
in control loops presents some disadvantages due to band
limited channels, sampling delays and packet dropouts [1].
Furthermore, the mobility in robotic applications also adds
some problems, e.g. increasing the distance between the
control station and the mobile increases the number of lost
packets due to decreased signal strength and increased bit
error rate [2].
The communication architecture in mobile robotics may be
centralized, in which case there is a fixed or mobile node
that communicates with all the other nodes, or decentral-
ized, where individual mobile nodes should ideally operate
without any central control [3]. In the decentralized control
scheme, each component solves a part of the problem and
shares memory without having a global view of the mission.
There is less emphasis on computation than communication.
In distributed control systems, communication is an impor-
tant parameter and individual components don’t need to share
memory [4].
In the literature, several studies are focused only on the
Quality of Service (QoS) (capability of a network to pro-
vide and guarantee a sufficient service to such application)
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without treating its influence on the Quality of Control (QoC)
(performance such as stability, error and response time) [5].
However, other studies are focused on the QoC and consider
the network as only a time-varying delay without taking into
account the other parameters influencing the QoC [6]. This
paper takes both into account in a co-design approach. The
reconfiguration of the wireless network is required to fulfill
the need of control in the case of degradation of the QoC.
The adaptation of control is required too in the case of the
degradation of the QoS of the network.
The causality between the different parameters of the wire-
less network on one hand and the QoS and the QoC on
the other hand can be modeled with a graph. According to
the stochastic aspect of wireless networks, we propose in
this paper to use Bayesian Network (BN) [7], [8] because
it brings graph theory and probability theory together. BN
is used in this paper to diagnose the WNCS and to make
on-line decision to avoid both degradation of the QoS and
the QoC. Our ideas are illustrated with two mobile robots
moving in a 2D space with n fixed control stations.
The paper is organized as follows. The second section
presents a brief description of the model of the Khepera
robot. The controller design and the control over a wireless
network in the case of one and several robots are presented.
Section III presents the proposed model based on Bayesian
Network to represent the QoS and its influence on the QoC.
The diagnosis using BN and decision making algorithms are
presented too. After that, the proposed approach is applied
to diagnose faults and two scenarios are simulated and the
obtained results are discussed. Finally, a conclusion and
further work are given in section V.
In this paper, the robots are simulated with Matlab/Simulink,
the wireless network with TrueTime [9] and the bayesian
network with the Bayes Net ToolBox (BNT) [10].

II. KHEPERA ROBOT MODELING AND CONTROL
OVER WIRELESS NETWORK

A. Basic explication

This section presents the study of a unicycle Khepera
robot [11] and its control to reach a target. Consider a
unicycle robot as shown in Fig. 1. Let x, y and θ be the
state variables where x ∈ ℜ and y ∈ ℜ are the Cartesian
coordinates, θ ∈ [0,2π[ is the robot’s orientation with respect
to the X-axis. v and ω are respectively the linear and the
angular velocities of the robot.
The kinematic model of the mobile robot has two control
inputs ωle f t and ωright i.e. the left and right wheels velocities.
Two levels of controllers are required. The first one is needed
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Fig. 1. Robot Model

to control the angular velocities of the wheels. PI controllers
are implemented. The second one controls the linear and
angular velocities of the robot (v and ω respectively). The
controller presented in [12] has been used for this task. The
robot must reach a desired target point [xd yd θd ]. The desired
control references ωle f t and ωright of each motor local control
loop are calculated. The measures xmes, ymes and θmes are
provided by odometry using encoder sensors of each motor.
The controller is discretized and a Wifi wireless network is
integrated (see Fig. 3). We have used WLAN 802.11 b/g that
is a part of 802.11 specifications which describe the charac-
teristics of a wireless local area network (WLAN). The basic
access mechanism used in this article, called Distributed
Coordination Function (DCF), is basically a Carrier Sense
Multiple Access with Collision Avoidance (CSMA/CA) [13].

B. Simulation condition

The main control loop of each robot is closed through
the Wifi network (Fig.3). The results presented in this paper
are obtained using Matlab/Simulink for the simulation of the
robot and the control laws.
TrueTime simulator is used to simulate the Wifi Network.

TABLE I
WIRELESS NETWORK SPECIFICATIONS

Parameters Values
Rate 802.11b 800kbits/s
Size of each frame 64bits
Sampling time (Te) 400ms
Transmission power (Ps) −3dBm
Threshold of receiving power (Pr) −48dBm
Retry limit 0
CWmin 3
SIFS 10µs
Slot Time (Ts) 20µs
DIFS = 2Ts +SIFS 50µs
The maximum number of retransmission in the case of collision (k) 7
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Fig. 2. General control architecture

Fig. 3. Control over wireless network of the two robots and one control
station

Two tasks are programmed. The first is the controller task
that generates the controller flow and the second one is
a periodic sensor task that generates sensors flow with a
sampling period of Te = 0.4s. The controller task is event-
triggered, which means that the controller calculates and
sends the control signals v and ω only when it has received
all measures xmes, ymes and θmes. To perform this study, the
conditions in Table I are considered.

1) Multi-robot control via the wireless network: The
control of several robots via the wireless network is done
by adding other tasks within the control station. One sensor
task is programmed for each robot (Fig.3). As the sensor
tasks are time-triggered, they begin at the same time and
collision occurs and delay increases which increases also
the probability of packet loss. To avoid collision and packet
loss, an offset is added to the moment of launching of
each sensor task of each robot. This offset attributes the
triggering time of sensor task priority to each robot. Tra-
jectories, orientations, linear and angular velocities of the
two robots are shown in Fig. 4. In this figure, the initial
position of Robot1 is (x1

0,y
1
0,θ

1
0 ) = (0,0,0) and it should

reach a desired target (x1
d ,y

1
d) = (2,2). The initial position

of Robot2 is (x2
0,y

2
0,θ

2
0 ) = (5,5,−π

2 ) and it should reach a
target (x2

d ,y
2
d) = (3,3) (We consider those initial conditions

for all simulations within this paper). The two robots reach
their respective targets in 30s, and the linear velocity profile
of the two mobiles are the same.

2) Degraded mode: The communication between the
robot and the control station is not ensured according to the
level of the QoS. Therefore, a degraded mode is possible to
guarantee at least a degraded QoC. In this case, the same
control laws are programmed within the robot (embedded)
but with a sampling period of T

′
e = 1s. The decision algo-

rithm to switch the controller is presented in the next section.

III. BAYESIAN NETWORK REPRESENTATION OF
THE WNCS PROPERTIES

A. Definition of BN

A Bayesian Network is a probabilistic graphical model
defined by [8] as:
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Fig. 4. Trajectories, orientations, linear and angular velocities of the two
robots using control over wireless network within the nominal case

• a directed acyclic graph G, G=(V , E), where V is the
set of nodes of G, and E is the set of edges of G;

• a finite probabilised space (Ω, Z, P);
• a set of random variables associated to the nodes of the

graph and defined on (Ω, Z, P), such that:

P(V1,V2, ...,Vn) =
n

∏
i=1

P(Vi|C(Vi)) (1)

where C(Vi) is the set of causes (parents) of Vi on the
graph G.

B. Modeling the QoS and the QoC of the WNCS

The model of the QoS and the QoC of the WNCS using
BN is used to diagnose the degradation cause of the QoC
of each robot and also of the QoS of the Wireless network.
Variables of the proposed BN are shown in Table II. The
modes of each node are presented in Table III.
To model the QoS and the QoC of the system presented in
section II, two steps are required. The first is the qualitative
step, that allows, according to causal relations between the
different variables of the system under study, to model the
system as an acyclic oriented graph. This graph is completed
by the conditional probabilities (quantitative step) for each
node of the graph. A priori probabilities of the BN are
obtained using a statistical study of results obtained with
TrueTime Simulator. These two steps are described in [14].

In view of the fact that a BN needs a lot of memory
to compute all a posteriori probabilities of each node, the
robot cannot support this computation. Hence, we decided to
distribute the BN between the robot and the control station.
Fig.5 shows the distributed BN. Indeed, the nodes QoC, QoS
and the state of the robot (R) are programmed in the robot.
The rest of the graph is programmed in the control station.
The causal relation between the QoS and packet loss are
obtained via the wireless network. The node QoS in the

TABLE II
SIGNIFICATION OF DIFFERENT NODES OF THE BN

Nodes Signification
QoC Quality of Control
QoS Quality of Service
R State of the robot
PP Packet loss
RSSI Request Signal Strength Indicator
∆t Delay
Obst Obstacle
D Distance between the station and the robot
Col Collision

TABLE III
NODE MODES OF BN

Nodes Modes
QoC Good, Degraded, Bad
QoS Good, Degraded, Bad
R Good, Degraded, Faulty
PP 0%≤ PP < 40%, 40%≤ PP < 60%,

60%≤ PP < 100%
RSSI RSSI >−48dBm, RSSI <−48dBm
∆t ∆t < Te, ∆t ≥ Te
Obst Yes, No
D D < DT hreshold , D≥ DT hreshold
Col yes, No

control station computes its marginal probability (P(QoS))
and sends it to the node QoS which is programmed in the
robot. This node updates its probability according to the
message sent by the station and updates consequently all
the variables in the BN in the robot. The node QoS in the
robot sends message to the one in the control station. This
message is calculated by using the marginal law (Eq.2), the
Bayes theorem (Eq.3) and the d-separation property [8].
The marginal law used to calculate the marginal probability
in the BN is:

P(A) = ∑
B

P(A,B) (2)

and the well known Bayes formula:

P(A|B) =
P(B|A)P(A)

P(B)
(3)

The d-separation property is used to determine whether a
set of nodes X is independent of another set Y , given a set
of evidence nodes E (for more information see [8]). This
property decreases the size and time of computation. To
program the BN on-line in the simulator, the toolbox BNT is
used to calculate a posteriori probabilities of each node and
thus to diagnose the origin of the degradation of the QoC and
the QoS. As the proposed BN is a tree, the Junction Tree
algorithm is chosen to make bayesian inference within the
BN [15]. The influence of the QoS on the QoC is represented
in the BN by the conditional probabilities and the influence
of the QoC on the QoS is given by the inference in the BN.

C. Making decision and diagnosis

After modeling the BN and defining all a priori probabil-
ities, the acyclic graph can be used to diagnose the cause of
the degradation of the QoC and the QoS and making decision
to avoid this degradation of both the QoS and the QoC. To



diagnose the cause of degradation of the QoC, the BN needs
information about the QoC. Indeed, to know on-line if the
QoC is good, degraded or bad, a QoC criterion is proposed
according to Algorithm 1. This algorithm gives the evidence
concerning the QoC of the robot. If the distance between
the robot and the station increases, the QoC is considered as
bad. Now, if the distance decreases, we verify the orientation
error. If the orientation error decreases, then the QoC is
good, else the QoC is degraded. Using this algorithm, we
can calculate the probability of such state of the QoC. Fig.
6 shows the probability of each state (good, degraded or
bad) in the best scenario (good QoS that guarantees a low
probability of packet loss and collision). In this figure, there
are two periods namely a transient period and a steady state.
In the transient period, there is not enough information about
the state of the QoC, therefore as we go along the probability
that the QoC is good increases, in this case, with time and
stretches to 1 in the steady state (Fig .6).

Algorithm 1 QoC criterion

if d = 0 and ḋ = 0 then
QoC =good

else if ḋ < 0 then

if ˙̃
θ(k)≤ 0 and ˙̃

θ(k−1)≤ 0 then
QoC =good

else
QoC =degraded

end if
else

QoC =bad
end if

According to the information about the QoC and the
situation, the robot decides to change the station with which
it communicates if there is one that ensures a better QoC
[16]. The robot can choose to switch the controller to the
embedded one or to stop if it has no choice. The Algorithm
2 illustrates all situations to guarantee always a good QoC or
at least a degraded one by reconfiguring either the Control
or the wireless network.
In Algorithm 2, Sc refers to the set of candidate stations.
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Fig. 5. Distributed Bayesian Network
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Fig. 6. P(QoC) of the two robots in the best scenario

Algorithm 2 Decision algorithm
if QoC =bad and P(Col = yes) ≥ ColT hreshold and D <
DT hreshold and Sc = Φ then

Switch to embedded controller
else if QoC =bad and Sc = S j then

Execute Horizontal Handoff
else

Continue the communication with Si
end if

IV. RESULTS AND SIMULATION

To verify the proposed algorithms and the efficiency of
the proposed bayesian network either to diagnose or to make
decision, two scenarios are presented.

A. Scenario 1

In the first scenario, two robots communicate with one
control station. Those robots are always within the cov-
erage area of the station. Hence, the probability P(D <
DT hreshold) = 1 for each robot.
To limit the resource of the wireless network and study under
the network limits, the rate of the wireless network is set to
400bits/s. With this rate, in the better case, the frames of
the two sensor tasks of each robot and the controller task
can be transmitted successfully. But, if there are collisions,
the packets will be lost and hence the QoC will be degraded
progressively until it becomes bad. Using Algorithm 1, the
robot can qualify the QoC and propagate this information
through the proposed BN. So, according to the available
information, the BN can locate the cause of a possible
degradation of the QoC and the QoS.
In this scenario, the two robots cannot communicate with
the control station (see control task in Fig.10) and thus their
QoC are bad (Fig.7), the two robots cannot reach a target.
We can remark also, in Fig. 8, that the state of the QoC
swings between degraded and bad.
During this scenario, the BN calculates the a posteriori
probability P(Vi|QoC = bad,D < DT hreshold) of each node
using Bayes theorem, marginal law and joint law (where
Vi refers to each node of the BN). According to these
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a posteriori probabilities, the most probable cause is that
there was a collision with P(Col = yes|QoC = bad,D <
DT hreshold)≈ 0.9. The a posteriori probability P(Col|QoC =
bad,D < DT hreshold) is calculated as

P(Col|QoC = bad,D < DT hreshold) =
P(QoC = bad,D < DT hreshold |Col)P(Col)

P(QoC = bad,D < DT hreshold)

P(QoC = bad,D < DT hreshold |Col) =
∑

QoS
∑
R

∑
PP

∑
RSSI

∑
Obst

∑
∆t

P(QoC,QoS,R,PP,RSSI,Obst,D,∆t)

∑
QoS
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∑
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∑
RSSI

∑
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∑
∆t

∑
Col

P(QoC,QoS,R,PP,RSSI,Obst,D,∆t ,Col)

P(QoC = bad,D < DT hreshold) =
P(QoC = bad|QoS,R,PP,RSSI,Obst,D,∆t ,Col)×

P(D < DT hreshold)
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Fig. 9. Trajectory of the two robots with respect to time (X-axis and Y-
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2 ) under network limits and with the reconfiguration of
the control and the communication architecture

After executing Algorithm 2 Robot1 decides at t = 5s to
interrupt the communication with the control station and to
reconfigure the control strategy and switch to the embedded
degraded controller. With this strategy, the robot holds at
least a degraded QoC and reaches the target (Fig.9). On the
other hand, Robot2 continues communication with the control
station with a good QoS and QoC. Fig.10 shows the sensor
task of both robots before and after the reconfiguration of the
controller. In this figure, we notice that after reconfiguring
the control and communication architecture of the first robot,
the probability of collision decreases and the control station
receives the position of Robot2 and sends the desired linear
and angular velocities to the second robot.
Within this scenario and under the same wireless network
conditions, the two robots cannot reach their targets (Fig.
7) whereas with the co-design proposed reconfiguration, the
two robots reach their target without problem (Fig. 9).

Fig. 10. Schedule of the two sensor tasks of the two robots and the control
task
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Fig. 11. Trajectories of the two robots with a sensor fault of Robot1 at
time t = 5s

B. Scenario 2

In this scenario, we come back to the default rate of the
WN (rate = 800kbit/s). We consider also that after 5s of
simulation, Robot1 will be faulty. The fault is simulated by
adding a step on ωright = 5rad/s to the right wheel measure
thus the QoC will be bad (see Fig.11). With the knowledge
of the number of packet loss, the BN has localized the cause
of the degradation of the QoC. After executing the bayesian
inference, the BN has calculated the a posteriori probability
P(R = f aulty|QoC = bad,QoS = good) = 1. Therefore, the
BN has localized and isolated the fault.

V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper, a novel distributed based BN approach has
been proposed to model the Quality of Service and the
Quality of Control of Wireless Networked Control Systems.
This model combines all parameters or variables that modify
the Quality of Service of the wireless network and the
Quality of Control of the robot. The use of the Bayesian
Network is justified by the stochastic behavior of the Wire-
less Network. The main objective of the Bayesian Network is
to diagnose, and then decide, according to the situation, the
reconfiguration of either the network or the control strategy.
The strongest point of Bayesian Network is that the same
model can be used for both diagnosis and decision making.
The proposed model achieves the purpose of our approach,
which is to identify the degradation of the Quality of Control
as coming either from the Robot or from the wireless network
to make decision.
In this article, the communication architecture for two mobile
robots moving in a 2D space with fixed control station has
been considered as an illustrative example. According to
the information delivered by the proposed bayesian network,
the reconfiguration of both the communication architecture

(Horizontal Handoff) and the control strategy is possible.
This decision has the objective to guarantee a good QoC. The
control law can be off-board in the case of a good QoS of the
wireless network, due to the limited memory and resources
of the mobile robot. The control law can also be embedded in
the case of a bad QoS and the non-disponibility of another
control station able to ensure the control of the robot via
a wireless network. In this case, the control law should be
degraded according to the memory and the processor speed.

B. Future Works

To avoid the degradation of the Quality of Control and the
Quality of Service before its occurrence, the same Bayesian
Network will be used adding some dynamic nodes in two
time slices. The probability of the Quality of Control and
the Quality of Service in time slice t +1 given the modes of
the Quality of Control and the Quality of Service in time slice
t can inform the system about the prediction of degradation
of the Quality of Control.
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