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Observer-Based Control of Discrete-Time LPV
Systems with Uncertain Parameters

W.P.M.H. Heemels, J. Daafouz, G. Millerioux

Abstract—In this paper LMI-based design conditions are
presented for observer-based controllers that stabilize discrete-
time LPV systems in the situation where the parameters are
not exactly known, but are only available with a finite accuracy.
The presented framework allows to make tradeoffs between the
admissible level of parameter uncertainty on the one hand and
the transient performance on the other. In addition, the level of
parameter uncertainty can be maximized while still guaranteeing
closed-loop stability.

Index Terms—LPV systems, output feedback and observers,
robust control, LMIs, separation principle

I. I NTRODUCTION

Linear Parameter-Varying (LPV) systems and controllers
have received considerable attention from the control
community in recent years [2–4, 6, 15–17]. When LPV
controllers are implemented in practice two important
properties need to be satisfied. First of all, the controller
needs to be output-based, as in practice it is rarely the case
that the full state variable is available for feedback. Secondly,
the controller must be robust with respect to some degree of
mismatch between the available and the true parameters as the
real parameters are not always known exactly, although this
is often assumed in the literature on LPV systems. This paper
will address the design of stabilizing controllers for discrete-
time LPV systems that satisfy these two properties.

In [2, 12] the continuous-time version of this problem
was considered, but, unfortunately, only conditions in terms
of bilinear matrix inequalities (BMIs) were presented. Only
recently a solution was given in [8] using convex programming
techniques. In the discrete-time case output-based control
design for LPV systems for which the measured parameters
do not exactly fit the real ones is at present an open problem.
In [14] it is shown that an observer that is asymptotically
recovering the state when the parameters are exactly measured,
is input-to-state stable (ISS) [10, 18] with respect to mismatch
between the true and the available parameters. However, [14]
does not study the observer synthesis nor the output-based
stabilization problem. These two important problems will be
solved in this paper.

Closely related to LPV systems are switched linear (SL)
systems and piecewise affine (PWA) systems, which can
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be perceived as a subclass of LPV systems in which the
parameters only take afinitenumber of values. Observer-based
control design for SL systems has been considered in [5] under
the assumption of havingexact knowledge of the parameter
values. In case of unknown parameters, [1] proposes design
conditions for observers that include an estimation procedure
for the parameters. In [11, 19] observers and observer-based
controllers were designed for PWA systems based on LMIs.
In this case the parameters are also unknown as they depend
on the state variable that has to be estimated. However, as for
SL and PWA systems the number of parameter values is finite,
these results are not applicable to general LPV systems.

This paper provides a solution to the open problem of
output-based controller design for discrete-time LPV systems
with uncertain parameters. The main contributions are LMI-
based conditions for the separate design of state observers
and input-to-state stabilizing state feedbacks for discrete-time
LPV systems. We prove that the resulting closed-loop system
is globally exponentially stable for some level of mismatch
between the true parameters and the available ones. The
flexibility in our framework allows to make tradeoffs between
the level of mismatch and the transient performance of the
closed loop in terms of the decay factor. Moreover, the
level of parameter uncertainty can be maximized while still
guaranteeing closed-loop stability.

II. N OTATION AND BASIC DEFINITIONS

R, R≥0, and N are the field of real numbers, the set
of non-negative reals and the set of non-negative integers,
respectively. Thei-th entry of a real vectorx is denoted byxi

(subscripts are used for denoting discrete-time dependence).
We denote by‖x‖ =

√
xT x the Euclidean norm ofx in

R
n, whereMT denotes the transpose for a vector or matrix

M , and by‖x‖∞ its infinity norm given bymaxi |xi|. For
a sequence{vk}k∈N with vk ∈ R

n we denote its supremum
norm supk∈N ‖vk‖ by ‖v‖∞. For a matrixM ∈ R

n×m we
denote its spectral norm

√

λmax(MT M) by ‖M‖, where
λmax(MT M) denotes the largest eigenvalue ofMT M . When
a matrixP is positive definite (including symmetry), we write
P ≻ 0. If it is positive semi-definite, we useP � 0. Similarly,
for (semi-)negative definiteness we write≺ and�. By 0 and
1 we denote the zero and the identity matrix of appropriate
dimensions.

A function ϕ : R+ → R+ belongs to classK if it is
continuous, strictly increasing andϕ(0) = 0 and to class
K∞ if additionally ϕ(s) → ∞ as s → ∞. A function
β : R+ × R+ → R+ belongs to classKL if for each fixed
k ∈ R+, β(·, k) ∈ K and for each fixeds ∈ R+, β(s, ·)



is decreasing andlimk→∞ β(s, k) = 0. Consider now the
discrete-time nonlinear systems

xk+1 = G(xk, ωk), (1)

and
xk+1 = Gv(xk, vk, ωk), (2)

where xk ∈ R
n is the state,vk ∈ R

dv is an unknown
disturbance input andωk ∈ R

dω is an uncertainty parameter
at discrete timek ∈ N. G : R

n × R
dω → R

n and
Gv : R

n×R
dv ×R

dω → R
n are arbitrary nonlinear functions.

We assume thatωk ∈ Ω, k ∈ N for some setΩ ⊂ R
dω .

Definition 1: [10, 18] The system (1) with uncertainty set
Ω is called globally asymptotically stable (GAS), if there exists
aKL-functionβ such that, for eachx0 ∈ R

n and all{ωk}k∈N

with ωk ∈ Ω, k ∈ N, it holds that the corresponding state
trajectory satisfies‖xk‖ ≤ β(‖x0‖, k) for all k ∈ N. If β

can be taken of the formβ(s, k) = dsλk for somed ≥ 0
and 0 ≤ λ < 1 the system (1) with uncertainty setΩ is
called globally exponentially stable (GES). The system (2)
with uncertainty setΩ is said to be input-to-state stable (ISS)
with respect tov if there exist aKL-function β and aK-
function γ such that, for eachx0 ∈ R

n, all {vk}k∈N and all
{ωk}k∈N with ωk ∈ Ω, k ∈ N, it holds for all k ∈ N that
‖xk‖ ≤ β(‖x0‖, k) + γ(‖v‖∞).

We call λ a decay factorfor (1) and the functionγ an ISS
gain of (2). Next we state sufficient conditions for ISS using
so-calledISS Lyapunov functions. The proofs are omitted for
shortness, but can be based on [10, 13] by adopting parameter-
dependent Lyapunov functions.

Theorem 1: Let d1, d2 ∈ R≥0, let a, b, c, µ ∈ R>0 with
c ≤ b and letα1(s) := asµ, α2(s) := bsµ, α3(s) := csµ and
σ ∈ K. Furthermore, letV : R

n × R
dω → R≥0 be a function

such that

α1(‖x‖) ≤ V (x, ω) ≤ α2(‖x‖) (3a)

V (Gv(x, v, ω1), ω2) − V (x, ω1) ≤ −α3(‖x‖) + σ(‖v‖)
(3b)

for all x ∈ R
n, all v ∈ R

dv andω, ω1, ω2 ∈ Ω. Then system
(2) with uncertainty setΩ is ISS with respect tov. In case
(3a) andV (G(x, ω1), ω2) − V (x, ω1) ≤ −α3(‖x‖) hold for
all x andω, ω1, ω2 ∈ Ω, then system (1) with uncertainty set
Ω is GES with decay factor1 − c

b ∈ [0, 1).
A function V that satisfies (3) is called anISS Lyapunov
function.

III. PROBLEM STATEMENT

We consider discrete-time linear parameter-varying (LPV)
systems given by

xk+1 = A(ρk)xk + Buk (4a)

yk = Cxk + Duk (4b)

with xk ∈ R
n, yk ∈ R

m and uk ∈ R
r the state, output and

control input at discrete timek ∈ N, ρk ∈ R
L is a time-

varying parameter andA(ρ) ∈ R
n×n for eachρ, B ∈ R

n×r,
C ∈ R

m×n, D ∈ R
m×r. The parameterρk, k ∈ N lies in

some setΘ ⊂ R
L and we assume thatA : Θ → R

n×n

can be written in the polytopic formA(ρ) =
∑N

i=1 ξi(ρ)Ai

for certain continuous functionsξi : Θ → R and matrices
Ai ∈ R

n×n, i = 1, . . . , N . In addition we assume that the
mapping ξ : Θ → R

N given by ξ := (ξ1, . . . , ξN )⊤ is
such thatξ(Θ) ⊂ S with S = {µ ∈ R

N | µi ≥ 0, i =
1, . . . , N and

∑N
i=1 µi = 1}. Hence,A(ρ) lies for eachρ ∈ Θ

in the convex hullCo{A1, . . . , AN}.
In this paper, we focus on the situation where the true (time-

varying) parameterρk is not available, but only an estimated
parameter̂ρk ∈ Θ fulfilling ‖ρk− ρ̂k‖∞ ≤ ∆ is known, where
∆ is some nonnegative constant indicating the uncertainty
level.

Problem 1: Design an observer-based controller

x̂k+1 = A(ρ̂k)x̂k + Buk + L(ρ̂k)(yk − ŷk) (5a)

ŷk = Cx̂k + Duk (5b)

uk = K(ρ̂k)x̂k (5c)

with L(ρ̂k) =
∑N

i=1 ξi(ρ̂k)Li and K(ρ̂k) =
∑N

i=1 ξi(ρ̂k)Ki

by appropriately choosing the gainsLi andKi, i = 1, . . . , N

such that the closed-loop system (4)-(5) is GAS when the
uncertainty satisfies‖ρk − ρ̂k‖∞ ≤ ∆ and ρ̂k ∈ Θ for all
k ∈ N.

IV. OBSERVERDESIGN

We first focus on the estimation of the statexk using a
polytopic observer of the form
{

x̂k+1 = A(ρ̂k)x̂k + Buk + L(ρ̂k)(yk − ŷk)
ŷk = Cx̂k + Duk,

(6)
where ρ̂k ∈ Θ and possiblyρk 6= ρ̂k. The estimation error
ek:=xk − x̂k is governed by

ek+1 = Ae(ρ̂k)ek + vk (7)

with Ae(ρk) :=
∑N

i=1 ξi(ρk)Ãi, whereÃi = Ai − LiC and

vk = (A(ρk) − A(ρ̂k)
︸ ︷︷ ︸

=:∆A(ρk,ρ̂k)

)xk (8)

Theorem 2: Assume that there exist symmetric matrices
Pi ∈ R

n×n, matricesGi ∈ R
n×n, Fi ∈ R

n×m, i = 1, . . . , N

and a scalarσev ≥ 1 satisfying for all i, j = 1, . . . , N the
LMIs





GT
i + Gi − Pj 0 GiAi − FiC Gi

0 1 1 0

AT
i GT

i − CT F T
i 1 Pi 0

GT
i 0 0 σev1



 ≻ 0, (9)

then the error dynamics (7) with uncertainty setΘ for ρ̂ and1

Li = G−1
i Fi is ISS with respect tov with ISS gainγ(s) =

σevs, s ∈ R≥0. Moreover,Ve(ek, ξ̂k) = eT
k (

∑N
i=1 ξ̂i

kPi)ek is
an ISS Lyapunov function that satisfies for allξ̂k, ξ̂k+1 ∈ S,
ek ∈ R

n, vk ∈ R
n

Ve(ek+1, ξ̂k+1) − Ve(ek, ξ̂k) ≤ −‖ek‖
2 + σev‖vk‖

2
, (10a)

‖ek‖
2 ≤ Ve(ek, ξ̂k) ≤ σev‖ek‖

2
. (10b)

1The LMIs (9) imply thatGi is invertible for eachi = 1, . . . , N as is
shown in the proof.
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Proof: The feasibility of the LMIs (9) for alli, j =
1, . . . , N implies that

[
1 1

1 Pi

]

≻ 0 and
[

GT
i + Gi − Pj Gi

GT
i σev1

]

≻ 0 (11)

are satisfied for alli, j = 1, . . . , N . From (11) it follows that
Pi ≻ 1 and GT

i + Gi − Pj ≻ σ−1
ev GiG

T
i � 0 for all i, j =

1, . . . , N . Since(P
− 1

2

j GT
i −P

1

2

j )T (P
− 1

2

j GT
i −P

1

2

j ) � 0 implies

GiP
−1
j GT

i � Gi + GT
i − Pj , (12)

it follows now thatGiP
−1
j GT

i � σ−1
ev GiG

T
i and thusPj �

σev1, j = 1, . . . , N , becauseGi is invertible. Invertibility of
Gi follows fromGT

i +Gi ≻ Pj as it would imply forGix = 0
that xT Pjx ≤ 0 and thusx = 0. As such, we have (10b) for
all ek ∈ R

n and all ξ̂k ∈ S.
To prove (10a), note that feasibility of the LMIs (9) gives

together with (12) for alli, j the LMI




GiP
−1

j GT
i 0 GiAi − FiC Gi

0 1 1 0

AT
i GT

i − CT F T
i 1 Pi 0

GT
i 0 0 σev1



 ≻ 0. (13)

This is equivalent for alli, j to

NijΨijN
T
ij ≻ 0 with Nij =







GiP
−1
j 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1







(14)

and

Ψij =







Pj 0 Pj(Ai − LiC) Pj

0 1 1 0

(Ai − LiC)T Pj 1 Pi 0

Pj 0 0 σev1







.

Hence, we have that for alli, j Ψij ≻ 0. For shortness we
write ξ̂i

k = ξi(ρ̂k) and ξi
k = ξi(ρk). Multiplying Ψij ≻ 0

by ξ̂i
k and summing, multiplying bŷξj

k+1 and summing, and
using the Schur lemma yield

[
Pk 0

0 σev1

]

−
[

Ae(ρ̂k)T
1

1 0

] [
Pk+1 0

0 1

] [
Ae(ρ̂k) 1

1 0

]

≻ 0

with Pk := P (ξ̂k) :=
∑N

i=1 ξ̂i
kPi and Pk+1 :=

P (ξ̂k+1) =
∑N

j=1 ξ̂
j
k+1Pj . Note that we used̂ξk, ξ̂k+1 ∈

S (due to ρ̂k, ρ̂k+1 ∈ Θ). Hence, for all ek ∈
R

n and vk ∈ R
n

(
eT

k vT
k

)
M

(
ek

vk

)

≥ 0 with

M =
[

−1 + Pk −Ae(ρ̂k)T Pk+1Ae(ρ̂k) −Ae(ρ̂k)T Pk+1

−Pk+1Ae(ρ̂k) −Pk+1 + σev1

]

.

This implies for allek and allvk that

(Ae(ρ̂k)ek + vk)TPk+1(Ae(ρ̂k)ek + vk) − eT
k Pkek ≤

− eT
k ek + σevvT

k vk.

This can be rewritten as (10a). We could base ourselves now
on Theorem 1 to obtain ISS, but we proceed here to explicitly
compute the ISS gain. From (10a) and (10b), one has

Ve(ek+1, ξ̂k+1) ≤ (1 − 1
σev

)Ve(ek, ξ̂k) + σev‖vk‖2.

(15)

Applying (15) repetitively leads to

Ve(ek, ξ̂k) ≤

(1 − 1

σev
)kVe(e0, ξ̂0) + σev

k−1∑

l=0

(1 − 1

σev
)k−l−1‖vl‖2

≤ (1 − 1

σev
)kVe(e0, ξ̂0) + σ2

ev‖v‖2
∞.

Finally, by using again (10b), taking the square root, we obtain
the inequality

‖ek‖ ≤ √
σev(1 − 1

σev
)k/2‖e0‖ + σev‖v‖∞. (16)

This inequality shows ISS with respect tov with linear ISS
gain γ(s) = σevs, s ∈ R≥0.

In case the conditions of Theorem 2 hold, the polytopic
observer (6) guarantees GES of the error dynamics (7) in
the nominal case whereρk = ρ̂k for all k ∈ N (as then
vk = 0, k ∈ N). In caseρk 6= ρ̂k, ISS (see (16)) guarantees
only a steady state estimation errore that is smaller than
δσev supk∈N ‖xk‖ with δ := sup{∆A(ρ, ρ̂) | ‖ρ− ρ̂‖∞ ≤ ∆}.
Hence, a kind ofsteady state relative errorcan be obtained
in the sense that

lim supk→∞ ‖ek‖
lim supk→∞ ‖xk‖

≤ δσev

as was used also in [11] in the context of observer design for
discontinuous PWA systems.

Remark 1: Note that the normalization of certain constants
in (10) to1 is without loss of generality as any ISS Lyapunov
function Ve for (7) can be multiplied by a sufficiently large
positive constant to satisfy (10).

As mentioned, if the hypotheses of Theorem 2 are satisfied,
the polytopic observer (6) guarantees GES of the error
dynamics in thenominal case (ρk = ρ̂k for all k ∈ N).
Actually, the observer satisfies the matrix inequalities

(Ai −LiC)T P̃j(Ai −LiC)− P̃i ≺ 0, i, j = 1, . . . , N and

P̃i ≻ 0, i = 1, . . . , N, (17)

which are both necessary and sufficient conditions for
the existence of a parameter-dependent quadratic Lyapunov
function proving GES of the estimation error dynamics in the
nominal case (̂ρk = ρk) [7, 14]. Interestingly, the nominal
conditions in (17) also guarantee that the hypotheses of
Theorem 2 are satisfied (as will be shown in Theorem 3
below). This shows thenon-conservatismof the LMIs (9) as
the existence of anominalobserver for theexactLPV system,
with a parameter-dependent quadratic Lyapunov function
proving GES of the error dynamics, is sufficient for (9) to
hold. This also shows that any GES observer for the exact
LPV system has some degree of robustness.

Theorem 3: [9] If there exist P̃i and Li, i = 1, . . . , N

such that (17) holds, then there are symmetric matricesPi

and matricesFi, Gi, i = 1, . . . , N and a scalarσev satisfying
for all i, j = 1, . . . , N the LMIs (9).
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V. STATE FEEDBACK DESIGN

We now focus on the design of a state feedback for (4a)
using an estimated state given by

uk = K(ρ̂k)x̂k = K(ρ̂k)(xk − ek) (18)

with K(ρ̂k) =
∑N

i=1 ξi(ρ̂k)Ki and ek the estimation error.
This results in the closed loop

xk+1 = Ax(ρ̂k)xk + vk − BK(ρ̂k)ek (19)

with, as before,vk is given by (8) and

Ax(ρ̂k) =

N∑

i=1

ξi(ρ̂k) (Ai + BKi)
︸ ︷︷ ︸

ABKi

Again, we sometimes writêξi
k = ξi(ρ̂k) andξi

k = ξi(ρk). We
now study ISS of (19).

Theorem 4: Assume that there exist symmetric matrices
Yi ∈ R

n×n, matricesZi ∈ R
m×n, i = 1, . . . , N and scalars

σxv, σxe, µ with µ > 0 and σxv ≥ 1 satisfying for i, j =
1, . . . , N the LMI conditions






Yi 0 0 YiA
T
i + ZT

i BT Yi

0 σxv1 0 1 0

0 0 σxe1 −ZT
i BT

0

AiYi + BZi 1 −BZi Yj 0

Yi 0 0 0 1




 ≻ 0

(20a)
and for i = 1, . . . , N

Yi � µ1, (20b)

then the closed-loop system (19) with uncertainty setΘ for
ρ̂ and Ki = ZiY

−1
i , i = 1, . . . , N , is ISS with respect toe

and v and Vx(xk, ξ̂k) = xT
k

∑N
i=1 ξ̂i

kSixk with Si = Y −1
i ,

i = 1, . . . , N , is an ISS Lyapunov function that satisfies for
all ξ̂k, ξ̂k+1 ∈ S, all xk ∈ R

n, all ek ∈ R
n and allvk ∈ R

n

Vx(xk+1, ξ̂k+1) − Vx(xk, ξ̂k) ≤
− ‖xk‖2 + σxv‖vk‖2 + µ−2σxe‖ek‖2 (21a)

and

‖xk‖2 ≤ Vx(xk, ξ̂k) ≤ σxv‖xk‖2. (21b)

Proof: Assume that the LMIs in (20) are feasible and
define Si := Y −1

i . Premultiply the LMIs in (20a) byT =
diag(Si,1, Si,1,1), postmultiply it by T T = T and apply
the Schur lemma to arrive fori, j = 1, . . . , N at





Si − 1 0 0 (Ai + BKi)
T

0 σxv1 0 1

0 0 σxeS2
i −KT

i BT

Ai + BKi 1 −BKi S−1

j



 ≻ 0. (22)

Multiply (22) by ξ̂i
k, sum for i = 1, . . . , N (note that

∑N
i=1 ξ̂i

k = 1, sinceρ̂k ∈ Θ) and use the Schur lemma pivoting
again around the south east block to obtain forj = 1, . . . , N





T11 (•)T (•)T

−Sj

∑N

i=1
ξ̂i

kABKi −Sj + σxv1 (•)T

T13 (
∑N

i=1
ξ̂i

kBKi)
T Sj T33



 ≻ 0, (23)

where
T11 = −(

∑N

i=1
ξ̂i

kABKi)
T Sj(

∑N

i=1
ξ̂i

kABKi) +
∑N

i=1
ξ̂i

kSi − 1,

T13 = (
∑N

i=1
ξ̂i

kBKi)
T Sj(

∑N

i=1
ξ̂i

kABKi), and
T33 = −(

∑N

i=1
ξ̂i

kBKi)
T Sj(

∑N

i=1
ξ̂i

kBKi) + σxe

∑N

i=1
ξ̂i

kS2
i .

Using that S2
i � µ−2

1, i = 1, . . . , N due to the second
LMIs in (20), multiplying (23) by ξ̂

j
k+1 and summing for

j = 1, . . . , N (note that
∑N

j=1 ξ̂
j
k+1 = 1, since ρ̂k+1 ∈ Θ)

leads (in a similar way as we obtained (10a) in the proof of
Theorem 2) to

Vx(xk+1, ξ̂k+1) − Vx(xk, ξ̂k) ≤
− ‖xk‖2 + σxv‖vk‖2 + µ−2σxe‖ek‖2. (24)

As (22) impliesSi ≻ 1 and Si � σxv1, we have for all
xk ∈ R

n and ξk ∈ S that (21b) holds. From Theorem 1 it
follows now that the closed-loop system is ISS with respect
to v ande.

The following corollary applies when the full statexk is
known (i.e.ek = 0 for all k ∈ N).

Corollary 1: Let the hypotheses of Theorem 4 be satisfied.
Then the LPV system consisting of (4a) and the state feedback
uk = K(ρ̂k)xk with uncertainty setΘ for ρ and Ki =
ZiY

−1
i , i = 1, . . . , N is GES for all uncertainties satisfying

‖∆A(ρ, ρ̂)‖ ≤ δ, whenδ < 1
σxv

.
Proof: From (21a) with ek = 0, k ∈ N and vk =

∆A(ρk, ρ̂k)xk it follows that

Vx(xk+1, ξ̂k+1) − Vx(xk, ξ̂k) ≤ −(1 − σxvδ)‖xk‖2. (25)

Together with (21b) this proves GES on the basis of
Theorem 1.

An analogous result to Theorem 3 can also be shown for the
state feedback design. In particular, a nominal state feedback
uk = K(ρk)xk with K(ρk) =

∑N
i=1 ξi(ρk)Ki (i.e. without

estimation error (ek = 0, k ∈ N) and exact knowledge of the
parameters,ρk = ρ̂k, k ∈ N) coupled to the LPV system (4a)
is GES if there areKi, S̃i, i = 1, . . . , N such that

(Ai +BKi)
T S̃j(Ai+BKi)− S̃i ≺ 0, i, j = 1, . . . , N and

S̃i ≻ 0, i = 1, . . . , N. (26)

Clearly, a state feedback (18) that renders (19) ISS (proved
by parameter-dependent quadratic ISS Lyapunov functions)
certainly satisfies (26). Interestingly, the converse alsoholds in
the sense that anominally stabilizing state feedback for (4a)
satisfying (26) has some robustness properties in the sensethat
(21) holds for someVx and even stronger, the LMIs in (20)
are feasible. This clearly indicates the non-conservatismof the
derived LMIs in Theorem 4. However, note that (26) does not
allow any minimization of the ISS gains, while the results of
Theorem 4 do.

Theorem 5: [9] Suppose that there existKi, S̃i, i =
1, . . . , N such that (26) is satisfied. Then there are symmetric
matrices Yi and matricesZi, i = 1, . . . , N and scalars
σxv, σxe, µ with µ > 0 and σxv ≥ 1 satisfying the LMIs
(20) for i, j = 1, . . . , N .

VI. OBSERVER-BASED CONTROL DESIGN

Next we will show that the separate design of the observer
as in section IV and a state feedback as in section V leads to
a stabilizing output-based controller for some nontriviallevel

4



of uncertaintyδ := sup{‖∆A(ρ, ρ̂)‖ | ‖ρ − ρ̂‖∞ ≤ ∆}. The
closed-loop system is given by

(
xk+1

ek+1

)

=
[

A(ρk) + BK(ρ̂k) −BK(ρ̂k)
A(ρk) − A(ρ̂k) A(ρ̂k) − L(ρ̂k)C

] (
xk

ek

)

.

(27)
Theorem 6: Let an observer (6) that satisfies the

hypotheses of Theorem 2 and a state feedback law that
satisfies the hypotheses of Theorem 4 be given. Then for any
max{1− 1

σev
, 1− 1

σxv
} ≤ ε < 1 and any0 < β ≤ 1−(1−ε)σev

µ−2σxe

the closed-loop system (27) is GES with decay factor equal
to

√
ε for all uncertainties satisfying

‖∆A(ρ, ρ̂)‖ ≤ δ :=

√

β (1 − (1 − ε)σxv)

σev + βσxv
.

Proof: Consider the candidate Lyapunov function
Vβ(xk, ek, ξ̂k) := βVx(xk, ξ̂k)+Ve(ek, ξ̂k) for the closed-loop
system (27) withβ > 0. From (10) and (21) and noting that
vk = ∆A(ρk, ρ̂k)xk with

δ = sup{‖∆A(ρ, ρ̂)‖ | ‖ρ − ρ̂‖∞ ≤ ∆}

we have that

∆Vβ(xk, ek, ξ̂k, ξ̂k+1) ≤
(−β + βσxvδ2 + σevδ2)‖xk‖2 − (1 − βµ−2σxe)‖ek‖2,

(28)

where ∆Vβ(xk, ek, ξ̂k, ξ̂k+1) := Vβ(xk+1, ek+1, ξ̂k+1) −
Vβ(xk, ek, ξ̂k) with (xT

k+1, e
T
k+1)

T as in (27). To obtain
GES with decay factor

√
ε it suffices to guarantee

Vβ(xk+1, ek+1, ξ̂k+1) ≤ εVβ(xk, ek, ξ̂k) asVβ can be bounded
by quadraticK functionsα1(s) = as2 andα2(s) = bs2 as in
(3a) in the norm‖(xT

k , eT
k )T ‖. To obtain this inequality it is

sufficient to have

∆Vβ(xk, ek, ξ̂k, ξ̂k+1) ≤ −(1 − ε)(βσxv‖xk‖2 + σev‖ek‖2),
(29)

becauseVβ(xk, ek, ξ̂k) ≤ βσxv‖xk‖2+σev‖ek‖2. Due to (28),
the inequality (29) holds when (i)β − βσxvδ2 − σevδ2 ≥
(1 − ε)βσxv and (ii) 1 − βµ−2σxe ≥ (1 − ε)σev. Obviously,
under the hypotheses of the theorem these conditions are true,
which completes the proof.

It is of interest to find the Lyapunov functionVβ that
provides the largest robustness in terms ofδ. To maximize
the value forδ2 (for a fixed value of the decay factor

√
ε) it

is clear that we have to maximizef(β) := β
σev+βσxv

. Since
df(β)

dβ = σev

(σev+βσxv)2 ≥ 0, the maximum is obtained for the

largest allowable value ofβ, which is 1−(1−ε)σev

µ−2σxe

and thus the
maximum ofδ is

δ(ε) =

√

(1 − [1 − ε]σev)(1 − [1 − ε]σxv)

µ−2σxeσev + (1 − [1 − ε]σev)σxv
. (30)

Hence, we obtained the following corollary.
Corollary 2: Let an observer (6) that satisfies the

hypotheses of Theorem 2 and a state feedback law that
satisfies the hypotheses of Theorem 4 be given. Then for any
max{1 − 1

σev

, 1 − 1
σxv

} ≤ ε < 1 the closed-loop system (27)

is GES with decay factor equal to
√

ε for all uncertainties
satisfying‖∆A(ρ, ρ̂)‖ ≤ δ(ε) with δ(ε) as in (30).

Suppose we now would like to find the value ofε such that
the admissible uncertainty levelδ(ε) is maximal. Since it can
be inspected thatdδ2(ε)

dε > 0 for anymax{1− 1
σev

, 1− 1
σxv

} ≤
ε < 1, maximizing robustness requires maximizing (actually
taking supremum of)ε and thus taking it close to1. This yields
that the maximal value ofδ can become arbitrarily close to

δ(1) =

√
1

µ−2σxeσev + σxv
, (31)

while still guaranteeing stability. Hence, for maximizing
robustness in terms of maximizingδ(ε), we should maximize
ε meaning that the performance in terms of the decay factor√

ε is worst. As such, we encountered a “classical” tradeoff
between robustness and performance.

The reasoning above maximizes robustness forfixedvalues
of σxv, σev andσxe. Since we have determined the maximum
δ(1) as in (31) given theseσ’s, we can now optimize
robustness by appropriately selecting the gainsLi and Ki,
i = 1, . . . , N . From (31) it is clear that we have to
minimize µ−2σxeσev + σxv to get the maximal value for the
uncertainty level (just below)δ(1) =

√
1

µ−2σxeσev+σxv
, while

still guaranteeing GES (for decay factor just below1). This
gives rise to the following procedure to get maximal robustness
in the mismatch between the scheduling parameterρ̂k and the
actual oneρk as reflected inδ, while still guaranteeing GES.

Design procedure

Step 1 : Minimizeσev subject to (9) fori, j = 1, . . . , N .
This gives the minimumσ∗

ev and the corresponding
observer gainsLi, i = 1, . . . , N .

Step 2 : Givenσ∗
ev as in Step 1. Fixµ > 0 and minimize

the expressionµ−2σxeσ
∗
ev +σxv subject to the LMIs

given in (20). This results in the feedback gainsKi,
i = 1, . . . , N .

The optimization problems in Step 1 and 2 are convex
problems as we are minimizing linear costs subject to LMI
constraints. Step 2 might even be extended by performing a
line search inµ and applying the above procedure repetitively.
Once, the minimal valueµ∗−2σ∗

xeσ
∗
ev + σ∗

xv is found, one
can on the basis of Theorem 6 and (30) still make tradeoffs
between transient performance in terms of the decay factor√

ε and robustness in terms ofδ(ε). Letting ε increase
from max{1− 1

σev
, 1− 1

σxv
} (maximal performance, minimal

robustness) to1 (minimal performance, maximal robustness),
tradeoff curves between performance and robustness are
obtained as was already indicated in Corollary 2.

VII. I LLUSTRATIVE EXAMPLE

Consider the LPV system (4) with

A(ρk) =

[
0.25 1 0
0 0.1 0
0 0 0.6 + ρk

]

, B =





1
0
1



 ,

C = [1 0 2], D = 0
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and ρk ∈ [0 , 0.5], k ∈ N. In this case we can take
the functionsξ1(ρ) = 0.5−ρ

0.5 and ξ2(ρ) = ρ
0.5 with A1 =

A(0) and A2 = A(0.5). The observer is designed using
Theorem 2 along with the optimization problem in Step
1. The optimal solution is given byσ∗

ev = 5.8277 with
observer gainsL1 =

[
−0.0835 −0.0011 0.3870

]T
and

L2 =
[
−0.0835 −0.0011 0.7094

]T
. With this optimal

observer and the associated slope of the linear ISS gainσ∗
ev , a

line search involvingµ > 0 is performed in order to minimize
the costJ = µ−2σxeσ

∗
ev + σxv subject to the LMIs given

in (20) for all i, j (Step 2). Fig. 1 shows the minimum of
J for each fixedµ, which is the smallest forµ∗ = 0.2986
yielding σ∗

xe = 0.2663 and σ∗
xv = 13.9284 and corresponds

to the controller gainsK1 = [−0.0327 − 0.1241 − 0.2387],
K2 = [0.0005 − 0.0010 − 0.6148].

As a consequence, the maximum level of uncertainty is

δ∗max =

√

1

µ∗−2σ∗
xeσ

∗
ev + σ∗

xv

= 0.1786.

Hence, for∆A(ρk, ρ̂k) = |ρk − ρ̂k| ≤ δ < 0.1786 GES of
the closed-loop system (27) is guaranteed (with a decay factor
close to1). Letting ε increase frommax{1− 1

σ∗

ev

, 1− 1
σ∗

xv

} to
1 leads to the tradeoff curves between performance in terms of
the decay factor

√
ε and robustness to uncertainty∆A(ρk, ρ̂k)

in terms ofδ as depicted in Fig. 2.

VIII. C ONCLUSIONS

In this paper the design of robustly stabilizing output-
based feedback controllers is considered for discrete-time LPV

systems in which the scheduling parameters are only known
up to a given precision. The output-based controllers are
obtained using a separate design of the observer and the
state feedback and we showed that the interconnection of the
LPV plant, observer and state feedback leads to a globally
exponentially stable closed-loop system for certain levels of
mismatch between estimated and true parameters. The non-
conservatism of our approach is demonstrated by showing that
well known conditions for nominally stabilizing observersand
feedbacks (i.e. without mismatch between true and available
parameters) imply our LMI-based conditions. The flexibility
in the framework allows to construct the controller that
guarantees global exponential stability for the largest level of
parameter uncertainty and to make tradeoffs between transient
performance in terms of decay factors and robustness with
respect to parameter uncertainty.
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