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Observer-Based Control of Discrete-Time LPV
Systems with Uncertain Parameters

W.P.M.H. Heemels, J. Daafouz, G. Millerioux

Abstract—In this paper LMI-based design conditions are be perceived as a subclass of LPV systems in which the
presented for observer-based controllers that stabilize idcrete- parameters only takefanite number of values. Observer-based
time LPV systems in the situation where the parameters are control design for SL systems has been considered in [5]unde

not exactly known, but are only available with a finite accuray. th ti f havi tk led f th ¢
The presented framework allows to make tradeoffs between & € assumption ol havingxactknowledge ot the parameter

admissible level of parameter uncertainty on the one hand ah  Values. In case of unknown parameters, [1] proposes design
the transient performance on the other. In addition, the lewl of conditions for observers that include an estimation praoed

parameter uncertainty can be maximized while still guaraneeing  for the parameters. In [11,19] observers and observerdbase

closed-loop stability. controllers were designed for PWA systems based on LMlIs.
Index Terms—LPV systems, output feedback and observers, In this case the parameters are also unknown as they depend
robust control, LMIs, separation principle on the state variable that has to be estimated. Howeveryas fo
SL and PWA systems the number of parameter values is finite,
|. INTRODUCTION these results are not applicable to general LPV systems.

Linear Parameter-Varying (LPV) systems and controllers 1 NiS Paper provides a solution to the open problem of
have received considerable attention from the contrgftPut-based controlier design for discrete-time LPV eyt

community in recent years [2—4,6,15-17]. When LpWith uncertain parameters. The main contributions are LMI-
controllers are implemented in ;)rz;lctice WO importarﬂased conditions for the separate design of state observers

properties need to be satisfied. First of all, the controll@"d input-to-state stabilizing state feedbacks for disetiene

needs to be output-based, as in practice it is rarely the cdge’ SyStems. We prove that the resulting closed-loop system

that the full state variable is available for feedback. Bety 'S 9lobally exponentially stable for some level of mismatch

the controller must be robust with respect to some degreedgtween the true parameters and the available ones. The

mismatch between the available and the true parameterg as fiRility in our framework allows to make tradeoffs betwee

real parameters are not always known exactly, although tﬁli? level of mismatch and the transient performance of the

is often assumed in the literature on LPV systems. This pajfepSed 100p in terms of the decay factor. Moreover, the
will address the design of stabilizing controllers for dée- level of parameter uncertainty can be maximized while still

time LPV systems that satisfy these two properties. guaranteeing closed-loop stability.

In [2,12] the continuous-time version of this problem
was considered, but, unfortunately, only conditions inmter Il. NOTATION AND BASIC DEFINITIONS
of bilinear matrix inequalities (BMIs) were presented. ¥nl

recently a solution was given in [8] using convex programgnin R, R0, and N are the field of real numbers, the set
. . : f non-negative reals and the set of non-negative integers,
techniques. In the discrete-time case output-based donf?

0 . . ; i
design for LPV systems for which the measured paramet r(rasj Egg:v?sly;:i';zgr}g?’ ggr?or&al ﬁggﬁg_g:qgogeed Zﬁjenc
do not exactly fit the real ones is at present an open problee\% P 9 P

. . . e denote by||z|| = VzTx the Euclidean norm of: in
In [14] it is shown that an observer that is asymptotlcallﬁ%n whereM%/Hdt!notes the transpose for a vector or matrix
.ret_:overingthe state when the parametgrs are exactly rTmhsuM’ and by |z its infinity norm given bymas; |z7|. For
is input-to-state stable (ISS) [10, 18] with respect to ndtch 'equence{vk}oljeN with o, € R” we denote itszsupremum

between the true and the available parameters. Howevdr, [§4Sm 1ok by [[v]loc. For a matrixM € R™™ we
does not study the observer synthesis nor the output-baSed " 3UPken [1Vk]l DY [V]loc.

B : 4 ndenote its spectral norm/Ap,q. (MTM) by | M|, where
stabilization problem. These two important problems wél b T AT AT !
solved in this paper. Amaz(MT M) denotes the largest eigenvalueldf’ M. When

Closely related to LPV systems are switched linear (S%matrixP is positive definite (including symmetry), we write

systems and piecewise affine (PWA) systems, which ¢ n~ 0 lf.'t IS positive semi definite, we.usE’ ~ 0. Similarly,
or (semi-)negative definiteness we writeand <. By 0 and

Maurice Heemels M Heenel s@ue.nl) is with the Hybrid 1 we denote the zero and the identity matrix of appropriate
grjddh Netwcijk_ed .;ySt?st hgr?up, _Il_Dhept.N t?]/lecl:hagical‘] r‘Iazngfine;eringimensions_

Inanoven niversi (o) ecnnology, e etnerlfanas. Jarmpaarouz . . i e, s
(j amal . daaf ouz@nsem i npl -nancy. fr) and Gilles Millerioux A.funCt'on P Rf - R_+ belongs to classC if it is
(gilles.millerioux@sstin. uhp-nancy.fr) are with CRAN, continuous, strictly increasing and(0) = 0 and to class
UMR CNRS 7039, Nanc_y University, France. This work was pdyti Koo if additionally 4,9(5) — o0 as s — o0o. A function
supported by the ANR project ArHyCo, ARPEGE, number ANR2EEGI ‘R R R. bel lassC L if f h fixed
004 and the European Committee through the EU-FP7 projecBYADIC B + xRy — Ry Dbelongs to clas IT Tor each rixe

(no. 248858). k € Ry, B(-, k) € K and for each fixeds € Ry, (5(s,-)



is decreasing andimy_... 8(s,k) = 0. Consider now the can be written in the polytopic formi(p) = vazlgi(p)Ai

discrete-time nonlinear systems for certain continuous functiong’ : © — R and matrices
A; € R*™*™ 4 =1,...,N. In addition we assume that the
i1 = G(@n, i), @ mapping¢ : © — RN given by ¢ = €, ...,eMT is
and such that¢(©) c S with S = {p € RN |t >0, i =
Try1 = GolTr, v, wi), (2 1,...,Nand SN ut = 1}. Hence,A(p) lies for eactp € ©

. . in the convex hullCo{A;,..., An}.

where z;, € R" is the state,u; € R is an unknown | this paper, we focus on the situation where the true (time-
disturbance input and, < R? is an uncertainty parametery5rying) parametep,, is not available, but only an estimated
at discrete timek € N. G : R" x R% — R" and parametep;, € O fulfilling ||pr — prllsc < A is known, where

. dy de, H i H . . . . . .
Gyt R" xR xR% — R™ are arbitrary nonlinear functions. A is some nonnegative constant indicating the uncertainty
We assume that, € Q, k € N for some sef) C R%. level.

Definition 1: [10, 18] The system (1) with uncertainty set pyoplem 1: Design an observer-based controller
Q is called globally asymptotically stable (GAS), if therdsx
a K L-function 3 such that, for eacl, € R™ and all{wy, } ren Tp+1 = A(pr)Er + Bur + L(pr)(yr — 9x)  (58)
with w, € Q, k eSHN,”it hol?ﬁ trhat ;[he corresponding state gs = CZr+ Dug (5b)
trajectory satisfied|zi|| < B(||zo||, k) for all k € N. If 3 . IR
can be taken of the forns(s, k) = dsA* for somed > 0 ue = Kpe)d (5¢)
and0 < A < 1 the system (1) with uncertainty s€t is with L(p,) = Zf;l & (pr)L; and K (py,) = Zij\il £ (pr) K
called globally exponentially stable (GES). The system (Bl appropriately choosing the gaidis and K;, i = 1,..., N
with uncertainty sef? is said to be input-to-state stable (ISSyuch that the closed-loop system (4)-(5) is GAS when the
with respect tov if there exist alCL-function 8 and ak-  uncertainty satisfiegpr — prlle < A andp, € © for all
function v such that, for eachy; € R”, all {vx}reny and all g ¢ N.
{wi }keny With wy € Q, k € N, it holds for all k € N that
[zl < B([zoll, k) +v([[v]o0)-

We call A a decay factorfor (1) and the functiony anISS V. OBSERVERDESIGN
gain of (2). Next we state sufficient conditions for ISS using Ve first focus on the estimation of the statg using a
so-calledISS Lyapunov functionghe proofs are omitted for Polytopic observer of the form
shortness, but can be based on [10, 13] by adopting paramet Méwr = Alpw)ie + Bue + L(pe)(ye —9n)
dependent Lyapunov functions. T O — Cliy +  Du,

Theorem 1: Let d;,dy € R>o, let a,b,c,p € Ry with (6)
c < band leta;(s) := as", aa(s) := bs", az(s) :=cs" and  where p, € © and possiblyp, # pr. The estimation error
o € K. Furthermore, let/ : R™ x R% — R be a function ¢,.=x, — 7, is governed by

such that 50)
Cht1 = Ae ﬁk er + Vg (7)
ai(|l]]) < V(w,w) < as(]|z]]) (32) N o )
V(Go(@,v,w1),ws) — V(w,w1) < —as([lz]) +o(o) Wit Aelpr) =352, £ (o) Ai, whered; = A; — L;C and
(3 vk = (A(pr) — A(pr))zx ®)
N—————
for all z € R”, all v € R* andw, wy, wy € Q. Then system —AA(pr, )

(2) with uncertainty sef? is ISS with respect ta. In case . . .
Theorem 2: Assume that there exist symmetric matrices

(33.) andV(G(m’w1)7w2) - V(x7w1) S —043(H$||) hOId f0r P c Rnxn matriCESG‘ c Rnxn E c Rnxm =1 N

all x andw, wy, ws € Q, then system (1) with uncertainty set * ' ’ ot LT

Q is GES with decay factot — ¢ € [0, 1). and a scalaw., > 1 satisfying for alli,j = 1,..., N the

A function V that satisfies (3) is called alS8S Lyapunov LMis
function GIr+G;-P;, 0 GA—-FC G;
0 1 1 0 0 9)
ATGT —CTFT 1 P, o |70 (
I1l. PROBLEM STATEMENT GT 0 0 Oevl
We consider discrete-time linear parameter-varying (LP\p)en the error dynamics (7) with uncertainty €efor 5 and
systems given by L; = Gi‘lFZ— is 1SS with respect t@ with ISS gainy(s) =
Fy T N &ip ;
Tp+1 = Alpr)xr + Bug (4a) Tevs S € R>o. Moreovgr,‘/;(ek,gk)__. e (X1 §pPi)ex is
an ISS Lyapunov function that satisfies for §ll, £x+1 € S,
yr = Czp+ Duy (4b) er € R, v, € R

with z, € R", yp. € R™ andu; € R” the StatLe’ output and Ve(enin, €r1) — Veler, &) < —llexl® + oeollve®,  (10a)
control input at discrete tim& € N, p, € R" is a time- 2 ¢ 2

. ! ) < Ve(ex, < Oew . 10b
varying parameter and(p) € R"*" for eachp, B € R"*", lerll™ < Ve(er, €k) < oevllec] (10b)
C € R™*", D € R™*". The parametepy, k € N lies in 11ne | \wis (9) imply thatG; is invertible for eachi — 1,..., N as is
some set® C RE and we assume thall : © — R™ ™  shown in the proof.



Proof: The feasibility of the LMIs (9) for alli,j; = Applying (15) repetitively leads to
1,..., N implies that

T4+G—P G Ve(er: &) <
[ 11 } >0and[ GI+G=F G 1o (1) (ek, Ex) -
@ i ev 1 R — 1 o
are satisfied for alf, j = 1,..., N. From (11) it follows that (1- > )*Ve(eo, &0) + ew Z(l - U—)k L2
P, =1andG! +G; — P; = 0. )G,GT = 0 for all i,j = v 1l=0 ev
1,...,N.Since(P; *GI'—P?)"(P; G- P}) = 0 implies < (1 — —)"V.(eo, &) + o2, ||v]]2.

UCU
G:P'GT - G; + GT — P, 12
S ’ (12) Finally, by using again (10b), taking the square root, weivbt

it follows now thatG,; P, 'GT = 0.'G;GT and thusP; < the inequality

oewl, 7 =1,..., N, becauses; is invertible. Invertibility of
G; follows fromGT +G; = P; as it would imply forG;z = 0 lewll < Voo — V2o + ownllofle.  (16)
that z” Pjz < 0 and thusz = 0. As such, we have (10b) for Oev

all e € R™ and all§;, € S. This inequality shows ISS with respect towith linear 1SS

To prove (10a), note that feasibility of the LMIs (9) give%ainy(s) = 08, S € Rxy. |
together with (12) for ali; j the LMI In case the conditions of Theorem 2 hold, the polytopic
GiP'GT 0 GiA-FC G observer (6) guarantees GES of the error dynamics (7) in
ATG’TECTFT } ;_ 8 = 0. (13) the nominal case wherep, = py for all k € N (as then
e ) o ool vy = 0, k € N). In casepy # pi, 1SS (see (16)) guarantees

only a steady state estimation errerthat is smaller than

This is equivalent for aIE,j to 506@ SUDLen kaH with § = SUp{AA(p,ﬁ) | Hp*ﬁHoo < A}

Ginfl 0 0O Hence, a kind ofsteady state relative errocan be obtained
, in the sense that
Ny NE - 0 with N;; = g (1) (1) g (14)
lim supy, .. [lex|
0 0 0 1 - < 0ep
J lim supy,_, o [|zx]]
an

P; 0 Pj(A—LiC) P as was_used also in [11] in the context of observer design for

0 1 1 0 discontinuous PWA systems.
U5 = - r.MTp. : . Remark 1: Note that the normalization of certain constants

(A, -L,C)'P; 1 P, 0 _ - N X
P 0 0 Tenl in (10) to 1 is without loss of generality as any ISS Lyapunov

. function V,, for (7) can be multiplied by a sufficiently large
Hencq, we have that for ail j ¥;; >~ 0. For shortness we positive constant to satisfy (10).
W”t?i § = &'(or) and g, = é’(thjM“'“p'y'”g Wiy >~ 0 As mentioned, if the hypotheses of Theorem 2 are satisfied,
by &j, and summing, multiplying by; ,, and summing, and yhe nolytopic observer (6) guarantees GES of the error
using the Schur lemma yield dynamics in thenominal case . = pi for all k& € N).

-

P, 0 Actually, the observer satisfies the matrix inequalities
M . L
Ae(ﬁk)T 1 Pk+1 0 -Ae(/sk) 1 o (A27L10> P](AszZC)f.Pj <0, Z,j:].,...,N and
1 0 0o 1 1 0 P,>0,i=1,....,N, (17)

with Py = NP(§k) = YN &P and Pry1 = which are both necessary and sufficient conditions for
P(&k+1) = ijlgiHPj. Note that we usedy, (w11 € the existence of a parameter-dependent quadratic Lyapunov
€

S (due to pi, pry1 € ©). Hence, for all e function proving GES of the estimation error dynamics in the

R" and vy € R” ( eI T )M €k > 0 with nominalcase f, = px) [7,14]. Interestingly, the nominal

) Tk b vk ) = conditions in (17) also guarantee that the hypotheses of

M= | "1+ Pr—Aelpr)” PeprAe(pr)  —Ac(pr)” Prt1 } Theorem 2 are satisfied (as will be shown in Theorem 3

L —Prt1Ac(Pr) ~Prt1+0evl - :

This implies for alle, and allvy, that below). This shows th@on-conservatisnof the LMIs (9) as
the existence of aominalobserver for thexactLPV system,

(Ac(pr)er +vr) T Pra1(Ac(pr)er + vi) — el Prex, < with a parameter-dependent quadratic Lyapunov function

—eler, + oepv} v proving GES of the error dynamics, is sufficient for (9) to

. . hold. This also shows that any GES observer for the exact
This can be rewritten as (10a). We could base ourselves nppy; system has some degree of robustness.

on Theorem 1 to obtain ISS, but we proceed here to explicitly Thegrem 3: [9] If there exist P, and Ly, i = 1,...,N

compute the ISS gain. From (10a) and (10b), one has  gych that (17) holds, then there are symmetric matriees

Vo(erst, épr1) < (1— %)Ve(ek,fk) + Oeol|vr]2- and matriced;, G;, i =1,..., N and a scalav., satisfying
° (15) foralli,j=1,...,N the LMIs (9).



V. STATE FEEDBACK DESIGN Tis = (N, &EBK)TS; (XN, €L Ask,), and

We now focus on the design of a state feedback for (48)3 = _(222\,:1éliB[gi)T‘sj(ZivzléliBKi) + 0w 20l 0SE
using an estimated state given by sing that 57 < p~*1, ¢ = 1,..., N due to the second
o ) LMIs in (20), multiplying (23) by ¢;,, and summing for
u = K(pr)2r = K(pr)(zx — ex) (18) j =1, . ,7N. (r?ote thath.V:1 éiﬂ = 1, Since/?k_lrl € 0)
with K(pr) = Zi]\il ¢ (pr)K; and e), the estimation error. leads (in a similar way as we obtained (10a) in the proof of
This results in the closed loop Theorem 2) to
Thi1 = Az (Pr)xr + vk — BK(pr)ex (19 Va(wrr, err) = Valaw, &) <
with, as beforey;, is given by (8) and — N2kl + oullvell® + 12 oxellerl”.  (24)
N o As (22) impliesS; = 1 and S; = 0,1, we have for all
Au(pr) =& (pr) (Ai + BK,) zr € R" and ¢, € S that (21b) holds. From Theorem 1 it
i=1 Anrcs follows now that the closed-loop system is ISS with respect
. . s i ; ; to v ande. m
Again, we sometimes writ€; = ¢*(px) and§;, = &' (px)- We  The following corollary applies when the full state, is
now study ISS of (19). _ _ ~ known (i.e.ex = 0 for all k € N).

Theorgm 4: Assume that ti\erg exist symmetric matricés Corollary 1: Let the hypotheses of Theorem 4 be satisfied.
Y; € R, matricesZ; € R™*", 7 = 1,..., N and scalars Then the LPV system consisting of (4a) and the state feedback
Ogv, Oges fb With 1> 0 and o, > 1 satisfying fori,j =, — K(p,)z), with uncertainty set® for p and K; =
L,..., N the LMI conditions Z;Y;',i=1,...,N is GES for all uncertainties satisfying

Y; 0 0 viAT +2zIBT v, [AA(p, p)ll <6, whend < L.
g Uzgl 01 Z%BT 8 <0 Proof: From (21a) withe, = 0, k € N and v, =
AY.+ Bz, 1 —Bz, v, o AA(pr, pr)wy it follows that
Y; 0 0 0 1 . R
20a)  Ve(@rr1, &) — Valor, &) < —(1 - ozl (25)
and fori =1,..., N Together with (21b) this proves GES on the basis of
Yi =y, (20b)  Theorem 1. N

then the closed-loop system (19) with uncertainty ®efor An analogous result to Theorem 3 can also be shown for the
pandK; = Z;Y',i=1,...,N, is ISS with respect te State feedback design. In particuAI[ar, a nominal state fedb
andv and V, (24, &) = 27 2N € Sizy with §; = v;!,  we = Klpr)ze with K(pr) = 52, € (pr) K (i-e. without
i=1,...,N, is an ISS Lyapunov function that satisfies fofStimation error¢, = 0, k € N) and exact knowledge of the
all &, §k+1 € S, all 2, € R", all e, € R” and allv, € R” parametersp;, = px, k € N) coupled to the LPV system (4a)
is GES if there ards;, S;, i =1,..., N such that
Vo (@rt1, o) — Va(n, &) <

Ai+BK;)"S;(Ai+BK;)—S5; <0, i,j=1,...,N and
— Nlzxll? + owollvell? + 1~ (Ai+ )" Si(Ai+ ) i,

20%”616”2 (21a) ~
S;>=0,i=1,...,N. (26)

and
) . ) Clearly, a state feedback (18) that renders (19) ISS (proved
le]l” < Va(@n, &) < owollzx ™ (21b) by parameter-dependent quadratic ISS Lyapunov functions)
Proof: Assume that the LMIs in (20) are feasible angertainly satisfies (2_6). Interes;i_ngly, the converse Alsids in
define S; := Y;~!. Premultiply the LMIs in (20a) byl = the_ sense that aominally stabilizing state fe_edpack for (4a)
diag(S;,1,5;,1,1), postmultiply it by 77 = T and apply satisfying (26) has some robustness properties in the seate

the Schur lemma to arrive farj = 1,..., N at (21) holds for somé/, and even stronger, the LMIs in (20)
r are feasible. This clearly indicates the non-conservatithe
Sia 1 00 1 8 (As +fKi) derived LMIs in Theorem 4. However, note that (26) does not
0 0 0.8  —KTBT =0. (22) allow any minimization of the ISS gains, while the results of
Ai+BK; 1 —BK; 5t Theorem 4 do. ~
Theorem 5: [9] Suppose that there exisk;, S;, ¢ =

Multiply (22) by &, sum fori = 1,...,N (note that

N2 N 7 1,...,N such that (26) is satisfied. Then there are symmetric
2= &1, = 1, sincep, € ©) and use the Schur lemma pivotingy atrices v; and matricesZ;, i = 1,...,N and scalars
again around the south east block to obtainfer 1,..., N GuosOpes i With 12 > 0 and o,, > 1 satisfying the LMIs

(20) fori,j=1,...,N.
T O O
—S; YN & Apk;  —Sj+oml (97 | =0, (23)
] o= VI. OBSERVERBASED CONTROL DESIGN
T1s (Zivzl ELBK;)TS; Tss

Next we will show that the separate design of the observer
where as in section IV and a state feedback as in section V leads to
Tin=—(CN, &Ask)TS; (XN i Apr,) + XN, €15 —1,  a stabilizing output-based controller for some nontrivéadel



of uncertaintyd := sup{||AA(p,p)|| | lp — Allc < A}. The is GES with decay factor equal tg’= for all uncertainties

closed-loop system is given by satisfying || AA(p, p)|| < d(e) with §(¢) as in (30).
Suppose we now would like to find the valueso$uch that
( Tyt ) _ { Alpr) + BK (pr) —BK(pr) } ( o, the admissible uncertainty levéle) is maximal Since it can
€k+1 Alpr) — Alpe)  A(pr) — L(pr)C ex ) ) be inspected 'thafitm > 0 for anymax{l1——,1— —} <

e < 1, maxrmrzrng robustness requires maxrmrzrng (actually
king supremum ofy and thus taking it close tb. This yields
t the maximal value of can become arbitrarily close to

Theorem 6: Let an observer (6) that satisfies thea
hypotheses of Theorem 2 and a state feedback law t
satisfies the hypotheses of Theorem 4 be given. Then for any
max{l— -1 1--L} <e<landany < g < =027 5(0) \/ 1

W

,20_

the closed- Ioop system (27) is GES with decay factor equal
to /e for all uncertainties satisfying

“204e0c0 + Oz (1)
while still guaranteeing stability. Hence, for maximizing
B(1—(1=¢e)om) robustness in terms of maximizirge), we should maximize
[AA(p, p)|| < 6 := p— £ meaning that the performance in terms of the decay factor
v o /£ is worst. As such, we encountered a “classical” tradeoff
Proof: Consider the candidate Lyapunov functiometween robustness and performance.
Vi (1, ex, &) = Vi (ak, &)+ Ve(ex, &) for the closed-loop  The reasoning above maximizes robustnessifedvalues
system (27) with3 > 0. From (10) and (21) and noting thatof ¢, 0., ando,.. Since we have determined the maximum

v = AA(pk, pr)xr With 5(1) as in (31) given theses’s, we can now optimize
. . robustness by appropriately selecting the sand K,
3 = {840, ) o~ flle < A} e . o (31) . is clear that we have 10
we have that minimize = 20,.04, + 04, 10 get the maximal value for the
o uncertainty level (just belowj(1) = ,/ﬁ, while
AV (x, €r, &y Err1) < still guaranteeing GES (for decay factor just beloy This
(=B + Bowwd® + 0en0®)||lzk|* — (1 — Bp204e)||ex]|?, gives rise to the following procedure to get maximal robast

(28) in the mismatch between the scheduling paramgteand the
actual onep; as reflected ird, while still guaranteeing GES.

where AVﬁ(mk,ek,fk,fkﬂ) = Va(Thi1, eht1, Ehp1) — Design procedure

Vi (x, ex, &) Wwith (z}, . ef)" as in (27). To obtain T _ o
GES with decay factor,/z it suffices to guarantee Step1: Minimizeo., subject to (9) fori,j = 1,...,N.

Vi (kg1 €hits bnpr) < f—:Vg(:ck,ek,ﬁk) asVj; can be bounded This gives the minimunw¢, and the corresponding
by quadratickC functionsa; (s) = as? andas(s) = bs? as in observer gaind;, i = 1,..., N. L
(3a) in the norm||(«Z, ¢X)T|. To obtain this inequality it is ~ Step 2: Givenog, as in Step 1. Fix. > 0 and minimize
sufficient to have the expressiopn 20,07, + 0., subject to the LMIs
given in (20). This results in the feedback gaiig
AV(@x, exsky Sra1) < —(1— &) (Bowo |z ]|* + oevltekll ); ) i=1,...,N.
29

becauséfg(mk,ek,ék) < Bogo ||k +0e0||ex]|% Due to (28), The optimization problems in Step 1 and 2 are convex
the inequality (29) holds when (B — BOpnd? — 0opd? > problems as we are minimizing linear costs subject to LMI

(1 — €)Boy and (i) 1 — Bu—204e > (1 — )0 ObvrousE/ constraints. Step 2 might even be extended by performing a
under the hypotheses of the theorem these conditions are ti[f€ S€arch inu and applying the above procedure repetitively.
which completes the proof. m ©nce, the minimal valug:. ™ 2ot,0f, + or, is found, one

It is of interest to find the Lyapunov functio; that can on the basis of Theorem 6 and (30) strII make tradeoffs

provides the largest robustness in termsdofTo maximize betwee(;r tratnsrent per_formanceoran terTS of the decay factor
the value fors? (for a fixed value of the decay factqye) it Ve and robustness in terms af(c). Letting ¢ increase

is clear that we have to maximiz&(3) := ﬁﬁ Since from max{1— a— 1-— —} (maximal performance, minimal
4 (3) o h "evg T 4 for th robustness) td (mrnrmal performance maximal robustness),
B = Tathoan? = 0, the maximum is o tained for t €tradeoff curves between performance and robustness are

largest allowable value g#, which ISM and thus the obtained as was already indicated in Corollary 2.
maximum of4 is

5(e) = \/ (1—[1 —¢€loey)(1 — [1 — €]ogy) (30) VII. | LLUSTRATIVE EXAMPLE
B 20pe0c + (1 = [1 = €]oey) a0 Consider the LPV system (4) with
Hence, we obtained the following corollary. 025 1 0 1
Corollary 2: Let an observer (6) that satisfies the A(pr) = l 0 01 0 ., B=1|0],
hypotheses of Theorem 2 and a state feedback law that 0 0 0.6+p 1

satisfies the hypotheses of Theorem 4 be given. Then for any
max{l — --,1— -} <¢ < 1 the closed-loop system (27) C=[102, D=0

ev
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systems in which the scheduling parameters are only known
up to a given precision. The output-based controllers are
obtained using a separate design of the observer and the
state feedback and we showed that the interconnection of the
LPV plant, observer and state feedback leads to a globally
exponentially stable closed-loop system for certain kel
mismatch between estimated and true parameters. The non-
conservatism of our approach is demonstrated by showirtg tha
well known conditions for nominally stabilizing observensd
feedbacks (i.e. without mismatch between true and availabl
parameters) imply our LMI-based conditions. The flexililit

in the framework allows to construct the controller that

Fig. 1. Line searchs
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Fig. 2. Tradeoff performance/robustness [4]
(5]

and p, € [0, 0.5], k¥ € N. In this case we can take
the functions¢!(p) = %222 and 2(p) = & with 4, = [
A(0) and A, = A(0.5). The observer is designed using (7]
Theorem 2 along with the optimization problem in Step
1. The optimal solution is given by’ = 5.8277 with ]
observer gaind; = [ —0.0835 —0.0011 0.3870 ]T

and

Ly = [ —0.0835 —0.0011 0.7094 | . With this optimal
observer and the associated slope of the linear ISSagina
line search involving: > 0 is performed in order to minimize
the costJ = u~20,.07, + 0., Subject to the LMIs given [10]
in (20) for all 4,5 (Step 2). Fig. 1 shows the minimum of
J for each fixedy, which is the smallest fop* = 0.2986 [11]
yielding o, = 0.2663 and ¢}, = 13.9284 and corresponds
to the controller gaingd(; = [-0.0327 — 0.1241 — 0.2387], [12]
K5 =[0.0005 —0.0010 — 0.6148].

As a consequence, the maximum level of uncertainty is

El

(13]

O = L = 0.1786.

mazx *—2 % * *
1% O0ze0¢ev + Ozv (14]

Hence, forAA(pk, px) = |px — pr| < 6 < 0.1786 GES of
the closed-loop system (27) is guaranteed (with a decagtfa
close tol). Letting e increase frommax{1—-,1— -} to [16]

¥
Taw

1 leads to the tradeoff curves between performance’in terms of
the decay factor/c and robustness to uncertainyA(py, ) (7]
in terms of$ as depicted in Fig. 2.

(18]
VIIl. CONCLUSIONS [19]

In this paper the design of robustly stabilizing output-
based feedback controllers is considered for discrete-tiRV

guarantees global exponential stability for the largestllef

parameter uncertainty and to make tradeoffs between &ainsi
performance in terms of decay factors and robustness with
respect to parameter uncertainty.
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