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Abstract

A b-colouring of a graph G is a proper colouring of G such that each colour contains
a vertex that is adjacent to all other colours and the b-chromatic number χb(G) is
the maximum number of colours used in a b-colouring of G. If m(G) is the largest
integer k such that G has at least k vertices with degree at least k − 1, then we
know that χb(G) ≤ m(G). Irving and Manlove [1] prove that, if T is a tree, then
the b-chromatic number of T is at least m(T ) − 1. In this paper, we prove that,
if G is a connected cactus and m(G) ≥ 7, then the b-chromatic number of G is at
least m(G) − 1.
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1 Introduction

Let G be a simple graph. A proper coloring of G is an assignment of colors to
the vertices of G such that no two adjacent vertices have the same color. In a
proper coloring, the color class of a color c is the set of vertices of G colored
with color c. The chromatic number of G is the minimum integer χ(G) such
that G has a proper coloring with χ(G) colors. Suppose that we have a proper
coloring of G and a color class C such that every vertex in C is not adjacent
to at least one other color class. We can change the color of the vertices in
C, obtaining a proper coloring that uses less colors than before. However,
as one can expect, we cannot apply this heuristic iteratively until we reach
the chromatic number of G, since the coloring problem is NP-hard. It was
this idea that made Irving and Manlove introduce the notion of b-coloring in
[1]. Intuitively, a b-coloring is a proper coloring that cannot be improved by
the described heuristic and the b-chromatic number χb(G) of G measures the
worst possible such coloring. More formally:

Definition 1.1 A vertex u in color class C is said to be a b-vertex if u has
at least one neighbor in each color class other than C.

Definition 1.2 A b-coloring of a graph G is a proper coloring of G such that
each color class contains at least one b-vertex.

Definition 1.3 The b-chromatic number of G is the largest integer k such
that G has a b-coloring with k colors. We denote it by χb(G).

Naturally, we have that a proper coloring of G with χ(G) colors is a b-
coloring of G, since it cannot be improved. So, χ(G) ≤ χb(G). For an upper
bound, note that if G has a b-coloring with k colors, then G has at least k

vertices with degree at least k − 1 (the b-vertices). So, if m(G) is the largest
integer such that G has at least m(G) vertices with degree at least m(G)− 1,
we know that G cannot have a b-coloring with more than m(G) colors, i.e.,
χb(G) ≤ m(G). This upper bound was introduced by Irving and Manlove in
[1], where they also showed that the difference between χb(G) and m(G) can
be arbitrarily large for a general graph and that it is at most one for trees. In
addition, the problem was proved to be NP-hard [1], even when restricted to
bipartite graphs [2].

We say that G is a cactus if G does not contain two cycles that share an
edge. In this article, we prove that, if G is a connected cactus and m(G) ≥ 7,
then the difference between χb(G) and m(G) is at most one and we can obtain
χb(G) in polynomial time.



We say that G is m-defective if m(G) = m and χb(G) < m. Additionally,
G is minimal m-defective if G is m-defective and any proper subgraph of G is
not m-defective.

The general idea for our main result is as follows. We present the class of
pivoted cacti and show that every pivoted cactus G is m(G)-defective. Then,
we show that χb(G) = m(G)−1, for every pivoted cactus G. Finally, we prove
that a minimal m(G)-defective cactus is pivoted. To do so, first we describe the
structure of minimal m(G)-defective cacti. We say that a subgraph H of G is
a b-kernel of G if m(H) = m(G) and χb(H) = m(G) implies χb(G) = m(G).
If G is not a pivoted cactus, we find a special b-kernel HG of G and we
either show how to b-color HG with m(G) colors or show that HG contains no
minimal m(G)-defective cactus as a subgraph. In any case, this implies that
χb(HG) = m(G) and, by the definition of a b-kernel, χb(G) = m(G). This
proves that if G is not a pivoted cactus, then it is not m(G)-defective. More
details on this general idea are provided in the remainder of this paper.

2 Pivoted Cacti

In this section, we define the class of pivoted cacti and show that if G is a
pivoted cactus, then χb(G) = m(G)−1. This implies that every pivoted cactus
G is m(G)-defective.

Let G = (V, E) be a connected cactus. We say that a vertex v in V is a
dense vertex if d(v) ≥ m(G) − 1. Let M(G) denote the set of dense vertices
of G.

Let V ′ be any subset of m(G) vertices of M(G). Let u ∈ V \ V ′ and
v ∈ V ′. If u and v are adjacent or have a common neighbor w in V ′ with
d(w) = m(G) − 1, then we say that v is reachable from u within V ′. Note
that if u ∈ V \ V ′ reaches every vertex of V ′, then there is no b-colouring of
G with V ′ as the set of b-vertices. Observe that it also happens if we have
a pair of vertices u, v ∈ V \ V ′ that reaches every vertex of V ′ but one, say
w: we could colour u or v with the colour of w, but the other one cannot be
coloured without repeating some colour in the neighborhood of a vertex of V ′

with degree m(G)− 1. So, we say that V ′ encircles vertex u in V \ V ′ if every
vertex v in V ′ is reachable from u within V ′. Below, we describe the situations
where we have a pair that prevent V ′ from being a set of b-vertices of some
b-colouring of G. We say that V ′ encircles the pair x, y ∈ V \V ′ if it does not
encircle x or y and if one of the following occurs:

(E1) There are V ′′ ⊂ V ′ and u, v ∈ V ′′ such that |V ′′| = m(G) − 1, 〈x, u, y, v〉



is a cycle and:
(a) d(u) = d(v) = m(G) − 1 and every w ∈ V ′′ \ {u, v} is adjacent to u

or v; or
(b) d(u) = m(G) − 1 and every w ∈ V ′′ \ {u, v} is adjacent to u; or
(c) d(u) = m(G), d(v) = m(G)− 1 and every w ∈ V ′ \ {u, v} is adjacent

to u or v; or
(d) d(u) = m(G) and every w ∈ V ′ \ {u, v} is adjacent to u.

(E2) There are V ′′ ⊆ V ′ and u, v, w ∈ V ′′ such that |V ′′| ≥ m(G) − 1,
〈x, u, v, y, w〉 is a cycle, d(u) = d(v) = m(G)−1, every w′ ∈ V ′′\{u, v, w}
is adjacent to w, and
(a) V ′′ = V ′ and d(w) = m(G); or
(b) V ′′ ⊂ V ′ and d(w) = m(G) − 1.

Let V ′ be a subset of m(G) vertices of M(G). We say that V ′ is a good

set if it does not encircle any vertex or pair of vertices and every u ∈ V \ V ′

with degree at least m(G) is either adjacent to some vertex in V ′ with degree
m(G) − 1 or is within a path between two vertices of V ′ of length at most
three, whose internal vertices are not in V ′. If G does not have a good set, we
say that G is a pivoted cactus.

The following lemma shows the possible number of encircled vertices or
encircled pairs.

Lemma 2.1 Let V ′ be any set of m(G) dense vertices. If m(G) ≥ 7, then V ′

encircles at most two vertices, or at most one pair of vertices.

By using the structural properties presented in Lemma 2.1, we can prove
that if |M(G)| = m(G) and situation E1 or E2 occurs (in which case, we know
that χb(G) < m(G)), then we can b-color G with m(G) − 1 colors. However,
the following lemma shows us that there is a situation where G has more than
m(G) dense vertices and still cannot be b-colored with m(G) colors.

Lemma 2.2 Let G be a connected cactus with |M(G)| > m(G), m(G) ≥ 7,
and let V ′ be a set of m(G) + 1 dense vertices of G containing all vertices

with degree greater than m(G) − 1. Then, G does not have a good set if and

only if V ′ = M(G) and there are vertices u, v ∈ V ′ and w ∈ V \ V ′ such that

d(u) = d(v) = m(G) − 1, {u, v, w} forms a triangle in G and every vertex in

V ′ is adjacent to u or to v.

Again, we can use the structural properties presented in Lemma 2.2 to
prove the following lemma by giving a b-coloring of G with m(G) − 1 colors.

Lemma 2.3 If G is a pivoted connected cactus, then χb(G) = m(G) − 1.



3 Non pivoted Cacti

In this section, we prove that if a cactus G has a good set, then it can be
b-coloured with m(G) colours, giving us the desired result. To do so, we first
describe the structure of minimal m-defective cacti.

Theorem 3.1 If G is a minimal m(G)-defective cactus and m(G) ≥ 7, then

|M(G)| = m(G) and d(v) = m(G) − 1, for all v ∈ M(G). Furthermore, if

u ∈ V (G) \ M(G), then any neighbor of u is a dense vertex of G.

Theorem 3.2 If G is a minimal m(G)-defective cactus with m(G) ≥ 7, then

either M(G) encircles a vertex or M(G) encircles a pair of vertices as in E1.a

or E2.b.

To link minimal m-defective cacti with non-pivoted cacti, note that if G

has no minimal m(G)-defective subgraph, then G is not defective. This implies
that χb(G) = m(G). We also use the following lemma.

Lemma 3.3 If G is a non-pivoted cactus and V ′ is a good set of G, then

G[V ′ ∪ N(V ′)] is a b-kernel of G.

Now, let G be a non-pivoted cactus and let V ′ be a good set of G. Consider
the b-kernel HG = G[V ′ ∪ N(V ′)] of G. If HG contains no minimal m(G)-
defective subgraph, then HG is not m(G)-defective itself and we have χb(H) =
m(G). Since HG is a b-kernel, then χb(G) = m(G). On the other hand, if HG

has a minimal m(G)-defective subgraph, then using the structural properties
given by Theorem 3.2 and the fact that V ′ does not encircle a vertex or pair
of vertices in HG, it is possible to construct a b-colouring of G with m(G)
colours. So, the following theorem is true:

Theorem 3.4 If G is a non-pivoted cactus with m(G) ≥ 7, then χb(G) =
m(G).

4 Closing Comments

Our main result is the following theorem:

Theorem 4.1 If G is a connected cactus with m(G) ≥ 7, then m(G) − 1 ≤
χb(G) ≤ m(G).

In addition, we found an algorithm that gives an optimum b-coloring of a
pivoted cactus and an algorithm to find a good set of a non-pivoted cactus.
We also have an algorithm to extend a maximum b-coloring of the b-kernel HG



into a maximum b-coloring of G. However, we could not find an algorithm that
optimally colors HG and the proof that χb(HG) = m(G) is not constructive.
Thus, we can decide in polynomial time the value of χb(G), but we cannot
always provide such coloring.
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