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Abstract: 

The cyclooxygenase-2 inhibitor Celecoxib is a potent inducer of apoptosis in tumor cells. In 

most cellular systems Celecoxib induces apoptosis via an intrinsic, mitochondrial apoptosis 

pathway. We recently showed that in Bax-negative Jurkat cells expression of pro-apoptotic 

Bak is essential for Celecoxib-induced mitochondrial damage and apoptosis induction. Aim of 

the present study was to identify specific pro- and anti-apoptotic members of the Bcl-2 family 

involved in the regulation of Bak activation, and subsequent apoptosis upon treatment with 

Celecoxib in the Jurkat cell model. 

Our results show that apoptosis in response to Celecoxib required the presence of Noxa and 

downregulation of the anti-apoptotic protein Mcl-1. Celecoxib-induced Bak activation and 

subsequent apoptosis could be inhibited by overexpression of Bcl-xL but not by the very 

similar Bcl-2. In Bcl-xL-overexpressing cells neutralization of both, Mcl-1 and Bcl-xL, was 

prerequisite for an efficient induction of apoptosis. Our data reveal an important role of the 

Mcl-1/Noxa axis for Celecoxib-induced apoptosis and suggest that Celecoxib may be of value 

for treatment of tumors addicted to Mcl-1 and for combined treatment approaches targeting 

anti-apoptotic Bcl-2 family members. 
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1. Introduction: 

Malignant transformation of cells is characterized by the accumulation of mutations that allow 

the tumor cells to circumvent growth constraints, inter alia by acquisition of apoptosis 

resistance. Stress situation like hypoxia, DNA damage, growth factor withdrawal, and 

chemotherapeutic agents initiate the intrinsic apoptotic pathway which ultimately results in 

the release of cytochrome C from the mitochondria into the cytosol where caspases become 

activated to execute apoptosis [1-4]. 

Members of the Bcl-2 protein family which act at the mitochondrial level regulating 

mitochondrial homeostasis and permeability are important modulators of the intrinsic 

apoptotic pathway and other events, e.g. autophagy and necrosis [5-7]. The Bcl-2 protein 

family consists of various pro- and anti-apoptotic members that form heterodimers in order to 

inhibit or activate each other. The anti-apoptotic members comprise the well-known proteins 

Bcl-2 and Bcl-xL as well as Bcl-w, Mcl-1, A1, and Boo/Diva and are often upregulated in 

tumors. The pro-apoptotic members include the multi-domain proteins Bak, Bax, and Bok, 

and the very heterogeneous group of so-called “BH3-only proteins” (Bid, Bim Bad, Bmf, Bik, 

Hrk, Noxa) that have only one small stretch of amino acids in common and are suggested to 

constitute intracellular sensors of cellular stress. 

Activation of the multidomain proteins Bax or Bak or even both is absolutely required for the 

initiation of the intrinsic apoptotic pathway. Currently two main models have been proposed 

to explain how Bcl-2 members might promote mitochondrial permeabilization and subsequent 

apoptosis. The displacement model or indirect activation model is based on the notion that 

anti-apoptotic Bcl-2 proteins directly interact with Bax and Bak to suppress their activation in 

healthy cells [5, 6, 8]. In response to apoptotic stimuli, specific BH3-only proteins become 

activated, bind to their respective anti-apoptotic counterparts, and displace them from their 

interaction with Bax and Bak. Unbound Bax and Bak undergo spontaneous self-

oligomerization facilitating the breakdown of the mitochondrial membrane potential (ΔΨm), 

cytochrome C release into the cytosol, caspase-activation, and finally apoptosis.  

In contrast, the direct activation model subdivides the BH-3 only proteins into so-called 

“sensitizers” (Bad, Bmf, Bik, Hrk, Noxa) that bind to anti-apoptotic Bcl-2 family members 

and the “activators” (t-Bid, Bim, Puma) that are suggested to bind directly to the pro-

apoptotic multi-domain proteins Bax and Bak thereby triggering their activation. This model 

is supported by the observation that tBid, Bim, and possibly also Puma are required to activate 

Bax and Bak in order to induce apoptosis [9-12]. In healthy cells the anti-apoptotic Bcl-2 

proteins keep the activator BH3-only proteins in check unless apoptotic stimuli lead to the 
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accumulation of active sensitizer BH3-only proteins that displace the activator BH3-only 

proteins from their binding partners which then bind to and activate Bax and/or Bak. 

Although initial publications suggested a redundant role for the members of the three main 

groups of Bcl-2 proteins, recent results implicate that particularly BH3-only proteins may be 

regulated by specific cellular stress signals. Moreover, protein interaction studies have shown 

that certain BH3-only proteins favor the interaction with specific anti-apoptotic family 

members supporting the hypothesis of non-redundant but specific action of the BH3-only 

protein members [6, 13]. 

The non-steroidal anti-inflammatory drug Celecoxib is known as a specific inhibitor of 

cyclooxygenase-2 (COX-2). Surprisingly, Celecoxib and its derivates turned out to exert 

promising anti-neoplastic effects that may be exploited in cancer prevention and treatment 

[14]. Cyclooxygenases catalyze the conversion of arachidonic acid into prostaglandins and are 

major players during the process of inflammation [15]. COX-2 overexpression is observed in 

many human tumors and contributes to tumorigenesis and therapy resistance. Therefore, the 

anti-neoplastic activity of Celecoxib had first been related to its inhibitory action on COX-2. 

Recent experiments in COX-2 negative cell lines, however, showed that Celecoxib is able to 

inhibit proliferation and induce apoptosis in a COX-2-independent manner. This observation 

was corroborated by similar findings in experiments performed with cells in which COX-2 

was knocked down by siRNA or by the use of Celecoxib derivatives without COX-2 

inhibitory action [16-19]. 

We and others have shown earlier that Celecoxib induced apoptosis through activation of an 

intrinsic pathway that was not blocked by overexpression of Bcl-2 [20-23]. Moreover, we 

recently demonstrated that in Bax-deficient Jurkat cells Bak was essential for Celecoxib-

induced apoptosis [17]. Aim of the present investigation was to specify pro- and anti-

apoptotic members of the Bcl-2 family involved in Bak activation, mitochondrial damage and 

apoptosis upon treatment with Celecoxib in the Jurkat cell model with a focus on Mcl-1 and 

Bcl-xL as central regulators of Bak activation. 

We show that Bak-dependent apoptosis in response to treatment with Celecoxib involved 

rapid downregulation of Mcl-1 and required the expression of the Mcl-1-interacting BH3-only 

protein Noxa. Celecoxib-induced apoptosis was blocked by overexpression of Bcl-xL. 

Although silencing of Mcl-1 was sufficient to induce apoptosis in Jurkat Vector cells it had 

only a minor sensitizing effect when Bcl-xL or Bcl-2 were overexpressed. In Bcl-xL 

overexpressing cells both, Mcl-1 and Bcl-xL, had to be neutralized for successful induction of 
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apoptosis. Our novel results clearly demonstrate that Celecoxib induces apoptosis in Jurkat 

cells via the Mcl-1/Noxa axis and can be inhibited by overexpression of Bcl-xL. 

The prominent Mcl-1-antagonizing effects recommend to use Celecoxib in innovative single 

drug treatment of apoptosis-resistant tumors that depend on Mcl-1 for survival or in 

combinatory treatment, e.g. with Bad-like BH3-only-mimetic ABT-737, in tumors that 

express multiple anti-apoptotic Bcl-2 family members. 
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2. Material and methods: 

 

2.1. Reagents and antibodies 

All chemicals were purchased from Sigma (Deisenhofen, Germany) unless otherwise 

specified. 

For Western blotting following antibodies were used: polyclonal antibodies against caspase-3, 

PARP, Mcl-1, Bcl-xL, and α/β-Tubulin were obtained from Cell Signaling (NEB Frankfurt, 

Germany). The monoclonal antibody against Bcl-2 from Santa Cruz Biotechnology (clone 

100, Heidelberg, Germany), the monoclonal caspase-9 antibody and the polyclonal Bak 

antibody from Upstate (Millipore, Schwalbach, Germany). COX-2 and cytochrome C (clone 

7H8.2C12) monoclonal antibodies were obtained from Transduction Labs (Becton Dickinson, 

Heidelberg, Germany). Noxa monoclonal antibody was purchased from Calbiochem (Merck, 

Nottingham, UK). The monoclonal antibody against β-Actin was obtained from Sigma 

(Deisenhofen, Germany), the monoclonal antibody against GAPDH from Abcam (Cambridge, 

UK). Horseradish peroxidase (HRP)-conjugated secondary antibodies were purchased from 

GE Healthcare/Amersham Biosciences (Freiburg, Germany). 

Bak activation was determined using the activation-specific antibody from Calbiochem 

(Merck, Nottingham, UK) or the matched IgG control from Santa Cruz Biotechnology, 

Heidelberg, Germany) in combination with Alexa488-coupled anti-mouse antibody from 

Molecular Probes (Invitrogen, Karlsruhe, Germany). 

Immunoprecipitation was performed with a monoclonal antibody against Mcl-1 (Becton 

Dickinson, Heidelberg, Germany) or Noxa (Calbiochem/Merck, Nottingham, UK). 

The pan-caspase inhibitor zVAD-fmk was purchased from Bachem (Bubendorf, Suisse). 

Celecoxib was kindly provided by Pharmacia-Pfizer (Erlangen, Germany). 

 

2.2. Cells and cell culture 

Jurkat E6 T-lymphoma cells were from ATCC (Bethesda, Maryland, USA). Jurkat cells stably 

expressing Bcl-xL or Bcl-2 and the respective Vector control were prepared as described 

before [1, 24]. 

Cells were grown in RPMI 1640 medium supplemented with 10% fetal calf serum (Gibco Life 

Technologies, Eggenstein, Germany) and maintained in a humidified incubator at 37°C and 

5% CO2. 
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2.3. Transfection with siRNA 

Cells were cultured at a low density to ensure log phase growth. For transfection 2x106 cells 

were resuspended in 200 µL RPMI-1640 without phenol red. Shortly before transfection mcl-

1, bcl-x, or non-targeting siRNA was added at indicated concentration. mcl-1 ON-TARGET 

SMARTpool and the siCONTROL NON-TARGETING pool siRNA was purchased from 

Dharmacon (Chicago, IL, USA), bcl-x silencer Select pre-designed siRNA was from 

Ambion (Applied Biosystems, Austin, Texas, USA). Cells were electroporated in a 4 mm 

cuvette in an EPI2500 electroporator (Fischer, Heidelberg, Germany) at 370 V for 10 msec. 

Immediately after transfection cells were resuspended in 6 mL prewarmed medium and 

continued to be cultured as described above. Transfection efficiency and viability was 

determined by transfecting the cells with 400 nM green fluorescence siRNA (siGLO from 

Dharmacon, Chicago, IL, USA) followed by propidium iodide exclusion dye and flow 

cytometric analysis. 

 

2.4. Determination of apoptosis and necrosis by fluorescence microscopy 

Morphological changes during apoptosis like chromatin condensation and permeability of the 

plasma membrane were analyzed by fluorescence microscopy after co-staining the cells with 

1.5 µM Hoechst 33342 (Calbiochem, Merck, Nottingham, UK) and 2.5 µg/mL propidium 

iodide using the fluorescence microscope Axiovert 200 from Zeiss with a G365/FT395/LP420 

filter set (Carl Zeiss, Jena, Germany). The morphological changes were documented using the 

CCD camera device Zeiss Axiocam MR. 3 different people counted 100 cells each using 

different fields. Diffuse blue DNA staining was indicative for healthy cells, blue condensed 

DNA staining for early apoptotic, red condensed DNA staining for late apoptotic, and red 

diffuse staining for necrotic cells. 

 

2.5. Flow cytometric analysis 

The mitochondrial membrane potential (ΔΨm) was analyzed using the ΔΨm specific dye 

TMRE (Molecular Probes, Mobitech, Goettingen, Germany). At the indicated time points 105 

cells were stained for 30 min in PBS containing 25 nM TMRE. Co-incubation with 1 µM of 

the cyanide derivate CCCP was used as a positive control to complete the mitochondrial 

depolarisation. 

Nuclear fragmentation was determined after staining the cells with 5 µg/mL propidium iodide 

in a hypotonic buffer containing 0.1% sodium citrate and 0.1% Triton X-100 for 1 h at room 

temperature. 
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Activation of Bak was detected employing antibody that recognizes the active form of Bak 

(mouse monoclonal antibody from Calbiochem/Merck, Nottingham, UK). In brief, 106 cells 

were fixed with 2.5% PFA for 20 min at 4°C. After permeabilization with 50 µg/mL 

Digitonin, cells were incubated with the Bak antibody or isotype matched control IgGs at a 

concentration of 0.5 µg/mL for 45 min at room temperature. After washing them once, the 

cells were incubated with a secondary antibody that was coupled to the fluorophore Alexa488 

(1:1000 dilution, Molecular Probes/Invitrogen, Karlsruhe, Germany) for additional 45 min at 

room temperature 45 min. 

Cells stained with TMRE or propidium iodide were analysed in channel 2, Bak activation was 

analysed in channel 1 employing a FACS Calibur flow cytometer and the Cell Quest software 

from Becton Dickinson (Heidelberg, Germany). 

 

2.6. Western blot analysis 

2x106 cells were lysed in 200 µL lysis buffer containing 50 mM HEPES pH7.5, 150 mM 

NaCl, 1% CHAPS, 1 mM EDTA, 10 mM sodium pyrophosphate, 10 mM NaF, 2 mM 

Na3VO4, 100 mM PMSF, 5 µg/mL Aprotinin, 5 µg/mL Leupeptin, and 3 µg/mL Pepstatin. 

After removing insoluble material by centrifugation for 10 min at 13 000 rpm, the protein 

concentration was estimated in the supernatant using the Bio-Rad protein assay (Bio-Rad, 

Munich, Germany) according to the manufacturer’s protocol. Protein was separated by SDS-

PAGE under reducing conditions before transfer onto PVDF membranes (Roth, Karlsruhe, 

Germany). Blots were blocked in TBS buffer containing 0.05% Tween 20 and 5% non-fat dry 

milk for 1 h at room temperature. The membrane was incubated overnight at 4°C with the 

respective primary antibodies. After repeated washings with TBS/Tween-20 (0.05%) the 

membranes were incubated with the secondary antibody for 1 h at room temperature before 

continuing to wash with TBS/Tween-20 (0,05%). Detection of antibody binding was 

performed by enhanced chemoluminescence (ECL Western blotting analysis system, GE 

Healthcare/Amersham-Biosciences, Freiburg, Germany). 

All Western blot experiments were repeated at least twice. 

 

2.7. Cytochrome c release 

13x106 cells were resuspended in 200 µL buffer containg 250 mM sucrose, 20 mM HEPES, 

pH 7.4, 10 mM KCl, 1.5 mM MgCl2, 1 mM EGTA, 1 mM DTT, 100 µM PMSF, 5 µg/mL 

Aprotinin and Leupeptin, and 3 µg/mL Pepstatin. The cells were homogenized with 25 

strokes employing the Wheaton homogenizer before centrifugation for 45 min at 13000 rpm 
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and 4°C. 30 µL of the supernatant was separated by SDS gel electrophoresis before detection 

of cytochrome C by Western blot as described above. Equivalent homogenisation and loading 

on the gel was verified by detection of GAPDH. 

 

2.8. Immunoprecipitation 

Cells were lysed as described above. The protein concentration was adjusted to 1 mg/mL.  

5 µg antibody and 50 µL slurry Dynabeads suspension (Dynal/Invitrogen, Karlsruhe, 

Germany) were added to 500 µL lysate. After the precipitation for 3h at 4°C the beads were 

washed thrice with 300 µL lysis buffer containing 0.2% CHAPS. Proteins were eluted by 

boiling the beads for 5 min in 100 µL SDS sample buffer with β-Mercaptoethanol. 30 µL 

were separated by SDS gel electrophoresis before detection by Western blotting as described 

above. 
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3. Results: 

3.1. Celecoxib-induced apoptosis involves activation of Bak  

Our earlier data revealed that in Jurkat T-lymphoma cell lines pro-apoptotic Bak was required 

for apoptosis induction in response to treatment with Celecoxib [17]. To verify proper 

function of the Jurkat T-lymphoma E6.1 cell model used in the present study, we first 

examined extent and time course of apoptosis induction as well as activation of Bak after 

short term treatment with 50-100 µM Celecoxib (Fig. 1). Celecoxib induced time- and 

concentration-dependent apoptosis in Jurkat E6.1 cells. As determined by flow cytometric 

analysis, the breakdown of the mitochondrial membrane potential (ΔΨm) was observed 

already 3h and DNA fragmentation 6h after treatment with Celecoxib (Fig. 1A). Similar to 

our earlier findings, treatment with 50 µM Celecoxib was sufficient for cell death induction, 

but apoptosis was more pronounced when drug concentrations of 75 µM or 100 µM were 

used (Fig. 1A). Our data were corroborated by Western blot analyses revealing substantial 

concentration-dependent cleavage of caspase-9, caspase-3, and the caspase-3 substrate PARP 

already 3h after treatment with 50-100 µM Celecoxib (Fig. 1B). Apoptosis in Jurkat T cells 

was COX-2-indpendent since those cells did not express COX-2. An unspecific induction of 

COX-2 expression during treatment was also excluded (Fig. 1C). 

To further establish the importance of Bak for Celecoxib-induced apoptosis, we next verified 

whether treatment with Celecoxib would trigger activation-associated changes in the 

conformation of Bak by flow cytometry. Using an antibody which recognizes the active 

conformation of Bak we detected a fluorescence shift by flow cytometric analysis 6h after 

treatment with 75 µM and 100 µM Celecoxib (Fig. 1D). Treatment of the cells with the pan-

caspase inhibitor zVAD before exposure to 75 µM Celecoxib did not abolish the activation of 

Bak (Fig. 1E). Neither was ΔΨm breakdown affected by treatment with zVAD (Fig. 1F) 

indicating that Bak activation and mitochondrial permeabilization occur upstream of caspase 

activation. 

 

3.2. Celecoxib signals through the Mcl-1/Noxa axis 

Activation of the multidomain proteins Bak or Bax or even both is absolutely required for the 

initiation of mitochondrial permeabilization, a key event in the intrinsic apoptosis pathway. 

Therefore, we next aimed to specify the role of pro- and anti-apoptotic members of the Bcl-2 

family involved in the activation of Bak, mitochondrial damage and apoptosis upon treatment 

with Celecoxib. Since our earlier data indicated an influence of Celecoxib on Mcl-1 protein 

levels we first examined to what extent Mcl-1 was involved in apoptosis regulation in 
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response to treatment with Celecoxib. As shown in Fig. 2A, Celecoxib triggered a 

concentration-dependent decrease in Mcl-1 protein levels. Whereas Mcl-1 protein levels were 

largely decreased 6h after treatment with 50 µM Celecoxib, Mcl-1 was no longer detectable 

when cells were treated at higher drug concentrations. In contrast, levels of other pro-

apoptotic Bak and the BH3-only Noxa remained unchanged during treatment (Fig. 2A). In a 

functional approach we subsequently examined whether downregulation of Mcl-1 affects 

survival of Jurkat E6.1 cells. To this end, Mcl-1 expression was decreased by siRNA-

mediated silencing. As shown in Fig. 2B, Mcl-1 expression was clearly downregulated 6h 

after electroporation. Interestingly, electroporation of 10 nM mcl-1 siRNA was sufficient to 

downregulate Mcl-1 (Fig. 2B) and induce ΔΨm breakdown (Fig. 2D), caspase activation (Fig. 

2B) and DNA degradation (Fig. 2C). The effects were even more pronounced when higher 

concentrations of mcl-1 siRNA were used. In contrast, non-targeting siRNA (nt) did not show 

any effects except for a little background apoptosis due to the transfection procedure (data not 

shown). These data show undoubtedly, that the downregulation of Mcl-1 is sufficient for the 

initiation of apoptosis in Jurkat E6.1 and, hence, seems to be critical during Celecoxib-

induced apoptosis. 

Recent investigations suggest that the pro-apoptotic Noxa, a BH3-only protein with binding 

preferences for Mcl-1 and A1, may be essential for neutralization and/or degradation of Mcl-1 

(Czabotar et al., 2007; Nijhawan et al., 2003; Willis and Adams, 2005). We therefore tested 

how far treatment with Celecoxib affects expression of Noxa or its binding to Mcl-1. Noxa 

levels remained however unchanged in response to Celecoxib treatment (Fig. 2A). The 

analysis of the interaction between Noxa and Mcl-1 by immunoprecipitation studies clearly 

shows an interaction of Mcl-1 with Noxa in healthy, untreated cells (Fig. 3A). Binding of 

Noxa to Mcl-1 was greatly reduced 6h after treatment with 75 µM Celecoxib, obviously due 

to the rapid decrease of Mcl-1 protein levels.  

For a better understanding of Noxa`s role during Celecoxib-induced apoptosis, we examined 

whether siRNA-mediated silencing of Noxa expression would affect Celecoxib-induced 

apoptosis. Transfection of Jurkat E6.1 cells with 500 nM of noxa siRNA led to a substantial 

decrease in Noxa protein levels without affecting Mcl-1 expression (Fig. 3B). Transfection 

with noxa siRNA alone did not affect survival of Jurkat E6.1 cells (Fig. 3C). However, when 

treated with 75 µM Celecoxib, sensitivity of Jurkat E6.1 cells to Celecoxib-induced apoptosis 

was significantly reduced by Noxa silencing as measured by DNA fragmentation (Fig. 3D). 

These data reveal for the first time that Noxa functions as a central mediator of Celecoxib-

induced apoptosis. 
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Furthermore, silencing of Noxa did not change the sensitivity of Jurkat cells towards 

apoptosis induction by mcl-1 siRNA (Fig. 3E) suggesting that Mcl-1 acts downstream of 

Noxa in the apoptotic pathway. In addition, the latter experiment indicates that not free Noxa 

released from its interaction with Mcl-1 is important for Celecoxib-induced apoptosis but 

rather the neutralization of Mcl-1. 

 

3.3. Overexpression of Bcl-xL but not Bcl-2 interferes with Celecoxib-induced apoptosis in 

Jurkat T lymphoma cells 

Up to now our data pointed to a central role of the Mcl-1/Noxa axis for Bak-dependent 

apoptosis induction in response to treatment with Celecoxib. However, previous publications 

suggested that, apart from Mcl-1, Bcl-xL is an additional factor controlling Bak activation.  

To clarify a putative role of Bcl-xL and Bcl-2 in the regulation of Bak-dependent apoptosis, 

Jurkat E6.1 cells stably overexpressing either Bcl-2 or Bcl-xL were employed. Both Bcl-2 and 

Bcl-xL overexpressing cells expressed similar levels of Mcl-1 and Bak compared to the 

Vector control cells, and none of them expressed COX-2 (Fig. 4A). Fluorescence microscopic 

evaluation of cell death induction upon double staining with Hoechst 33342 and propidium 

iodide showed that Celecoxib induces apoptosis with similar efficiency in Bcl-2 

overexpressing and Vector control cells (Fig. 4B). The double staining also revealed that most 

of the cells died indeed by apoptosis. A shift towards necrotic cell death could not be detected 

in Bcl-2 overexpressing cells.  

Bcl-xL overexpression, however, was very protective against Celecoxib-induced cell death. 

Consistent with these data, Bcl-xL overexpression also suppressed Bak activation (Fig. 4E), 

release of cytochrome C into the cytosol (Fig. 4F), ΔΨm breakdown (Fig. 4C), as well as 

processing of caspase-9, caspase-3, and PARP cleavage (Fig. 4D) in response to Celecoxib, 

whereas overexpression of the very similar Bcl-2 hardly affected any of these events. 

Interestingly, despite its strong protective effects against the cytotoxic action of Celecoxib, 

Bcl-xL did not prevent the downregulation of Mcl-1. 

For a better understanding of Mcl-1, Bcl-2, and Bcl-xL during Celecoxib-induced apoptosis, 

Mcl-1 expression was downregulated in Bcl-xL- and Bcl-2-overexpressing cells by siRNA-

mediated silencing. Jurkat Vector cells transfected with mcl-1 siRNA were used as a control. 

Silencing of Mcl-1 was not sufficient to induce ΔΨm breakdown and DNA degradation in the 

presence of high Bcl-xL levels (Fig. 5A upper and lower panel). Accordingly, a strong 

processing of caspase-3 and PARP was only observed in Jurkat Vector cells whereas only 
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minor caspase-3 and PARP-cleavage was observed in Bcl-xL overexpressing cells after 

silencing with mcl-1 siRNA (Fig. 5B). 

Surprisingly, Bcl-2 overexpression was sufficient to inhibit the induction of ΔΨm breakdown, 

caspase activation and apoptosis in response to siRNA-mediated Mcl-1 silencing (Fig. 5A 

upper and lower panel; Fig 5B) suggesting that treatment with Celecoxib triggers not only 

downregulation of Mcl-1 protein levels but additional pro-apoptotic signaling events leading 

to neutralization of Bcl-2. 

To test the hypothesis, we examined in the following experiment whether siRNA-mediated 

silencing of Mcl-1 affects the cellular response of Jurkat Vector, Bcl-2- or Bcl-xL-

overexpressing cells to the cytotoxic action of Celecoxib. To this end, the cells were subjected 

to siRNA-mediated Mcl-1 silencing and subsequently treated with 75 µM Celecoxib. 

Downregulation of Mcl-1 slightly increased Celecoxib-induced mitochondrial 

permeabilization and DNA-fragmentation in Bcl-2- as well as in Bcl-xL-overexpressing cells 

(Fig. 5C). However, only Bcl-2 overexpressing cells displayed high apoptotic rates in 

response to Celecoxib-treatment in the presence and absence of Mcl-1. In contrast, Bcl-xL 

overexpressing cells remained very resistant to Celecoxib-induced apoptosis also in the 

absence of Mcl-1 (Fig. 5C). 

 

3.4. Neutralization of both Mcl-1 and Bcl-xL is neccessary for successful induction of 

apoptosis in Bcl-xL overexpressing Jurkat cells 

Up to now our data indicated that although overexpression of Bcl-2 or Bcl-xL protected 

Jurkat cells efficiently from apoptosis induction by siRNA-mediated Mcl-1 silencing, only 

Bcl-xL overexpression protected from mitochondrial damage and nuclear fragmentation 

induced by Celecoxib. Therefore, in a last set of experiments, it remained to be determined 

whether silencing of Bcl-xL would render the Bcl-xL overexpressing cells sensitive to 

treatment with Celecoxib again. To this end, Bcl-xL overexpressing and Vector control cells 

were transfected with bcl-x siRNA before analyzing DNA fragmentation (Fig. 6A). Although 

silencing of Bcl-xL itself slightly induced apoptosis in Jurkat Vector cells within 72h after 

electroporation, the apoptotic rates never reached those obtained in response to Mcl-1 

silencing (Fig. 6A, upper panel). In Bcl-xL overexpressing Jurkat cells, Bcl-xL expression 

was clearly downregulated already 24h after electroporation (Fig. 6B). Nevertheless, silencing 

of Bcl-xL did not induce apoptosis on its own (Fig. 6A, lower panel). However, silencing of 

Bcl-xL restores the sensitivity towards apoptosis induced by Celecoxib (Fig. 6C). In an 

additional experiment, 48h after first electroporation with bcl-x siRNA (1st EP), the cells 
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were electroporated a second time with mcl-1 siRNA or the non-targeting control siRNA (2nd 

EP). Consistently, siRNA-mediated Mcl-1 silencing induced ΔΨm breakdown and apoptosis 

in Bcl-xL-silenced cells (Fig. 6E). Successful downregulation of appropriate proteins was 

verified by Western blotting (Fig. 6D and F). We conclude that, in Bcl-xL overexpressing 

cells, the execution of apoptosis by Celecoxib or Mcl-1 silencing is only possible when both, 

Mcl-1 and Bcl-xL are neutralized. 
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4. Discussion: 

Apart from its anti-inflammatory action, the selective COX-2 inhibitor Celecoxib exerts 

potent anti-tumor effects. Consequently, the drug found application in cancer prevention in 

patients with familial adenomatous polyposis. Here, we showed that Celecoxib effectively 

induces apoptosis in Bax-deficient COX-2-negative Jurkat T lymphoma cells. Moreover, we 

demonstrate for the first time that Celecoxib-induced apoptosis involves the Mcl-1/Noxa axis 

and can be efficiently blocked by overexpression of Bcl-xL but not the similar Bcl-2. 

In our hands survival of Jurkat cells depended on Mcl-1 expression, since downregulation of 

Mcl-1 by siRNA was sufficient to induce apoptosis, an observation that corroborates earlier 

findings [25, 26, 27]. Consequently, Celecoxib-mediated downregulation of Mcl-1 would 

result in the release of these BH3-only activator proteins from Mcl-1 and subsequent Bak-

activation. 

We also demonstrate that in untreated Jurkat cells Mcl-1 interacts with the BH3-only protein 

Noxa. The loading of anti-apoptotic Bcl-2 family members with pro-apoptotic BH3-only 

proteins suggest a cellular state described as “primed to death” [6, 13]. Co-

immunoprecipitation studies revealed that this interaction is abrogated during Celecoxib-

induced apoptosis due to the downregulation of Mcl-1. Interestingly, RNAi-mediated 

silencing of Noxa clearly inhibited Celecoxib-induced apoptosis indicating a major role of 

Noxa during Celecoxib-induced apoptosis. A similar involvement of the Mcl-1/Noxa axis in 

apoptosis induction has been shown for further chemotherapeutic agents including 

camptothecin, the cyclin-dependent kinase inhibitor Seliciclib, the proteasome inhibitor 

bortezomib, histone deacetylsae inhibitors, arsenic trioxide, and glucose withdrawal [28-33]. 

The BH3-only protein Noxa belongs to the group of sensitizers that do not activate Bax or 

Bak by a direct interaction. It preferentially binds to Mcl-1 and A1, but not to Bcl-2 or Bcl-

xL, to neutralize their anti-apoptotic effects [13]. In addition, Noxa might also regulate Mcl-1 

protein stability [34, 35] since Noxa expression inversely correlated with Mcl-1 protein levels 

in some studies [36, 37]. In contrast, in our cell system, silencing of Noxa did not increase 

Mcl-1 expression levels arguing against a role of Noxa for Mcl-1 degradation in our system. 

Furthermore, it seems that binding of Noxa is not sufficient to induce apoptosis suggesting an 

additional signal that facilitates Mcl-1 downregulation and successive apoptosis. 

 

4.1. Effects of Bcl-xL and Bcl-2 

In cells overexpressing Bcl-2 or Bcl-xL RNAi-mediated downregulation of Mcl-1 was no 

longer sufficient to efficiently trigger apoptosis. Thus, Bcl-2 and Bcl-xL can substitute for 
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Mcl-1 and also maintain survival in untreated Jurkat cells when survival-promoting Mcl-1 is 

down-regulated, since Bcl-2 and Bcl-xL bind to and neutralize pro-apoptotic BH3-only 

proteins Bim, tBid, or Puma as efficiently as Mcl-1 [6, 13]. Those results corroborate earlier 

observations on a redundant function of pro- and anti-apoptotic Bcl-2 family members and 

also support the assumption that in a given cell type, all anti-apoptotic Bcl-2 family members 

have to become neutralized for efficient induction of apoptosis. 

Subsequent analysis of Celecoxib-induced apoptosis revealed a protective effect by 

overexpression of the anti-apoptotic Bcl-xL. Although Bcl-xL could inhibit Bak activation 

and following apoptotic downstream events, it was not able to prevent Mcl-1 downregulation 

putting Mcl-1 upstream of Bcl-xL or in two independent pathways.  

Interestingly, siRNA-mediated silencing of Bcl-xL in Jurkat Vector control cells was not as 

efficient in apoptosis induction as siRNA-mediated downregulation of Mcl-1 emphasizing 

again the dependence of Jurkat cells on Mcl-1 for survival. However, RNAi-mediated 

downregulation of Bcl-xL in Bcl-xL-overexpressing cells sensitized towards Celecoxib-

induced apoptosis. In addition, the silencing experiments demonstrated that in Bcl-xL 

overexpressing cells, neutralization of both, Bcl-xL and Mcl-1, is important for a successful 

therapy. 

In contrast to Bcl-xL, overexpression of the very similar Bcl-2 did not prevent Celecoxib-

induced Bak activation and apoptosis although Bcl-2 overexpression could compensates for 

loss of Mcl-1. These findings suggest that in addition to its Mcl-1-antagonistic effects, 

Celecoxib must induce further pro-apoptotic signaling events that are sufficient to neutralize 

anti-apoptotic effects of Bcl-2 but not of Bcl-xL. The molecular details of the effects that 

specifically lead to the neutralization of Bcl-2 but not those of Bcl-xL remain to be defined. It 

may be speculated that Celecoxib induces a post-translational modification of Bcl-2 that 

regulates its anti-apoptotic function whereas Bcl-xL remains unaffected. Alternatively, Bcl-xL 

and Bcl-2 may function differentially to prevent Bak activation. In this regard, an earlier study 

demonstrated high affinity binding of Bcl-xL to peptides derived from Bax and Bak with an 

approximately 40-fold higher binding preference for the latter [38]. Unfortunately, such an 

extensive binding study does not exist for Bcl-2. Recent studies, however, demonstrated that 

although Bcl-2 might be co-precipitated with Bax and Bak in some overexpressing cell 

systems, its protective role differs from Bcl-xL in vivo [37, 39, 40]. For instance, Zhai et al. 

showed that Bcl-2 protected better from apoptosis induced by Bax rather than by Bak hinting 

at a inhibitory effect through Bcl-2:Bax interaction. On the other hand, Willis et al. detected 
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an interaction of Bak with Bcl-xL and Mcl-1 only but not with Bcl-2 in co-precipitation 

studies concluding that Bcl-xL protects from apoptosis through sequestration of Bak. 

Jurkat cells do not express Bax excluding an inhibitory effect on Celecoxib-induced apoptosis 

through direct interaction of Bcl-2 with Bax [17]. However, Jurkat cells express Bak, and Bcl-

xL, when overexpressed, can bind to Bak preventing its activation and mitochondrial 

permeabilization. Yet, Bcl-2 as well as Bcl-xL and Mcl-1 might sequester pro-apoptotic BH3-

only proteins like Bim or tBid impeding those proteins from their interaction with Bak. A 

direct activation of Bak and Bax by the BH3-only protein Bim was proposed by several 

groups [9, 11]. Since overexpression of Bcl-2 hardly affected Celecoxib-induced apoptosis, 

the sequestration of BH3-only Bim or tBid by anti-apoptotic proteins seems to be of minor 

importance. We, therefore, favor the indirect activation model in our Jurkat cell system as 

described earlier [8, 13, 37, 39]. In this scenario, Bcl-xL would exert its protection through 

interaction with Bak. Binding of BH3-only proteins to Bcl-xL would be required to displace 

Bak from Bcl-xL to allow its activation. However, additional Celecoxib-dependent 

mechanisms could not be excluded. The activation of other BH3-only proteins acting directly 

on Bcl-xL and Bak is likely, but further experiments are needed to identify putative 

regulators. 

 

4.2. Therapeutic opportunities 

Considering the displacement model, two independent pathways employing different Bcl-2 

family members have been established during last couple of years: one that involves Mcl-1 

and A1 and can be neutralized by Noxa, and another that leads to activation of the BH3-only 

Bad which antagonizes Bcl-2, Bcl-xL, and Bcl-w [13, 41]. Triggering of both pathways at the 

same time would result in enhanced Bak activation, mitochondrial permeabilization, and 

caspase activation. Synergistic activation of the Noxa/Mcl-1 and Bad/Bcl-xL pathways is 

mimicked by using the relatively unspecific BH3-mimetic obatoclax (GX15-070) targeting 

both pathways at the same time  [42]. However, enhanced apoptosis was also observed, when 

the Bad-mimetic ABT-737 was combined with bortezomib, homoharringtonine, N-(4-

hydroxy-phenyl)retinamid, Sorafenib, Carboplatin, or TRAIL [43-48]. Since ABT-737 targets 

only Bcl-2, Bcl-xL, and Bcl-w, the former mentioned drugs probably activate the Noxa/Mcl-1 

pathway. This underlines the importance to activate both, the Noxa/Mcl-1 and the Bad/Bcl-xL 

pathways to effectively remove precarious tumor cells. Based on this assumption the Mcl-1 

antagonistic effects of Celecoxib suggest that the drug may also be effective in sensitizing 
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cells with overexpression of Bcl-2 family members to apoptosis induction by the Bad-mimetic 

ABT-737. 

 

Taken together, our data show that the promising anti-neoplastic drug Celecoxib induces 

apoptosis in Jurkat T lymphoma cells through the Mcl-1/Noxa pathway by downregulation of 

Mcl-1 and activation of Bak. Our results suggest that similar to Jurkat cells, malignant cells 

whose survival depends on Mcl-1 expression may benefit from treatment with the Mcl-1 

antagonist Celecoxib. Several groups already described an enhanced susceptibility of tumor 

cells to apoptosis induction in response to Mcl-1 downregulation [29, 49, 50]. Since Bcl-xL, 

like Mcl-1, is often overexpressed in tumor cells, a therapy that targets only Mcl-1 would be 

without any effect. Therefore, in conditions of increased expression of further anti-apoptotic 

Bcl-2 family members, combined treatment of Celecoxib with Bad-mimetics like ABT-737 

may be an interesting option for the treatment of apoptosis resistant tumors. 
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Legends: 
 

Figure 1: Celecoxib-induced apoptosis involves Bak-activation upstream of caspase 

activation. (A) Jurkat E6.1 cells were treated with 50, 75, or 100 µM Celecoxib. At indicated 

time points DNA fragmentation, as indicated by the analysis of the sub G1 peak, and 

breakdown of the mitochondrial membrane potential (ΔΨm) were analyzed by flow 

cytometry. Data show mean values +/- s.d. of 3 independent experiments. (B) Activation of 

caspase-9, caspase-3, and cleavage of the caspase-3 substrate PARP in response to Celecoxib 

was detected by Western blotting. Caspases were fully activated already 3h after treatment 

with Celecoxib in a concentration-dependent manner. (C) No COX-2 expression could be 

detected in Jurkat E6.1 cells suggesting a COX-2-independent mechanism of Celecoxib-

induced apoptosis. The human lung carcinoma cell line A549 which express COX-2 was used 

as a positive control. Two bands could be detected, the upper one is probably a highly 

glycosylated form of COX-2. α/β-Tubulin was used as loading control. (D, E) 6h after 

treatment with Celecoxib cells were fixed, permeabilized, and stained with an antibody that 

recognizes the active conformation of Bak and analyzed by flow cytometry. (D) Treatment 

with 75 µM or 100 µM Celecoxib resulted in Bak activation as indicated by a specific 

increase in fluorescence intensity. Co-treatment with 30 µM pan-caspase inhibitor zVAD-fmk 

did not abrogate Bak activation (E) or ΔΨm breakdown in response to 75 µM Celecoxib (F), 

indicating that activation of Bak and ΔΨm breakdown occurred upstream of caspase 

activation. Results show one representative experiment out of 3. 

 

Figure 2: Downregulation of Mcl-1 is an essential step during Celecoxib-induced 

apoptosis. (A) Jurkat E6.1 cells were treated with 50, 75, or 100 µM Celecoxib. After 6h, 

cells were lysed and subsequently analyzed by Western blotting with the indicated antibodies. 

Mcl-1 was clearly downregulated at 50 µM Celecoxib and not detectable when treated with 

higher concentrations of Celecoxib whereas Noxa, Bak, Bcl-2, and Bcl-xL levels remained 

unchanged. (B-D) Jurkat cells were electroporated with different amounts of mcl-1 siRNA. 

As control, the unspecific non-targeting siRNA (nt) was transfected into the cells. 6h after 

electroporation, cells were analyzed by Western blotting (B) and flow cytometry measuring 

DNA fragmentation (C) and ΔΨm breakdown (D). Silencing of Mcl-1 was sufficient to induce 

apoptosis. Results show mean values +/- s.d. of 3 independent experiments. 
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Figure 3: Celecoxib induces apoptosis through the Mcl-1/Noxa axis. 

(A) Jurkat E6.1 cells were treated for 6h with 75 µM Celecoxib or left untreated. 

Immunoprecipitation studies using specific antibodies against Mcl-1 or Noxa revealed that 

Noxa interacts with Mcl-1 in healthy cells. This interaction was diminished when Mcl-1 was 

downregulated by Celecoxib-treatment. For comparison the expression levels of Mcl-1 and 

Noxa were shown in untreated whole cell lysates (WCL, 60 µg). (B-E) To examine the 

involvement of Noxa in Celecoxib-induced apoptosis, Jurkat E6.1 cells were silenced with 

500 nM noxa siRNA for 24h before treatment with 75 µM Celecoxib (D) or Mcl-1 

downregulation by siRNA (E) . As control, non-targeting siRNA (nt) was transfected at the 

same concentration. (B) The downregulation of Noxa was verified by Western blotting 24h 

after electroporation. (C-E) Apoptosis was determined by DNA fragmentation (sub G1) using 

flow cytometry. (C) Silencing of the pro-apoptotic Noxa did change background apoptosis. In 

contrast, electroporation of 500 nM mcl-1 siRNA was sufficient to induce DNA 

fragmentation. (D) Silencing of the pro-apoptotic Noxa rendered the cells refractory to 

Celecoxib-induced apoptosis. (E) Downregulation of Mcl-1 by 250 nM siRNA induced 

apoptosis regardless of Noxa expression indicating that Noxa acts upstream of Mcl-1. 

Flow cytometric results represent means +/- s.d. of 3 independent experiments. 

 

Figure 4: Bcl-xL but not Bcl-2 interferes with apoptosis induction in response to 

Celecoxib. Jurkat E6.1 cells were stably transfected with a vector containing the Bcl-2 or Bcl-

xL sequence or with the empty control vector, respectively. (A) Overexpression of Bcl-2 and 

Bcl-xL and similar expression of Mcl-1 and Bak was verified by Western blotting. (B) 12h 

after treatment with Celecoxib at the indicated concentrations, double staining of Hoechst 

33342 and propidium iodide was performed to distinguish between healthy (blue, diffuse 

DNA staining), early apoptotic (blue, condensed DNA staining), late apoptotic (red, 

condensed DNA staining), and necrotic cells (red, diffuse DNA staining). (B) Fluorescence 

microscopic analysis showed apoptosis induction in Jurkat Vector and Jurkat Bcl-2 cells, 

whereas necrotic cell death was negligible. Overexpression of Bcl-xL protected from both 

forms of cell death. Cells were counted by 3 different people and summarized in the graph 

showing the mean values +/- s.d. of the 3 independent counts. (C-F) Jurkat Vector, Bcl-2, and 

Bcl-xL cells were treated with Celecoxib at indicated concentrations for 6h and subsequently 

subjected to flow cytometric evaluation of ΔΨm breakdown (C), Western blot analysis of 

caspase-activation (D), flow cytometric evaluation of Bak-activation (E) and cytochrome C 

release from the mitochondria into the cytosol (F). Overexpression of Bcl-xL inhibited 
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Celecoxib-induced Bak activation (E), ΔΨm breakdown (C), caspase activation (D), and 

cytochrome C release (F), whereas Bcl-2 showed hardly any effect. However, overexpression 

of Bcl-xL could not impede the downregulation of Mcl-1 (D). (C) shows mean values +/- s.d. 

of 3 independent experiments, (D-F) one representative experiment out of 3. 

 

Figure 5: Silencing of Mcl-1 was not sufficient to induce apoptosis in Bcl-2 and Bcl-xL 

overexpressing cells. Jurkat cells overexpressing Bcl-2 or Bcl-xL and the Vector counterparts 

were transfected with 500 nM mcl-1 siRNA (mcl-1) or non-targeting siRNA (nt) respectively. 

6h after electroporation, DNA fragmentation (A, upper panel) and ΔΨm breakdown (A, lower 

panel) were examined by flow cytometry, caspase activation and silencing of Mcl-1 by 

Western blotting (B). Downregulation of Mcl-1 slightly increased sub G1 and low ΔΨm levels 

above the background and also induced a weak caspase activation in Bcl-2 and Bcl-xL 

overexpressing cells, but was insufficient to effectively induce apoptosis as observed in Jurkat 

Vector controls. (C) 24h after electroporation with 500 nM mcl-1 siRNA (mcl-1) or non-

targeting siRNA (nt), the cells were treated with 75 µM Celecoxib for 6h and subsequently 

analyzed for DNA fragmentation (C, upper panel) and ΔΨm breakdown (C, lower panel). The 

data show that Bcl-xL overexpressing cells with impaired Mcl-1 expression remained 

refractory to Celecoxib-induced apoptosis, whereas DNA degradation and ΔΨm breakdown 

readily occurred in Jurkat Bcl-2 cells or Vector control transfected with non-targeting siRNA 

(nt). Data of flow cytometric analysis represent mean values +/- s.d. of 3 independent 

experiments, western blot analysis shows one representative experiment out of 3. 

 

Figure 6: Neutralization of both, Mcl-1 and Bcl-xL is necessary for a successful 

induction of apoptosis in Bcl-xL overexpressing cells. (A) Transfection of Bcl-xL 

overexpressing Jurkat cells with 500 nM mcl-1 or bcl-x siRNA alone did not induce 

apoptosis. Silencing of Bcl-xL in Jurkat Vector cells elevated apoptotic levels but did not 

induce DNA degradation as efficiently as mcl-1 siRNA. However, when Bcl-xL expression 

was inhibited, apoptosis sensitivity of Jurkat Bcl-xL cells in response to Celecoxib (C) and 

Mcl-1 silencing (E) was restored. For the flow cytometric analysis cells were electroporated 

with 500 nM bcl-x siRNA 48h before a 6h treatment with Celecoxib (C) or a second 

electroporation with 500 nM mcl-1 siRNA (E). The quantification of DNA fragmentation and 

ΔΨm breakdown were preformed 12h (sub G1) or 6h (ΔΨm low) after treatment with 

Celecoxib (C) or the second electroporation (E), accordingly. Non-targeting siRNA (nt) was 

used at respective concentration. Mcl-1 and Bcl-xL expression levels in Jurkat Bcl-xL cells 
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were examined by Western blotting. (B), (D), and (F) are the control experiments to those 

performed in (A), (C), and (E), respectively. (B) shows downregulation of Bcl-xL 24h, 48h, 

and 72h after electroporation with bcl-x siRNA, (D) shows Bcl-xL and Mcl-1 protein levels 

48h after transfection before the cells were treated with Celecoxib, and (F) shows Bcl-xL and 

Mcl-1 expression 6h after the second electroporation with mcl-1 siRNA. Flow cytometric 

analysis (E) and lysats (F) were made at the same time. Data of flow cytometric analysis show 

mean values +/- s.d. of 3 independent experiments. 
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* Graphical Abstract
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