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Abstract

In this paper we address the issue of minimal time optimal control of fedbatch reactor in presence of
complex non monotonic kinetics, that can be typically characterized by the combination of two Haldane
models. The optimal synthesis may present several singular arcs. Global optimal trajectory results are
provided on the basis of a numerical approach that considers an approximation method with smooth
control inputs.
Keywords. Fedbatch reactors, minimal time problem, singular arcs.

1 Introduction

Fed-batch bioreactors represent an important class of bioprocesses, mainly in the food industry (e.g. yeast
production or wine making) and in the pharmaceutical industry (like the production of the vaccine against
the Hepatitis B) but also e.g. for biopolymer applications (PHB). It is also very much involved in the field of
enzyme production which has been developed over the past decade due to the recombinant ADN technology
and via the use of filamentous micro-organisms. One of the key issues in the operation of fed-batch reactors
is to optimize the process operation over a limited time period. A intensive research activity has been
devoted to optimal control of (fed-batch) bioreactors mainly in the seventies and in the eighties (see e.g.
[8, 9]). In this paper we address the issue of minimal time optimal control of fedbatch reactor in presence
of complex non monotonic kinetics, characterized here by the combination of two Haldane models, aimed to
emphasize the presence of parallel metabolic pathways to transform the limiting substrate S into the biomass
B. For those problems, it is well knwon that the optimal synthesis is bang-bang with the possibility of a
singular arc [7]. For combinaisons of several non-monotonic growths, the multiplicity of singular arcs reveals
a issue for determining which singular arc is globally optimal. In this work, global optimal trajectory results
are provided on the basis of a numerical approach that considers an approximate problem whose optimal
feedback laws are smooth.

The paper is organized as follows. In Section 2, we present the model and the hypotheses. In Section
3, we study the field of extremals, providing trajectories as candidate optimal solutions. Section 4 presents
our approximation procedure and Section 5 shows how it can be applied to our problem, illustrated on two
examples. We end by a conclusion in Section 6.

∗A. Rapaport is with the Equipe-projet INRA-INRIA ’MERE’ (Modélisation Et Ressources en Eau)
†Honorary Research Director FNRS, Belgium.
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2 The model

We consider a reaction scheme where n several bio-reactions consuming the same substrate S and producing
a biomass B may occur simultaneously:

S +B +Ri −→ B +B i = 1, · · · , n (1)

Each reaction i requires an additional resource Ri, that we shall assume to be non-limiting, and is character-
ized by a specific growth function µi(·). Under the hypothesis of non-limitation by the auxiliary resources,
one can assume that each function µi(·) depends on the concentration of the substrate S only.

Assumption 1. The functions µi(.) are smooth, positive away from zero and null at 0.

Moreover, we shall assume that each bio-reaction (that could be associated to different metabolic path-
ways) transforms the substrate into biomass with the same yield y. The time evolution of the concentrations
S and B in a perfectly mixed reactor, operated in fed-batch, is given by the following dynamical system:

Ṡ = −1

y

n
∑

i=1

µi(S)B +
Q

V
(Sin − S) (2)

Ḃ =
n
∑

i=1

µi(S)B − Q

V
B (3)

V̇ = Q (4)

where V ∈ (0, Vmax] is the volume of the liquid phase in the tank, Sin > 0 the input concentration of
substrate and Q the input flow rate.

In many applications (including wastewater treatment processes), a typical objective is to reach in min-
imal time a target:

{

(S,B, V ) ∈ R
3
+ |S ≤ Sref and V = Vmax

}

(5)

where Sin > Sref > 0 via the manipulated variable Q ∈ [0, Qmax].
Let us define:

µ(S) =

n
∑

i=1

µi(S) (6)

X =
B

y
(7)

the system dynamics (2)-(4) are equivalent to the one of a single bio-reaction with specific growth rate µ(·)
and unitary yield factor:

Ṡ = −µ(S)X +
Q

V
(Sin − S) (8)

Ẋ = µ(S)X − Q

V
B (9)

V̇ = Q (10)

One can easily check, from equations (8), that the quantity M = V (X + S − Sin) is constant along the
trajectories, and consequently that it depends on the initial condition (S0, X0, V0) only. By considering the
number M0 = V0(X0 + S0 − Sin), the dynamics that can be defined in the (S, V )-plane as follows:

Ṡ = −µ(S)(M0/V − S + Sin) +
Q

V
(Sin − S) (11)

V̇ = Q (12)
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with the target:
T = [0, Sref ]× {Vmax} (13)

This minimal time problem has already been studied in [7] for cases where the function µ(·) has at most one
maximum. An extension with impulse control inputs has been developed in [3]. With the help of a clock
form and Green’s Theorem, Moreno has proved that:

1. the “bang-bang” strategy (i.e. Q = Qmax until V = Vmax and then Q = 0) is optimal for any
monotonic growth function µ(·),

2. the “singular arc” strategy (that consists in reaching and remaining at S = S̄ as long as possible)
is optimal for growth functions increasing when S < S̄ and decreasing when S > S̄ (and under the
condition Sin > S̄ > Sref ).

The clock form is used in Moreno’s proof to show the global optimality of these strategies, a technique
originated from the former results of Miele [6] (see also [4]). For cases where the growth functions have
more than one local maximum on the interval (0, Sin), this argument can still be used but only for the local
optimality of singular arcs. Unfortunately, one cannot directly deduce the global optimality of the singular
arc strategy.

In the present work, we shall consider the following assumption.

Assumption 2. The function µ(·) has a finite number of local maxima on the interval [0, Sin]. Moreover,
the set

M = {S̄ ∈ [0, Sin] |µ(·) is locally maximal at S̄} (14)

is such that:

cardM > 1 (15)

Sref < S̄− = minM < S̄+ = maxM < Sin (16)

This assumption can be typically fulfilled with n = 2 and µ1(·), µ2(·) of the Haldane type:

µi(S) =
µ̄iS

Ki + S + S2/Li

(17)

that admits a single maximum at
√
KiLi. For instance, the sum of the two Haldane functions

µ1(S) =
1.2S

0.1 + S + 10S2
, µ2(S) =

1.5S

5 + S + 0.5S2

has two local maxima (see Fig.1).

3 Study of the extremals

We shall consider initial conditions on the domain D = [Sref , Sin) × (0, Vmax] for our study (it sounds
realistic that the initial substrate concentration is between the input and the desired ones).

We first assume that the maximal flow rate Qmax is large enough for ensuring the local controllability of
the dynamics on the domain D.

Assumption 3.

Qmax > max
S∈[S̄−,S̄+]

µ(S)

(

M0

Sin − S
+ Vmax

)

(18)

We show now that the target T can be replaced by a punctual one.
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Figure 1: Graph of the sum of two Haldane functions.

Proposition 1. From any initial condition in D, the optimal trajectory reaches the target T at point
(Sref , Vmax).

Proof. Consider the curve in the (S, V )-plane:

C = {(σ(V ), V ) |V ∈ [0, Vmax]} (19)

where σ(·) is solution of the differential equation






dσ

dv
= − µ(S)

Qmax

(

M0

v
+ Sin − S

)

+
Sin − S

v
σ(Vmax) = Sref

(20)

Then the domain E delimited by this curve and the (S, V ) axes:

E = {(S, V ) | 0 ≤ S ≤ σ(V ) and min{v ≥ 0 |σ(v) ≥ 0} ≤ V ≤ Vmax } (21)

is invariant whatever is the control. Assumptions 2 and 3 imply that the function σ(·) is increasing and
consequently S ≤ Sref for any (S, V ) in E . Note also that Assumption 2 imply that the function µ(·) is
increasing on [0, Sref ]. From the result of Moreno, one deduces that the curve C is an optimal trajectory.

Consider an initial condition in D \ T . It does not belong to E , but if an optimal trajectory reaches the
target with S < Sref , it has to enter the domain E i.e. it has to cross the curve C with S < Sref , which
contradicts the optimality of the curve C. 2

Let us write the Hamiltonian of the optimization problem:

H = λ0 − λSµ(S)(M0/V − S + Sin) +Q

(

λS

Sin − S

V
+ λV

)

(22)

where λ0 ≤ 0, and the adjoint equations are:

λ̇S = λS

(

µ′(S)X − µ(S) +
Q

V

)

(23)

λ̇V = λS

−µ(S)M0 +Q(Sin − S)

V 2
(24)

with

X =
M0

V
+ Sin − S (25)
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We define the switching function:

φ = λS

Sin − S

V
+ λV (26)

from which one deduces the optimality of “bang-bang” control inputs:

Q⋆ =

∣

∣

∣

∣

0 if φ < 0
Qmax if φ > 0

(27)

We focus now on the characterization of singular arcs.

Proposition 2. The singular arcs are trajectories






S(t) = S̄

V (t) = V (t1)e
µ(S̄)(t−t1) +

M0

Sin − S̄

(

eµ(S̄)(t−t1) − 1
)

(28)

for t ∈ [t1, t2], with t2 > t1 ≥ 0, V (t1) < Vmax, V (t2) ≤ Vmax, where S̄ ∈ M and the control input is given
by the feedback equation:

Qs(S̄, V ) = µ(S̄)

(

M0

Sin − S
+ V

)

(29)

Proof. A singular arc strategy may occur when the switching function is identically equal to zero on a time
interval of positive measure. One can easily compute:

φ̇ = λS

Sin − S

V
µ′(S)X (30)

Note from equation (11) that from any initial condition in D, one has:

S(t) < Sin , ∀t ≥ 0 (31)

and consequently one has:

X(t) =
M0

V
− S(t) + Sin > 0 , ∀t ≥ 0 . (32)

Note that it is not possible to reach the target from any initial condition in D \ T , with a constant control
input Q = 0 and Q = Qmax. Consequently, φ has to be equal to zero at a certain time. Note also from
equation (23) that the sign of λS is constant or λS is identically equal to 0. In this latter case, λV is constant
and has to be non-zero from the Maximum Principle. Yet then φ = λV cannot be equal take to zero. So λS

is never equal to zero, and when φ = 0 one can conclude from H = 0, where H is the Hamiltonian defined
in (22), that λS has to be negative.

We deduce from equation (30) that a necessary condition for an extremal to be singular is to have:

µ′(S) = 0 (33)

The zero of µ′(·) being isolated, we deduce that the singular arcs are of the form:

S(t) = S̄ with µ′(S̄) = 0 (34)

Along with this condition, one can easily compute:

φ̈ =
λS(Sin − S̄)

V
µ′′(S̄)XṠ (35)

Assumption 3 implies that for φ 6= 0, one has:

sign(Ṡ) = sign(φ) (36)
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Consequently, in the neighborhood of S̄, one has:

sign(φ̈) = −sign(µ′′(S̄))sign(φ) (37)

From the classification of fold points for time optimal control in the plane [1], one obtains that a point
(S̄, V, λS , λV ) such that φ = 0 is:

- elliptic when µ′′(S̄) > 0, and the optimal trajectory in its neighborhood is bang-bang,

- hyperbolic when µ′′(S̄) < 0, and the optimal trajectory in its neighborhood can have a singular arc.

Finally, a necessary condition for an extremal to be singular is to have µ′(S̄) = 0 and µ′′(S̄) < 0 which
amounts to have S̄ ∈ M.

Having S(t) = S̄ on a time interval [t1, t2] implies Ṡ = 0, and from equation (11) one deduces the
expression of the control given in (29). Then from equation (12) the variable V is solution of the ordinary
differential equation

V̇ = µ(S̄)

(

M0

Sin − S
+ V

)

, (38)

whose explicit solution is given in (28). 2

Proposition 2 gives only a local optimality result. Away from the set M× (0, Vmax), we know that the
optimal control is either 0 or Qmax and can switch, but we do not know a priori

- towards which singular arc, defined by the value of S̄ ∈ M, it is optimal to go?

- if is it optimal to quit a singular arc for reaching another singular one?

To address the global optimality, we consider now a numerical approach.

4 An approximation procedure

Solving numerically minimal time problems with dynamics that are affine w.r.t. to the control input is
usually intricate when one does know a priori the switching surfaces. The shooting function based on the
integration of the Hamiltonian system is usually not smooth when the optimal control is discontinuous [12].
We consider here a smoothing method based on a idea originally proposed in [11]. We first define a new
control:

u1 =
2Q

Qmax

− 1 ∈ [−1, 1] (39)

and denote:

ξ =

[

S
V

]

(40)

Then one can note that the dynamics (11)-(12) can be rewritten as follows:

ξ̇ = F (ξ) +G1(ξ)u1 , ξ(0) = z0 ∈ D (41)

where

F (ξ) =

[

−µ(S)
(

M0

V
− S + Sin

)

0

]

+G(ξ) (42)

G1(ξ) =
Qmax

2

[

Sin−S
V

1

]

(43)
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According to Proposition 3, we shall consider the punctual target defined by:

zf =

[

Sref

Vmax

]

. (44)

The vector field G1(·) is nowhere equal to the zero vector. Consequently there exists another vector field
G2(·) such that:

V ect (G1(ξ), G2(ξ)) = R
2 , ∀ξ ∈ D (45)

One can also require G2(·) to be bounded:

||G2(ξ)|| ≤ r < +∞ , ∀ξ ∈ R
2 . (46)

Now we consider the augmented dynamics, with an additional input u2:

ξ̇ǫ = F (ξǫ) +G1(ξǫ)u1 + ǫG2(ξǫ)u2 , ξ(0) = z0 (47)

with u2
1 + u2

2 ≤ 1 and ǫ 6= 0. The Hamiltonian of this new problem is equal to:

Hǫ = p0 + ptF (ξ) + ptG1(ξ)u + ǫptG2(ξ)v (48)

The adjoint vector p being never equal to the zero vector (by the Maximum Principle), Condition (45) implies
that:

[

ptG1(ξ)
ǫptG2(ξ)

]

6= 0 . (49)

Consequently the Hamiltonian Hǫ is uniquely maximized by the smooth control inputs:

u⋆
1(ξ, p) =

ptG1(ξ)
√

[ptG1(ξ)]2 + [ǫptG2(ξ)]2
(50)

u⋆
2(ξ, p) =

ǫptG2(ξ)
√

[ptG1(ξ)]2 + [ǫptG2(ξ)]2
(51)

We show now that the optimal trajectories for the extended dynamics converges toward an optimal trajec-
tory of the original problem. This convergence has been recently studied in [10], but the proof we propose
here is different and is based on differential inclusions.

Proposition 3. Let ǫn be a monotonic sequence of numbers converging to 0, and ξn(·) a sequence of optimal
trajectories for ǫ = ǫn with the same initial condition z0 and target zf . Then any ξ̄(·) limit of a sub-sequence,
also denoted ξn, in the following sense:

ξn(·) → ξ̄(·) uniformly and ξ̇n(·) → w(·) weakly in L1 (52)

is an optimal trajectory for the original problem. Furthermore, there exists at least one such sub-sequence.

Proof. Recall from Filippov’s Lemma that the set of solutions of the equations (47) for measurable control
inputs is exactly the set of absolutely continuous solutions of the differential inclusion:

ξ̇ ∈ Ψǫ(ξ) = F (ξ) +
⋃

u∈B

(G1(ξ)u1 + ǫG2(ξ)u2) (53)

Note that the set-valued maps Ψǫ are monotonic w.r.t. ǫ in the following sense:

ǫ < ǫ′ =⇒ Ψǫ′(ξ) ⊂ Ψǫ(ξ) ∀ξ (54)

Let us consider an initial condition z0 in D and a monotonic sequence of positive numbers ǫn converging to
zero. As one has Ψ−ǫ(·) = Ψǫ(·), we can consider a decreasing sequence ǫn without any loss of generality.
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Let us denote by T and Tn the minimal times to reach zf , respectively for dynamics (41) and (47) for ǫ = ǫn.
Property (54) implies that the sequence Tn is non decreasing and bounded from above by T . Consequently
Tn converges to a limit, denoted T̄ , such that T̄ ≤ T .

Consider now a sequence ξn(·) of optimal trajectories for the minimal time problem with ǫ = ǫn. These
trajectories can be prolonged up to time T̄ (taking any admissible control input on the time interval [Tn, T̄ ]),
and are uniformly bounded on [0, T̄ ]. According to Dunford-Pettis Theorem, there exists a sub-sequence,
also denoted ξn(·) such that ξ̇n(·) converges weakly to v(·) on [0, T̄ ]. Let us then define:

ξ̄(t) = z0 +

∫ t

0

v(s)ds , t ∈ [0, T̄ ] (55)

By weak convergence one has ξn(·) → ξ̄(·) and ξ̇n(·) → ˙̄ξ(·) weakly on [0, T̄ ]. One has also:

ξ̇n ∈ Ψ0(ξn) + ǫnrB a.e. t ∈ [0, T̄ ] (56)

By compactness of trajectories of perturbed differential inclusions (see [2] or [13]), one obtains

ξ̇ ∈ Ψ0(ξ̄) a.e. t ∈ [0, T̄ ] (57)

Finally, one has
ξn(Tn) = zf (58)

and from the uniform convergence and continuity of trajectories ξn(·), one obtains

ξ̄(T̄ ) = zf (59)

Consequently ξ̄(·) is an optimal trajectory for the original problem and necessarily T̄ = T . 2

Corollary 3. If the original problem admits a unique optimal trajectory ξ̄(·), then any sequence of optimal
trajectories ξn(·) for ǫn a monotonic sequence of numbers converging to 0, converges uniformly to ξ̄(·), and
ξ̇n(·) converges weakly to ˙̄ξ(·).

Remark. It is shown in [10] that the optimal control does not necessarily converge point-wise in presence
of singular arcs, and may exhibit a chattering phenomenon. Our approach here is slightly different, as we
already know the locus of singular arcs and as our aim is to address the issues raised at the end of Section 3.
This explains why we focus on the approximation of the optimal trajectories instead of the optimal controls.

5 Numerical approximation

In this section, we present a methodology that consists in computing the field of extremals for the regular-
ized problem, and deducing if possible some properties of the optimal trajectories, namely answers to the
questions raised at the end of Section 3. We illustrate this approach on two examples of growth function µ(·).

We solve backward in time the Hamiltonian dynamics associated to the regularized problem:

ξ̇ = F (ξ) +G1(ξ)u
∗

1(ξ, p) + ǫnG2(ξ)u
∗

2(ξ, p)

ṗ = −pt∂ξF (ξ)− pt∂ξG1(ξ)u
∗

1(ξ, p)− ǫnp
t∂ξG2(ξ)u

∗

2(ξ, p)

from the terminal state (ξ, p) = (zf , pf ) with different non zero vector pf . Without any loss of generality,
one can choose vectors pf of norm equal to one i.e.:

pf =

[

cos(α)
sin(α)

]

(60)
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Taking discrete values of α in [0, 2π), we plot the projections of each solution in the (S, V )-plane. Two
situations may happen :
- either we fill the domain D with a set of trajectories that do not intersect. Then each trajectory is optimal
for the approximated problem, and consequently is close from an optimal one of the original problem (see
Example 1 below).
- either some trajectories intersect in D and only the part before the intersection (in backward time) can be
optimal. Nevertheless, this partial information might be enough to answer the questions raised at the end
of Section 3 (see Example 2 below).

For the vector field G2(·), we have simply chosen a constant one (but other choices are possible):

G2(ξ) =

[

1
0

]

, ∀ξ (61)

When G2(·) is a constant, the adjoint equations are independent of ǫ. Then one can show, similarly to the
original problem, that pS and pV are respectively negative and positive, for extremals with ξ(·) in the domain
D. Consequently, we take values of α in the interval (π, 3π/2) only.

In both examples below, values of parameters of the problem are given in Table 1.

Table 1: Numerical simulation parameters

Sref Vmax Sin y M0 Qmax

0.1 50 10 5 170 5

Example 1. We first test the method for a growth function µ(·) with only one maximum reached at S̄ (see
Fig.2), for which the optimal solution is known [7].

S

S

µ

0 1 2 3 4 5 6 7 8 9 10
0.0000

0.0001
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0.0008

0.0009

Figure 2: Graph of a function µ(·) with one maximum.

It consists in reaching the singular arc S = S̄ an staying on this arc until reaching the boundary of the
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domain (i.e. V = Vmax), using the following feedback

QS̄(S, V ) =

∣

∣

∣

∣

∣

∣

0 if S > S̄
Qs(S̄, V ) if S = S̄ and V < Vmax

Qmax if S < S̄ and V < Vmax

(62)

Extremals for the augmented dynamics with ǫ = 0.01 are plotted on Fig.3. One can see that the domain
D is filled by extremals without intersection. Consequently each extremal is an optimal trajectory for the
augmented dynamics, and one can check that they are close from the optimal trajectories for the original
problem, given by the feedback (62).

S

S

V

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

Figure 3: Extremals for the ǫ-problem with one maximum.

Example 2. We consider here a growth function µ(·) with two local maxima S̄1 and S̄2 (see Figure 4).
Extremals for the augmented dynamics with ǫ = 0.01 are plotted on Fig.3. In this case, one can see that

some extremals intersect, and so one cannot conclude on their optimality on the sub-domain B depicted in
gray in Figure 6.

Nevertheless, for the original problem (i.e. for ǫ = 0), we know that away from the singular arcs S = S̄1,
or S = S̄2, the optimal control is either 0 or Qmax (and can switch). So an optimal trajectory starting from
S ∈ (S̄1, S̄2) has to go toward S = S̄1 or S = S̄2 (unless it touches the boundary V = Vmax) but we are not
able to decide a priori

- if it is optimal to reach V = Vmax before reaching a singular arc,

- if not, towards which singular arc it is optimal to go,

- if it is optimal to stay on a singular arc until reaching V = Vmax (it might be better to leave one
singular arc to go to the other one).

On Fig.3, one can also distinguish two areas A1 (resp. A2), in the complementary domain of the sub-
domain B, depicted on Fig.6, such that that extremals do not intersect and are close from the trajectories
given by the feedback (62) with S̄ = S̄1 resp. S̄2. This observation is important because it allows us to
conjecture that the optimal trajectories for the original problem reach one of the singular arcs and stay on
it until reaching V = Vmax.
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Figure 4: Graph of a function µ(·) with two maxima.

S

V

S1 S2
0 1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

Figure 5: Extremals for the ǫ-problem with two maxima.
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Figure 6: Sub-domains of optimality for reaching one of the singular arcs.

Conjecture. The optimal solution of the problem with a growth function presenting two local maxima at
S̄1 and S̄2 is given by the feedback QS̄(·) where S̄ ∈ {S̄1, S̄2}.

Finally, the curve I on Figure 6 has been determined numerically as the set of points for which using
feedback QS̄(·) with S̄ = S̄1 or S̄ = S̄2 give exactly the same time for reaching the target. Then, on the left
part of the domain delimited by this curve, we conjecture that the control QS̄1

(·) is optimal, and QS̄2
(·) in

the right one. Furthermore, one can observe that when ǫ get close from 0, the boundary of the sub-domain
B get close from the curve I.

6 Conclusion

A novel numerical method for the investigation of minimal time problems in the plane, that may present
several singular arcs, has been proposed. It is based on an approximation with no singular arc and for
which extremals can be computed straightforwardly. The method has been applied on the optimal control of
fed-batch processes with non-monotonic growth function. When the field of extremals of the approximated
problem has no intersection, the optimal synthesis of the original problem can be deduced. Otherwise, we
show that the method brings insights on optimal trajectories of the original problem on sub-domains of the
state space.
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