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Abstract

This paper reviews both the theory and practice of the numerical com-

putation of geodesic distances on Riemannian manifolds . The notion

of Riemannian manifold allows one to define a local metric (a symmet-

ric positive tensor field) that encodes the information about the prob-

lem one wishes to solve. This takes into account a local isotropic cost

(whether some point should be avoided or not) and a local anisotropy

(which direction should be preferred). Using this local tensor field, the

geodesic distance is used to solve many problems of practical interest

such as segmentation using geodesic balls and Voronoi regions, sam-

pling points at regular geodesic distance or meshing a domain with

geodesic Delaunay triangles. The shortest paths for this Riemannian

distance, the so-called geodesics, are also important because they follow



salient curvilinear structures in the domain. We show several applica-

tions of the numerical computation of geodesic distances and shortest

paths to problems in surface and shape processing, in particular seg-

mentation, sampling, meshing and comparison of shapes.

All the figures from this review paper can be reproduced by following

the Numerical Tours of Signal Processing

http://www.ceremade.dauphine.fr/∼peyre/numerical-tour/

Several textbooks exist that include description of several manifold

methods for image processing, shape and surface representation and

computer graphics. In particular, the reader should refer to [255, 40,

146, 213, 208, 209] for fascinating applications of these methods to

many important problems in vision and graphics. This review paper is

intended to give an updated tour of both foundations and trends in the

area of geodesic methods in vision and graphics.



Contents

1 Theoretical Foundations of Geodesic Methods 1

1.1 Two Examples of Riemannian Manifolds 1

1.2 Riemannian Manifolds 4

1.3 Other Examples of Riemannian Manifolds 12

1.4 Voronoi Segmentation and Medial Axis 14

1.5 Geodesic Distance and Geodesic Curves 17

2 Numerical Foundations of Geodesic Methods 21

2.1 Eikonal Equation Discretization 21

2.2 Algorithms for the Resolution of the Eikonal Equation 26

2.3 Isotropic Geodesic Computation on Regular Grids 33

2.4 Anisotropic Geodesic Computation on Triangulated

Surfaces 38

2.5 Computing Minimal Paths 43

2.6 Computation of Voronoi Segmentation and Medial Axis 54

2.7 Distance Transform 59

2.8 Other Methods to Compute Geodesic Distances 63

i



ii Contents

2.9 Optimization of Geodesic Distance with Respect to the

Metric 65

3 Geodesic Segmentation 71

3.1 From Active Contours to Minimal Paths 71

3.2 Metric Design 79

3.3 Centerlines Extraction in Tubular Structures 88

3.4 Image Segmentation Using Geodesic Distances 94

3.5 Shape Offsetting 98

3.6 Motion Planning 99

3.7 Shape From Shading 100

4 Geodesic Sampling 104

4.1 Geodesic Voronoi and Delaunay Tesselations 104

4.2 Geodesic Sampling 110

4.3 Image Meshing 117

4.4 Surface Meshing 126

4.5 Domain Meshing 133

4.6 Centroidal Relaxation 142

4.7 Perceptual Grouping 149

5 Geodesic Analysis of Shape and Surface 153

5.1 Geodesic Dimensionality Reduction 153

5.2 Geodesic Shape and Surface Correspondence 164

5.3 Surface and Shape Retrieval Using Geodesic Descriptors 173

References 184



1

Theoretical Foundations of Geodesic Methods

This section introduces the notion of Riemannian manifold that is

a unifying setting for all the problems considered in this review paper.

This notion requires only the design of a local metric, which is then

integrated over the whole domain to obtain a distance between pairs

of points. The main property of this distance is that it satisfies a non-

linear partial differential equation, which is at the heart of the fast

numerical schemes considered in Chapter 2.

1.1 Two Examples of Riemannian Manifolds

To give a flavor of Riemannian manifolds and geodesic paths, we

give two important examples in computer vision and graphics.

1.1.1 Tracking Roads in Satellite Image

An important and seminal problem in computer vision consists in

detecting salient curves in images, see for instance [55]. They can be

used to perform segmentation of the image, or track features. A repre-

sentative example of this problem is the detection of roads in satellite

images.

1



2 Theoretical Foundations of Geodesic Methods

Figure 1.1, upper left, displays an example of satellite image f ,

that is modeled as a 2D function f : Ω→ R, where the image domain

is usually Ω = [0, 1]2. A simple model of road is that it should be

approximately of constant gray value c ∈ R. One can thus build a

saliency map W (x) that is low in area where there is a high confidence

that some road is passing by, as suggested for instance in [68]. As an

example, one can define

W (x) = |f(x)− c|+ ε (1.1)

where ε is a small value that prevents W (x) from vanishing.

Using this saliency map, one defines the length of a smooth curve

on the image γ : [0, 1]→ Ω as a weighted length

L(γ) =

∫ 1

0
W (γ(t))||γ′(t)||dt (1.2)

where γ′(t) ∈ R
2 is the derivative of γ. We note that this measure of

lengths extends to piecewise smooth curves by splitting the integration

into pieces where the curve is smooth.

The length L(γ) is smaller when the curve passes by regions where

W is small. It thus makes sense to declare as roads the curves that

minimize L(γ). For this problem to make sense, one needs to further

constrain γ. And a natural choice is to fix its starting and ending points

to be a pair (xs, xe) ∈ Ω2

P(xs, xe) = {γ : [0, 1]→ Ω \ γ(0) = xs and γ(1) = xe} , (1.3)

where the paths are assumed to be piecewise smooth so that one can

measure their lengths using (1.2).

Within this setting, a road γ⋆ is a global minimizer of the length

γ⋆ = argmin
γ∈P(xs,xe)

L(γ), (1.4)

which in general exists, and is unique except in degenerate situations

where different roads have the same length. Length L(γ⋆) is called

geodesic distance between xs and xe with respect to W (x).

Figure 1.1 shows an example of geodesic extracted with this method.

It links two points xs and xe given by the user. One can see that this
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Image f Metric W

Geodesic distance and path Path over the original image

Fig. 1.1 Example of geodesic curve extracted using the weighted metric (1.1). xs and xe

correspond respectively to the red and blue points

curve tends to follow regions with gray values close to c, which has

been fixed to c = f(xe).

This idea of using a scalar potential W (x) to weight the length of

curves has been used in many computer vision applications beside road

tracking. This includes in particular medical imaging where one wants

to extract contours of organs or blood vessels. These applications are

further detailed in Chapter 3.

1.1.2 Detecting Salient Features on Surfaces

Computer graphics applications often face problems that require

the extraction of meaningful curves on surfaces. We consider here a



4 Theoretical Foundations of Geodesic Methods

smooth surface S embedded into the 3D Euclidean space, S ⊂ R
3.

Similarly to (1.2), a curve γ̃ : [0, 1]→ S traced on the surface has a

weighted length computed as

L(γ̃) =

∫ 1

0
W (γ̃(t))||γ̃′(t)||dt, (1.5)

where γ̃′(t) ∈ Tγ̃(t) ⊂ R
3 is the derivative vector, that lies in the em-

bedding space R
3, and is in fact a vector belonging to the 2D tangent

plane Tγ̃(t) to the surface at γ̃(t), and the weight W is a positive func-

tion defined on the surface domain S.

Note that we use the notation x̃ = γ̃(t) to insist on the fact that

the curves are not defined in a Euclidean space, and are forced to be

traced on a surface.

Similarly to (1.4), a geodesic curve

γ̃⋆ = argmin
γ̃∈P(x̃s,x̃e)

L(γ̃), (1.6)

is a shortest curve joining two points x̃s, x̃e ∈ S.

When W = 1, L(γ̃) is simply the length of a 3D curve, that is re-

stricted to be on the surface S. Figure 1.2 shows an example of surface,

together with a set of geodesics joining pairs of points, for W = 1. As

detailed in Section 3.2.4, a varying saliency map W (x̃) can be defined

from a texture or from the curvature of the surface to detect salient

curves.

Geodesics and geodesic distance on 3D surfaces have found many

applications in computer vision and graphics, for example surface

matching, detailed in Chapter 5, and surface remeshing, detailed in

Chapter 4.

1.2 Riemannian Manifolds

It turns out that both previous examples can be cast into the same

general framework using the notion of a Riemannian manifold of di-

mension 2.
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Surface S Geodesic distance and paths.

Fig. 1.2 Example of geodesic curves on a 3D surface.

1.2.1 Surfaces as Riemannian Manifolds

Although the curves described in sections 1.1.1 and 1.1.2 do not

belong to the same spaces, it is possible to formalize the computation

of geodesics in the same way in both cases. In order to do so, one needs

to introduce the Riemannian manifold Ω ⊂ R
2 associated to the surface

S [148].

A smooth surface S ⊂ R
3 can be locally described as a parametric

function

ϕ :
Ω ⊂ R

2 → S ⊂ R
3

x 7→ x̃ = ϕ(x)
(1.7)

which is required to be differentiable and one-to-one, where Ω is an

open domain of R
2.

Full surfaces require several such mappings to be fully described,

but we postpone this difficulty until Section 1.2.2.

The tangent plane Tx̃ at a surface point x̃ = ϕ(x) is spanned by

the two partial derivatives of the parameterization, which define the

derivative matrix at point x = (x1, x2)

Dϕ(x) =

(
∂ϕ

∂x1
(x),

∂ϕ

∂x2
(x)

)

∈ R
3×2. (1.8)

As shown in Figure 1.3, the derivative of any curve γ̃ at a point x̃ = γ̃(t)

belongs to the tangent plane Tx̃ of S at x̃.

The curve γ̃(t) ∈ S ⊂ R
3 defines a curve γ(t) = ϕ−1(γ̃(t)) ∈ Ω
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Fig. 1.3 Tangent space Tx̃ and derivative of a curve on surface S.

traced on the parameter domain. Note that while γ̃ belongs to a curved

surface, γ is traced on a subset of a Euclidean domain.

Since γ̃(t) = ϕ(γ(t)) ∈ Ω the tangents to the curves are related via

γ̃′(t) = Dϕ(γ(t))γ′(t) and γ̃′(t) is in the tangent plane Tγ̃(t) which is

spanned by the columns of Dϕ(γ(t)). The length (1.5) of the curve γ̃

is computed as

L(γ̃) = L(γ) =

∫ 1

0
||γ′(t)||Tγ(t)

dt, (1.9)

where the tensor Tx is defined as

∀x ∈ Ω, Tx =
√

W (x̃)Iϕ(x) where x̃ = ϕ(x),

and Iϕ(x) ∈ R
2×2 is the first fundamental form of S

Iϕ(x) = (Dϕ(x))TDϕ(x) =

(

〈 ∂ϕ

∂xi
(x),

∂ϕ

∂xj
(x)〉

)

16i,j62

(1.10)

and where, given some positive symmetric matrix A = (Ai,j)16i,j62 ∈
R

2×2, we define its associated norm

||u||2A = 〈u, u〉A where 〈u, v〉A = 〈Au, v〉 =
∑

16i,j62

Ai,juivj . (1.11)

A domain Ω equipped with such a metric is called a Riemannian man-

ifold.
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The geodesic curve γ̃⋆ traced on the surface S defined in (1.6) can

equivalently be viewed as a geodesic γ⋆ = ϕ−1(γ̃⋆) traced on the Rie-

mannian manifold Ω. While γ̃⋆ minimizes the length (1.5) in the 3D

embedding space between x̃s and x̃e the curve γ⋆ minimizes the Rie-

mannian length (1.9) between xs = ϕ−1(x̃s) and xe = ϕ−1(x̃e).

1.2.2 Riemannian Manifold of Arbitrary Dimensions

Local description of a manifold without boundary. We con-

sider an arbitrary manifold S of dimension d embedded in R
n for some

n > d [164]. This generalizes the setting of the previous Section 1.2.1

that considers d = 2 and n = 3. The manifold is assumed for now to

be closed, which means without boundary.

As already done in (1.7), the manifold is described locally using a

bijective smooth parametrization

ϕ :
Ω ⊂ R

d → S ⊂ R
n

x 7→ x̃ = ϕ(x)

so that ϕ(Ω) is an open subset of S.

All the objects we consider, such as curves and length, can be trans-

posed from S to Ω using this application. We can thus restrict our

attention to Ω, and do not make any reference to the surface S.

For an arbitrary dimension d, a Riemannian manifold is thus locally

described as a subset of the ambient space Ω ⊂ R
d, having the topology

of an open sphere, equipped with a positive definite matrix Tx ∈ R
d×d

for each point x ∈ Ω, that we call a tensor field. This field is further

required to be smooth.

Similarly to (1.11), at each point x ∈ Ω, the tensor Tx defines the

length of a vector u ∈ R
d using

||u||2Tx
= 〈u, u〉Tx where 〈u, v〉Tx = 〈Txu, v〉 =

∑

16i,j6d

(Tx)i,juivj .

This allows one to compute the length of a curve γ(t) ∈ Ω traced on

the Riemannian manifold as a weighted length where the infinitesimal

length is measured according to Tx

L(γ) =

∫ 1

0
||γ′(t)||Tγ(t)

dt. (1.12)
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The weighted metric on the image for road detection defined in

Section 1.1.1 fits within this framework for d = 2 by considering Ω =

[0, 1]2 and Tx = W (x)2Id2, where Id2 ∈ R
2×2 is the identity matrix.

In this case, Ω = S, and ϕ is the identity application. The parameter

domain metric defined from a surface S ⊂ R
3 considered in Section

1.1.2 can also be viewed as a Riemannian metric as we explained in the

previous section.

Global description of a manifold without boundary. The local

description of the manifold as a subset Ω ⊂ R
d of an Euclidean space

is only able to describe parts that are topologically equivalent to open

spheres.

A manifold S ∈ R
n embedded in R

n with an arbitrary topology is

decomposed using a finite set of overlapping surfaces {Si}i topologically

equivalent to open spheres such that
⋃

i

Si = S. (1.13)

A chart ϕi : {Ωi}i → Si is defined for each of sub-surface Si.

Figure 1.4 shows how a 1D circle is locally parameterized using

several 1D segments.

Fig. 1.4 The circle is a 1-dimensional surface embedded in R
2, and is thus a 1D manifold.

In this example, it is decomposed in 4 sub-surfaces which are topologically equivalent to
sub-domains of R, through charts ϕi.

Manifolds with boundaries In applications, one often encounters

manifolds with boundaries, for instance images defined on a square,
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volume of data defined inside a cube, or planar shapes.

The boundary ∂Ω of a manifold Ω of dimension d is itself by defini-

tion a manifold of dimension d−1. Points x strictly inside the manifold

are assumed to have a local neighborhood that can be parameterized

over a small Euclidean ball. Points located on the boundary are pa-

rameterized over a half Euclidean ball.

Such manifolds require some extra mathematical care, since

geodesic curves (local length minimizers) and shortest paths (global

length minimizing curves), defined in Section 1.2.3, might exhibit tan-

gential discontinuities when reaching the boundary of the manifold.

Note however that these curves can still be computed numerically

as described in Chapter 2. Note also that the characterization of the

geodesic distance as the viscosity solution of the Eikonal equation still

holds for manifolds with boundary.

1.2.3 Geodesic Curves

Globally minimizing shortest paths. Similarly to (1.4), one de-

fines a geodesic γ⋆(t) ∈ Ω between two points (xs, xe) ∈ Ω2 as the curve

between xs and xe with minimal length according to the Riemannian

metric (1.9):

γ⋆ = argmin
γ∈P(xs,xe)

L(γ). (1.14)

As an example, in the case of a uniform Tx = Idd (i.e. the metric is

Euclidean) and a convex Ω, the unique geodesic curve between xs and

xe is the segment joining the two points.

Existence of shortest paths between any pair of points on a con-

nected Riemannian manifold is guaranteed by the Hopf-Rinow theo-

rem [133]. Such a curve is not always unique, see Figure 1.5.

Locally minimizing geodesic curves. It is important to note that

in this paper the notion of geodesics refers to minimal paths, that

are curves minimizing globally the Riemannian length between two

points. In contrast, the mathematical definition of geodesic curves usu-

ally refers to curves that are local minimizer of the geodesic lengths.

These locally minimizing curves are the generalization of straight lines
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Fig. 1.5 Example of non-uniqueness of a shortest path between two points : there is an
infinite number of shortest paths between two antipodal points on a sphere.
in Euclidean geometry to the setting of Riemannian manifolds.

Such a locally minimizing curve satisfies an ordinary differential

equation, that expresses that it has a vanishing Riemannian curvature.

There might exist several local minimizers of the length between

two points, which are not necessarily minimal paths. For instance, on

a sphere, a great circle passing by two points is composed of two local

minimizer of the length, and only one of the two portion of circle is a

minimal path.

1.2.4 Geodesic Distance

The geodesic distance between two points xs, xe is the length of γ⋆.

d(xs, xe) = min
γ∈P(xs,xe)

L(γ) = L(γ⋆). (1.15)

This defines a metric on Ω, which means that it is symmetric d(xs, xe) =

d(xe, xs), that d(xs, xe) > 0 unless xs = xe and then d(xs, xe) = 0, and

that it satisfies the triangular inequality for every point y

d(xs, xe) 6 d(xs, y) + d(y, xe).

The minimization (1.15) is thus a way to transfer a local metric de-

fined point-wise on the manifold Ω into a global metric that applies to

arbitrary pairs of points on the manifold.

This metric d(xs, xe) should not be mistaken for the Euclidean met-

ric ||xs − xe|| on R
n, since they are in general very different. As an ex-

ample, if r denotes the radius of the sphere in Figure 1.5, the Euclidean

distance between two antipodal points is 2r while the geodesic distance

is πr.
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1.2.5 Anisotropy

Let us assume that Ω is of dimension 2. To analyze locally the

behavior of a general anisotropic metric, the tensor field is diagonalized

as

Tx = λ1(x)e1(x)e1(x)T + λ2(x)e2(x)e2(x)T, (1.16)

where 0 < λ1(x) 6 λ2(x). The vector fields ei(x) are orthogonal eigen-

vectors of the symmetric matrix Tx with corresponding eigenvalues

λi(x). The norm of a tangent vector v = γ′(t) of a curve at a point

x = γ(t) is thus measured as

||v||Tx = λ1(x)|〈e1(x), v〉|2 + λ2(x)|〈e2(x), v〉|2.

A curve γ is thus locally shorter near x if its tangent γ′(t) is collinear

to e1(x), as shown on Figure 1.6. Geodesic curves thus tend to be as

parallel as possible to the eigenvector field e1(x). This diagonalization

(1.16) carries over to arbitrary dimension d by considering a family of

d eigenvector fields.

x e1(x)

Isotropic metric Anisotropic metric

Fig. 1.6 Schematic display of a local geodesic ball for an isotropic metric or an anisotropic
metric.

For image analysis, in order to find significant curves as geodesics

of a Riemannian metric, the eigenvector field e1(x) should thus match

the orientation of edges or of textures, as this is the case for Figure 1.7,

right.

The strength of the directionality of the metric is measured by its

anisotropy A(x), while its global isotropic strength is measured using
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its energy W (x)

A(x) =
λ2(x)− λ1(x)

λ2(x) + λ1(x)
∈ [0, 1] and W (x)2 =

λ2(x) + λ1(x)

2
> 0.

(1.17)

A tensor field with A(x) = 0 is isotropic and thus verifies Tx =

W (x)2Id2, which corresponds to the setting considered in the road

tracking application of Section 1.1.1.

Figure 1.7 shows examples of metric with a constant energy W (x) =

W and an increasing anisotropy A(x) = A. As the anisotropy A drops

to 0, the Riemannian manifold comes closer to Euclidean, and geodesic

curves become line segments.

Image f A = 0 A = 0.4 A = 0.8

Fig. 1.7 Example of geodesic distance to the center point, and geodesic curves between
this center point and points along the boundary of the domain. These are computed for
a metric with an increasing value of anisotropy A, and for a constant W . The metric is
computed from the image f using (4.37).

1.3 Other Examples of Riemannian Manifolds

One can find many occurrences of the notion of Riemannian man-

ifold to solve various problems in computer vision and graphics. All

these methods build, as a pre-processing step, a metric Tx suited for

the problem to solve, and use geodesics to integrate this local distance

information into globally optimal minimal paths. Figure 1.8 synthe-

sizes different possible Riemannian manifolds. The last two columns

correspond to examples already considered in sections 1.1.1 and 1.2.5.
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Euclidean Shape Metric Anisotropic

Fig. 1.8 Examples of Riemannian metrics (top row), geodesic distances and geodesic
curves (bottom row). The blue/red color-map indicates the geodesic distance to the starting
red point. From left to right: Euclidean (Tx = Id2 restricted to Ω = [0, 1]2), planar domain
(Tx = Id2 restricted to M ⊂ [0, 1]2), isotropic metric (Ω = [0, 1]2, T (x) = W (x)Id2, see
equation (1.1)), Riemannian manifold metric (Tx is the structure tensor of the image, see
equation (4.37)).

1.3.1 Euclidean Distance

The classical Euclidean distance d(xs, xe) = ||xs − xe|| in Ω = R
d is

recovered by using the identity tensor Tx = Idd. For this identity met-

ric, shortest paths are line segments. Figure 1.8, first column, shows

this simple setting. This is generalized by considering a constant met-

ric Tx = T ∈ R
2×2, in which case the Euclidean metric is measured

according to T , since d(xs, xe) = ||xs − xe||T . In this setting, geodesics

between two points are straight lines.

1.3.2 Planar Domains and Shapes

If one uses a locally Euclidean metric Tx = Id2 in 2D, but restricts

the domain to a non-convex planar compact subset Ω ⊂ R
2, then the

geodesic distance d(xs, xe) might differ from the Euclidean length ||xs−
xe||. This is because paths are restricted to lie inside Ω, and some

shortest paths are forced to follow the boundary of the domain, thus

deviating from line segment (see Figure 1.8, second column).

This shows that the global integration of the local length measure
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Tx to obtain the geodesic distance d(xs, xe) takes into account global

geometrical and topological properties of the domain. This property is

useful to perform shape recognition, that requires some knowledge of

the global structure of a shape Ω ⊂ R
2, as detailed in Chapter 5.

Such non-convex domain geodesic computation also found applica-

tion in robotics and video games, where one wants to compute an op-

timal trajectory in an environment consisting of obstacles, or in which

some positions are forbidden [161, 151]. This is detailed in Section 3.6.

1.3.3 Anisotropic Metric on Images

Section 1.1.1 detailed an application of geodesic curve to road track-

ing, where the Riemannian metric is a simple scalar weight computed

from some image f . This weighting scheme does not take advantage

of the local orientation of curves, since the metric W (x)||γ′(t)|| is only

sensitive to the amplitude of the derivative.

One can improve this by computing a 2D tensor field Tx at each pixel

location x ∈ R
2×2. The precise definition of this tensor depends on the

precise applications, see Section 3.2. They generally take into account

the gradient ∇f(x) of the image f around the pixel x, to measure the

local directionality of the edges or the texture. Figure 1.8, right, shows

an example of metric designed to match the structure of a texture.

1.4 Voronoi Segmentation and Medial Axis

1.4.1 Voronoi Segmentation

For a finite set S = {xi}K−1
i=0 of starting points, one defines a seg-

mentation of the manifold Ω into Voronoi cells

Ω =
⋃

i

Ci where Ci = {x ∈ Ω \ ∀ j 6= i, d(x, xj) > d(x, xi)} .

(1.18)

Each region Ci can be interpreted as a region of influence of xi. Section

2.6.1 details how to compute this segmentation numerically, and Section

4.1.1 discusses some applications.
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This segmentation can also be represented using a partition function

ℓ(x) = argmin
06i<K

d(x, xi). (1.19)

For points x which are equidistant from at least two different starting

points xi and xj , i.e. d(x, xi) = d(x, xj), one can pick either ℓ(x) = i

or ℓ(x) = j. Except for these exceptional points, one thus has ℓ(x) = i

if and only if x ∈ Ci.
Figure 1.9, top row, shows an example of Voronoi segmentation for

an isotropic metric.

Metric W (x) Distance US Voronoi ℓ(x) MedAxis(S)

Fig. 1.9 Examples of distance function, Voronoi segmentation and medial axis for an
isotropic metric (top left) and a constant metric inside a non-convex shape (bottom left).

This partition function ℓ(x) can be extended to the case where S is

not a discrete set of points, but for instance the boundary of a 2D shape.

In this case, ℓ(x) is not integer valued but rather indicates the location

of the closest point in S. Figure 1.9, bottom row, shows an example

for a Euclidean metric restricted to a non-convex shape, where S is the

boundary of the domain. In the third image, the colors are mapped to

the points of the boundary S, and the color of each point x conresponds

to the one associated with ℓ(x).
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1.4.2 Medial Axis

The medial axis is the set of points where the distance function US

is not differentiable. This corresponds to the set of points x ∈ Ω where

two distinct shortest paths join x to S.

The major part of the medial axis is thus composed of points that

are at the same distance from two points in S
{

x ∈ Ω \ ∃(x1, x2) ∈ S2

∣
∣
∣
∣

x1 6= x2

d(x, x1) = d(x, x2)

}

⊂ MedAxis(S).

(1.20)

This inclusion might be strict because it might happen that two points

x ∈ Ω and y ∈ S are linked by two different geodesics.

Finite set of points. For a discrete finite set S = {xi}N−1
i=0 , a point

x belongs to MedAxis(S) either if it is on the boundary of a Voronoi

cell, or if two distinct geodesics are joining x to a single point of S.

One thus has the inclusion
⋃

xi∈S

∂Ci ⊂ MedAxis(S) (1.21)

where Ci is defined in (1.18).

For instance, if S = {x0, x1} and if Tx is a smooth metric, then

MedAxis(S) is a smooth mediatrix hyper surface of dimension d − 1

between the two points. In the Euclidean case, Tx = Idd, it corresponds

to the separating affine hyperplane.

As detailed in Section 4.1.1, for a 2D manifold and a generic dense

enough configuration of points, it is the union of portion of mediatri-

ces between pairs of points, and triple points that are equidistant from

three different points of S.

Section 2.6.2 explains how to compute numerically the medial axis.

Shape skeleton. The definition (1.20) of MedAxis(S) still holds

when S is not a discrete set of points. The special case considered

in Section 1.3.2 where Ω is a compact subset of R
d and S = ∂Ω is

of particular importance for shape and surface modeling. In this set-

ting, MedAxis(S) is often called the skeleton of the shape S, and is



1.5. Geodesic Distance and Geodesic Curves 17

an important perceptual feature used to solve many computer vision

problems. It has been studied extensively in computer vision as a basic

tool for shape retrieval, see for instance [252]. One of the main issues is

that the skeleton is very sensitive to local modifications of the shape,

and tends to be complicated for non-smooth shapes.

Section 2.6.2 details how to compute and regularize numerically the

skeleton of a shape. Figure 1.9 shows an example of skeleton for a 2D

shape.

1.5 Geodesic Distance and Geodesic Curves

1.5.1 Geodesic Distance Map

The geodesic distance between two points defined in (1.15) can be

generalized to the distance from a point x to a set of points S ⊂ Ω by

computing the distance from x to its closest point in Ω, which defines

the distance map

US(x) = min
y∈S

d(x, y). (1.22)

Similarly a geodesic curve γ⋆ between a point x ∈ Ω and S is a curve

γ⋆ ∈ P(x, y) for some y ∈ S such that L(γ⋆) = US(x).

Figure 1.8, bottom row, shows examples of geodesic distance map

to a single starting point S = {xs}.
Figure 1.10 is a three dimensional illustration of distance maps for

a Euclidean metric in R
2 from one (left) or two (right) starting points.

1.5.2 Eikonal Equation

For points x outside both the medial axis MedAxis(S) defined in

(1.20) and S, one can prove that the geodesic distance map US is differ-

entiable, and that it satisfies the following non-linear partial differential

equation

||∇US(x)||T−1
x

= 1, with boundary conditions US(x) = 0 on S, (1.23)

where ∇US is the gradient vector of partial differentials in R
d.

Unfortunately, even for a smooth metric Tx and simple set S, the

medial axis MedAxis(S) is non-empty (see Figure 1.10, right, where

the geodesic distance is clearly not differentiable at points equidistant
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One starting point Two starting points

Fig. 1.10 Examples of geodesic distances and curves for a Euclidean metric with different
starting configurations. Geodesic distance is displayed as an elevation map over Ω = [0, 1]2.
Red curves correspond to iso-geodesic distance lines, while yellow curves are examples of
geodesic curves.

from the starting points). To define US as a solution of a PDE even

at points where it is not differentiable, one has to resort to a notion

of weak solution. For a non-linear PDE such as (1.23), the correct

notion of weak solution is the notion of viscosity solution, developed

by Crandall and Lions [82, 81, 80].

A continuous function u is a viscosity solution of the Eikonal equa-

tion (1.23) if and only if for any continuously differentiable mapping

ϕ ∈ C1(Ω) and for all x0 ∈ Ω\S local minimum of u− ϕ we have

||∇ϕ(x0)||T−1
x0

= 1

For instance in 1D, d = 1, Ω = R, the distance function

u(x) = US(x) = min(|x− x1|, |x− x2|)

from two points S = {x1, x2} satisfies |u′| = 1 wherever it is differen-

tiable. However, many other functions satisfies the same property, for

example v, as shown on Figure 1.11. Figure 1.11, top, shows a C1(R)

function ϕ that reaches a local minimum for u− ϕ at x0. In this case,

the equality |ϕ′(x0)| = 1 holds. This condition would not be verified by

v at point x0. An intuitive vision of the definition of viscosity solution

is that it prevents appearance of such inverted peaks outside S.

An important result from the viscosity solution of Hamilton-Jacobi

equation, proved in [82, 81, 80], is that if S is a compact set, if x 7→ Tx

is a continuous mapping, then the geodesic distance map US defined in
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Fig. 1.11 Schematic view in 1D of the viscosity solution constrain.

(1.22) is the unique viscosity solution of the following Eikonal equation

{

∀x ∈ Ω, ||∇US(x)||T−1
x

= 1,

∀x ∈ S, US(x) = 0.
(1.24)

In the special case of an isotropic metric Tx = W (x)2Idd, one recovers

the classical Eikonal equation

∀x ∈ Ω, ||∇US(x)|| = W (x). (1.25)

For the Euclidean case, W (x) = 1, one has ||∇US(x)|| = 1, whose

viscosity solution for S = {xs} is Uxs(x) = ||x− xs||.

1.5.3 Geodesic Curves

If the geodesic distance US is known, for instance by solving the

Eikonal equation, a geodesic γ⋆ between some end point xe and S is

computed by gradient descent. This means that γ⋆ is the solution of

the following ordinary differential equation






∀ t > 0,
dγ⋆(t)

dt
= −ηtv(γ⋆(t)),

γ⋆(0) = xe.
(1.26)
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where the tangent vector to the curve is the gradient of the distance,

twisted by T−1
x

v(x) = T−1
x ∇US(x),

and where ηt > 0 is a scalar function that controls the speed of the

geodesic parameterization. To obtain a unit speed parameterization,

||(γ⋆)′(t)|| = 1, one needs to use

ηt = ||v(γ⋆(t))||−1.

If xe is not on the medial axis MedAxis(S), the solution of (1.26) will

not cross the medial axis for t > 0, so its solution is well defined for

0 6 t 6 txe , for some txe such that γ⋆(txe) ∈ S.

For an isotropic metric Tx = W (x)2Idd, one recovers the gradient

descent of the distance map proposed in [70]

∀ t > 0,
dγ⋆(t)

dt
= −ηt∇US(γ⋆(t)).

Figure 1.10 illustrates the case where Tx = Id2 : geodesic curves

are straight lines orthogonal to iso-geodesic distance curves, and cor-

respond to greatest slopes curves, since the gradient of a function is

always orthogonal to its level curves.



2

Numerical Foundations of Geodesic Methods

This chapter is concerned with the approximation of geodesic dis-

tances and geodesic curves with fast numerical schemes. This requires

a discretization of the Riemannian manifold using either a uniform grid

or a triangulated mesh. We focus on algorithms that compute the dis-

crete distance by discretizing the Eikonal equation (1.24). The discrete

non-linear problem can be solved by iterative schemes, and in some

cases using faster front propagation methods.

We begin the description of these numerical algorithms by a simple

setting in Section 2.3 where the geodesic distance is computed on a

regular grid for an isotropic metric. This serves as a warmup for the

general case studied in Section 2.4. This restricted setting is useful be-

cause the Eikonal equation is discretized using finite differences, which

allows to introduce several important algorithms such as Gauss-Seidel

iterations or Fast Marching propagations.

2.1 Eikonal Equation Discretization

This section describes a general setting for the computation of the

geodesic distance. It follows the formulation proposed by Bornemann

21
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and Rasch [33] that unifies several particular schemes, which are de-

scribed in Sections 2.3 and 2.4.

2.1.1 Derivative-Free Eikonal Equation

The Eikonal equation (1.24) is a PDE that describes the infinitesi-

mal behavior of the distance map US , it however fails to describe the

behavior of US at points where it is not differentiable. To derive a nu-

merical scheme for a discretized manifold one can consider an equation

equivalent to (1.24) that does not involve derivatives of US .

We consider a small neighborhood B(x) around each x ∈ Ω\S, such

that B(x) ∩ S = ∅. It can, for instance, be chosen as a Euclidean ball,

see Figure 2.1.

Fig. 2.1 Neighborhood B(x) for several points x ∈ Ω.

One can prove that the distance map US is the unique continuous

solution U to the equation
{ ∀x ∈ Ω, U(x) = min

y∈∂B(x)
U(y) + d(y, x),

∀x ∈ S, U(x) = 0,
(2.1)

where d(y, x) is the geodesic distance defined in (1.15).

Equation (2.1) will be referred to as the control reformulation of the

Eikonal equation. It makes appear that U(x) depends only on values

of U on neighbors y with U(y) 6 U(x). This will be a key observation

in order to speed up the computation of U .

The fact that US solves (2.1) is easy to prove. The triangular in-

equality implies that US(x) 6 US(y) + d(y, x) for all y ∈ ∂B(x). Con-
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versely, the geodesic γ⋆ joining x to S passes through some y ∈ ∂B(x),

see Figure 2.2. This shows that this point y achieves the equality in the

minimization (2.1).

Fig. 2.2 Proof of equation (2.1).

Uniqueness is a bit more technical to prove. Let us consider two

continuous mappings U1 and U2 that satisfy U1(x) 6= U2(x) for some

x /∈ S. We define ε = U1(x) − U2(x) 6= 0 and γ⋆ a geodesic curve

between S and x, such that γ⋆(0) = x and γ⋆(1) ∈ S. We define

A = {t ∈ [0, 1]\U1(γ
⋆(t)) − U2(γ

⋆(t)) = ε}. By definition we have

1 /∈ A since U1(γ
⋆(1)) = U2(γ

⋆(1)) = 0. Furthermore, 0 ∈ A, and this

set is non-empty. Let us denote s = supA its supremum. U1 and U2

being continuous mappings, we have U1(s) − U2(s) = ε and s ∈ A,

and thus s 6= 1 and xs = γ⋆(s) /∈ S. If we denote y an intersection

of ∂B(xs) with the part of the geodesic γ⋆ joining xs to S, we get

U1(xs) = U1(y) + d(y, xs) and U2(xs) = U2(y) + d(y, xs), such that

U1(y)−U2(y) = ε. Let us denote t such that y = γ⋆(t). Then t ∈ A and

t > s, which contradicts the definition of s. Thus the initial hypothesis

U1(x) 6= U2(x) is false.

Equation (2.1) can be compactly written as a fixed point

U = Γ(U)

over the set of continuous functions U satisfying U(x) = 0 for all x ∈ S,

where the operator V = Γ(U) is defined as

V (x) = min
y∈∂B(x)

U(y) + d(y, x).
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2.1.2 Manifold Discretization

To compute numerically a discrete geodesic distance map, we sup-

pose that the manifold Ω is sampled using a set of points {xi}N−1
i=0 ⊂ Ω.

We denote ε the precision of the sampling.

The metric of the manifold is supposed to be sampled on this grid,

and we denote

Ti = Txi
∈ R

2×2

the discrete metric.

To derive a discrete counterpart to the Eikonal equation (1.24), each

point xi is connected to its neighboring points xj ∈ Neigh(xi). Each

point is associated with a small surrounding neighborhood Bε(xi), that

is supposed to be a disjoint union of simplexes whose extremal vertices

are the grid points {xi}i. The sampling is assumed to be regular, so

that the simplexes have approximately a diameter of ε.

For instance, in 2D, each neighborhood Bε(xi) is an union of trian-

gles

Bε(xi) =
⋃

xj ,xk∈Neigh(xi)
xj∈Neigh(xk)

ti,j,k (2.2)

where ti,j,k is the convex hull of {xi, xj , xk}.
Figure 2.3 shows example of 2D neighborhoods sets for two im-

portant situations. On a square grid, the points are equi-spaced,

xi = (i1ε, i2ε), and each Bε(xi) is composed of four regular triangles.

On a triangular mesh, each Bε(xi) is composed of the triangles which

contain xi.

This description extends to arbitrary dimensions. For instance, for

a 3D manifold, each Bε(xi) is an union of tetrahedra.

2.1.3 Discrete Eikonal Equation

A distance map US(x) for x ∈ Ω is approximated numerically by

computing a discrete vector u ∈ R
N where each value ui is intended to

approximate the value of US(xi).

This discrete vector is computed as a solution of a finite dimensional

fixed point equation that discretizes (2.1). To that end, a continuous
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Fig. 2.3 Neighborhood sets on a regular grid (left), and a triangular mesh (right)

function u(x) is obtained from the discrete samples {ui}i by linear

interpolation over the triangles.

We compute the minimization in (2.1) at the point x = xi over the

boundary of Bε(xi) defined in (2.2) where ε is the sampling precision.

Furthermore, the tensor metric is approximated by a constant tensor

field equal to Ti over Bε(xi). Under these assumptions, the discrete

derivative free Eikonal equation reads
{ ∀xi ∈ Ω, ui = min

y∈∂Bε(xi)
u(y) + ||y − xi||T−1

i
,

∀xi ∈ S, ui = 0.
(2.3)

Decomposing this minimization into each triangle (in 2D) of the

neighborhood, and using the fact that u(y) is affine on each triangle,

one can re-write the discrete Eikonal equation as a fixed point

u = Γ(u) and ∀xi ∈ S, ui = 0 (2.4)

where the operator v = Γ(u) ∈ R
N is defined as

vi = Γi(u) = min
ti,j,k⊂Bε(xi)

vi,j,k (2.5)

where

vi,j,k = min
t∈[0,1]

tuj + (1− t)uk + ||txj + (1− t)xk − xi||T−1
i

.

We have written this equation for simplicity in the 2D case, so that

each point y is a barycenter of two sampling points, but this extends
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to a manifold of arbitrary dimension d by considering barycenters of d

points.

Sections 2.3 and 2.4 show how this equation can be solved explicitly

for the case of a regular square grid and for a 2D triangulation.

Convergence of the discretized equation. One can show that

the fixed point equation (2.4) has a unique solution u ∈ R
N , see [33].

Furthermore, if the metric Tx is continuous, one can also prove that the

interpolated function u(x) converges uniformly to the viscosity solution

US of the Eikonal equation (1.24) when ε tends to zero. This was first

proved by Rouy and Tourin [242] for the special case of an isotropic

metric on a regular grid, see [33] for the general case.

2.2 Algorithms for the Resolution of the Eikonal Equation

The discrete Eikonal equation is a non-linear fixed point problem.

One can compute the solution to this problem using iterative schemes.

In some specific cases, one can compute the solution with non-iterative

Fast Marching methods.

2.2.1 Iterative Algorithms

One can prove that the mapping Γ is both monotone

u 6 ũ =⇒ Γ(u) 6 Γ(ũ), (2.6)

and non-expanding

||Γ(u)− Γ(ũ)||∞ 6 ||u− ũ||∞ = max
i
|ui − ũi|. (2.7)

These two properties enable the use of simple iterations that converge

to the solution u of the problem.

Jacobi iterations To compute the discrete solution of (2.4), one can

apply the update operator Γ to the whole set of grid points. Jabobi

non-linear iterations initialize u(0) = 0 and then compute

u(k+1) = Γ(u(k)).
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Properties (2.6) and (2.7), together with the fact that the iterates u(k)

are bounded, imply the convergence of u(k) to a fixed point u satisfy-

ing (2.4). Algorithm 1 details the steps of the Jacobi iterations.

The fixed point property is useful to monitor the convergence of

iterative algorithms, since one stops iterations when one has computed

some distance u with

||Γ(u)− u||∞ 6 η where ||u||∞ = max
i
|ui|,

and where η > 0 is some user-defined tolerance.

Non-adaptive Gauss-Seidel iterations To speed up the compu-

tation, one can apply the local updates sequentially, which corresponds

to a non-linear Gauss-Seidel algorithm, that converges to the solution

of (2.4) – see Algorithm 2.

Adaptive Gauss-Seidel iterations. To further speed up the con-

vergence of the Gauss-Seidel iterations, and to avoid unnecessary up-

dates, Bornemann et al. introduced in [33] an adaptive algorithm that

Algorithm 1: Jacobi algorithm.

Initialization: set u(0) = 0, k ← 0.

repeat

for 0 6 i < N do

u
(k+1)
i = Γi(u

(k)).

Set k → k + 1.
until ||u(k) − u(k−1)||∞ < η ;

Algorithm 2: Non-adaptive Gauss-Seidel algorithm.

Initialization: set u(0) = 0, k ← 0.

repeat

Set u(k+1) = u(k)

for 0 6 i < N do

u
(k+1)
i = Γi(u

(k+1)).

Set k → k + 1.
until ||u(k) − u(k−1)||∞ < η ;
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maintains a list Q of points that need to be updated. At each itera-

tion, a point is updated, and neighboring points are inserted to the

list if they violate the fixed point condition up to a tolerance η. This

algorithm is detailed in Algorithm 3.

See also [140, 287, 144] for other fast iterative schemes on parallel

architectures.

2.2.2 Fast Marching Algorithm

The resolution of the discrete Eikonal equation (2.4) using the

Gauss-Seidel method shown in Algorithm 2, is slow because all the grid

points are visited several times until reaching an approximate solution.

For an isotropic metric on a regular grid, Sethian [254] and Tsitsik-

lis [276] discovered independently that one can by-pass these iterations

by computing exactly the solution of (2.4) in O(N log(N)) operations,

where N is the number of sampling points. Under some conditions on

the sampling grid and on the metric, this scheme extends to general

discretized Riemannian manifolds, see Section 2.4.3.

This algorithm is based on an optimal ordering of the grid points

that ensures that each point is visited only once by the algorithm, and

that this visit computes the exact solution. For simplicity, we detail the

algorithm for a 2D manifold, but it applies to arbitrary dimension.

Causality and ordering. A desirable property of the discrete up-

date operator Γ is the following causality principle, that requires for

Algorithm 3: Adaptive Gauss Seidel algorithm.

Initialization: ui =

{
0 if i ∈ S,

+∞ otherwise.
Q = S.

repeat
Pop i from Q.

Compute v = Γi(u).

if |v − ui| > η then
Set ui ← v.

Q ← Q∪Neigh(xi).

until Q = ∅ ;
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any v that

∀xj ∈ Neigh(xi), Γi(v) > vj . (2.8)

This condition is a strong requirement that is not always fulfilled by

a given manifold discretization, either because the sampling triangles

have poor shapes, or because the metric Ti is highly anisotropic.

If this causality principle (2.8) holds, one can prove that the value

ui of the solution of the discrete Eikonal equation (2.4) at point xi

can be computed by using pairs of neighbors xj , xk ∈ Neigh(xi) with

strictly smaller distance values

ui > max(uj , uk).

This property suggests that one can solve progressively for the solution

ui for values of u sorted in increasing order.

Front propagation. The Fast Marching algorithm uses a priority

queue to order the grid points as being the current estimate of the

distance. At a given step of the algorithm, each point xi of the grid is

labeled according to a state

Σi ∈ {Computed, Front, Far}.

During the iterations of the algorithm, while an approximation ui of

US is computed, a point can change of label according to

Far 7→ Front 7→ Computed.

Computed points with a state Σi = Computed are those that the al-

gorithm will not consider any more. This means that the computation

of ui is done for these points, so that ui ≈ US(xi). Front points xi that

satisfies Σi = Front are the points being processed. The value of ui

is well defined but might change in future iterations. Far points with

Σi = Far are points that have not been processed yet, so that we define

ui = +∞.

Because the value of US(xi) depends only on the neighbors xi which

have a smaller value, and because each update is guaranteed to only

decrease the value of the estimated distance, the point in the front

with the smallest current distance ui is actually the point with smaller
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distance US amongst the points in Front ∪ Far. Selecting at each step

this point thus guarantees that ui is the correct value of the distance,

and that its correct priority has been used.

Algorithm 4 gives the details of the front propagation algorithm

that computes a distance map u approximating US(x) on a discrete

grid.

Numerical complexity. The worse case numerical complexity of

this algorithm is O(N log(N)) for a discrete grid of N points. This is

because all the N points are visited (tagged Computed) exactly once

while the time required for updating only depends on the size of the

neighborhood. Furthermore, the selection of point i with minimum ui

from the priority queue of the front points takes at most log(N) opera-

tions with a special heap data structure [288, 119]. However, in practice,

it takes much less time and the algorithm is nearly linear in time.

Using different data structures requiring additional storage, dif-

ferent O(N) implementations of the Fast Marching were proposed

in [144, 293].

Algorithm 4: Fast Marching algorithm.

Initialization:

∀xi ∈ S, ui ← 0, Σi ← Front,

∀xi /∈ S, ui ← +∞, Σi ← Far.

repeat
Select point: i←− argmin

k,Σk=Front
uk.

Tag: Σi ← Computed.

for xk ∈ Neigh(xi) do

if Σk = Far then
Σk ← Front

if Σk = Front then
uk ← Γk(u).

until {i \ Σi = Front} = ∅ ;
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2.2.3 Geodesics on Graphs

Graph as discrete manifold. In this setting, for each xj ∈
Neigh(xi), the metric is represented as a weight Wi,j along the edge

[xi, xj ]. The graph is an abstract structure represented only by its in-

dices 0 6 i < N , and by its weights. We denote i ∼ j to indicate that

the points are connected for xj ∈ Neigh(xi). One only manipulates the

indices i of the points xi for the geodesic computation on the graph

with the position xi being used only for display purpose.

One should be careful that in this graph setting, the metric Wi,j is

defined on the edge [xi, xj ] of the graph, whereas for the Eikonal equa-

tion discretization detailed in Section 2.1.2, the metric is discretized

on the vertex xi. Notice that – while it is less usual – it is possible to

define graphs with weights on the vertices rather than on the edges.

Geodesic distances on graphs. A path γ on a graph is a set of

Kγ indices {γt}Kγ−1
t=0 ⊂ Ω, where Kγ > 1 can be arbitrary, 0 6 γt < N ,

and each edge is connected on the graph, γt ∼ γt+1. The length of this

path is

L(γ) =

Kγ−2
∑

t=0

Wγt,γt+1 .

The set of path joining two indices is

P(i, j) =
{
γ \ γ0 = i and γKγ−1 = j

}
,

and the geodesic distance is

di,j = min
γ∈P(i,j)

L(γ).

Floyd Algorithm. A simple algorithm to compute the geodesic dis-

tance di,j between all pairs of vertices is the algorithm of Floyd [249].

Starting from an initial distance map

d
(0)
i,j =

{
Wi,j if xj ∈ Neigh(xi),

+∞ otherwise,

it iterates, for k = 0, . . . , N − 1

d
(k+1)
i,j = min

l
(d

(k)
i,j , d

(k)
i,l + d

(k)
l,j ).
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One can then show that d
(N)
i,j = di,j . The complexity of this algorithm

is O(N3) operations, whatever the connectivity of the graph is.

Dijkstra algorithm. The Fast Marching algorithm can be seen as

a generalization of Dijkstra algorithm that computes the geodesic dis-

tance on a graph [101]. This algorithm computes the distance map to

an initial vertex is
uj = dis,j

using a front propagation on the graph. It follows the same steps of the

Fast Marching as detailed in Algorithm 4.

The update operator (2.5) is replaced by an optimization along the

adjacent edges of a vertex

Γi(u) = min
j∼i

uj + Wi,j (2.9)

As for the Fast Marching algorithm, the complexity of this algorithm

is O(V N + N log(N)), where V is a bound on the size of the one ring

Neigh(xi). For sparse graphs, where V is a small constant, comput-

ing the distance between all pairs of points in the graph thus requires

O(N2 log(N)) operations, which is significantly faster than Floyd algo-

rithm.

Geodesics on graph. Once the distance map u to some starting

point is has been computed using Dijkstra algorithm, one can com-

pute the shortest path γ between is and any points ie by performing a

discrete gradient descent on the graph

γ0 = ie and γt+1 = argmin
i∼γt

ui.

Metrication error. As pointed out in [70] and [214], the distance

ui computed with this Dijkstra algorithm is however not a faithful

discretization of the geodesic distance, and it does not converge to US

when N tends to +∞. For instance, for a Euclidean metric W (x) =

1, the distance between the two corners xs = (0, 0) and xe = (1, 1)

computed with Dijkstra algorithm is always the Manhattan distance

d(xs, xe) = ||xs − xe||1 = 2 whereas the geodesic distance should be
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||xs − xe|| =
√

2. This corresponds to a metrication error, which can be

improved but not completely removed by an increase of the size of the

chosen neighborhood.

One can however prove that randomized refinement rule produces a

geodesic distance on graph that converges to the geodesic distance on

the manifold, see for instance [39, 26]. This requires that the vertices

of the graph are a dense covering of the manifold as detailed in Section

4.2.1. This also requires that the edges of the graph links all pairs of

vertices that are close enough.

2.3 Isotropic Geodesic Computation on Regular Grids

This section details how the general scheme detailed in Section 2.1

is implemented in a simple setting relevant for image processing and

volume processing.

The manifold is supposed to be sampled on a discrete uniform grid,

and the metric is isotropic. We consider here only the 2D case to ease

notations so that the sampling points are xi = xi1,i2 = (i1ε, i2ε), and

the metric reads Ti = WiId2. The sampling precision is ε = 1/
√

N ,

where N is the number of pixels in the image.

2.3.1 Update Operator on a Regular Grid

Each grid point xi is connected to four neighbors Neigh(xi), see

Figure 2.3, left, and the discrete update operator Γi(u) defined in (2.5)

computes a minimization over four adjacent triangles.

Γi(u) = min
ti,j,k⊂Bε(xi)

vi,j,k (2.10)

where

vi,j,k = min
t∈[0,1]

tuj + (1− t)uk + Wi||txj + (1− t)xk − xi||. (2.11)

This corresponds to the minimization of a strictly convex function un-

der convex constraints, so that there is a single solution.

As illustrated in figure 2.4, we model u as an affine mapping over
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triangle ti,j,k, and we denote






t⋆ = argmint∈[0,1]{tuj + (1− t)uk + Wi||txj + (1− t)xk − xi||}
x⋆ = t⋆xj + (1− t⋆)xk

v⋆ = t⋆uj + (1− t⋆)uk = u(x⋆)

,

(2.12)

such that
vi,j,k − v⋆

||xi − x⋆|| = Wi. (2.13)

Fig. 2.4 Geometric interpretation of update on a single triangle.

From a geometrical point of view, finding vi,j,k and x∗ is related to

finding the maximal slope in ti,j,k. If
|uj−uk|
||xj−xk|| 6 Wi, it is possible to find

x∗ ∈ [xj , xk] such that equation 2.13 holds, and Wi is then the maximal

slope in ti,j,k. In this case, we have ||∇u|| = Wi, which can be rewritten

as

(vi,j,k − uj)
2 + (vi,j,k − uk)

2 = ε2W 2
i . (2.14)

Notice that the condition
|uj−uk|
||xj−xk|| 6 Wi imposes that this equation

has solutions. Furthermore, since equation (2.11) imposes that vi,j,k be

larger than both uj and uk, vi,j,k corresponds to the largest root of

(2.14).

If however
|uj−uk|
||xj−xk|| > Wi, including the cases when uj = +∞ or

uk = +∞, Wi is no longer the maximal slope in ti,j,k, and the solution

of (2.11) is reached for t = 0 if uk < uj , and t = 1 if uj < uk.
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Finally, vi,j,k is computed as

vi,j,k =

{
1
2(uj + uk +

√
∆) if ∆ > 0,

min(uj , uk) + εWi otherwise
(2.15)

where

∆ = 2ε2W 2
i − (uj − uk)

2

Optimizing computation. The equivalence of the four triangles

neighboring xi suggests that some computations can be saved with

respect to the expression (2.10) of the update operator. As an ex-

ample, if ui1−1,i2 > ui1+1,i2 , the solution computed from triangle

ti,(i1−1,i2),(i1,i2+1) will be larger than the one computed from triangle

ti,(i1+1,i2),(i1,i2+1), i.e. vi,(i1−1,i2),(i1,i2+1) > vi,(i1+1,i2),(i1,i2+1). Comput-

ing vi,(i1−1,i2),(i1,i2+1) is thus unnecessary.

More generally, denoting, for a given point xi

v1 = min(ui1−1,i2 , ui1+1,i2) and v2 = min(ui1,i2−1, ui1,i2+1),

the update operator v = Γi(u) is obtained as

Γi(u) =

{
1
2(v1 + v2 +

√
∆) if ∆ > 0,

min(v1, v2) + εWi otherwise.

where ∆ corresponds to solving the equation (2.11) in the triangle with

minimal values. This update scheme can be found in [70, 77] for 2D

Fast Marching and was extended to 3D images in [93].

2.3.2 Fast Marching on Regular Grids

One can prove that the update operator defined by (2.10) satis-

fies the causality condition (2.8). One can thus use the Fast Marching

algorithm, detailed in Algorithm 4, to solve the Eikonal equation in

O(N log(N)) operations, where N is the number of grid points.

Figure 2.5 shows examples of Fast Marching propagations on a reg-

ular 2D grid.

Other methods, inspired by the Fast Marching methods, have been

developed, such as the Fast Sweeping [275]. They can be faster in some

cases, and implemented on parallel architectures [298].
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Alternative discretization schemes, which might be more precise in

some cases, have been proposed, that can also be solved with Fast

Marching methods [228, 236, 64, 202].

Fig. 2.5 Examples of isotropic front propagation. The color-map indicates the values of
the distance functions at a given iteration of the algorithm. The background image is the
potential W , which range from 10−2 (white) to 0 (black), so that geodesics tend to follow
bright regions.

Reducing Computational Time. Notice also that the computa-

tional time of algorithm 4 can be reduced in the following way : when

xj and xk ∈ Neigh(xi) are selected and Σk = Front, computing Γk(u)

is not always needed in order to update uk. Indeed, if we denote xj

the symetric of xi with respect to xk and if uj < ui, then v1 = uj or

v2 = uj during the computation of Γk(u), and ui will not be used. In

this case, it is thus unnecessary to update uk. Overall, roughly half of

the computations can be saved in that way.

Fast Marching Inside Shapes. It is possible to restrict the prop-

agation inside an arbitrary compact sub-domain Ω of R
d. This is

achieved numerically by removing a connection xj ∈ Neigh(xi) if the

segment [xi, xj ] intersect the boundary ∂Ω.
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Figure 2.6 shows an example of propagation inside a planar domain

Ω ⊂ R
2.

Chapter 5 details applications of geodesic computations inside a

planar domain to perform shape comparison and retrieval.

Fig. 2.6 Fast Marching propagation inside a 2D shape.

2.3.3 Upwind Finite Differences

As suggested by equation (2.14), this update step can be reformu-

lated in the more classical framework of upwind finite differences, which

is a usual tool to discretize PDE. One needs to be careful about the

discretization of the gradient operator, such that the minimal solution

over all the triangles is selected.

Upwind Discretization. For a discrete 2D image ui sampled at

location xi = (i1ε, i2ε), we denote ui = ui1,i2 to ease the notations.

Forward or backward finite differences are defined as

(D+
1 u)i = (ui1+1,i2 − ui1,i2)/ε and (D−

1 u)i = (ui1,i2 − ui1−1,i2)/ε

(D+
2 u)i = (ui1,i2+1 − ui1,i2)/ε and (D−

2 u)i = (ui1,i2 − ui1,i2−1)/ε.

Upwind schemes, initially proposed by Rouy and Tourin [242] for the

Eikonal equation, retain the finite difference with the largest magni-

tude. This defines upwind partial finite differences

(D̃1u)i = max((D+
1 u)i,−(D−

1 u)i, 0), and

(D̃2u)i = max((D+
2 u)i,−(D−

2 u)i, 0),
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where one should be careful about the minus sign in front of the back-

ward derivatives. This defines an upwind gradient

(∇̃u)i = ((D̃1u)i, (D̃2u)i) ∈ R
2.

The discrete Eikonal equation can be written as

||(∇̃u)i|| = Wi with ∀xi ∈ S, ui = 0. (2.16)

In the restricted isotropic setting, this equation is the same as (2.5).

2.4 Anisotropic Geodesic Computation on Triangulated Sur-

faces

Uniform grids considered in the previous section are too constrained

for many applications in vision and graphics. To deal with complicated

domains, this section considers planar triangulations in R
2 and triangu-

lated surfaces in general dimension (e.g. R
3), which are two important

settings of 2D Riemannian manifolds of dimension 2. In particular, we

consider generic metrics Tx that are not restricted to be isotropic as in

the previous section. The anisotropy of the metric raises convergence

issues.

The techniques developed in this section generalize without diffi-

culties to higher dimensional manifolds by considering higher order

simplexes instead of triangles. For instance tetrahedra should be used

to discretize 3D manifolds.

2.4.1 Triangular Grids

We consider a triangulation

Ω =
⋃

(i,j,k)∈T
ti,j,k

of the manifold, where each sampling point xi ∈ R
d, and each triangle

ti,j,k is the convex hull of (xi, xj , xk). The set of triangle indices is

T ⊂ {0, . . . , N − 1}3. Each edge (xi, xk) of a face belongs either to two

different triangles, or to a single triangle for edges on the boundary of

the domain.
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We consider for each vertex xi a tensor Ti ∈ R
d×d. This section

considers both planar domains Ω, and domains that are surfaces Ω ⊂ R
d

equipped with a metric Ti that operates in the tangent plane. A careful

design of the tensor field Ti makes the treatment of these two settings

amendable to the same algorithms in a transparent manner.

Planar manifolds. For a planar triangulation, d = 2, the set of

triangles {ti,j,k}(i,j,k)∈T is a partition of the domain Ω ⊂ R
2, possibly

with an approximation of the boundary. Each vertex xi is associated

with a 2D planar tensor Ti ∈ R
2×2 that discretizes the Riemannian

metric.

We note that this planar triangulation framework also allows one to

deal with anisotropic metrics on an image (a regular grid), by splitting

each square into two adjacent triangles.

Surface manifolds. We also consider the more general setting of a

discrete surface S embedded in R
3, in which case S is a discretization

of a continuous surface in R
3. In this case, the tensor Ti ∈ R

3×3 is

intended to compute the length ||γ′||Ti
of the tangent γ′(t) to a curve γ

traced on S. These tangents are vector γ′(t) ∈ Txi
, the 2D tangent plane

at xi = γ(t) to S. We thus assume that the tensor Ti is vanishing for

vectors v orthogonal to the tangent plane Txi
, Tiv = 0. This corresponds

to imposing that the tensor is written as

Ti = λ1(xi)e1(xi)e1(xi)
T + λ2(xi)e2(xi)e2(xi)

T, (2.17)

where (e1(xi), e2(xi)) is an orthogonal basis of Txi
.

2.4.2 Update Operator on Triangulated Surfaces

One can compute explicitly the update operator (2.4) on a 2D tri-

angulation. This update rule was initially proposed by Kimmel and

Sethian [152] and Fomel [120] for surface meshes with isotropic metric,

and was extended to anisotropic metrics in [40]. The process is essen-

tially the same as in Section 2.3.1. The formulation we propose has

the advantage of being easily generally applicable to higher dimension

manifolds.
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The discrete update operator Γi(u) defined in (2.5) computes a min-

imization over all adjacent triangles.

Γi(u) = min
ti,j,k⊂Bε(xi)

vi,j,k

where

vi,j,k = min
t∈[0,1]

tuj + (1− t)uk + ||txj + (1− t)xk − xi||T−1
i

. (2.18)

Let us denote

p = (uj , uk)
T ∈ R

2, I = (1, 1)T ∈ R
2 and X = (xi−xj , xi−xk) ∈ R

2×2.

Modeling u as an affine mapping over triangle ti,j,k, and defining X+ =

X(XTX)−1, one can show as in Section 2.3.1 that under the condition

∆ = ||X+
I||2

T−1
i

+ 〈X+
I, X+p〉T−1

i
− ||X+

I||2
T−1

i

||X+p||2
T−1

i

> 0,

the solution v of (2.18) is the largest root of the following quadratic

polynomial equation,

v2||X+
I||2

T−1
i

− 2v〈X+
I, X+p〉T−1

i
+ ||X+p||T−1

i
= 1.

If ∆ < 0, the update is achieved by propagating from xj or xk. The

update operator for the triangle ti,j,k is thus defined as

vi,j,k =







〈X+
I, X+p〉

T
−1
i

+
√

∆

||X+I||2
T
−1
i

if ∆ > 0,

min(uj + ||xj − xi||T−1
i

, uk + ||xk − xi||T−1
i

) otherwise.

(2.19)

Note that these calculations are developed in [214], which also genelar-

izes them to an arbitrary dimension.

2.4.3 Fast Marching on Triangulation

Unfortunately, the update operator (2.10) on a triangulated mesh

does not satisfy in general the causality requirement (2.8).

One notable case in which this condition holds is for an isotropic

metric and a triangulated surface in R
3 that does not contain poorly

shaped triangles with obtuse angles. In this case, one can use the Fast
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Marching algorithm, detailed in Algorithm 4 to solve the Eikonal equa-

tion in O(N log(N)) operations, where N is the number of grid points.

Figure 2.7 shows an example of propagation on a triangulated surface,

for a constant isotropic metric. The colored region corresponds to the

points that have been computed at a step of the propagation with its

boundary being the front.

Fig. 2.7 Example of Fast Marching propagation on a triangulated mesh.

Reducing Computational Time. As in the case of regular grids,

computational time of algorithm 4 can be reduced : let us assume that

xi and xk ∈ Neigh(xi) were selected, and that Σk = Front. During the

computation of Γk(u), vk,j,m needs not be computed if xi is not a vertice

of tk,j,m. Indeed, the value of vk,j,m is either +∞, or has not changed

since it was last computed. Omitting such calculations can lead to an

important computational gain, depending on the connectivity of the

mesh.

Triangulations with Strong Anisotropy or Obtuse Angles. If

the triangulation is planar with strong anisotropy in the metric, or if

the triangulation contains obtuse angles (these two conditions being

essentially dual, as shown in [214]), then the Fast Marching method

might fail to compute the solution of the discrete Eikonal equation.

In this case, several methods have been proposed to obtain such

a solution. Firstly, one can split the obtuse angle by extending the

neighborhood of a point if it contains obtuse angles [153], see Figure 2.8.
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However, computing the neighbor n to add is a non-trivial task, even in

dimension 2, and extending the neighborhood has several drawbacks :

loss of precision, loss of the topology of the manifold, increase of the

running-time (depending on the anisotropy of the tensor, or on the

measure of the obtuse angle to split).

Fig. 2.8 Obtuse angle splitting : assume that the blue point xi on the left image is to be
updated. As shown on the middle image, its natural neighborhood Bε(xi) with respect to the
triangulation which represents the surface contains an obtuse angle. In order to perform
the update, a farther point y needs to be added to Bε(xi) such that Bε(xi) ∪ {y} does not
contain an obtuse angle anymore.

In the specific case when the manifold is completely parametrized

from Ω = [0, 1]2 or Ω = [0, 1]3, the computation of neighbor n can be

performed faster using integer programming [263, 46].

Early proposals to compute geodesic distances on surfaces make use

of a level set implementation of the front propagation [148, 150].

The idea of extending the size of Bε(xi) is more systematically de-

veloped in Ordered Upwind Methods (OUM) [256]. In OUM the 1-pixel

width front of the Fast Marching is replaced by an adaptive width front,

which depends on the local anisotropy. Notice that OUM is in fact a

class of numerical methods which allows to solve a large class of partial

differential equations. More specifically, its convergence is proven for

all static Hamilton-Jacobi equations.

Another approach consists in running the standard Fast March-

ing, but to authorize a recursive correction of Computed points [155].

However, there is no proof of convergence for this approach, and the

amount of calculations to perform the correction again depends on the

anisotropy.

The fast sweeping method also extends to solve Eikonal equations
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on triangulations [233] and works under the same condition as the Fast

Marching.

2.5 Computing Minimal Paths

2.5.1 Geodesic Curves Extraction

Once the discrete geodesic distance u approximating US on the

computation grid is computed, the geodesic γ⋆ between some point xe

and S is extracted by integrating numerically the ordinary differential

equation (ODE) (1.26).

Precision of the numerical computation of geodesics. If xe is

not in MedAxis(S), one can prove that the continuous geodesic γ⋆(t)

never crosses MedAxis(S) for t ∈ [0, 1], so that the distance map US is

smooth along γ⋆(t) and (1.26) makes sense.

The precision of the discrete geodesic, and its deviation from the

continuous curve depends on the distance of xe to MedAxis(S). As xe

approaches MedAxis(xs), small approximation errors on US can lead

to important errors in the approximation of γ⋆. Figure 2.9 shows how a

small shift of the location of xe leads to a completely different geodesic

curve.

Thresholding distance maps. The geodesic γ⋆ between two points

xs and xe satisfies

{γ⋆(t) \ t ∈ [0, 1]} = {x ∈ Ω \ d(xs, x) + d(xe, x) = d(xs, xe)} .

As was proposed in [147, 70], one can compute numerically the two

distance maps Uxs and Uxe , and approximate the geodesic curve as

{x ∈ Ω \ |Uxs(x) + Uxe(x)− Uxe(xs)| 6 ε} (2.20)

where ε > 0 should be adapted to the grid precision and to the numer-

ical errors in the computation of the distance maps. The thresholding

(2.20) defines a thin band that contains the geodesic. Note that this

method extends to compute the shortest geodesic between two sets S1

and S2.
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Fig. 2.9 Top row: fast marching propagation in [0, 1]2 with a metric large in the center of
the image. Bottom row: computation of shortest paths.

Piecewise paths on triangulation. As detailed in Section 2.4, the

geodesic distance map US is approximated on triangulations using a

piecewise affine function. The gradient ∇US is thus constant inside

each triangle.

A faithful numerical scheme to integrate numerically the ODE

(1.26) computes a piecewise linear path γ⋆ that is linear inside each

triangle. The path either follows an edge between two triangles, or is

parallel to ∇US inside a triangle.

Fig. 2.10 Piecewise linear geodesic path on a triangulation.
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Figure 2.10 shows an example of discrete geodesic path on a trian-

gulation.

Fig. 2.11 Examples of geodesic extraction on a mesh with, from left to right, an increasing
number of starting points.

Figure 2.11 shows examples of minimal paths extracted on a trian-

gulated surface. It makes use of an increasing number of starting points

S, so that a geodesic curve γ⋆ links a point xs ∈ S to its closest point

in S.

Higher order ODE integration schemes. To produce smooth

paths, one can use classical ODE integration schemes of arbitrary order,

such as Runge-Kutta [113], to integrate the ODE (1.26). This approach

is mostly used on regular grid, because ∇US can be computed using

finite differences of arbitrary precision, and one can then use spline in-

terpolation to obtain a smooth interpolated gradient field suitable for
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arbitrary ODE integrators.

On complicated domains Ω, this requires a proper interpolation

scheme near the boundary to ensure that the gradient always points

inside the domain, and the discrete geodesic is well defined and stays

inside Ω.

In practice, it is difficult to ensure this condition. A simple heuris-

tic to construct a valid interpolated gradient field is to compute the

geodesic distance map US on a small band outside the domain. The

width of the extension of the domain should match the order of the

interpolation scheme. This ensures that the finite differences are per-

formed over valid stencils even for points along the boundary of the

domain.

2.5.2 Joint Propagations

To extract a geodesic γ⋆ between two points xs and xe in Ω, it is

sufficient to compute the geodesic distance Uxs to xs until the front

propagation reaches xe. Indeed since a gradient descent is then used to

track the geodesic, the geodesic distance is decreasing from xe to xs,

and we need only to know Uxs where it is lower than Uxs(xe).

It is possible to speed up the Fast Marching computation by starting

simultaneously the front propagation from the two points, in order to

compute the geodesic distance US from S = {xs, xe}. This method

was first proposed for graphs in [223] using the Dijkstra propagation

detailed in Section 2.2.3. It was used for finding a minimal path between

two points with Fast Marching in [93]. The path was found as the union

of its two halves through the use of the meeting point, which is a saddle

point as shown in [70].

Saddle point. One can perform the Fast Marching algorithm until

the fronts emanating from xs and xe meet. If γ⋆ is unique, which is the

case except in degenerated situations, the fronts will meet at the saddle

point xs,e, which is the intersection of the geodesic mediatrix and γ⋆

xs,e = γ⋆(t) where Uxs(γ
⋆(t)) = Uxe(γ

⋆(t)). (2.21)
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Saddle point xs,e is the point of minimal distance to both xs and xe on

their mediatrix. The geodesic γ⋆ is the union of the geodesics

γ⋆
s ∈ P(xs, xs,e) and γ⋆

e ∈ P(xe, xs,e)

between the saddle point and the two boundary points.

Joint propagation. One can thus stop the Fast Marching propaga-

tion to compute US when it reaches xs,e. The front has then covered

the union of two geodesic balls

{x ∈ Ω \ US(x) 6 US(xs,e)} = Rs ∪Re (2.22)

where

∀ i ∈ {s, e}, Ri = {x ∈ Ω \ Uxi
(x) 6 r}

and r = Uxs(xs,e) = Uxe(xs,e). This is an important saving with respect

to computing Uxs with a propagation starting from xs, which covers

the larger region

{x ∈ Ω \ Uxs(x) 6 Uxs(xe)} = R.

For instance, as was proposed in [93], if the metric is Euclidean Tx = Idd

in R
d, then Rs, Re and R are spheres, and the computation gain is

|R|
|Rs ∪Re|

= 2d−1.

Half geodesics. To extract the geodesics γ⋆
i for i ∈ {s, e}, one needs

to perform a gradient descent of US starting from xs,e. Unfortunately

xs,e is on the medial axis of S, which corresponds to the geodesic me-

diatrix. The distance map US is thus not differentiable at xs,e. It is

however differentiable on both side of the mediatrix, since it is equal to

Uxi
in each region Ri for i ∈ {s, e}, and one can thus use as gradient

∇Uxi
(xs,e) to find each half of the geodesic. The two minimal paths are

then obtained by the following gradient descent,






∀ t > 0,
dγ⋆

i (t)

dt
= −ηt∇US(γ⋆

i (t)),

dγ⋆
i (0)

dt
= −η0∇Uxi

(xs,e) and γ⋆(0) = xs,e.
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Fig. 2.12 Example of joint propagations to extract a geodesic between two points xs, xe ∈ Ω.
The red points are the boundary points xs, xe, the blue point is the saddle point xs,e.

where the gradient step size ηt can be defined as in (1.26).

Figure 2.12 shows an example of joint propagation on an isotropic

metric Tx = W (x)2Id2 to extract a geodesic that follows vessels in a

medical image.

2.5.3 Heuristically driven propagations

To compute the geodesic between two points xs, xe, the Fast March-

ing algorithm explores a large region. Even if one uses the joint prop-

agation, the front is located in two geodesic balls Rs ∪ Re defined in

(2.22). A large amount of computation is spent in regions that are thus

quite far from the actual geodesic γ⋆ ∈ P(xs, xe).

It is possible to use heuristics to drive the propagation and restrict

the front to be as close as possible from the minimal path γ⋆ one wishes

to extract.

Heuristics and propagation. We consider the Fast Marching al-

gorithm to compute the distance u ∈ R
N , which is intended to be an

approximation of the continuous distance Uxs to the starting point xs.

This framework also contains the case of a metric on a discrete graph, as

detailed in Section 2.2.3, and in this case the Fast Marching algorithm

is the Dijkstra algorithm.

At each step of the Fast Marching propagation, detailed in Algo-

rithm 4, the index i of the front with minimum distance is selected

i←− argmin
k,Σk=Front

uk.
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Making use of a heuristic hk > 0, one replaces this selection rule by

i←− argmin
k,Σk=Front

uk + hk.

Heuristics and causality. This heuristically driven selection differs

from the original one detailed in Algorithm 4, which corresponds to

using hk = 0. For this modified Fast Marching to compute the solution

of (2.3), the causality condition (2.8) should be satisfied for the new

ordering, which corresponds to the requirement that for any v,

∀xj ∈ Neigh(xi), Γi(v) + hi > vj + hj . (2.23)

If this condition is enforced, then the Fast Marching algorithm with

a heuristically driven propagation computes the same solution on the

visited points as the original Fast Marching. The advantage is that if hi

is well chosen, the number of points visited before reaching xe is much

smaller than the number of points visited by the original algorithm

where hi = 0.

A∗ algorithm on graphs. For a metric on a discrete graph, as de-

tailed in Section 2.2.3, ui = d(xs, xi) is the geodesic distance on the

graph between the initial point xs ∈ Ω and a vertex xi of the graph.

The heuristic is said to be admissible if

∀ i ∼ j, hi 6 Wi,j + hj . (2.24)

One can show that this condition implies the causality condition (2.23),

so that the heuristically driven selection computes the correct distance

function. Furthermore, defining W̃i,j = Wi,j + hj − hi > 0, one has,

for any path γ ∈ P(xi, xj), L(γ) = L̃(γ) + hj − hi, where L̃ is the

geodesic length for the metric W̃ . This shows that geodesics for the

metric W̃ are the same as the ones for the metric W , and that the

heuristically driven propagation corresponds to a classical propagation

for the modified metric W̃ .

A weaker admissibility condition is that the heuristic does not over-

estimate the remaining distance to xe

0 6 hi 6 d(xe, xi), (2.25)
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in which case the method can be shown to find the correct geodesic,

but the propagation needs to be modified to be able to visit several

time a given point.

The modification of the Dijkstra algorithm using a heuristic that

satisfies (2.25) corresponds to the A∗ algorithm [104, 131, 201]. This

algorithm has been used a lot in artificial intelligence, where shortest

paths correspond to optimal solutions to some problems, such as opti-

mal moves in playing chess. In this setting, the graph Ω is huge, and

designing good heuristics is the key to solve efficiently the problem.

Fast Marching with heuristic. The extension of the A∗ algorithm

to the Fast Marching setting was proposed by Peyré and Cohen [218].

In this setting, where continuous geodesic distances are approximated,

condition (2.24) does not implies anymore that the modified march-

ing gives the exact same solution as the original algorithm. Numerical

tests however suggest that imposing (2.24) is enough to ensure a good

precision in the computation of the geodesic distance and the geodesic

curve.

Efficient heuristics. An efficient heuristic should reduce as much as

possible the region explored by the Fast Marching, which corresponds

to

R = {xi ∈ Ω \ d(xs, xi) + hi 6 d(xs, xe)} .

It means that hi should be as large as possible, while satisfying the

admissibility condition (2.24).

Condition (2.25) implies that the geodesic curve γ⋆ between xs and

xe is contained in the explored area R. The case where hi = d(xe, xi)

is a perfect heuristic, where R is restricted to the geodesic γ⋆, so that

the front only propagates along this geodesic.

Unfortunately, this optimal heuristic is an oracle that one is not

allowed to use, since computing d(xe, xi) is as computationally difficult

as the original problem of computing d(xs, xi). One thus has to resort

to sub-optimal choices.

Figure 2.13 shows for instance the effect of using a weighted oracle

hi = λd(xe, xi) for several value of λ. This shows the advantage of using
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a good estimate of the (unknown) distance d(xe, xi) since the explored

region

Rλ = {xi ∈ Ω \ d(xs, xi) + λd(xe, xi) 6 d(xs, xe)}

shrinks around the geodesic. For a Euclidean metric Tx = Idd in R
d,

Rλ is an ellipsoid that shrinks along the segment [xs, xe] when λ tends

to 1.

λ = 0 λ = 0.5 λ = 0.9

Fig. 2.13 Example of propagations with a heuristic hi = λd(xe, xi) for various λ.

Euclidean-based heuristics. Many strategies can be used to esti-

mate a heuristic. For instance, for a Riemannian metric Tx, one can

use a Euclidean distance approximation

hi = ||xi − xe||T0 where ∀x, T0 6 Tx, (2.26)

where, for two symmetric positive matrices A 6 B indicates that ||·||A 6

|| · ||B. We note that this heuristic satisfies (2.24).

In the case of an isotropic metric Tx = W (x)2Idd, one obtains

hi = ρ||xi − xe|| where ρ = min
x∈Ω

W (x).

This choice is popular in video games for Dijkstra propagation on

graphs, and if xi ∈ R
d and Wi,j = 1, one chooses hi = ||xi − xe||

which is the straight line distance.

Other geometric approaches based on a Euclidean approximation

have been proposed, for instance using Euclidean clustering of the node

of a graph [284].
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Landmark-based heuristics. The approximation (2.26) of d(xe, xi)

by hi can be rather crude for highly varying metrics. In order to com-

pute more accurate heuristic, we use an expression of the geodesic dis-

tance as a minimization

d(xe, xi) = max
z∈Ω
|d(xe, z)− d(z, xi)|.

which corresponds to the reversed triangular inequality.

If one restricts the minimum to a small subset of landmark points

{z0, . . . , zK−1} ⊂ Ω, one can define the following heuristic

hi = max
06j<K

|d(xe, zj)− d(zj , xi)|.

We note that this heuristic is exact, meaning that hi = d(xe, xi) if there

is a landmark zj so that xe is located on the geodesic joining zj to xi,

see Figure 2.14, left. A more realistic case is when the geodesics joining

zj and xe to xi are close, which happens frequently for a metric which

is low along thin features such as roads, see Figure 2.14, right.

This heuristic can be computed on the fly if the following set of

geodesic distances dj has been precomputed

hi = max
06j<K

|dj(xe)− dj(xi)| where dj(xi) = d(zj , xi). (2.27)

We note that this heuristic satisfies (2.24).

Fig. 2.14 Left: ideal case where the heuristic is exact, hi = d(xe, xi). Right: case where
the heuristic is good hi ≈ d(xe, xi).

The resulting landmark driven algorithm was originally proposed

in [124] for the A∗ on graphs, and extended in [218] for an arbitrary

discretized Riemannian manifold. The method pre-computes the dis-

tance maps dj using K Fast Marching propagations. Then, when a

query is performed to compute a minimal path between two arbitrary
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points xs, xe, it makes use of this pre-computation to save time on the

propagation by making use of the heuristic (2.27). Finding good loca-

tions {zj}06j<K is a difficult problem, see [218] for a study of different

approaches.

K = 0 K = 1 K = 3 K = 20

Fig. 2.15 Heuristically driven propagations with an increasing number of landmark points,
for an isotropic metric in 2D (top rows) and a 3D surface (bottom row).

The heuristic hi defined in (2.27) converges to the ideal heuristic

d(xe, xi) when the number K of landmarks increases. In practice, it is

a trade off between pre-computation time and memory versus accuracy

of the heuristic. Figure 2.15 shows the influence of the number K of

landmarks on the region explored by the Fast Marching.
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2.6 Computation of Voronoi Segmentation and Medial Axis

2.6.1 Geodesic Voronoi Computation

Computing Voronoi segmentation (4.1) is at the heart of segmen-

tation methods described in Section 4.1.1, and of geodesic meshing

algorithm described in Chapter 4.

Exact discrete computation. For a discrete set S = {xi}i∈I of

starting points, the Voronoi segmentation is easily computed if the

whole set of distances {Uxi
}i∈I has been computed.

If Ci and Cj are two neighboring Voronoi cells, their common bound-

ary is

Ci ∩ Cj ⊂
{
x ∈ Ω \ Uxi

(x) = Uxj
(x)

}
.

On a triangulated 2D domain, Uxi
(x) is discretized as a function that is

affine on each triangle. The boundary Ci ∩ Cj is thus a piecewise linear

polygon, as shown on Figure 2.16, left. The location of the vertices of

this polygonal boundary are found by traversing the edges and com-

puting the intersection of 1D affine function along the edges, as shown

on Figure 2.16, bottom left.

If Ci, Cj and Ck are neighboring cells, the triple points where the

cells intersect are

Ci ∩ Cj ∩ Ck ⊂
{
x ∈ Ω \ Uxi

(x) = Uxj
(x) = Uxk

(x)
}

.

On a triangulated surface, they are found by traversing the triangles

and computing the intersection of three 2D affine functions, as shown

on Figure 2.16, bottom right.

On a quadrangular 2D grid, such as for instance on an image, the

computation is more complicated. The distance maps Uxi
(x) can be

represented as continuous functions using bilinear interpolation. In this

case, the boundaries Ci ∩ Cj of the Voronoi cells are continuous curves

composed of hyperbolas in each square of the discrete domain.

These extraction procedures extend to higher dimensional mani-

folds.

When using Fast Marching computation, it is possible to avoid un-

necessary computation by running the propagation of the set of fronts
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emanating from each xi ∈ S in parallel, and allowing the fronts to

overlap on a depth of a few samples.

Fig. 2.16 Top: extraction of piecewise affine Voronoi boundaries on 2D triangulations.
Bottom: the geodesic distances on the edge (a, b) and triangle (c, d, e) extracted from the
triangulation on the top are displayed as affine functions.

Approximate computation. This overlapping is more difficult to

implement when using a Gauss-Seidel iterative algorithm. It is possible

to use a single propagation, but maintain an additional information

ℓi ∈ I that approximates the partition function ℓ(xi) defined in (1.19).

This allows to retrieve after the propagation an approximate partition
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function. This computation is however approximate and does not give

an exact discrete Voronoi segmentation. The partition can however be

used afterward as an indicator of the locations where the fronts are

allowed to overlap to implement a parallel propagation.

Each time the update operator

ui ← Γi(u)

is applied at a point xi, by either an iterative or a fast marching al-

gorithm, one also applies an update operator to compute ℓi from its

neighbors,

ℓi ← Γ̃i(u, ℓ).

This update is computed by assigning the index of the closest neigh-

boring point used to perform the update. More precisely, if

Γi(u) = vi,j,k where ti,j,k ∈ Neigh(xi)

where vi,j,k is defined in (2.5), one defines

Γ̃i(u, ℓ) =

{
ℓj if |vi,j,k − uj | < |vi,j,k − uk|,
ℓk otherwise.

(2.28)

Figure 2.17 shows examples of Voronoi cells on a surface embedded in

R
3.

2.6.2 Shape Skeletons Computation

For a 2D manifold, if S is a smooth closed curve c(t), t ∈ [0, 1], then

MedAxis(S) is a connected union of 1D curves. If c(t) is the boundary

of a 2D object, the medial axis is often referred to as the skeleton of

the shape.

As proposed in [269], it is possible to approximate the medial axis

of a smooth curve c(t) by processing the nearest neighbor index map

ℓ(x), see also [132, 278]. In this setting,

S = {xi = c(i/K)}K−1
i=0

is assumed to be a dense sampling of a smooth curve. The singular-

ity points of the distance function US are difficult to detect from the
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K = 5 K = 20 K = 50

Fig. 2.17 Example of Voronoi segmentations V(S) for an increasing number of seeding
points.

variation of US . These singularity points are, however, located approx-

imately at sharp transition of the partition function ℓ(x). In the follow-

ing, we assume that ℓ(x) ∈ {0, . . . ,K−1} indicates the index xℓ(x) ∈ S

of the closest point, and not the closest point itself.

They can be detected by computing the magnitude map of the gra-

dient ||∇ℓ(x)||, that is computed numerically on the discrete grid by

finite differences from {ℓi}i. One should be careful about the fact that

the derivative should be estimated using finite differences modulo K

where K = |S| is the number of sampling points along the curve, so

that −K/2 6 ∇ℓ(x) 6 K/2. This is because ℓ(x) ∈ {0, . . . ,K − 1}
exhibits an artificial jump discontinuity when ℓ passes from K − 1 to

0.

The medial axis can then be approximated by thresholding the mag-
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nitude of the gradient

MedAxisτ = {x ∈ Ω \ ||∇ℓ(x)|| > τ} .

Increasing the value of τ regularizes the medial axis. Figure 2.18 shows

examples of such approximated medial axis for a couple of values of τ .

Distance to boundary US Assignment ℓ(x)

MedAxisτ , τ = n/100 τ = n/20

Fig. 2.18 Computation of the approximated medial axis, for an image of n × n pixels.

Other methods to compute skeletons. There exists a variety of

alternative fast methods to compute skeletons and regularize their ge-

ometry for the Euclidean distance Tx = Id2. A subset of the edges

of the Voronoi diagram of a dense sampling of a curve was originally

proposed in [203]. It can be shown to approximate the skeleton of the

continuous curve. One can also use curves evolving according to PDEs

similar to active contours [167, 145] or deformable sets of disks [301].

There have also been several attempts to give alternate formulation
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for the skeleton that is more meaningful for shape recognition [300] or

to prune potentially noisy skeletons [252].

2.7 Distance Transform

In the special case where Ω = [0, 1]2 equipped with a uniform met-

ric Tx = Id2, US is called distance transform (DT) of the binary shape

S. Compared to the general Riemannian case, taking into account the

special structure of this problem allows to design several exact or ap-

proximate fast algorithms to compute DT. A flourishing literature ex-

ists on this subject – and we follow in this section the classification of

the review [114].

2.7.1 Propagation algorithms

Distance transform over a continuous domain. In DT frame-

work, since the domain Ω is convex, the geodesic distance is the Eu-

clidean distance

∀ (x, y) ∈ Ω2, d(x, y) = ||x− y||.

The knowledge of the partition function,

ℓ(x) = argmin
y∈S

||x− y|| (2.29)

already defined in (1.19), allows to compute the distance map to the

starting point

US(x) = ||x− ℓ(x)||. (2.30)

A central idea to compute the distance map US is thus to keep track

of the partition function ℓ(x) ∈ S using an iterative algorithm [194].

In a continuous setting, it is possible to show that for any point

x ∈ Ω\S, there exists a neighboring point with the same closest point

in S

∃y ∈ B(x), ℓ(y) = ℓ(x), (2.31)

where the neighborhood B(x) is defined in Section 2.1.1. This point

can be chosen at the intersection of γ⋆ and ∂B(x).

We now show how this setting can be discretized. Notice that unlike

in the frameworks developed in the previous sections, it is possible to
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compute exact discrete solutions to the distance transform problem in

extremely low computational time.

Discrete update of the partition function. The distance function

US is discretized using an uniform grid, and is represented as an image

of N = n×n pixels. The set of pixels should be understood as a graph

where each pixel xi is connected to each of its neighbors in Neigh(xi),

which is written as j ∼ i, similarly to the graph setting described in

Section 2.2.3.

The partition function ℓ(x) ∈ S is approximated at a point xi of

the grid as ℓi ∈ S, and ℓi is computed in parallel to a front propagation

algorithm. The steps of the algorithm are the same as the Dijkstra and

Fast Marching methods, detailed in Algorithm 4. The difference comes

from the update of the distance map, since one first applies an update

of the partition function

ℓi ← Γ̃i(ℓ) (2.32)

before updating the distance according to (2.30)

ui ← Γi(u) = ||xi − xℓi
||.

The discrete counterpart of the continuous property (2.31) reads

∀xi ∈ Ω ∃xj ∈ Neigh(xi) ℓi = ℓj . (2.33)

The update of the partition function (2.32) is thus defined as

Γ̃i(ℓ) = ℓj⋆ where j⋆ = argmin
j∼i

||xi − ℓj ||.

This is similar to the partition function update (2.28) defined for the

Fast Marching.

Note that since only roots of integer values are computed during the

execution of the algorithm, several improvements of the implementation

can be performed, as detailed in [114].

Most unfortunately, as shown in [83], (2.33) is only approximate,

and does not allow for an exact computation of the DT, whatever the

size of Neigh(xi) is. A second pass can be used with a larger Neigh(xi)

in order to correct ℓi at points where it might be wrong after the first

pass [85].
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2.7.2 Raster scan methods

Since the computational bottleneck in propagation algorithms is

the maintenance of a bucket structure and the selection of the point to

update, methods have been proposed in which the points are updated

in some predefined order – using sets of ad-hoc update operators.

The reasoning of the previous section applies here, and one cannot

expect to have an exact algorithm if the update operators use neigh-

borhood of fixed size.

Popular raster scan methods are the 4SED and 8SED methods [86],

which uses 4 scans of the image, and update the points using respec-

tively neighborhoods Neigh(xi) of maximal size 4 and 8 – notice that

the neighborhood are different from one scan to another. Algorithm 5

details the 4SED algorithm, and Figure 2.19 displays results obtained

with the 4SED method.

While its complexity is linear, this algorithm does not lead to an ex-

act value of the DT. It can be corrected efficiently by a post-processing

step, leading to a linear time exact algorithm [84].

More recently, exact algorithms with only two raster scans and an

adaptive neighborhood Neigh(xi) was proposed [260, 261].

Algorithm 5: 4SED-algorithm.

∀(i, j) ∈ [0, n− 1]2, set : Neigh1(i, j) = {(i− 1, j), (i, j − 1)},
Neigh2(i, j) = {(i + 1, j)}, Neigh3(i, j) = {(i + 1, j), (i, j + 1)},
Neigh4(i, j) = {(i− 1, j)}.
for i from 0 to n− 1 do

for j from 0 to n− 1 do
Update (i, j) using Neigh1 (scan 1)

for j from n− 1 to 0 do
Update (i, j) using Neigh2 (scan 2)

for i from n− 1 to 0 do

for j from n− 1 to 0 do
Update (i, j) using Neigh3 (scan 3)

for j from 0 to n− 1 do
Update (i, j) using Neigh4 (scan 4)
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Fig. 2.19 4SED method. Top row, from left to right : Starting set S, consisting of 3 dif-
ferent areas. Distance map after scans 1 and 2. Notice that distance information is only
propagated in the bottom direction, and that some areas still have an ∞ value. Distance
map after scans 3 and 4. Bottom row, from left to right : Ground Truth distance map, and
relative error of the 4SED method. The computed distance map is correct on the major
part of the image, but relative errors of ∼ 27% occurs in some areas.

2.7.3 Independent scan methods

Independent scanning methods are an attempt to speed up the DT

computation by using a dynamic programming like approach.

The main idea is to first compute the distance to the closest point

in the same row of the image :

ℓ′i = argmin
xj∈S

(xj)1=(xi)1

|xi − xj |. (2.34)

ℓ′ can be computed on each line independently, which makes its com-

putation extremely efficient [238].

In a second step, ℓ is computed from ℓ′. Several strategies are avail-

able to perform this operation, and we again refer the interested reader

to the review [114] and to the seminal articles [246, 184, 182].

Notice that this framework can be generalized for k-dimensional

images. Independent DT computations are computed recursively on
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(k − 1)-dimensional slices of the original images, and put together to

obtain the full DT transform of the original image.

2.8 Other Methods to Compute Geodesic Distances

In this section, we detail some other methods which allow to com-

pute distance maps in different settings.

2.8.1 Mathematical Morphology

Mathematical morphology can be used to compute approximations

of geodesic distance maps.

In the framework of mathematical morphology, a shape is repre-

sented as subset S of Ω. If Br denotes a small disk of radius r centered

at the origin, the dilation of S by the disk Br is ([253])

δBrS = {x + b ∈ Ω | x ∈ S, b ∈ Br}. (2.35)

If Brx furthermore denotes the same disk of radius r centered at point

x, it is possible to equivalently define

δBrS =
⋃

x∈S

{Brx}. (2.36)

Assuming a uniform isotropic potential over Ω, one can show that

if Ω is convex, then {x ∈ Ω, US(x) 6 r} = δBrS. Thus the iso-distance

curve {x ∈ Ω, US(x) = r} can be computed as the border of δBrS.

Equation (2.36) suggests a method to compute this set. For any

point in S, one can mark all the points in δBrx , and find the border of

the resulting set.

Numerically, it is possible to define a discrete counter part of the

dilation operator (Figure 2.20). As an example, assuming that Ω is

discretized on a regular grid, we denote Bd the discrete counter-part

of B, and by Sd the one of S. The dilation is then defined in the same

way as in the continuous case δBd
Sd = {x + b ∈ Ω | x ∈ Sd, b ∈ Bd}.

It is then possible to use the method described in Algorithm 6 to

find an approximation M of {x ∈ Ω, US(x) 6 r} in linear time.

This method however does not work if Ω is not convex. In this case,

the concept of geodesic dilation was introduced in [248] and [247]. It
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Fig. 2.20 Discrete dilation of the black shape Sd by the red kernel Bd.

consists in several small dilations. For a small ball Br, we define

δn
Br

S = δBr . . . δBr
︸ ︷︷ ︸

n times

S. (2.37)

Again, a corresponding discrete operator Bd can be defined (see Fig-

ure 2.21).

Fig. 2.21 Geodesic dilation of the black shape by the red kernel (left). The first iteration
is shown on the middle figure, while several others iterations of this dilation are shown on
the right figure.

This operator is applied iteratively, thus leading to a shape δn
B,ΩS

which approximates the set of point x ∈ Ω such that US(x) 6 nr.

Note that computing δn
B,ΩS is equivalent to performing a breadth-first

search algorithm on the discretization of the manifold, where the edges

are given by x ∼ y ⇔ x− y ∈ Bd. If n points are visited, the methods

thus run in O(n) time, where the constant depends on the size of Bd.

This approximation is subject to a metrication error due to the

shape of Bd. As an example, the distance computed in Figure 2.21,

Algorithm 6: Morphologic dilation computation.

Initialization:

∀xi ∈ Ω, Mi ← 0

for xi ∈ S do

for xl ∈ Ω\S such that ‖xi − xl‖ 6 r do
Ml ← 1
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right, is indeed the Manhattan distance d1. This can be improved (but

not completely dealt with) by taking a bigger Bd, at the sake of a

possible loss of the topology of Ω, and a loss of precision in the areas

where the boundary of Ω is concave.

Voronoi diagrams for this morphological distance give rise to the

celebrated watershed segmentation method, see Section 4.1.1.

2.8.2 Geodesics on Weighted Region

Assuming that Ω is partitioned into a family polyhedral subsets

Ω1 . . .Ωn such that W (x) = Wi is constant over Ωi, exact geodesics

can be computed [192].

This framework was extended when translational flow is present in

the polyhedra [234].

2.8.3 Exact Discrete Geodesics on Triangulations

An alternative way to approximate geodesic distances on surfaces is

to compute the exact distance on a triangulated mesh approximating a

smooth surface. The fastest algorithm run in O(N log(N)) on a surface

with N vertices [59]. A simpler approach [191] computes the distance

to a single starting point in O(N2) operations by propagating intervals

over which the distance is linear. This approach can be accelerated by

performing approximate computations [264]. See also [290, 3, 226, 225]

for other approaches.

Computing locally minimizing curves (that might not be globally

shortest paths) on such triangulated mesh is obtained by path tracing

methods [224].

2.9 Optimization of Geodesic Distance with Respect to the

Metric

In some applications, the object of interest is not the geodesic dis-

tance, but rather the metric itself. This includes landscape design prob-

lems, where the metric represents the ground height to optimize, or seis-

mic inverse problems, where the metric models the unknown ground

velocity [29].
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For the sake of simplicity, we detail here the case of an isotropic

metric Tx = W (x)2Idd, but the algorithm extends to general manifolds

for which Fast Marching methods can be used.

2.9.1 Sub-gradient of the Geodesic Distance

In many applications, one is facing the problem of computing an

unknown metric W (x) that optimizes a variational energy that depends

on the geodesic distance dW (xs, xe) between pairs of points xs, xe ∈
Ω, where we have made the dependency on the metric W explicit. A

basic ingredient to solve such a problem is the gradient of the geodesic

distance dW (xs, xe) with respect to the metric W . This gradient can

be formally derived as

dW+εZ(xs, xe) = dW (xs, xe) + ε〈Z, ∇dW (xs, xe)〉+ o(ε) (2.38)

where

∇dW (xs, xe) : Ω→ R

is the gradient mapping. Note that for each (xs, xe) one obtains a dif-

ferent mapping.

The expansion (2.38) is only formal, since the mapping

W 7→ dW (xs, xe) is not necessarily smooth, and in particular it is

not differentiable if xs and xe are connected by several geodesics. How-

ever, since dW (xs, xe) is the minimum of all paths lengths L(γ) for

γ ∈ P(xs, xe), it is the minimum of linear functions of W , so dW

is a concave function of W . It is thus possible to interpret (2.38) as

∇dW (xs, xe) being a super-gradient of the geodesic distance. Since the

term “super-gradient” of a concave functional is not very well used,

we refer to it as a “sub-gradient” which is the term used for convex

functionals.

A formal derivation shows that if γ⋆ ∈ P(xs, xe) is the unique

geodesic path between xi and xj , then

〈Z, ∇dW (xs, xe)〉 =

∫ 1

0
Z(γ⋆(t))dt,

so that ∇dW (xs, xe) is in fact a 1D measure supported along the

geodesic curve. Computing ∇dW (xs, xe) directly from this continu-
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ous definition is thus difficult. A better option is to compute the sub-

gradient of a discrete geodesic distance, which is well-posed numerically

and can be obtained with a fast algorithm.

2.9.2 Sub-gradient Marching Algorithm

We consider the discrete Eikonal equation (2.3) that defines a dis-

crete geodesic distance. Since we consider here the special case of an

isotropic metric on a regular grid, the equation can be equivalently

written using up-wind finite differences (2.16).

This Sub-gradient Marching algorithm that we detail next was in-

troduced in [22], where a proof of the validity of the method is given.

It is applied in [56] to a variational traffic congestion problem [286],

where the discrete sub-gradient is required to obtain a convergence of

the numerical method.

Sub-gradient to a starting point. We aim at computing all the

sub-gradients to a given starting point xs

∇ui = ∇dW (xs, xi) ∈ R
N

with a method similar to the Fast Marching algorithm, detailed in

Algorithm 4, that computes all the distances

ui = dW (xs, xi) ∈ R.

Note that the dependency on both W and xs has been made implicit.

Sub-gradient marching algorithm. The Fast Marching algorithm

iteratively makes use of the update operator

ui ← Γi(u),

whose values are computed by solving a quadratic equation. The sub-

gradient marching algorithm makes use of a similar update step,

∇ui ← Γ∇
i (∇u),

that is applied to the sub-gradient map each time Γi is applied to the

distance map.
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The resulting algorithm has the exact same structure as the origi-

nal Fast Marching propagation detailed in Algorithm 4. Since the ma-

nipulated gradients ∇ui are vector of R
N , the overall complexity of

computing all the vectors ∇ui is O(N2 log(N)).

Figure 2.22 shows examples of discrete sub-gradients computed with

this algorithm. Note how the gradient for the constant metric is sup-

ported near the segment joining the two point. Note also how the sup-

port of the gradient split for a varying metric, when (xs, xe) are close

to a configuration where two distinct geodesics exist between the two

points.

W = 1 Varying W (x)

Fig. 2.22 Example of sub-gradient ∇dW (xs, xe) computed for a constant (on the left) and
a varying (on the right metric which is large in the middle of the image.

Sub-gradient update step. We denote as xj and xk the two adja-

cent points of i that support the update in (2.10), which means that

Γi(u) = vi,j,k

where v = vi,j,k is defined in (2.15) as the solution of

(v − uj)
2 + (v − uk) = ε2W 2

i . (2.39)

We detail here the case where the quadratic equation has two solu-

tions. In this case, the updated gradient ∇v = Γ∇
i (∇u) is obtained by
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differentiating (2.39) with respect to the metric W , which gives

αj(∇v −∇uj) + αk(∇v −∇uk) = ε2Wiδi where

{
αj = ui − uj

αk = ui − uk
,

and where δi ∈ R
N is defined as δi(j) = 0 if j 6= 0 and δi(i) = 1. One

thus obtains the definition of the sub-gradient update

Γ∇
i (∇u) =

1

αj + αj

(
ε2Wiδi + αj∇uj + αk∇uk

)
.

This algorithm has been extended to metrics on 3D meshes [98].

2.9.3 Inverse Problems Involving Geodesic Distances

The sub-gradient marching method has been applied to various

convex and non-convex inverse problems involving geodesic distance,

see [56, 22] for example of isotropic metric, and [98] for inverse problems

on 3D meshes.

As an example, one can consider a simple convex problem of land-

scape design, where the metric is

max
W∈W

∑

(i,j)∈D
dW (yi, yj) (2.40)

where {yi}i∈I is a set of landmarks, D is a set of connections between

pairs of points and whereW is a set of convex constraints, for instance

W =

{

W \ ∀ i, Wmin 6 Wi 6 Wmax and
∑

i

Wi = 1

}

.

This can be interpreted as designing a ground elevation, with con-

straints on the total available material, and on the minimum and max-

imum height of the landscape, so that locations (xi, xj) for (i, j) ∈ D
are maximally distant one from each other.

Existence and uniqueness of a solution of the continuous problem

is investigated in [54]. A projected gradient descent method, detailed

in [22], approximates the solution of (2.40) iteratively

W (k+1) = ProjW



W (k) + ηk

∑

(i,j)∈D
∇dW (k)(yi, yj)




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where ProjW is the orthogonal projection on W, and ηk ≈ 1/k are

the gradient step size. The sub-gradient ∇dW (k)(yi, yj) are computed

at each iteration using the sub-gradient marching algorithm.

Figure 2.23 shows an example of optimal metric computed with this

method.

Fig. 2.23 Example of optimal metric solving (2.40), where the connections (i, j) ∈ D are
shown in dashed lines.
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Geodesic Segmentation

A major area of applications of geodesic methods in image process-

ing is to detect curvilinear features and perform segmentation. The

metric can be designed for geodesic curves to follow the edges and

tubular structures, or, on the contrary, for geodesic balls to stop near

features. These two points of view for using Fast Marching were ap-

plied to active contours, the first one to obtain a global minimum as a

minimal path [70], the second one using the front of the Fast Marching

propagation to compute a curve evolution [178].

3.1 From Active Contours to Minimal Paths

3.1.1 Snakes and Geodesic Active Contours

Variational curve modeling. Active contours is a class of segmen-

tation methods that detect an object by evolving a curve according to

both a smoothness constraint and a data fitting constraint. This curve

is attracted by the features in the image – typically edges. These de-

formable models or active contours were introduced with the snakes of

Kass et al. [143]

A general framework for the evolution of the active contour is the

71
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minimization of a variational energy over curves γ : [0, 1]→ [0, 1]2

E(γ) = L(γ) + λR(γ) where L(γ) =

∫ 1

0
W (γ(t))||γ′(t)||dt, (3.1)

where R(γ) is some smoothness enforcing criterion, and L(γ) is a data

fitting energy that takes into account the features of the image through

the potential W . This potential should be low near the boundary of

the object to segment. Several strategies to design W are detailed in

Section 3.2. λ is a non-negative real value which sets the relative im-

portance of the two terms.

One can consider open curves that join two points xs, xe, and add

to the minimization (3.1) the following boundary constraints :

γ(0) = xs and γ(1) = xe, (3.2)

which correspond to the constraint γ ∈ P(xs, xe) as defined in (1.3).

One can also consider closed curves by imposing γ(0) = γ(1), in which

case the minimization (3.1) is unconstrained but the derivatives with

respect to t are computed modulo 1.

One can note that L(γ) is the geodesic length of the curve according

to the isotropic Riemannian metric W , as already defined in (1.2).

In the original snakes [143], the energy takes into account both

the length of the curve and its bending using first and second order

derivatives with respect to t, with

R(γ) =

∫ 1

0
||γ′(t)||+ µ||γ′′(t)||dt.

This energy is however not intrinsic to the curve geometry, since it

also depends on the parameterization of the curve. This is why these

two terms were replaced by length element and curvature to obtain an

intrinsic energy and define a geometric model [57]. Since it is complex

to deal with the curvature term, it was removed in that model, as

well as in the level set approach of Malladi et al. [179]. Indeed, the

Euclidean length of a curve can be used as regularization term, as can

be seen in the Mumford-Shah energy [197], where penalty on the length

of boundaries leads to their regularization. Regularization properties of

minimal geodesics were proposed in [71] where it was noticed that the
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length term could be included in the potential term and lead to the

same energy as geodesic active contour [58]. If one uses µ = 0 and

replaces W by W + λ, the energy is restricted to the geodesic length

E(γ) = L(γ) =

∫ 1

0
W (γ(t))||γ′(t)||dt, (3.3)

thus defining the geodesic active contour.

Parametric curve evolution. Curve evolution corresponds to the

minimization of the energy E(γt) by evolving a family of curves γt

indexed by t > 0. For an intrinsic energy that only depends on the

geometry of the curve and not its parameterization, this minimization

is governed by a partial differential equation where γs evolves in the

direction normal to the curve

d

dt
γt(s) = β(γt(s), nt(s), κt(s))nt(s), (3.4)

where β(x, n, κ) ∈ R is the velocity, and where the outward unit normal

to the curve nt(s) and the curvature κt(s) at point γt(s) are defined as

nt(s) =
γ′′

t (s)− 〈γ′′
t (s), T 〉T

||γ′′
t (s)− 〈γ′′

t (s), T 〉T || , and κt(s) = 〈n′
t(s), γ′

t(s)〉
1

||γ′
t(s)||2

,

(3.5)

where

T =
γ′

t(s)

||γ′
t(s)||

. (3.6)

One should also add the constraint (3.2) to this PDE in the case of

open curves. Figure 3.1 shows a schematic display of the evolution.

For the geodesic active contour minimization of (3.3), the minimiza-

tion of the weighted length L(γt) leads to normal velocity

β(x, n, κ) = W (x)κ− 〈∇W (x), n〉. (3.7)

For a constant metric W = 1, one recovers the mean-curvature motion

β(x, n, κ) = κ, that corresponds to the flow that minimizes the Eu-

clidean length of the curve. Figure 3.2, left, shows an example of mean

curvature motion. Figure 3.2, right, shows an evolution toward a noisy

circle on which the metric is low.
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Fig. 3.1 Curve evolution in the normal direction.

As proposed initially in [143], evolution (3.4) can be solved by finite

differences to evaluate numerically the derivatives with respect to t

and s. Explicit time integration is fast but unstable, so that small time

steps are required. One can use implicit time stepping, which requires

the solution of a sparse linear system at each time step, and is more

stable, see [69].

W = 1 W shown on background

Fig. 3.2 Left: mean curvature motion starting from a polygonal curve. Right: geodesic
active contours for a metric small on a noisy circle.

Implicit curve evolution. The curve evolution (3.7) can also be

solved numerically using the level set framework of Osher and Sethian

[207]. A closed curve is represented as the zero level set of a function
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ϕt : R
2 → R such that

{γt(s) \ s ∈ [0, 1]} =
{
x ∈ R

2 \ ϕt(x) = 0
}

,

and the interior of the domain represented by the curve is
{
x ∈ R

2 \ ϕt(x) 6 0
}
.

In this framework, union and intersection operations of two shapes

represented by ϕ1
t and ϕ2

t are easily performed with algebraic manipu-

lations

ϕt(x) = min(ϕ1
t (x), ϕ2

t (x)) and ϕt(x) = max(ϕ1
t (x), ϕ2

t (x)).

Figure 3.3 shows examples of curve embeddings using level sets.

ϕt(x) � 0 ϕt(x) � 0

ϕt(x) � 0

Circle Square Union

Fig. 3.3 Example of shape embedding using level sets.

For an arbitrary simple closed curve, a canonical choice is the signed

distance function

ϕt(x) = σ(x)ϕ̃t(x) where ϕ̃t(x) = min
s∈[0,1]

||x− γ(s)|| (3.8)

where the sign σ(x) = +1 outside the domain bounded by the curve,

and σ(x) = −1 inside. The unsigned distance function ϕ̃s is the unique

viscosity solution of the Eikonal equation

||∇ϕ̃t(x)|| = 1 and ∀ s ∈ [0, 1], ϕ̃t(γ(s)) = 0. (3.9)

This equation can be solved in O(N log(N)) operations on a regular

grid of N pixels using the Fast Marching algorithm detailed in Section

2.3.
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The level set implementation has the advantage of allowing merging

and splitting of the curve. This enables the segmentation of several

objects at the same time, which is not possible with the parametric

formulation (3.7).

Within this framework, the curve evolution (3.4) becomes a PDE

on the embedding function ϕs, where all the level sets (including the

zero level set representing γs) evolve together

d

dt
ϕt(x) = ||∇ϕt(x)||β

(

ϕt(x),
∇ϕt(x)

||∇ϕt(x)|| ,div

( ∇ϕt

||∇ϕt||

)

(x)

)

.

For the geodesic active contour, the level set PDE is thus

d

dt
ϕt = ||∇ϕt||div

(

W
∇ϕt

||∇ϕt||

)

.

As the PDE evolves, the function ϕt might become unstable and exhibit

large gradients. To avoid these numerical instabilities, it is necessary

to enforce that ϕt is a distance function as defined in (3.8) for some

values of t during the evolution. This necessitates to solve the Eikonal

equation (3.9) from time to time during the level set evolution to re-

start the embedding function.

Local minimizer of the weighted length. Figure 3.4 shows

geodesic active contour evolutions for open and closed curves. The po-

tential W is computed using the gradient of the image, as detailed in

Section 3.2.2, and an implicit level set curve evolution.

When t tends to +∞, γt converges to a curve that is a local mini-

mizer of the weighted length L. One should be careful, and note that

this curve is not a globally minimal path for the metric, as defined

in (1.4). Indeed, for the case of a closed curve, a globally minimal

closed curve would be restricted to a single point. To avoid the curve

to shrink toward itself, one can add an artificial velocity that inflates

the curve [76], called the pressure force or balloon force.

3.1.2 Minimal Paths

A major difficulty with the active contour approach is that the curve

γt evolving in time might be trapped in poor local minima of the energy
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Image f Metric W (x) Evolution γt

Fig. 3.4 Example of geodesic active contour evolution for medical image segmentation.
Top row: open contour, bottom row: closed contour. The potential W is computed using
(3.12) with α = 1 and ε = 10−3||∇f ||∞.

E, thus leading to a bad segmentation. It is especially the case for noisy

images such as in medical imaging applications.

In the case of an open curve, subject to the boundary conditions

(3.2), Cohen and Kimmel [70] use the Fast Marching propagation to

find the global minimum of the energy E(γ) = L(γ). Boundary con-

straints forbid the segmentation of closed object with a single curve,

but allow to track curvilinear features such as roads in satellite imaging

or vessels in medical imaging. Notice that [70] also proposed a way to

find a closed curve as the union of two geodesics. This was followed by

other approaches to define a closed curve as a set of geodesics [77, 24].

The keypoint approach of [24] allows to give only a starting point on

the boundary of an object and find the complete closed contour, see

Figures 3.6 and 3.7.

The curve γ ∈ P(xs, xe) minimizing L(γ) is the geodesic minimal

path γ⋆ already defined in (1.4). It can be computed as detailed in Sec-
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tion 1.5 by computing the distance map Uxs and performing the gradi-

ent descent (1.26). The distance map Uxs is computed in O(N2 log(N))

operations for an image of N2 pixels using the Fast Marching algorithm

detailed in Section 2.3.

Figure 3.5 shows an example of the extraction of a tree of vessels,

that are shortest paths joining several end points to a single starting

point. The metric W (x) is computed by applying some standard image

processing techniques to f . In this case, the background is subtracted

by applying a high-pass filter, and the filtered image is thresholded to

increase the contrast of the vessels. The following section details various

methods to compute a metric W adapted to an image to analyze.

Image f Metric W Geodesics

Fig. 3.5 Example of minimal path for vessel extraction. The bottom row shows the evolution
of the Fast Marching propagation.
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Potential Final segmentation

Fig. 3.6 Illustration of the method of minimal paths with keypoints of [24]. A start point
is given (top left image, red point) and a set of keypoints (top right image, yellow points)
is obtained automatically to segment the closed boundary of an object. The key points are
seeded by using iteratively front propagations as shown on the bottom row.

3.2 Metric Design

In practice, the difficult task is to design a metric W in order to

have meaningful geodesics. Here are some examples of possible choices,

for the processing of an input image f .

3.2.1 Intensity-based Metric

Starting from an image f : [0, 1]2 → R, the basic idea is to compute

roads or vessels as shortest paths in the plane of the image. A potential

must be designed such that computed shortest paths correspond to

actual roads or vessels in the images.

A natural idea is to design the potential depending on the value of

the image

W (x) = W0 + ρ(f(x)), (3.10)

where ρ : R 7→ R
+, mina ρ(a) = 0. The constant W0 > 0 is regularizing

the geodesic curve by penalizing their Euclidean length.
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Fig. 3.7 Illustration of the method of minimal paths with keypoints of [24]. A start point is
given in red and a set of keypoints is obtained automatically to segment the closed boundary
in this biology image.

Since in most medical images, vessels can be made darker than the

background, ρ should be a non-decreasing value of the image intensity.

Doing so, shortest paths are likely to follow dark areas of the images,

i.e. vessels. This is illustrated in fig 3.8.

In other applications, such as satellite images, the curves of interest

are assumed to be of approximately constant gray value c. In this case,

one can choose for instance

W (x) = W0 + ρ(f(x)) with ρ(a) = |a− c|α (3.11)

where α is tuned depending on the characteristics of the image and on

the confidence one has about c. Figure 1.1 shows an example of road

extraction, where the metric (3.11) is used with α = 1.

3.2.2 Gradient-based Metric

In several applications, the curves of interest are located near areas

of large variation of intensity in the image – e.g. when one wants to

detect the boundary of object in images. In this case, one can choose

a gradient based potential, such as for instance

W (x) = ρ(||∇f(x)||) where ∇f(x) =

(
∂f

∂x1
,

∂f

∂x2

)

∈ R
2, (3.12)
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Fig. 3.8 Vessel segmentation using shortest paths. Top left: original retinal image from
DRIVE database [199]. Top middle: distance map computed from the white point (gray
level was used as potential) and iso-distance lines (red). Notice that the front propagates
faster along the vessels. Top right: shortest path computed from another point of the vessel.
Bottom: synthesis on the distance function elevation map.

where ρ is a non increasing function such as

ρ(a) = (ε + a)−α (3.13)

for some contrast parameter α > 0. This corresponds to an edge at-

tracting potential. The gradient vector ∇f is estimated numerically

using finite differences, possibly after smoothing the original image to

remove some noise.

Figure 3.9 shows an example of use of the gradient based metric

(3.13) with α = 1. A set of two initial points S linked by four geodesics

to two other points, to obtained a segmentation of the cortex with a

closed curve.
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||∇f || US Minimal paths

Fig. 3.9 Example of segmentation using minimal paths for a gradient-based metric.

3.2.3 Volumetric Metric

The Fast Marching works the same way in any dimension and in par-

ticular can be used to extract shortest paths in 3D volumetric medical

data [94]. Such a volume is a discretization of a mapping f : [0, 1]3 7→ R.

Figure 3.10 shows some examples of geodesic extraction on a med-

ical image that represents tubular structures (blood vessels) around

the heart. Since a pixel x inside a vessel has approximately a known

intensity value f(x) ≈ c, the potential W (x) is defined as in (3.10).

Different extensions of minimal paths have been proposed in [11, 12]

in order to find a surface between two curves in a 3D image. These

approaches are based on defining a network of minimal paths between

the two curves, see Figure 3.11 A transport equation was used to find

this network efficiently without computing the paths themselves.

3.2.4 Metrics on 3D Surfaces

Salient features on a surface S ⊂ R
3 can be detected by extracting

geodesics that are constrained to be on the surface. As detailed in Sec-

tion 1.2.1, for a parameterized surface ϕ : Ω→ R
3, this corresponds to

an anisotropic Riemannian metric on the parametric domain Ω, whose

tensor is the first fundamental form (1.1.2).

As in Section 1.2.1, one should be careful about the distinction

between a point x ∈ Ω ⊂ R
2 in the parameter domain, and its mapping

x̃ = ϕ(x) ∈ S ⊂ R
3 on the surface.
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Fig. 3.10 Example of volumetric Fast Marching evolution (top row) and geodesic extrac-
tions (bottom row).

Metric on textured meshes. In order for the geodesic to follow

salient features, the length L(γ̃) of a curve γ̃ ∈ S is measured as in

(1.5) using a weight W (x̃) > 0 for each point x̃ ∈ S. The simplest way

to define this metric is using some texture function f(x̃) ∈ R defined

on the surface. Following (3.10) or (3.12), one can define metrics based

either on the gray levels or on the gradient of f .

Figure 3.12 shows the influence of a varying metric W (x̃) on the

geodesic that follows the salient features of the texture.

Curvature-based metric. To detect geometric salient features on

surfaces, such as ridges and valleys, one needs to use higher order

derivatives of the surface parameterization, see for instance [204]. One

typically uses curvature information, that corresponds to extrinsic

quantities that depend on the embedding of the surface in R
3.

Curvatures are computed by measuring the second order variation
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Fig. 3.11 Illustration of the method of minimal paths network [11] in order to find a
surface as a set of 3D minimal paths between two given curves. On the left, the two curves
and network are shown. On the right the surface obtained by interpolation from the path
network.

Texture f Metric W (x̃) Geodesic W = 1 Geodesic W (x̃)

Fig. 3.12 Top row: Fast Marching propagation from the two red points for a texture-based
metric W (x̃). Bottom row: comparison of geodesic curves from the two blue points for the
constant metric W = 1 and for a texture-based metric W (x̃).

of the surface projected on the unit normal to the surface

∀x ∈ Ω, n(x) =
n̄(x)

||n̄(x)|| where n̄(x) =
∂ϕ

∂x1
(x) ∧ ∂ϕ

∂x2
(x)
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where ∧ denotes the cross product in R
3. The second fundamental form

is then defined as

∀x ∈ Ω, Jϕ(x) =

{

〈 ∂2ϕ

∂xi∂xj
(x), n(x)〉

}

16i,j62

∈ R
2×2. (3.14)

If the parametrized surface is smooth enough, this second fundamental

form is a symmetric matrix, that can be diagonalized as

Jϕ(x) = µ1(x)e1(x)e1(x)T + µ2(x)e2(x)e2(x)T. (3.15)

The eigenvectors ei(x) ∈ R
2 for i = 1, 2 are orthogonal, and the tangent

vectors Dϕ(x)ei(x) are the principal curvature directions of curvature

on the surface, where Dϕ(x) is the differential of the parameterization

defined in (1.8).

This factorization (3.15) should not be confused with the decom-

position (1.16) of the Riemannian tensor Tx computed from the first

fundamental form Iϕ(x). In particular the eigenvalues µi can be nega-

tive.

The second fundamental form Jϕ(x) can be approximated numeri-

cally on 3D triangulated meshes using averaging of rank-1 tensors [78]

or using a local covariance analysis [66, 229].

A weighting function W (x̃) can be defined from the eigenvalues

(µ1(x), µ2(x)) so that the geodesics follow local extrema of some cur-

vature measure. For instance, one can use

W (x̃) = ρ(µ1(x)2 + µ2(x)2) (3.16)

where ρ is a non-increasing function, such as (3.13). Figure 3.13 shows

the computation of the distance map to a set of starting points using

the Fast Marching propagation. The front moves faster along features

when W takes into account the curvature. Figure 3.14 shows how this

curvature-based metric influences the minimal paths, that are forced

to follow the salient features of the surface.

3.2.5 Anisotropic Metrics for Images and Volumetric
Datasets

In order to better follow the salient structures of an image or a

volume f , one can replace the isotropic metric Tx = W (x)2Idd by an

anisotropic metric Tx ∈ R
d×d.
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Fig. 3.13 Top row: Fast Marching propagation from the red points for the metric W = 1.
Bottom row: propagation for the metric W (x̃) defined in (3.16).

Metric W (x̃) Geodesics W = 1 Geodesics W (x̃)

Fig. 3.14 Comparison of the geodesics for W = 1 and for the curvature based metric W (x̃)
defined in (3.16).

In some applications, a hardware acquisition device actually gives

access to a local anisotropic metric. This is for instance the case in

medical imaging for Diffusion MRI (dMRI)[17], in which case d = 3.

This modality derives from MRI and aims at computing the prob-

ability distribution of water molecules diffusion at any point of a hu-

man brain over the set S2 of all possible directions in 3D. Since water

molecules tend to propagate faster along white matter fibers, dMRI

allows to obtain a local map of white matter fibers directions.

The most commonly used model for the probability distribution of

water diffusion is the diffusion tensor (DTI) [16], which simply consists

in a 3-dimensional tensor. While this rough representation does not

allow to recover precise information when fibers crossings or splittings
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occur, it performs well when only one bundle of fibers is present at a

precise location. Its main advantage is that only scans in the 3 principal

directions are needed to recover a diffusion tensor, which results in a

low data acquisition time.

After data acquisition and computation of the diffusion tensor, every

point x in the white matter is thus equipped with a tensor Dx whose

principal eigenvector gives an evaluation of the main direction of fibers

at this point (Figure 3.15).

Extracting full length fibers numerically from this local informa-

tion is important to compute a map of the white matter and detect

pathologies.

Full length fibers can be modeled as geodesic curves inside the white

matter for the Riemannian metric Tx = D−1
x : geodesics in such a

Riemannian space will tend to align themselves with the eigenvector

corresponding with the smallest eigenvalues of Tx [231, 215, 139]. They

will thus follow high-diffusion paths, which are likely to correspond to

white matter fibers (Figure 3.16).

Fig. 3.15 DTI of a human brain on a coronal slice. Corpus Callosum (CC), which fibers
have an horizontal orientation, and the left and right Corticospinal Tract (CST), which
fibers have a mainly vertical orientation, can be seen in the plane of the image.
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Fig. 3.16 Geodesics corresponding to major white matter fibers bundles in left hemisphere,
obtained with the geodesic method of [215].

3.3 Centerlines Extraction in Tubular Structures

In many applications, such as road tracking or vessel extraction,

one is interested in computing the centerline of the tubular structures

of interest. As illustrated in Figure 3.8 and 3.17, minimal paths tend to

follow the boundary of the vessel in regions where the tubular structure

is curved. Furthermore, one is often interested in computing an esti-

mation of the radius of the vessels, which evaluation may have medical

significance, e.g. in retinal imaging [299] or for detecting stenosis. The

precise value of this radius is not directly accessible using minimal

paths.

Fig. 3.17 The path centering problem. The centerline is displayed as a dashed curve.



3.3. Centerlines Extraction in Tubular Structures 89

3.3.1 Centering the Geodesics

A simple way to re-center the minimal path is to make the potential

locally minimal in the middle of the tubular structure. For symmetric

vessels, a possibility is to smooth the potential, and replace W (x) de-

fined in (3.10) by

W (x) = ε + (ρ(f) ⋆ Gσ)(x), (3.17)

where Gσ is a Gaussian kernel of width σ > 0. This smoothing is

however difficult to control, and leads to a loss in the resolution of the

image.

Another option is to re-center the geodesic in a post-processing step.

Deschamps and Cohen [94] perform this re-centering using a two step

method. Starting from the initial non-centered geodesic, the boundary

∂V of the vessel V is extracted using the front of the Fast Marching. A

modified potential is then defined as

W (x) =

{
ε + ρ(d(∂V, x)), if x ∈ V
+∞ otherwise

,

where d(∂V, x) is the geodesic distance to the boundary of the vessel,

and ρ is a non-increasing mapping. This new potential forces minimal

paths to follow the center of the tubular structure. This method has

been applied to enable virtual endoscopy exploration of vessels in [94,

75], see Figures 3.18 to 3.20.

3.3.2 High Dimensional Lifting

To automatically center the minimal paths and compute the local

radius of the vessel, one can compute a metric W on a higher dimen-

sional space.

Radial lifting. Li et al. [168] proposed extracting minimal paths

γ⋆ = (γ⋆
x, γ⋆

r ) ∈ Ω× [rmin, rmax]

on a space with an additional radius dimension. See also [227] for a

similar approach using geodesic computation on graphs.
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Fig. 3.18 Example of a centered path inside the colon in a 3D image. Two different views
of the path together with slices of the image.

The geodesic curves are defined with respect to an isotropic Rie-

mannian metric W (x, r) > 0 for x ∈ Ω and r ∈ [rmin, rmax]. The spatial

geodesic γ⋆
x is intended to follow the centerline of the vessel, and γ⋆

r (t)

should indicate the local radius of the vessel near γ⋆
x(t). This is achieved

if W (x, r) is locally minimal at a point x if a vessel is centered at x

and the radius of the vessel is approximately r.

A local detector D(x, r) evaluates the likelihood of the presence of

the centerline of a vessel of radius r at every point x of the image. The

value of D(x, r) is computed in [168] by measuring the deviation of the

mean and variance of the gray value inside a sphere centered at x and

of radius r. The metric is then defined as W (x, r) = ρ(D(x, r)) where

ρ is a decreasing function.

Because a spherical region is a poor match with the anisotropic ge-

ometry of vessel, this method is sensitive to initialization and param-

eters. Figure 3.21 shows an example of result of the method in [168]

together with its extension in [169] using the keypoints of [24]

Radial and orientation lifting. Pechaud et al. proposed in [216,

214] to lift a 2D image to a 4D space that includes both a radius

information r ∈ [rmin, rmax] and an orientation θ ∈ [0, π).

The method makes use of a basic template M(x) that is scaled and



3.3. Centerlines Extraction in Tubular Structures 91

Fig. 3.19 Some images of a virtual flythrough along the 3D minimal path of the previous
figure. Each view is obtained as what a virtual camera would see on a given point of the
path in the direction tangential to the path. The only inputs are the 3D image, a starting
point and a given length of the path.

rotated

∀x ∈ Λ(r, θ), Mr,θ(x) = M(R−θ(x)/r),

where Λ(r, θ) is the scaled and rotated domain over which the template

is defined, see Figure 3.22, left. This basic element M is specific to a

given application, and might be different if one considers roads (that

are usually bright on a dark background, with sharp edges) or vessels

(that may have a reversed contrast and blurred edges).

The local detector R(x, r, θ) is computed as a cross-correlation

R(x, r, θ) = ξΛ(r,θ)(Mr,θ(·), f(x + ·))
where f(x + ·) is the image translated by x, ξA(f, g) is the normalized

cross-correlation between f and g over the domain A, defined by:

ξA(f, g)
def.

=

∫

A(f − f̄)(g − ḡ)
√

∫

A(f − f̄)2
√∫

A(g − ḡ)2
(3.18)



92 Geodesic Segmentation

Fig. 3.20 Virtual endoscopy through centered paths inside the aorta tree structure in a 3D
image. Different paths are shown in yellow that link the source point to different endpoints
of the structure.

where h̄ =
R

A
h

µ(A) , µ(A) =
∫

A 1 being the area of A.

Figure 3.22 shows an example of this 4D lifting. The additional

angular dimension helps to disambiguate situations where vessels with

different orientations are crossing.

The metric is then defined as W (x, r, θ) = ρ(R(x, r, θ)) > 0, where

ρ is a decreasing function. Geodesics are then extracted in this lifted

space

γ⋆ = (γ⋆
x, γ⋆

r , γ⋆
θ ) ∈ Ω× [rmin, rmax]× [0, π)

where the angular dimension [0, π) should be handled with periodic

boundary conditions. Domain Ω× [rmin, rmax]× [0, π) can thus be seen

as a 4D cylinder, which could be embedded in a 4D Euclidean space.

Figure 3.23 shows centerlines γ⋆
x and radii obtained with this

method.
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Fig. 3.21 Examples of minimal paths in the 2D+radius space for segmentation of vessels
and their centerlines. On the left two endpoints are given and we obtain a centerline to-
gether with a region. On the right only one starting point is given and a set of keypoints
is obtained automatically to segment the vascular tree structure.

Anisotropic lifting. Benmansour and Cohen proposed in [23] to

reduce the numerical complexity of centerline extraction by building an

anisotropic Riemannian metric Tx,r for each space and scale location

(x, r) ∈ Ω× [rmin, rmax].

The orientation selectivity of the metric replaces the orientation

dimension θ ∈ [0, π) in (3.3.2). This can be achieved by computing

for each (x, r), a metric Tx,r ∈ R
2×2 such that, for all unit vector

nθ = (cos(θ), sin(θ)), the anisotropic potential ||nθ||Tx,r is close to a cri-

terion W (x, r, θ) similar to the one above. An alternative construction

based on multi-scale second order derivatives of Gaussian filtering was

proposed in [23] to efficiently compute the metric Tx,r. The response

of the filter is designed to be maximal on the centerline of vessels, and

the tensor principal eigenvector corresponds to the estimated direction
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θ

x2
θ = π/2

θ = 0

x1

x1

x2

Fig. 3.22 Left: vessel template at different scales and orientations. Middle: original 2D
image. Right: 4D lifting R(xs, r, θ) (fixed radius r), ranging from -1 (black) to 1 (white).

of the vessel, see Figures 3.24 and 3.25.

3.4 Image Segmentation Using Geodesic Distances

3.4.1 Segmentation Using Geodesic Balls

Active contour by geodesic ball growing. In the active contour

model (3.3), the curve evolution (3.7) is allowed to move with positive or

negative speed. Furthermore, this speed β depends both on the position

of the curve, and on its orientation. If one imposes a simpler evolution

model, where the evolution is performed with a strictly positive speed

W (x) > 0
d

dt
γt(s) = W (γt(s))nt(s), (3.19)

then this evolution can be tracked using level sets of a single distance

function US ,

{γt(s) \ s ∈ [0, 1]} = Bt(xs) = {x ∈ Ω \ US(x) = t} , (3.20)

where the initial curve γ0 at t = 0 is the boundary of the starting points

∂S = {γ0(s) \ s ∈ [0, 1]}

and where US is the geodesic distance map to S for the isotropic metric

W (x), as defined in (1.22).

The curve γt is thus the boundary of a geodesic ball of radius t. It

can thus be computed using the Fast Marching, and in fact, γt can be
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Fig. 3.23 Centerlines positions and radii extraction of vessels in a cortical image (top
left), in a satellite (top right) and in a retinal image (bottom). White square denotes the
initial points S = {xs}, while black squares are different ending points.

approximated by the front that the Fast Marching propagates during

the iterations.

As t increases, this ball γt inflates, and moves faster in region where

W is large. Malladi and Sethian [178] thus propose to use this evolution

to segment object in noisy images, using a metric W (x) that is low for

pixel x outside the object to detect, and using a radius t chosen to

match the size of the object. See also [94, 181] for applications of this

method to medical imaging.

Figure 3.26 shows application of this method to segment a medical

image f using a pixel-based potential (3.11), and where the initializa-

tion is performed with a single point S = {xs} located inside the region
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Fig. 3.24 Examples of minimal paths in the 2D+radius space for segmentation of vessels
and their centerlines. The metric based on the Optimal Oriented Flux is shown on the
right.

Fig. 3.25 Examples of minimal paths in the 3D+radius space for segmentation of vessels
and their centerlines.

to segment.

Fig. 3.26 Front propagation of the Fast Marching algorithm, the region indicates the
geodesic ball {x ∈ Ω \ US(x) 6 s}, for s increasing from left to right. The boundary of
this region corresponds to the curve γs.
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Front freezing. Geodesic balls have the tendency to extend beyond

the boundary of the object. This is especially the case for elongated

tubular structure such as vessels. To avoid this leaking artifact of the

front during the propagation, Deschamps and Cohen [95, 75] proposed

to freeze the propagation in regions where the front is moving slowly.

This modification improves the quality of the segmentation, although

the segmented region is not defined as a geodesic ball anymore.

3.4.2 Segmentation Using Geodesic Voronoi Regions

To segment several regions, an approach consists in giving a set of

seed points {xi}i, where each xi is supposed to be inside a region. One

then considers the segmentation of the image domain into Voronoi cells,

as defined in (1.18). As explained in Section 2.6.1, this segmentation

can be computed approximately during the Fast Marching propagation,

or during iterative schemes. See for instance [262, 172, 200, 10] for an

application of this method to perform image segmentation.

For this segmentation to be efficient, the front should move slowly

for pixels that are intended to be at the boundary between several

regions. For object separated by edge transition, this can be achieved

by using an edge stopping metric

W (x) = ρ(||∇f(x)||,
where ρ is an increasing function. Note that this potential is inverse to

the edge attracting criterion defined in (3.12) .

Figure 3.27 shows an example of segmentation using a contrast func-

tion ρ(a) = (ε + a)α, for α = 1 and a small ε > 0.

Relation with watershed. If the geodesic distance map US is ap-

proximated with morphological operators, as detailed in Section 2.8.1,

the Voronoi segmentation corresponds to the result of the water-

shed algorithm initially proposed in [28] and extended for instance

in [283, 198, 188]. For the watershed algorithm, the set of initial points

S is usually chosen as the local minima of the map W (x), possibly after

some smoothing pre-processing.

The Fast Marching implementation of the Voronoi segmentation

tends to perform more precise segmentations since it does not suffer
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Image f Metric W (x) Segmentation

Fig. 3.27 Image segmentation using Voronoi regions. The colored curves on the left image
show the boundary of the Voronoi cells.

from metrication caused by the discrete nature of the structured ele-

ment of mathematical morphology operators, see [189].

3.5 Shape Offsetting

Shape offsetting is an important issue, both in motion-planning and

CAD [241]. Starting from a set A ⊂ Ω ⊂ [0, 1]2 or [0, 1]3 and a ball B of

radius r centered at 0, it consists in finding the set δBA = {x + b | x ∈
A, b ∈ B} described in Section 2.8.1 (see Figure 3.28).

Fig. 3.28 Illustration of shape offsetting. Starting from the black set A and the red ball B
(left), δBA is constructed (middle and right.)

When the boundary of A consists in segments or circular arcs, exact

methods have been developed in order to compute its offsetting [241].

In the general case however, such methods are not available, and one

must rely on more general algorithms. Early methods are based on level

sets [149].

As explained in this section, this operation can be approximately

performed using mathematical morphology in O(n) time if Ω is convex.



3.6. Motion Planning 99

If Ω is not convex, one can approximate the shape offsetting by

using the geodesic dilation of Section 2.8.1. However, a more precise

alternative consists in using the methods described in Section 2.2. The

starting set S is A. One thus has δBA = {x ∈ Ω, US(x) 6 r}. This

set can be easily computed as the set of Computed points of the Fast-

Marching algorithm when the first point with distance greater than r

has been reached [151].

Notice that this easily extends to the case when B is elliptic. One

needs to apply an affinity f to B such that f(B) is a sphere. It is

then possible to prove that δB(A) = f−1(δf(B)(f(A))). In order to

compute δB(A), one thus deforms the space A through f , computes its

offsetting as explained before, and brings back the result in the initial

space through the application f−1.

3.6 Motion Planning

Computation of shortest paths inside a shape with Euclidean metric

has been thoroughly studied in motion planning [161]. Solving this

problem indeed allows to move a robot from one point to another in

an environment with obstacles, see Figure 3.29, left.

The methods detailed in Chapter 2 are rarely used in motion plan-

ning, mainly for three reasons : firstly, one is interested in finding some

path between two points, not necessarily the shortest one. Secondly,

in robot-motion planning, the environment is often discovered pro-

gressively while the robot moves, which makes it impossible to use

a geodesic method. Thirdly, since the space is Euclidean, taking into

account the possible shapes of the obstacles allows to design ad-hoc

methods to compute shortest paths. However, some examples exist

where the Fast-Marching algorithm is used in the context of motion

planning – e.g. to model crowd movements [273].

Punctual object As an example, assume that one wants to compute

the optimal trajectory of a punctual object in a polygonal environment

Ω (see Figure 3.29, left.) This corresponds to a specific case of the prob-

lem described in Section 1.3.2. An efficient method exists to compute

an exact solution : one can compute the so-called shortest-path road-
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Fig. 3.29 Shortest path in a space with polygonal obstacles. A polygonal environment with
initial and ending points (left), the shortest-path-roadmap (middle), and the shortest path
between initial and ending points (right).

map G [160], which is actually a peculiar graph linking the obstacles

vertices and the initial and ending points (see Figure 3.29, middle). It is

possible to show that the shortest path between the initial and ending

points consists of edges of G (see Figure 3.29, right). Computing the

geodesic between two points thus boils down to computing a path in

the adjacency graph of the cells. The whole operation can lead to the

exact geodesic in O(n2 lnn) time, where n stands for the number of

edges in the environment.

Spherical object Shape offsetting (see Section 3.5) can be used to

compute trajectories of non-punctual objects in an environment with

obstacles. Assume that a circular object Br of radius r is to be moved in

an environment with obstacles (Figure 3.30, top). The problem is thus

to find a trajectory γ of the center of Br such that δBr(γ) ⊂ Ω, where

δBr corresponds to the dilation of the curve γ defined in Section 2.8.1.

This problem can be reduced to the previous one by growing the

obstacles by a distance r. One defines Ω′ = δBr(Ω) (Figure 3.30, mid-

dle.)

Computing Bx trajectory in Ω is clearly equivalent to computing

the trajectory of a single point in Ω′ (Figure 3.30, right.)

However, geodesic methods can be used to perform the offsetting

only when the object to move is circular or elliptic, which limits its

practical utility.

3.7 Shape From Shading

Shape from shading is a popular computer vision inverse problem,

see for instance [297] for a review on this subject. It corresponds to the
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Fig. 3.30 Illustration of shape offsetting. Assuming one wants to compute the trajectory
of a circular object in an environment Ω with obstacles (top), one can grow the obstacles,
leading to a new environment Ω′ (middle), and the problem is thus reduced to computing
the trajectory of a point in the obtained space (right.)

process of recovering a 3D surface from a shaded image of that surface.

In simplified settings, the surface is obtained by solving a non-linear

PDE, as first noticed by Horn [135]. Although it is not related to the

extraction of minimal path, in some cases, it can be cast in an Eikonal

equation, and can thus be solved using Fast Marching methods.

In a simple setting, one wants to recover a surface, represented as

height field u(x) ∈ R for x = (x1, x2) ∈ [0, 1]2 from a 2D picture f(x).

A simplifying assumption is that the surface is Lambertian diffuse.

Ignoring self shading, for each point x in the image, the illumination

at a given point px = (x1, x2, u(x1, x2)) of the surface is computed as

y(px) = max(0, 〈v(px), n(px)〉) 6 1

where v(p) is the unit light vector at point p, n(p) = ñ(p)/||ñ(p)|| is the

unit normal at point p, and ñ(px) = (−∇u(x), 1).

For an infinite light source, v(px) = v ∈ R
3 is constant and unit

normed. A further simplifying assumption is that the camera taking

the picture of the object performs an orthographic projection, which is

a valid assumption if the object is far away from the optical center. In

this case, the intensity f(x) of the image at a pixel x is equal to the

illumination y(px) at the surface location px.

For a vertical light source v = (0, 0, 1), putting together all these

simplifying assumptions, one obtains that v satisfies the following

Eikonal equation

||∇u|| = b(x) =

√

1− 1

f(x)2
, (3.21)

see for instance [175, 242]. This equation is not well defined at singular
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points Σ = {x \ f(x) = 1}, because b(x) tends to +∞. These singular

points Σ correspond to locations where the surface is facing the light

direction. The equation can be regularized by replacing b(x) by b̄(x) =

min(b(x), bmax).

The solution of the Eikonal shape from shading equation (3.21)

should be understood as the unique viscosity solution, subject to some

interpolating conditions f(xi) = fi for a set of fixed points xi. These

points can be set on the boundary of the object, or at the singular

points Σ. This is a major bottleneck of this approach that necessitates

some prior knowledge about the object to recover.

Figure 3.31 shows two examples of shape from shading reconstruc-

tion using the Fast Marching to solve (3.21). This shows the importance

of setting adequate interpolation condition to obtain a valid reconstruc-

tion.

The non-uniqueness of shape from shading problem without proper

assumptions (such as viscosity solutions and fixed boundary points)

reflects the ill-posedness of the problem. These difficulties have been

deeply investigated in the literature, and are usually referred to as

concave/convex ambiguities, see for instance [18].

For an arbitrary point light source, and a generic perspective cam-

era, Prados and Faugeras have shown in [230] that the shape from shad-

ing problem corresponds to solving a more general Hamilton-Jacobi

non-linear PDE, which can also be solved with generalized Fast March-

ing methods.
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Original surface Image f

Acceptable reconstruction Bad reconstruction

Fig. 3.31 Bottom row: two examples of shape from shading reconstruction. The red point
xi indicates the location where the condition f(xi) = fi is enforced. The original surface
is taken from [297].
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Geodesic Sampling

In order to acquire discrete samples from a continuous Riemannian

manifold, or to reduce the number of samples of finely sampled man-

ifolds, it is important to be able to seed evenly a set of points on a

manifold. This is relevant in numerical analysis in order to have a good

accuracy in computational simulations, or in computer graphics in or-

der to display 3D models with a low number of polygons. In practice,

one typically wants to enforce that the samples are approximately at

the same distance from each other according to a given metric. The nu-

merical computation of geodesic distances is thus a central tool, that

we are going to use both to produce the sampling and to estimate the

connectivity of a triangular mesh.

4.1 Geodesic Voronoi and Delaunay Tesselations

A sampling of a Riemannian manifold Ω is a set of N points

S = {xi}i∈I ⊂ Ω, where I = {0, . . . , N − 1}. One can compute sev-

eral topological tesselations on top of this sampling. This section gen-

eralizes the notions of Euclidean Voronoi and Delaunay diagrams to

arbitrary Riemannian manifolds. In the remaining part of this chapter,

104
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this framework will be used to design efficient sampling schemes.

4.1.1 Voronoi Segmentation

The main geometrical and topological structure associated to a sam-

pling is the Voronoi segmentation, that is at the heart of the computa-

tion of the other geodesic tesselations.

Geodesic Voronoi Diagram. When S = {xi}i∈I is finite, one de-

fines a segmentation of the manifold Ω into Voronoi cells as

V(S) = {Ci}i∈I and Ω =
⋃

i∈I

Ci (4.1)

as defined in (1.18). This segmentation can be represented using the

partition function ℓ(x) defined in (1.19). Note that the Voronoi cells

overlap on their common boundaries.

Geodesic Medial Axis. The medial axis MedAxis(S), defined in

section 1.4.2, is the set of points where the distance map US is singular.

For a dense enough discrete set of points S = {xi}i∈I , the medial axis

is the boundary of the Voronoi cells, see (1.21).

4.1.2 Delaunay Graph

Delaunay graph. The geodesic Delaunay graph D(S) of a sampling

S = {xi}i∈I ⊂ Ω is defined by joining seed points with adjacent Voronoi

cells

D(S) =
{
(i, j) ∈ I2 \ ∂Ci ∩ ∂Cj 6= 0

}
. (4.2)

Note that a pair of indices (i, j) ∈ D(S) is assumed to be unordered,

so that (j, i) denotes the same Delaunay edge.

Geometric realization. For each edge, one can consider its geodesic

geometric realization

∀ (i, j) ∈ D(S), γi,j ∈ P(xi, xj) (4.3)

which is the geodesic curve joining xi and xj . For a 2D manifold Ω, the

Delaunay graph D(S) is thus a planar graph for this curved realization,
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Ω
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xi,jxk

x�

xi,j,k

xi,j,!xj

Fig. 4.1 Schematic diagram of Geodesic and Delaunay.

which means that the curved edges γi,j do not intersect. This is due to

the fact that γi,j ⊂ Ci ∪ Cj – see Section 2.5.2 that makes use of this

fact to speed up minimal path extraction.

If the manifold is embedded in Euclidean space Ω ⊂ R
d for some

d > 0, the geodesic realization (4.3) should not be confused with the

Euclidean geometric realization γ̃i,j , which is the straight line segment

∀ t ∈ [0, 1], γ̃i,j(t) = (1− t)xi + txj . (4.4)

One should note that this straight line embedding of the graph is not

necessarily a valid planar embedding, since straight edges γ̃i,j might

intersect.

Double saddle points. Each topological Delaunay edge (i, j) ∈
D(S) is associated to a dual geometric realization, that is a bound-

ary of Voronoi cells

∀ (i, j) ∈ D(S), γ∗
i,j = Ci ∩ Cj .

This object is called a dual edge to the primal edge γi,j . It is a planar

curve for 2D manifolds.

A double point xi,j lies at the intersection of γi,j and γ∗
i,j

xi,j = γi,j ∩ γ∗
i,j = argmin

x∈γ∗
i,j

d(x, xi), (4.5)

as already defined in (2.21). Note that xi,j is not necessarily the point

on MedAxis({xi, xj}) that is the closest to xi and xj , because the dual

edge γ∗
i,j is only a sub-set of MedAxis({xi, xj}).
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Double point computation. Double points xi,j are computed by

processing the boundary of the Voronoi segmentation. This segmenta-

tion is computed as detailed in Section 2.6.1.

The geodesic Delaunay edge curve γi,j joining xi and xj is extracted

by solving two gradient descents to compute the two geodesics joining

xi,j to xi and xj , as described in Section 2.5.2.

4.1.3 Delaunay triangulation

For simplicity, we restrict ourselves to the setting of 2D manifolds,

and consider triangulations of the manifold Ω. Although more difficult

to compute, the natural extension to manifolds of dimension d consists

of replacing triangles with simplices, which are convex hulls of d + 1

points.

Triple points. While D(S) indicates an edge structure based on in-

tersection of pairs of Voronoi cells, it is possible to define a face struc-

ture T (S) by looking at the intersection of three Voronoi cells

T (S) = {(i, j, k) \ Ci ∩ Cj ∩ Ck 6= ∅} . (4.6)

Similarly to Delaunay edge, triple indices are not ordered, and permu-

tations of (i, j, k) denote the same face. For points in generic position,

a non-empty intersection of three cells is a triple point

∀ (i, j, k) ∈ T (S), xi,j,k ∈ Ci ∩ Cj ∩ Ck. (4.7)

For each (i, j, k) ∈ T (S), the triple point xi,j,k lies at the intersection

of three portions of mediatrix

xi,j,k = γ∗
i,j ∩ γ∗

j,k ∩ γ∗
k,i.

It thus corresponds to the geodesic extension of the classical notion of

circumcenter in Euclidean geometry.

The boundary of the open geodesic ball of center xi,j,k thus contains

three sampling points

{xi, xj , xk} ⊂ ∂Br(xi,j,k) where Br(x) = {y ∈ Ω \ d(x, y) < r}
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for r = d(xi, xi,j,k). The Delaunay triangulation possesses the empty

circumcircle property

∀ ℓ /∈ {i, j, k}, xℓ /∈ Br(xi,j,k). (4.8)

The natural extension of triple points to a manifold of dimension

d considers the intersection of d Voronoi cells. This is the geodesic

generalization of the ortho-center of a d-dimensional simplex.

Triple point computation. Triple points xi,j,k are computed as a

by-product of the extraction of the Voronoi segmentation detailed in

Section 2.6.1.

Triangulations. If the metric Tx is a smooth function of x and if

the sampling S of Ω is dense enough with respect to the curvature of

the manifold, one can prove that the Delaunay graph is equal to the

Delaunay triangulation, which means that

∀ (i, j) ∈ D(S), ∃k ∈ I, (i, j, k) ∈ T (S),

see [165]. The number of points needed for the Delaunay triangulation

to be valid depends on the geometry of the manifold, and in particular

on its curvature, see [205].

In particular, there are no isolated edges. If the manifold does not

have boundary, the Delaunay triangulation defines a valid triangulation

of the manifold using the geometric realization (4.3) of the edge.

One can also prove that if the sampling is dense enough, then the

straight line realization (4.4) also gives a valid triangulation in the

Euclidean space in which the manifold is embedded. This Euclidean

triangulation, whose edges are straight segments, is useful for many

applications as detailed in Sections 4.2.3, 4.3 and 4.5.

Delaunay/Voronoi geodesic duality. A primal edge γi,j links two

(primal) samples xi, xj ∈ S, while the corresponding dual edge γ∗
i,j

links (dual) triple points xi,j,k, xi,j,ℓ. The set of triple points

S∗ = {xi,j,k \ (i, j, k) ∈ T (S)}
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thus constitutes a dual sampling of the manifold Ω. These points are

connected by dual edges to form polygons which are not necessarily

triangles.

Euclidean Voronoi and Delaunay. The special case of the Eu-

clidean metric Tx = Id2 in Ω = R
2 has been extensively studied. The

Delaunay triangulation [91] of a sampling S is a valid triangulation of

the convex hull of S. It is furthermore unique for points in generic posi-

tions. It is characterized by the fact that the circumcircle of a triangle

(xi, xj , xk) for (i, j, k) ∈ T does not contain any other point, which

corresponds to condition (4.8). There exist several iterative algorithms

to find the Delaunay triangulation of a set of N points in O(N log(N))

operations, see for instance [88].

Figure 4.2 shows an example of Euclidean Delaunay triangulation.

Fig. 4.2 Example of Voronoi diagram (dashed) and Delaunay triangulation for the Eu-
clidean metric, with the circumcenter in light gray.
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4.2 Geodesic Sampling

The Riemannian metric Tx is used to control the quality of a sam-

pling {xi}i∈I ⊂ Ω. Finding a sampling with high quality corresponds

to finding a sampling whose density and anisotropy conform to the

metric, and is useful in many applications, ranging from finite element

simulations to computer graphics.

4.2.1 Riemannian Sampling Constraint

Covering and packing sampling constraints. For a given sam-

pling distance ε > 0, one looks for a sampling such that all pairs of

neighboring points are approximately the same distance apart ε. The

notion of neighbors is, however, difficult to define. Following [53], one

can replace it by looking at geodesic balls of radius ε, already intro-

duced in equation (3.20)

Bε(x)
def.

= {y \ d(x, y) 6 ε} .

A sampling S = {xi}i∈I ⊂ Ω is an ε-covering, for some ε > 0 if

⋃

i∈I

Bε(xi) = Ω, (4.9)

which means that any point x ∈ Ω is at a geodesic distance less than ε

from S, or equivalently that US 6 ε. Figure 4.3, left, shows an example

of ε-covering.

To forbid such an ε-sampling to contain too many points, one re-

quires that it is an η-packing in the sense that

∀ i, j ∈ I, i 6= j =⇒ d(xi, xj) > η (4.10)

which means that balls of radius η/2 centered at points in S do not

overlap. Figure 4.3, middle, shows an example of ε-packing.

An ε-net is a sampling that is both an ε-covering and an ε-packing.

Figure 4.3, right, shows an example of ε-net. Those sets are also called

Delone sets in [67], and they can be shown to have optimality prop-

erties for the approximation of functions defined on Ω. Searching for

an ε-covering that is an η-packing for the largest η corresponds to



4.2. Geodesic Sampling 111

ε-covering ε-packing ε-net.

Fig. 4.3 Comparison of the packing and covering properties for a Euclidean square (dashed
lines). The light gray circle are Euclidean balls of radius ε while dark circle are balls of
radius ε/2.

the problem of (geodesic) sphere packing, and is a deep mathematical

problem even in Euclidean space [79].

An efficient ε-net should contain the smallest possible number N

of points. Finding a sampling that satisfies these conditions with the

smallest N is a difficult problem. A simple greedy procedure to approx-

imate this problem, proposed originally in [125], constructs iteratively

an ε-net {xi}i∈I . It starts by some random point x0 ∈ Ω and then

iteratively adds a new point at random that satisfies

xk+1 ∈ Ω\
k⋃

i=0

Bε(xi), (4.11)

until condition (4.9) is enforced.

Using a random choice in the greedy process (4.11) usually leads

to a poor sampling quality so that N can be quite large. Section 4.2.2

details a non-random selection process that usually leads to a good

solution.

Distance conforming Riemannian sampling. A way to make

more explicit the control of the sampling by the metric is to use the

Delaunay graph (4.2) as a notion of neighborhood. The sampling is

said to be distance conforming to the metric if

∀ (i, j) ∈ D(S), C1ε 6 d(xi, xj) 6 C2ε (4.12)
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where ε is the sampling precision, and C1, C2 are constants independent

of N .

Note that if S is an ε-net, and thus satisfies (4.10) and (4.9), then

(4.12) is satisfied for d(xi, xj) ∈ [ε, 2ε].

Isotropic metric and density sampling. In the case of an

isotropic metric Tx = W (x)2Idd in Ω ⊂ R
d, the sampling constraint

becomes

∀ (i, j) ∈ D(Ω), ||xi − xj || ≈
ε

W (xi)
, (4.13)

Under these conditions, in a Euclidean ball of radius r > 0 centered

at x, the number of samples should be proportional to rdW (x)d. The

constraint thus corresponds to imposing that the sampling density is

proportional to W (x)d. In particular, regions of Ω where W is high are

constrained to use a dense sampling.

One should note that this density sampling requirement does not

correspond to drawing point at random according to the density

W (x)/
∫

Ω W , since one wishes to have neighbording points which con-

form as much as possible to the metric, which random sampling usually

does not achieve.

In 1D, if Ω = [0, 1], the isotropic sampling problem is easily solved.

A perfect sampling conforming to the metric W (x) is defined as

xi = F−1(i/N) where F (x) =
1

∫ 1
0 W

∫ x

0
W (y)dy. (4.14)

Obtaining a good density sampling for 2D and higher dimensional

manifolds is difficult. A simple greedy procedure is the error diffusion

method [118] and extensions [210], which is mainly used for digital

halftoning [15]. This method operates on a uniform grid, and scans in

a given order the grid cells to reduce the sampling problem to a 1D

repartition problem, similarly to (4.14).

Other approaches, based on irregular planar tilings, offer better per-

formances without periodic artifacts [211, 212].

The following section details a greedy sampling procedure that

can produce a good sampling in practice, and can take into account

anisotropic Riemannian metrics.
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Triangulation conforming Riemannian sampling. The sam-

pling condition (4.13) only constrains the length of the Delaunay edges.

For many applications, including the resolution of elliptic PDEs, and

the approximation of smooth images (see Section 4.3), it is also re-

quired that Delaunay triangles in T (S) are close to being equilateral,

when seen from the metric Tx. Roughly speaking, if △ ∈ T is a trian-

gle centered around x0 ∈ △, it should be enclosed in two concentric

ellipsoids

{
x \ ||x− x0||Tx0

6 C0ε
}
⊂ △ ⊂

{
x \ ||x− x0||Tx0

6 C1ε
}

(4.15)

where ε controls the number N of samples and C0, C1 are two con-

stants. Note that the distance constraint (4.13) does not ensure that

the triangles have approximately equal edges, as shown on figure 4.4,

center.

xi

xj xk
∼ ε ∼ ε

∼ ε

∼ ε

∼ 0

Triangulation conforming Distance conforming Non-conforming

Fig. 4.4 Shapes of triangles with distance and/or triangulation conforming to the Eu-
clidean constant metric.

4.2.2 Farthest Point Sampling

The farthest point sampling algorithm is a greedy strategy able

to produce quickly a good sampling which turns out to be an ε-net.

Instead of performing a random choice in (4.11), it selects the farthest

point from the already selected points

xk+1 = argmax
x∈Ω

min
06i6k

d(xi, x). (4.16)

This selection rule first appeared in [125] as a clustering method, see

also [87] for an analysis of clustering algorithms. This algorithm has
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been introduced in image processing to perform image approximation

in [112]. It was used as well in [77] to perform perceptual grouping

through the iterative adding of key-points and detection of saddle

points (equivalent to the double saddle points above for the geodesic

distance). It was then extended in [221] together with geodesic Delau-

nay triangulation to do surface remeshing.

Metric W (x) N = 1 N = 5 N = 20

Fig. 4.5 Examples of farthest point sampling, the colormap indicates the distance function
US .

Figure 4.5 shows some iterations of this farthest point sampling

method for isotropic metrics on a square. One can see that this scheme

seeds more points in areas where the metric W is large. One can thus

control the sampling density by modifying the metric W . Algorithm 7

gives the detail of the algorithm.

Algorithm 7: Farthest point sampling algorithm.

Initialization: set x0 at random, d0(x) = d(x0, x), k = 0.

while εk > ε do
Select point: xk+1 = argmax

x
dk(x), εk+1 = dk(xk+1).

Distance update: ∀x dk+1(x) = min(dk(x), d(xk+1, x)).

Set k ← k + 1.
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Numerical complexity. Denoting

dk(x) = min
06i6k

d(xi, x) = U{x0,...,xk}(x),

the selection rule (4.16) reads

xk+1 = argmax
x∈Ω

dk(x),

while dk+1 is computed from dk as

dk+1(x) = min(dk(x), d(xk+1, x)).

This update of the distance map is performed efficiently by a single

Fast Marching propagation, starting from xk+1, and restricted to the

Voronoi region of xk+1

Ck+1 = {x ∈ Ω \ ∀ i 6 k, d(xk+1, x) 6 d(xi, x)} .

If the manifold is discretized with N0 points and if the metric

Tx does not vary too much, the size of Ck+1 is roughly O(N0/k).

Hence the complexity of each sampling step is O(N0/k log(N0)),

and the overall complexity of sampling N ≪ N0 points is roughly

O(N0 log(N0) log(N)).

Farthest sampling quality. The farthest point sampling

{x0, . . . , xN−1} is an ε-net for

ε = max
06i<N

min
06j<N

d(xi, xj). (4.17)

Note however that there is no simple control on the number of sam-

ples N required to achieve a given accuracy ε. We refer to [67] for

an in-depth study of the approximation power of this greedy sampling

scheme.

4.2.3 Farthest Point Meshing

This Section considers the particular case of 2D manifolds Ω ⊂ R
2,

or 2D surfaces embedded in Euclidean space. We also restrict ourself

to the case of manifolds without boundaries. Special care is required to

correctly approximate the boundary of the manifold, see Section 4.5.
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Having computed a sampling {xi}i∈I ⊂ Ω, one can define a triangu-

lation of the manifold Ω using the geodesic Delaunay faces T (S) defined

in (4.6). One can connect the samples using the geodesic curve realiza-

tion (4.3) or using the straight line realization (4.4) if the manifold is

embedded in Euclidean space.

Metric W (x) Sampling S Voronoi V(S) Delaunay D(S)

Fig. 4.6 Examples of sampling and triangulations with an isotropic metric Tx = W (x)2Id2.
The sampling is denser in the regions where the metric is larger (dark).

The resulting mesh can be used to mesh a continuous domain or

re-mesh a densely sampled manifold as explained in [220]. Figure 4.6

shows the process of computing the sampling, the Voronoi regions, and

the Delaunay triangulation.

Sections 4.3, 4.4 and 4.5 show applications of this algorithm to the

meshing of images, surfaces and sub-domains.

Triangulation validity and metric gradation. The farthest point

sampling {x0, . . . , xN−1} is distance conforming, and (4.13) holds for

C1 = 1, C2 = 2 and ε defined in (4.17). For the sampling to be tri-

angulation conforming and satisfy (4.15), the metric Tx should not

exhibit strong variations. For an isotropic metric Tx = W (x)2Id2, the

sizing field W (x)−1 should be 1-Lipshitz to ensure triangulation con-
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formance, and this gradation condition extends to anisotropic metric,

see [158]. If the metric Tx exhibits strong variations, it is mostly an

open question how to smooth it so that the modified metric is graded,

although heuristics have been proposed, see for instance [222, 7] for

isotropic gradation and [170, 35, 4] for anisotropic gradation. To mesh

the interior of a domain, a valid graded metric can be defined from a

boundary metric using (4.48).

4.3 Image Meshing

In this section, we consider the case of a 2D manifold parameterized

on a square so that Ω = [0, 1]2. The goal is to use the Riemannian

structure to perform image sampling and triangulation.

It is possible to use a user defined metric Tx to drive the sampling, as

shown in Section 4.3.1. One can also design the tensor field to minimize

the approximation error of an image f(x) using a spline approximation

on the geodesic triangulation. In this case, the eigenvectors e1(x) de-

fined in (1.16) should match the direction of edges and textures in the

image, while the anisotropy A(x), defined in (1.17), should match the

anisotropic regularity of f near x.

4.3.1 Density Meshing of Images

A geodesic isotropic triangulation with Tx = W (x)2Id2 seeds points

according to a density function W (x)2 for x ∈ [0, 1]2. Regions where

W (x) is larger get more samples.

Figure 4.7 shows triangulations obtained for several isotropic met-

rics. It shows how the triangulation is refined as the farthest point

algorithm inserts new samples.

4.3.2 Image Approximation with Triangulations

Adaptive image approximation is performed by computing a tri-

angulation T of the image and using a piecewise linear finite elements

approximation. This class of methods originates from the discretization

of partial differential equations, where the design of the elements should

match the regularity one expects for the solutions, which might contain
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N = 10 N = 20 N = 30 N = 300

Fig. 4.7 Examples of farthest point meshing for different isotropic metrics W (x) (shown
in background) and different values of the number of samples N .

shocks or boundary layers. Iterative adaptation allows to refine both

the solution of the equation and the shape of the elements [2, 237, 259].

The positions of the samples S = {x0, . . . , xN−1} and the connectiv-

ity of the triangulation T should be adapted to the features of the im-

age. Note that, in general, T is not necessarily a Euclidean or geodesic

Delaunay triangulation T (S) of S. In the following, to ease the expla-

nations, we consider T as a collection of triangles t ∈ T , and not sets

of indexes.

A piecewise affine function fN on the triangulation is defined as

fN =
∑

i∈I

aiϕi,

where ϕi is the hat spline function, that is affine on each triangle and

such that ϕi(xj) = 0 for i 6= j and ϕi(xi) = 1.

The efficiency of the approximation fN is measured using the Lp
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norm on the domain, for 1 6 p 6 +∞

||f − fN ||pLp(Ω) =

∫

Ω
|f(x)− fN (x)|pdx (4.18)

and

||f − fN ||L∞(Ω) = max
x∈Ω
|f(x)− fN (x)|. (4.19)

It is possible to use an interpolation of the original image by defining

ai = f(xi). If one measures the approximation error using the L2 norm,

a better approximation is obtained by an orthogonal projection

fN =
∑

i∈I

aiϕi where a = argmin
ã∈RN

||f −
∑

i

ãiϕi||2. (4.20)

The coefficient a of this approximation fN is computed by solving a

sparse linear system

∀ i ∈ I,
∑

j

〈ϕi, ϕj〉aj = 〈f, ϕi〉.

4.3.3 Greedy Schemes

Given a fixed number N of vertices, the goal is to design a trian-

gulation so that the approximation error ||f − fN ||Lp(Ω) is as low as

possible. Such an efficient triangulation is likely to be also efficient for

applications to image compression and denoising, because it captures

well the geometry of the image.

Computing this optimal triangulation is in some sense NP-hard [1],

and one thus needs to rely on sub-obtimal greedy schemes. These

schemes generate a sequence of triangulations by either refinement (in-

creasing N) or coarsening (decreasing N , starting from a dense sam-

pling).

Refinement schemes. A greedy refinement scheme starts by a sim-

ple fixed triangulation (T0, S0) of the squares [0, 1]2, and iteratively

adds one or several vertices to Sj to obtain a triangulation (Tj+1, Sj+1)

that minimizes the approximation error.

The Delaunay refinement introduced by Ruppert [245] and

Chew [63], proceed by inserting a single point, which is a circumcen-

ter of one triangle. One also imposes that Tj = T (Sj) is a Delaunay
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triangulation of Sj . This constraint limits the domain of the optimiza-

tion and thus accelerates the search, and also leads to triangles with

provably good isotropic aspect ratio, which might be useful to compute

an approximation of the solution of an elliptic PDE on the mesh grid.

For image approximation, one however needs to design anisotropic tri-

angulations. This requires to modify the notion of circumcenter, using

an anisotropic metric [123]. Other refinements are possible, such as for

instance edge bisection [190], that reaches the optimal asymptotic error

decay for smooth convex functions.

Coarsening schemes. Triangulation coarsening algorithms start

with a fine scale triangulation (TJ , SJ) of [0, 1]2 and progressively re-

move either a vertex, an edge or a face to increase the approximation

error as slowly as possible until N vertices remain [110, 134, 122]. One

can for instance remove a single vertex to go from Sj+1 to Sj , and

impose that Tj = T (Sj) is the Delaunay triangulation of Sj . This can

be shown experimentally to produce highly anisotropic meshes, which

can be used to perform compression, see [92].

4.3.4 Hessian Tensor Metric

In this section, we consider a uniformly smooth C2 image defined on

Ω. We show how to design locally a metric Tx so that if the triangulation

conforms to this metric, ||f − fN ||Lp(Ω) is as small as possible.

Local error optimization. Near a point x ∈ Ω, the error obtained

when approximating f with an affine function is governed by the Hes-

sian matrix Hf of second derivatives :

Hf (x) =

(
∂2f

∂xi∂xj
(x)

)

06i,j61

. (4.21)

One can diagonalize this symmetric matrix field as follows

Hf (x) = λ1(x)e1(x)e1(x)
T + λ2(x)e2(x)e2(x)

T, (4.22)

where (e1, e2) are the orthogonal eigenvectors fields and |λ1| > |λ2| are

the eigenvalues fields.
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In the following, we assume that Hf does not vary too much so

that it can be considered as constant inside each triangle t ∈ T . This

heuristic can be made rigorous, see for instance [190].

Performing a Taylor expansion of f near a vertex xk ∈ t for a

triangle t ∈ T of the triangulation leads to

|f(x)− fN (x)| 6 C|λ1(xk)||〈x− xk, e1(xk)〉|2 (4.23)

+ C|λ2(xk)||〈x− xk, e2(xk)〉|2. (4.24)

where C is a constant that does not depend on N . Denoting as ∆1(xk)

and ∆2(xk) the size of the triangle t in each direction e1(xk) and e2(xk),

one obtains the pointwise error bound

|f(x)− fN (x)| = O
(
|λ1(xk)|∆1(xk)

2 + |λ2(xk)|∆2(xk)
2
)
. (4.25)

Uniform triangulation. For a uniform triangulation, where all the

triangles t ∈ T are approximately equilateral with the same size, one

has

∆1(x) ≈ ∆2(x) ≈ N−1/2,

so that the approximation error in (4.25) leads to

||f − fN ||Lp(Ω) 6 C||Hf ||Lp(Ω)N
−1 (4.26)

where the Lp norm of the Hessian field is

||Hf ||pLp(Ω) =

∫

Ω
|λ1(x)|pdx.

Isotropic triangulation. An isotropic triangulation makes use of

triangles that are approximately equilateral, so that ∆1(x) ≈ ∆2(x),

and the error (4.25) leads on each triangle t ∈ T to

||f − fN ||Lp(t) 6 C||Hf ||Lq(t) where
1

q
= 1 +

1

p
.

In order to reduce as much as possible the approximation error

||f − fN ||Lp(Ω) on the whole domain, a heuristic is to equidistribute the

approximation error on all the triangles. This heuristic can be shown to

be nearly optimal, see [190]. This criterion requires that for xk ∈ t ∈ T ,

||Hf ||Lq(t) ≈ |t|1/q|λ1(xk)| ≈ ∆1(xk)
2/q|λ1(xk)| (4.27)
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is approximately constant, where |t| is the area of the triangle. This

means that the triangle t located near xk should have approximately

constant edge size, for the isotropic Riemannian metric Txk
defined as

Tx = W (x)2Id2 where W (x)2 = |λ1(x)|q. (4.28)

For instance, if one measures the approximation error using the L∞

norm, then W (x)2 = |λ1(x)|. An adaptive isotropic triangulation con-

forming to the metric (4.28), so that (4.15) holds, gives rise to an

approximation error

||f − fN ||Lp(Ω) 6 C||Hf ||Lq(Ω)N
−1 where

1

q
= 1 +

1

p
. (4.29)

Since q < p, note that the constant appearing in the isotropic approx-

imation (4.29) is much smaller than the constant in the constant size

approximation (4.26).

Anisotropic triangulation. As detailed in [14], for a smooth func-

tion, one should use anisotropic triangles whose aspect ratio match the

anisotropy of the image. To reduce as much as possible the point-wise

error (4.23), the error along each axis e1, e2 should be approximately

equal, so that the anisotropy of the triangles should satisfy

∆1(x)

∆2(x)
=

√

|λ2(x)|
|λ1(x)|

. (4.30)

Under this anisotropy condition, the error (4.23) leads on each triangle

t ∈ T to

||f − fN ||Lp(t) 6 C

∥
∥
∥
∥

√

|det(Hf )|
∥
∥
∥
∥

Lq(t)

where
1

q
= 1 +

1

p
,

see [190]. Similarly to the isotropic case (4.27), the equidistribution of

error criterion leads to
∥
∥
∥
∥

√

|det(Hf )|
∥
∥
∥
∥

Lq(t)

≈ |t|1/q
√

|λ1(xk)λ2(xk)| (4.31)

≈ (∆1(xk)∆2(xk))
1/q

√

|λ1(xk)λ2(xk)| (4.32)

being approximately constant.
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Conditions (4.30) and (4.31) show that a triangle of an optimal

triangulation for the Lp norm should have its edges of equal length

when measured using the following Riemannian metric

Tx = |det(Hf (x))| q−1
2 |Hf (x)| (4.33)

where the absolute value of the Hessian is

|Hf (x)| = |λ1(x)|e1(x)e1(x)T + |λ2(x)|e2(x)e2(x)T.
For instance, when using the L∞ norm, the metric is Tx = |Hf (x)|.
Note that when p <∞, the metric (4.33) is singular at points x where

det(Hf (x)) = 0. This can be avoided numerically by using

Tx = (|det(Hf (x))|+ ε)
q−1
2 |Hf (x)|

for a small ε > 0.

An adaptive anisotropic triangulation conforming to the metric

(4.33), so that (4.15) holds, gives rise to an approximation error

||f −fN ||Lp(Ω) 6 C||
√

|det(Hf )|||Lq(Ω)N
−1 where

1

q
= 1+

1

p
. (4.34)

Note that the constant appearing in the anisotropic approximation

(4.34) is much smaller than the constant in the isotropic approximation

(4.29).

Farthest point Hessian triangulation. Equations (4.28) and

(4.33) give respectively the optimal isotropic and anisotropic Rieman-

nian metric that should be used to design triangulations in order to

approximate smooth functions. One can thus use the farthest point

meshing algorithm detailed in Section 4.2.3 to compute an ε-net that

conforms to this metric.

Figure 4.8 shows the evolution of the meshing algorithm for the

anisotropic metric (4.33) for the L∞ norm. Figure 4.9 shows a compar-

ison of the isotropic and anisotropic metrics. One can see the improve-

ment brought by adaptivity and anisotropy.

4.3.5 Structure Tensor Metric

The optimal Hessian-based metrics (4.28) and (4.33) are restricted

to the approximation of smooth images. Furthermore, these metrics are
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N = 50 N = 100 N = 200

Fig. 4.8 Geodesic image meshing with an increasing number of points N , for the curvature-
driven metric defined in (3.16). Top row: geodesic distance US , bottom row: geodesic De-
launay triangulation D(S).

quite unstable since second order derivatives are difficult to estimate

on noisy images.

To approximate images with step edges, or noisy images, the com-

putation of the optimal metric requires a prior smoothing of the image,

and the amount of smoothing depends on the noise level and the num-

ber of samples N . Coarse approximation corresponding to a small value

of N or a large noise level requires a larger smoothing kernel.

An alternative method computes a robust estimation of both edges

and textures directions from first order derivatives using the so-called

structure tensor. There is no optimality result for approximation using

such first order metrics, but they show good results for image approx-

imation [37].

Structure tensor. The local orientation of a feature around a pixel x

is given by the vector orthogonal to the gradient v(x) = ∇f(x), which
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Isotropic Tx = ||Hf (x)||Id2 Anisotropic Tx = |Hf (x)|

Fig. 4.9 Comparison of isotropic and anisotropic triangulation of a C2 image, with N =
800 points.

is computed numerically with finite differences. This local direction

information can be stored in a rank-1 tensor T̃ (x) = v(x)v(x)T. In order

to evaluate the local anisotropy of the image, one needs to average this

tensor

T (x) = T̃ ⋆ Gσ(x) (4.35)

where the 4 entries of the tensor are smoothed against a gaussian kernel

Gσ of width σ > 0. The metric T corresponds to the so-called structure

tensor, see for instance [156]. This local tensor T is able to extract both

the local direction of edges and the local direction of textural patterns.

At each pixel location x, the structure tensor field can be diagonal-

ized in an orthogonal basis (e1, e2)

T (x) = µ1(x)e1(x)e1(x)
T + µ2(x)e2(x)e2(x)

T, (4.36)

where µ1 > µ2 > 0. In order to turn the structure tensor T (x) into a

Riemannian metric Tx, one can modify the eigenvalues using increasing

mappings ψi,

Tx = ψ1(µ1(x))e1(x)e1(x)
T + ψ2(µ2(x))e2(x)e2(x)

T. (4.37)

for instance ψi(a) = (ε + a)β for a small value of ε and some β > 0.

The parameter ε controls the isotropic adaptivity of the metric, while
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β controls the overall anisotropy. A well chosen set of parameters (ε, β)

allows one to enhance the resulting image approximation scheme.

Fig. 4.10 Examples of anisotropic front propagation (from 9 starting points). The colormap
indicates the values of the distance functions at a given iteration of the algorithm. The
metric is computed using the structure tensor, equation (4.35), of the texture f shown in
the background.

Figure 4.10 shows an example of Fast Marching propagation using

an anisotropic metric Tx computed using the structure tensor.

Anisotropic geodesic meshing for image compression. It is

possible to use anisotropic triangulations to perform image compres-

sion. This requires to quantize and code the positions of the vertices

{xi}i∈I and the value of {fN (xi)}i∈I . Optimizing the distortion rate of

the resulting code is difficult because of the lack of orthogonality of the

spline approximation, so one has to use heuristics to derive quantization

rules.

Figure 4.11 shows an example of image coding with a geodesic tri-

angulation, see [37] for more details about the coding process.

4.4 Surface Meshing

The farthest point sampling algorithm can be used on a surface

S ⊂ R
3 represented by a discrete 3D mesh that is densely sampled. The

method thus performs a sub-sampling followed by a geodesic remeshing

of the original triangulated surface.

The density and anisotropy of the final mesh is controlled by a met-

ric Tx̃ defined on the tangent plane Tx̃ of the surface S, as introduced

in Section 2.4.1. The resulting adaptive mesh can be tuned by the user
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Geodesic JPEG-2000

Geodesic JPEG-2000

Fig. 4.11 Comparison of the adapted triangulation scheme [37] with JPEG-2000, for the
same number of bits, for N = 200 (top) and N = 600 (bottom) vertices.

using a metric computed from a texture map or from the curvature

tensor.

4.4.1 Density Meshing of Surfaces

A geodesic isotropic triangulation with Tx̃ = W (x̃)2Id2 seeds points

according to a density function W (x̃)2 for x̃ ∈ S.

Figure 4.12 shows an example of uniform remeshing of a surface

S ∈ R
3 acquired from medical imaging with an increasing number of

points, with a constant metric W (x̃) = 1 for x̃ ∈ S.

Figure 4.13 shows an example of uniform remeshing of the David

surface, where the original input surface was obtained by range scan-

ning [166].

As explained in Section 3.2.4, one can define a varying densityW (x̃)

on the surface. This allows to obtain an adaptive isotropic remeshing

of the surface. Figure 4.14 shows how a varying metric (bottom row)
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N = 1000 samples Triangulation

N = 10000 samples Triangulation

Fig. 4.12 Geodesic remeshing with an increasing number of points.

W (x̃) is able to modify the sampling.

The weight W (x̃) that modulates the metric of the 3D surface can

be computed using a texture map. One can use a gradient-based metric

as defined in (3.12), in order to put more samples in regions of large

variation in the texture, see also Figure 3.12. Figure 4.15 shows an

application of this idea to the adaptive remeshing of 3D faces.

We note that many alternative algorithms have been proposed for

isotropic remeshing of surface according to a density field, see the re-

view [5]. It is for instance possible to use a planar parameterization of

the surface and use techniques from isotropic image sampling [8].
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Original, 106 vertices Remeshed, 104 vertices Zoom

Fig. 4.13 Uniform remeshing of the 3D David surface.

4.4.2 Error-driven Surface Meshing

We denote by SN the piecewise linear surface obtained from a tri-

angulation T . Instead of using a user defined metric Tx̃ for x̃ ∈ S, it is

possible to design the metric to minimize the approximation error of S
using SN . This problem extends the design of optimal triangulations to

approximate images as exposed in Section 4.3.2. Indeed approximating

an image f(x1, x2) corresponds to the approximation of a parametric

surface

(x1, x2) ∈ [0, 1]2 7→ (x1, x2, f(x1, x2)) ∈ R
3. (4.38)

Measuring distortion between surfaces is more difficult than mea-

suring distances between functions as done in (4.18) and (4.19), because

the set of surfaces is not a vector space, so that one cannot use classical

functional norms.

The natural extension of the Lp distances to surfaces is the Lp

Hausdorff distances

δp(S1,S2) = max(δ̃p(S1,S2), δ̃p(S2,S1)) (4.39)
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N = 300 N = 1400

Fig. 4.14 Adaptive remeshing with a constant density (top) and a density linearly decreas-
ing from left to right (bottom) .

where the non-symmetric distance is

δ̃p(S1,S2)
p =

∫

S1

min
y∈S2

||x− y||pdx

and

δ̃∞(S1,S2) = max
x∈S1

min
y∈S2

||x− y||.

Several algorithms perform fast approximate computations of these dis-

tances between meshes, see for instance [265, 65, 13], with applications

to collision queries between surfaces [173].

Greedy schemes. Computing the optimized triangulated surface

SN to minimize δ(S,SN ) given some N > 0 is a difficult problem.
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Texture f(x̃) Metric W (x̃)

ρ(W ) = 1 ρ(W ) = 3 ρ(W ) = 10

Fig. 4.15 Adaptive remeshing with a density given by a texture. The adaptivity ratio
ρ(W ) = max W/ min W is increasing from left to right.

One has to use sub-optimal greedy schemes that extend the methods

detailed in Section 4.3.3 to the setting of surfaces. Popular algorithms

include coarsening schemes that start from a dense triangulation of the

surface [134, 122] and curve tracing methods that follow the curvature

principal direction [6].
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Since the Hausdorff metric (4.39) is significantly more difficult to

compute and optimize than Lp norms, one has to use approximate

metrics computed using various heuristics [134] or quadratic approxi-

mations [122].

Curvature-based isotropic metrics. Following the approach de-

rived in Section 4.3.4 for functions, adapted approximations should

follow the second order geometry of a smooth surface, and the Hessian

matrix Hf defined in (4.21) is replaced by the second fundamental form

Jϕ defined in (3.14), where ϕ is a local parameterization. Indeed, for

the special case of an altitude field (4.38), these two tensor fields are

the same.

The extension of the isotropic metric (4.28) to surfaces makes use

of the norm of the second fundamental form

W (x̃)2 = ||Jϕ(x)|| where x̃ = ϕ(x). (4.40)

One can prove that an isotropic triangulation conforming to this metric

leads to an asymptotic optimal approximation of C2 surfaces for δ∞.

Note that this isotropic metric is optimized for approximation, and is

in some sense the inverse of the metric (3.16) that is designed to force

geodesic curves to follow salient features.

Figure 4.16, middle, shows such an example of curvature-adapted

remeshing that improves the reconstruction of sharp features with re-

spect to a uniform sampling, because more points are allocated in re-

gions of high curvature.

Curvature-based anisotropic metrics. The quality of the approx-

imation is further improved by making use of anisotropic triangulations.

The extension of the anisotropic metric (4.33) to surfaces is the abso-

lute value of the second fundamental form

Tx̃ = |Jϕ(x)| = |µ1(x)|e1(x)e1(x)T + |µ2(x)|e2(x)e2(x)T, (4.41)

where the eigen-decomposition of the fundamental form is introduced

in (3.15). One can prove that an anisotropic triangulation conforming

to this metric leads to an asymptotic optimal approximation of C2

surfaces for δ∞ [67, 129, 128].
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Figure 4.16 shows a comparison of surface remeshing using a con-

stant metric, and metrics (4.40) and (4.41).

Tx̃ = Id2 Tx̃ = ||Jϕ(x)||Id2 Tx̃ = |Jϕ(x)|

Fig. 4.16 Comparison of constant, isotropic and anisotropic surface remeshing, with N =
3200 points.

4.5 Domain Meshing

This section considers the meshing of a manifold with boundaries,

which has important applications for numerical simulations with finite

elements. We restrict ourselves to 2D manifolds with boundaries. Ex-

tension to higher dimensional manifolds makes use of the same line of

ideas, but it is significantly more difficult to maintain mesh elements

with good quality.

Section 4.5.1 presents a generalization of the farthest point sampling

strategy, while Section 4.5.2 details the constraints that impose the

meshing of the boundary of the manifold. Section 4.5.3 puts everything

together and details the extension of the farthest point meshing to

handle boundaries.
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4.5.1 Delaunay refinement

The farthest point method automatically selects at each step the

best point so that the sampling conforms to the Riemannian metric

and is evenly spread over the domain according to the geodesic dis-

tance. It does not take into account the shape of the triangles, which is

however important for some applications. For instance, for the numer-

ical simulation of elliptic PDEs, it is necessary to have triangles that

are as equilateral as possible. For other applications, triangles are al-

lowed to have small angles, but should not have large angles, see [259].

It is possible to generalize the farthest point strategy using another

selection rule among the set of local distance minimizers, which are the

triple points defined in (4.7).

Triple point refinement. Except maybe during the first few iter-

ations of the farthest point seeding, one notes that the farthest point

selected by the algorithm is a triple point xi,j,ℓ for (i, j, k) ∈ T (S), as

defined in (4.7), or possibly a point located along the boundary. A gen-

eralization of this scheme inserts at each step an arbitrary triple point

xi,j,k according to some quality measure ρ(i, j, k). The greedy insertion

rule (4.16) is replaced by

xk+1 = xi⋆,j⋆,k⋆ where (i⋆, j⋆, k⋆) = argmax
(i,j,k)∈T (S)

ρ(i, j, k). (4.42)

The farthest point refinement corresponds to the quality measure

ρ(i, j, k) = d(xi, xi,j,k) = US(xi,j,k). (4.43)

In the Euclidean case Tx = Id2, one can prove that this generates

uniform triangles with good quality, so that triangles do not have small

angles [62].

A popular insertion rule, that also maintains triangles of good qual-

ity, but generates less triangles, selects a triangle (i, j, k) ∈ T (S) with

the largest ratio of the circumradius to the shortest edge:

ρ(i, j, k) =
d(xi,j,k, xi)

min(d(xi, xj), d(xj , xk), d(xk, xi))
. (4.44)

This quantity can be computed for each triple point in parallel to the

Fast Marching propagation.
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xi

xj

xk
xi,j,k xi,j,k

xixk

xj

Low ρ(i, j, k) Large ρ(i, j, k)

Fig. 4.17 Examples of triangles with low (left) and large (right) aspect ratio.

In the Euclidean domain, a triangle (xi, xj , xk) with a large value of

ρ(i, j, k) is badly shaped since its smallest angle is close to 0, as shown

in Figure 4.17. The selection rule (4.42) with the measure (4.44) thus

tends to replace a badly shaped triangle by several smaller triangles

of smaller size. It can be shown that similarly to the farthest point

measure (4.43), the measure (4.44) leads to a triangulation without

small angles [245, 61, 258].

As explained in [158], this property extends to an anisotropic metric

Tx if angles are measured using the inner product defined by Tx. One

should note that the measure (4.44) does not produce adapted trian-

gulations that conform to the metric Tx since the length of the edges

is not monitored.

Euclidean Delaunay refinement. In the Euclidean setting, these

methods were introduced by Ruppert [245] and Chew [61, 62], see

also [258] for an in depth analysis of these approaches, and [25] for a

review of the methods. These methods choose at each iteration a triple

point, which is a circumcenter of the Delaunay triangulation, while

taking into account the boundary as explained in Section 4.5.2. These

methods have been extended to build anisotropic meshes with a vary-

ing density using a local modification of the metric [34] or anisotropic

elastic forces [36] and bubble packing [292].
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4.5.2 Constrained Delaunay triangulation

For now we have either considered Riemannian manifolds without

boundaries, or did not care about the reconstruction of the boundary.

However, in some applications such as numerical simulation of PDEs,

it is important that the meshing conforms to the boundary of the do-

main. In particular, the boundary of the discrete mesh should precisely

approximate the boundary of the continuous manifold.

Manifold with boundary. In the following, we denote i ↔ j to

indicate that xi, xj ∈ S ∩ ∂Ω are consecutive along the boundary (no

other points xk ∈ ∂Ω is between them).

To simplify the notations, we treat the outside of the shape as a

Voronoi cell Ωc = CΞ associated to a virtual vertex xΞ, and consider

the set of indices I = {Ξ, 0, . . . , N − 1}. This allows us to extend the

notion of triple points (4.7) and Delaunay faces (4.6). This extension

thus creates virtual exterior faces (Ξ, i, j) ∈ T (S) which indicates that

two Voronoi cells Ci and Cj intersect at the boundary of the manifold.

The associated triple point xΞ,i,j thus lies along the boundary.

Constrained triangulation. To mesh correctly the boundary ∂Ω

of the manifold, we require that it is part of the Delaunay graph D(S),

which means that

∀ i↔ j, (i, j) ∈ D(S).

This corresponds to a Delaunay triangulation constrained by the con-

nections defined by the boundary.

This requirement is quite strong, since it might happen for an ar-

bitrary geodesic Delaunay triangulation that a third point xk ∈ S en-

croaches the edge i↔ j, which means that

(Ξ, i, k) ∈ T (S) or (Ξ, j, k) ∈ T (S).

In this situation i↔ j is not part of the Delaunay graph.

Figure 4.18, left, shows a valid situation where i↔ j is part of the

Delaunay graph. Figure 4.18, right, shows a situation where xk is close

to the boundary ∂Ω and hence encroaches the edge i↔ j.
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Fig. 4.18 Left: the vertex xk does not encroach the boundary curve i ↔ j because (xi, xj)
is a Delaunay edge. Right: the vertex xk encroaches the boundary curve i ↔ j.

4.5.3 Geodesic Delaunay refinement

It is possible to use the farthest point sampling algorithm, Algo-

rithm 7, to mesh a manifold with boundary. Some care should be made

in the algorithm so that the boundary of the domain is included in the

Delaunay triangulation.

Encroaching vertex fixing. It might happen that a newly inserted

farthest point xk encroaches a boundary Delaunay edge i↔ j. In this

case, it is necessary to add to S a new boundary vertex x̃i,j ∈ ∂Ω

between xi and xj , that is selected at the same geodesic distance from

the two boundary point

x̃i,j ∈ ∂Ω where d(xi, x̃i,j) = d(xj , x̃i,j). (4.45)

Note that x̃i,j is not necessary equal to the double point xi,j defined in

(4.5), since a double point is not constrained to lie on the boundary.

Isolated vertex fixing. As already noticed in Section 4.1.3, the De-

launay graph might not be a valid triangulation of the manifold. This

is the case when a vertex xi such that (i, j) ∈ D(S) is isolated, which

means that it is not part of the triangulation

∀ k, (i, j, k) /∈ T (S).

In this case, it is necessarily to add a new vertex x̄i,j ∈ Ω located on

the Voronoi boundary between xi and xj , such as for instance

x̄i,j = argmax
x∈Ci∩Cj

d(xi, x), (4.46)

although other choices are possible.
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Pseudo-geodesic Delaunay refinement. In order to incorporate

global constraints within a provably correct Delaunay refinement

scheme, Labelle and Shewchuk [158] make use of a Riemannian metric

Tx and use the pseudo-distance

d̃(x, y)2 = (x− y)TTx(x− y). (4.47)

Note that d̃ is not equal to the geodesic distance d(x, y) unless Tx is

constant. In particular it is not symmetric and does not satisfy the tri-

angular inequality. For instance, Voronoi regions according to d̃ might

have several connected components, which makes them more difficult

to handle.

If one considers close enough points x, y, d̃(x, y) is however a good

approximation of the geodesic distance, and is easier to manipulate nu-

merically. Labelle and Shewchuk [158] generalize Delaunay refinement

using this pseudo-geodesic metric d̃, and they prove that for a large

enough number of points, this algorithm produces a correct triangula-

tion conforming to the metric field.

This algorithm is extended in 3D by [30, 31] and to domains with

curves by [294]. This pseudo-geodesic distance d̃ has also been applied

to image sampling [115] and surface remeshing [279].

Geodesic Delaunay refinement. It is possible to truly extend

the Delaunay refinement to the manifold setting by generalizing the

geodesic farthest point sampling and meshing [38]. This necessitates to

compute geodesic distances on a fine grid using the numerical schemes

detailed in Chapter 2, but creates a high quality mesh even if the

number of samples is quite low, because the geodesic distance d(x, y)

integrates better the variations and the anisotropy of the metric Tx

than the pseudo-distance d̃(x, y) does.

A geodesic domain meshing algorithm is proposed in [38], which

generalizes the approach of [158] by making use of the true geodesic

distance inside the domain. It iteratively inserts the triple point xi,j,k

with the largest aspect ratio ρ(i, j, k). During the iterations, bound-

ary middle points x̃i,j defined in (4.45) and isolation fixing points x̄i,j

defined in (4.46) are added. This maintains the geodesic Delaunay tri-

angulation as a valid planar constrained triangulation of Ω.
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A bound ηρ on ρ enforces the refinement to reach some quality

criterion, while a bound ηU on US enforces a uniform refinement to

match some desired triangle density.

Algorithm 8 details this algorithm. Note that this algorithm only

requires a local update of the distance map US and the Voronoi seg-

mentation when a new point is added, so its complexity is similar to

the complexity of the farthest point algorithm.

Similarly to the meshing method [158] with the pseudo geodesic

distance (4.47), one can prove that this algorithm provides a valid tri-

angulation of the domain if the metric does not have large variations.

4.5.4 Examples of Geodesic Domain Meshing

Isotropic Geodesic Refinement Examples. Figure 4.19, left,

shows an example of uniform domain meshing using a constant metric

Tx = Id2 together with this modified farthest point method.

It is possible to make use of an isotropic metric Tx = W (x)2Id2 to

modulate the sampling density. One can define

W (x)2 = ψ(d(x, ∂Ω)),

where ψ is a decaying function and d(x, ∂Ω) is the distance to the

boundary, which is the distance transform defined in Section 2.7. This

metric tends to seed more points on the boundary of the shape Ω.

Another popular choice makes use of the local feature size, which is

Algorithm 8: Geodesic planar domain meshing algorithm.

Initialization: set S so that ∂Ω is covered by D(S).

repeat
Boundary enforcement: while it exists i↔ j encroached,

add S ← S ∪ {x̃i,j}.
Triangulation enforcement: while it exists (i, j) ∈ D(S)

with xi isolated, add S ← S ∪ {x̄i,j}.
Select point: (i⋆, j⋆, k⋆) = argmax

(i,j,k)∈T (S)
ρ(i, j, k). Add it:

S ← S ∪ {xi⋆,j⋆,k⋆}.
until ρ(i⋆, j⋆, k⋆) < ηρ and US(xi⋆,j⋆,k⋆) < ηU ;
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N = 100 N = 200 N = 400

Fig. 4.19 Uniform shape meshing with an increasing number of points, with Tx = Id2.

the distance to the medial axis of the boundary

∀x ∈ Ω, γ(x) = d(x,MedAxis(∂Ω)).

The local feature size of the boundary is extended into the interior of

the domain as a K-Lipschitz regular function

W (x)−1 = min
y∈∂Ω

K||x− y||+ γ(y), (4.48)

see for instance [7]. The rationale is that W (x) is large in regions where

the boundary has a large curvature, and inside thin elongated part of

the shape Ω, where small equilateral triangles are required.

This K-Lipschitz sizing field f(x) = W (x)−1 defined in (4.48) is the

solution of an Eikonal equation

∀x ∈ Ω, ||∇f(x)|| = K and ∀ y ∈ ∂Ωf(y) = γ(y).

Its solution can thus be approximated on a dense regular grid using

the Fast Marching algorithm described in Section 2.3, using the value

of γ(y) as non-zero initial values on the boundary.
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Example of Anisotropic Geodesic Refinement. Figure 4.20

shows an example of anisotropic meshing, obtained by the farthest

point selection measure (4.43). The user controls the shape of the tri-

angles by designing the tensor field Tx. In this example, the anisotropy

of the metric is fixed, and the orientation of the tensor is defined by

diffusing the orientation of the tangent to ∂Ω inside the domain.

V(S), N = 200 Metric Tx

T (S), N = 200 T (S), N = 400

Fig. 4.20 Example of anisotropic domain meshing.



142 Geodesic Sampling

4.6 Centroidal Relaxation

Greedy sampling methods do not modify the location of an already

seeded vertex. It is possible to enhance the quality of a greedy sampling

by some global relaxation scheme, that moves points in S to minimize

some energy E(S). This energy depends on the problem the sampling is

intended to solve. This section considers a quantization energy popular

in applications ranging from clustering to numerical integration.

4.6.1 Optimal Quantization Problem

Given a budget N of points, an optimal sampling minimizes some

energy

min
|S|=N

E(S). (4.49)

A general rule to design an energy is to look for a sampling S that

minimizes a weighted Lp norm over M of the geodesic distance map

US to S

E(S) =

∫

Ω
ρ(y)US(y)pdy =

∫

Ω
min
i∈I

ρ(y)d(xi, y)
pdy, (4.50)

where ρ(y) > 0 is a weighting function. Introducing the Voronoi seg-

mentation V(S) defined in (4.1), this energy is re-written as

E(S) =
∑

Ci∈V(S)

∫

Ci

ρ(y)d(xi, y)
pdy.

This minimization (4.49) corresponds to finding an optimal discrete

sampling to approximate the continuous manifold Ω, and is referred to

as an optimal quantization problem [129].

Optimal sets for the quadratic quantization cost (p = 2) can be

shown to be asymptotically (when N is large) ε-nets, in the sense that

they satisfy (4.9) and (4.10) for some ε that depends on N and the

curvature of the manifold, see [67] and also [129, 128].

When the manifold is Euclidean Ω = R
d, the optimization of (4.50)

becomes

min
|S|=N

∫

Rd

ρ(y)min
i∈I
||xi − y||pdy. (4.51)
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This corresponds to the problem of vector quantization in coding [177].

This is also related to the problem of approximating a probability den-

sity ρ by a discrete density composed of Diracs at locations {xi}i∈I , and

to the search for optimal cubature rules for numerical integration [107].

4.6.2 Lloyd Algorithm

The energy E is highly non-convex, and finding an optimal set of N

points that minimizes E is difficult. One has to use an iterative scheme

that converges to some local minimum of E. A good initialization is thus

important for these schemes to be efficient, and one can for instance

use an initial configuration computed with the farthest point algorithm

detailed in Section 4.2.2.

Joint minimization. The minimization (4.49) on the points is re-

placed by a joint optimization on both the points and their associated

regions

min
|S|=N

E(S) = min
|S|=N,V∈PN (Ω)

E(S,V) =
∑

Ci∈V

∫

Ci

ρ(y)d(xi, y)
pdy

where PN (Ω) is the set of partitions of the manifold Ω in N non-

overlapping regions, so that V ∈ PN (Ω) is equivalent to

⋃

Ci∈V
Ci = Ω and ∀ i 6= j, Ci ∩ Cj = ∂Ci ∩ ∂Cj .

Lloyd coordinate descent. Lloyd algorithm [177], originally de-

signed to solve the Euclidean problem (4.51), minimizes alternatively

E(S,V) on the sampling point S and on the regions V. It alterna-

tively computes the Voronoi cells of the sampling, and then updates

the sampling to be centroids of the cells. Algorithm 9 describes the

Lloyd algorithm, and the next two paragraphs detail more precisely

the two update steps that are iterated.

Region update. For a fixed sampling S = {xi}i∈I , one can see that

the minimizer V⋆ of E(S,V) with respect to V is the Voronoi segmen-
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tation

V⋆ = argmin
V∈PN (S)

E(S,V) = V(S). (4.52)

Sample update. For a fixed tessellation V = {Ci}i∈I ∈ PN (Ω) of

the manifold, the minimizer of E(S,V) with respect to S is

argmin
|S|=N

E(S,V) = {cp(Ci)}i∈I ,

where the p-centroid cp(C) of a region C is

cp(C) = argmin
x∈Ω

EC(x) =

∫

C
ρ(y)d(x, y)pdy. (4.53)

If p > 1, this minimum is unique if C is small enough.

Convergence of the algorithm. The energy E(S(ℓ)) is decays with

ℓ during the iterations of the Lloyd algorithm. One can show that this

algorithm converges to some final sampling S⋆ under some restrictive

hypothesis on the manifold [106]. The final sampling S⋆ is a local mini-

mizer of the energy E, and is a so called centroidal Voronoi tessellation,

because the samples are the centroids of the voronoi cells,

S⋆ = {cp(C⋆
i )}i∈I where {C⋆

i }i = V(S⋆) (4.54)

where the centroid is defined in (4.53). Centroidal Voronoi tessellations

find many applications, see for instance the review paper [107].

The functional E can be shown to be piecewise smooth [176]. It is

thus possible to use more efficient optimization methods to converge

faster to a local minimum, see for instance [105, 176].

Algorithm 9: Lloyd algorithm.

Initialization: set S(0) at random, ℓ← 0.

repeat

Region update: V(ℓ+1) = V(S(ℓ)).

Sample update: ∀ i ∈ I, x(ℓ+1)
i = cp(C(ℓ+1)

i ).

Set ℓ← ℓ+ 1.
until ||S(ℓ) − S(ℓ−1)||∞ < η ;
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Euclidean Lloyd. In the case of a Euclidean manifold Ω = R
d with

a Euclidean metric Tx = Idd, d(x, y) = ||x−y||, the minimization (4.53)

is

cp(C) = argmin
x∈Rd

EC(x) =

∫

C
ρ(y)||x− y||pdy. (4.55)

For p = 2, it corresponds to the center of gravity (average)

c2(C) = m(C) =
1

∫

C ρ

∫

C
ρ(y)ydy. (4.56)

For p > 1, the functional EC to minimize is smooth, and cp(C) can thus

be found by gradient or Newton descent.

Figure 4.21 shows an example of iterations of the Euclidean Lloyd

algorithm for p = 2. The computation is performed inside a square

Ω ⊂ R
2, so that Voronoi cells are clipped to constrain them to lie

inside Ω.

For p 6 1, EC is not smooth, and cp(C) can be approximated by

re-weighted least squares

c(k+1) = argmin
x∈Rd

∫

C
ρ(k+1)(y)||x− y||2dy =

1
∫

C ρ
(k+1)

∫

C
ρ(k+1)(y)ydy,

where the weights at iteration k are

ρ(k+1)(y) = ρ(y)||c(k+1) − y||p−2.

For p = 1, c1(C) is a multi-dimensional median of the set C, that extends

to arbitrary dimension the 1D median.

Relation to clustering. This algorithm is related to the K-means

clustering algorithm [138] to cluster a large set of points {yj}j∈J ⊂
R

d. K-means restricts the computation to discrete points in Euclidean

space, so that (4.51) is replaced by

E(S) =
∑

j∈J

min
i∈I

ρj ||xi − yj ||p.

Step (4.52) corresponds to the computation of a nearest neighbor for

each point yj

∀ j ∈ J, k
(ℓ)
j = argmin

i∈I
||x(ℓ)

i − yj ||.
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ℓ = 0 ℓ = 1 ℓ = 100

Fig. 4.21 Iterations of Lloyd algorithm on a square with Euclidean metric, for a constant
density ρ = 1 (top) and a varying density ρ(x) larger for x in the middle of the square
(bottom). Blue segments depict the Voronoi cells boundaries, and red segments represent
the Delaunay triangulation.

In the case p = 2, step (4.53) is replaced by an average

x
(ℓ)
i =

1
∑

k
(ℓ)
j =i

ρj

∑

k
(ℓ)
j =i

ρjyj .

4.6.3 Centroidal Tessellation on Manifolds

The update of the Voronoi cells (4.52) can be computed on arbitrary

discrete manifolds as detailed in Section 2.6.1.

The computation of the centroid cp in (4.53) is more difficult. When

p = 2, it corresponds to an intrinsic center of gravity, also called

Karcher or Frechet mean [142]. Such an intrinsic mean is popular in

computer vision to perform mean and other statistical operations over

high dimensional manifolds of shapes [154], see for instance [163].
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Approximation by projection. If the manifold is embedded in a

Euclidean space, so that Ω ⊂ R
d for some d, it is possible to replace the

geodesic distance d(x, y) by the Euclidean one ||x− y|| in R
d in (4.53),

to obtain

c̃p(C) = argmin
x∈Ω

ẼC(x) =

∫

C
ρ(y)||x− y||pdy

which is called a constrained centroid [109].

For the case p = 2, it is shown in [109] that if c̃2(C) is a local

minimizer of ẼC , then c̃2(C) − m(C) is orthogonal to the surface at

c̃2(C), where m(C) is defined in (4.56).

One can thus compute a constrained centroid as the projection of

the Euclidean center of mass

c̃2(C) = ProjC(m(C)) where ProjC(x) = argmin
y∈C

||x− y||.

If the Voronoi cells are small with respect to the curvature of the man-

ifold, one can show that c̃2(C) is an accurate approximation of c2(C).
This constrained centroid method can be used to perform grid gen-

eration on surfaces, see [108].

Approximation by weighted centroid. For a Riemannian mani-

fold over a parameterized domain Ω ⊂ R
d, it is possible to approximate

the anisotropic metric Tx by an isotropic metric Tx = W (x)2Idd, for

instance using the average of the eigenvalues of the tensors

W (x)2 = Trace(Tx)/d

and replacing the geodesic distance by a Euclidean one

d(x, y) ≈W (y)||x− y||,
which is accurate if x and y are close and if Tx is not too anisotropic.

The original minimization (4.53) is then replaced by a weighted center

of mass computation

argmin
x∈Rd

∫

C
ρ(y)W (y)||x− y||dy =

1
∫

C ρW

∫

C
ρ(y)W (y)ydy.

This method has been used for isotropic surface remeshing in [8]. In

this setting, the manifold is 2-dimensional and corresponds to a 2D

parameterization of a surface in R
3.
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Computation by gradient descent. When p = 2, if C is small

enough, the function EC is smooth, and its gradient can be computed

as

∇EC(x) =

∫

C
ρ(y)d(x, y)

γ′x,y(0)

||γ′x,y(0)||dy (4.57)

where γx,y ∈ P(x, y) is the geodesic joining x and y such that γx,y(0) =

x.

A local minimizer of EC for p = 2 can be obtained by gradient de-

scent, as proposed in [162, 291]. The computation of the gradient (4.57)

is implemented numerically by performing a Fast Marching propaga-

tion starting from x, as detailed in Section 2.2.2, and then extracting

geodesic curves γx,y for discretized locations y ∈ C as detailed in Section

2.5.1.

ℓ = 0 ℓ = 1 ℓ = 30

Fig. 4.22 Iterations of Lloyd algorithm on a square with an isotropic metric Tx =
W (x)2Id2. Top row: constant metric W (x) = 1 (Euclidean case), bottom row: varying
metric W (x), that is larger in the center.

This method has been used in [219] to perform segmentation on 3D
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surfaces. Figure 4.22 shows examples of the geodesic Lloyd algorithm on

a square for an isotropic metric. Note that in this case, it gives results

similar to the weighted Euclidean Lloyd, Figure 4.21, for a dense sam-

pling. Figure 4.23 shows examples of iterations of the geodesic Lloyd

algorithm on surfaces.

ℓ = 0 ℓ = 2 ℓ = 20

Fig. 4.23 Iterations of Lloyd algorithm on surfaces.

4.7 Perceptual Grouping

Perceptual grouping is a curve reconstruction problem where one

wants to extract a curve from an image containing a sparse set of

curves embedded in noise. This problem is relevant both to model good

continuation perception laws [116, 289] and to develop efficient edge

detection methods. In this paper, we restrict ourselves to the detection

of a set of non-intersecting open or closed curves, although other kinds
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of topological or regularity constraints could be enforced.

The idea of using anisotropic information to perform perceptual

grouping was introduced in [130] where the completed contours are

local minimizers of a saliency field. Many variational definitions of per-

ceptual contours have been proposed using local regularity assump-

tions, for instance with the elastica model of Mumford [196], or good

continuation principles [97].

Riemannian grouping. The grouping problem can be formulated

as finding curves to join in a meaningful way a sparse set of points

S = {xi}i∈I while taking into account the information of a 2D image

f(x) for x ∈ Ω = [0, 1]2. The regularity and anisotropy of f can be

taken into account by designing a Riemannian metric Tx so that the

set of curves are geodesics.

Cohen first proposed in [77] an isotropic metric Tx = W (x)2Id2,

where W (x) is a saliency field similar to those considered in Section 3.2

for active contours. This was extended to grouping of components in 2D

and 3D images in [74, 73, 96]. This method was extended in Bougleux

et al. [38] by designing a Riemannian metric Tx that propagates the

anisotropy of the sparse curves to the whole domain. This anisotropic

metric helps to disambiguate difficult situations where some curves are

close to each other. This allows a better reconstruction with less user

intervention.

The metric Tx is computed using the structure tensor as detailed in

Section 4.3.5. The value of the structure tensor is retained only in areas

where its anisotropy A(x) defined in (1.17), is large, and the resulting

tensor field is interpolated in the remaining part of the image, where no

directional information is available. Figure 4.24 shows an example of

anisotropic metric computed from an image representing a noisy curve.

This idea of interpolation of local orientation is similar to the com-

putation of good continuation fields, as studied for instance in stochas-

tic completion fields [289] or tensor voting [183].

Grouping by geodesic Delaunay pruning. The grouping algo-

rithm proceeds by computing a perceptual graph D̃(S) of a set of points

S provided by the user. This perceptual graph is a sub-graph of the
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Image f Metric Tx

Distance, isotropic Distance anisotropic

Reconstruction, isotropic Reconstruction, anisotropic

Fig. 4.24 Peceptual grouping using isotropic metric (left) and anisotropic metric (right).

Delaunay graph D̃(S) ⊂ D(S). The graph is obtained by selecting in a

greedy manner the shortest Delaunay edges. This algorithm is designed

to extract curves without crossing, and the valence δi of vertices xi in

the perceptual graph is constrained to δi 6 2.

Algorithm 10 gives the details of the method. It is possible to extend

this algorithm to add topological constraints on the curves to detect,

or to allow several curves to meet at a crossing point.

This algorithm can be seen as a geodesic extension of methods

for curve reconstruction that makes use of the Euclidean Delaunay

graph [99]. Popular curve reconstruction methods [100, 9] connect

points along combinatorial graphs derived from the Delaunay graph

of the point set.

Figure 4.24 compares the results of perceptual grouping using an
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isotropic metric as in [77] and using an anisotropic metric Tx as in [38].

The isotropic method fails because closed curves are connected regard-

less of their relative orientation. In contrast, the anisotropic metric

enables a correct grouping of curves that obey a good continuation

property.

Algorithm 10: Anisotropic perceptual grouping algorithm.

Initialization: D̃(S)← ∅, Π← D(S), ∀ i ∈ I, δi = 0.

while Π 6= ∅ do
Select edge: (i⋆, j⋆)←− argmin

(i,j)∈Π
d(xi, xj).

Remove edge: Π← Π− {(i⋆, j⋆)}.
Check topology: if δi < 2 and δj < 2 then

D̃(S)← D̃(S) ∪ {(xi, xj)}
δj ← δj + 1 and δi ← δj + 1.
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Geodesic Analysis of Shape and Surface

This chapter explores the use of geodesic distances to analyze the

global structure of shapes and surfaces. This can be useful to per-

form dimensionality reduction by flattening the manifold on a flat Eu-

clidean space, as detailed in Section 5.1. This flattening finds appli-

cations in mapping planar textures onto a surface, or in computing

signatures that are invariant to non-rigid bendings. Correspondences

between manifolds that respect the geodesic structure can be used to

compare shapes and surfaces as shown in Section 5.2. To speed up ap-

plications of geodesic distances in shape retrieval, Section 5.3 designs

compact histogram signatures.

The subject of non-rigid shape and surface matching, and in par-

ticular the use of geodesic distances, is exposed in much more details

in the book [40].

5.1 Geodesic Dimensionality Reduction

Dimensionality reduction corresponds to mapping a manifold Ω of

dimension d, possibly embedded in a high dimensional space Ω ⊂ R
n,

n > d, into a Euclidean space R
k of small dimension d 6 k < n. This

153
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reduction is performed using a mapping ϕ : Ω → R
k, which is not

necessarily bijective.

In the case where d = k = 2, n = 3, this allows to perform the

flattening of a 3D surface onto a plane. In the case where d = 2 and

n = d, this can also be used to replace a manifold Ω by a transformed

one ϕ(Ω), so that ϕ(Ω) = ϕ(RΩ) for a family R ∈ R of deformations.

Using ϕ(Ω) instead of Ω for shape comparison leads to invariance to R
of the method.

5.1.1 Multi-dimensional Scaling

To maintain geodesic distances during the mapping, one wishes to

find ϕ : Ω→ R
k so that

∀x, y ∈ Ω, dΩ(x, y) ≈ ||ϕ(x)− ϕ(y)|| (5.1)

where dΩ is the geodesic distance on manifold Ω, as defined in (1.15).

Figure 5.1, left and center, shows examples of such a mapping that

approximately maintains distances between pairs of points.

This problem is solved numerically by considering a set of points

{x̃i}N−1
i=0 ⊂ Ω discretizing the manifold, and by computing the position

of xi = ϕ(x̃i) such that

∀ 0 6 i, j < N, ||xi − xj || ≈ dΩ(x̃i, x̃j) = di,j .

This corresponds to the Multi-dimensional Scaling (MDS) prob-

lem [157, 32].

Projection on Euclidean Matrices. The positions {xi}i are ob-

tained by minimizing a given loss criterion. One can find the discrete

mapping xi = ϕ(x̃i) by computing

min
{xi}i

∑

06i,j<N

δ(di,j , ||xi − xj ||), (5.2)

where δ(a, b) is a given loss function. Each loss function δ leads to a

different MDS method.
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Flattening Bending invariant GMDS

ϕ(Ω) ⊂ R
2 ϕ(Ω) ⊂ R

3 ϕ(Ω) ⊂ Ω1

Fig. 5.1 Overview of MDS and GMDS to compute embedding while conserving the pairwise
distances. Top row: original manifold Ω ⊂ R

3. Bottom row: mapped manifold ϕ(Ω).

Denoting as X ∈ R
k×N the matrix whose columns are the positions

xi ∈ R
k of the points, one can rewrite this minimization as

X⋆ ∈ argmin
X∈Ck

δ(D(X), D) where

{
Di,j = d2

i,j ,

D(X)i,j = ||xi − xj ||2,
(5.3)

where δ is extended to matrices as

δ(A,B) =
∑

06i,j<N

δ(Ai,j , Bi,j),

and where Ck is the set of centered points clouds

Ck = {X \ XI = 0}
where I ∈ R

N is the constant vector of value 1.

The minimization (5.3) corresponds to the computation of the pro-

jection of the squared geodesic distance matrix D on the set Ek =

{D(X) \ X ∈ Ck} of squared k-dimensional Euclidean distance matri-

ces, according to the distance δ between matrices.
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The set Ek is non-convex, and a whole family of valid projections

can be deduced from a single one. They are obtained from some X⋆ by

applying rigid transformations in R
k (translation, rotation and sym-

metries). Indeed, applying such a transform to X⋆ does not change the

distance matrix D(X⋆).

Classical MDS approximation. For δ(a, b) = |a−b|2, the problem

(5.3) corresponds to the Euclidean projection on the set of Euclidean

distance matrices

X⋆ ∈ argmin
X∈Ck

||D(X)−D||. (5.4)

Unfortunately, the set Ek is non-convex, and computing the projection

(5.4) is difficult.

In the following, we denote the centering operator as

J = IdN −
1

N
II

T ∈ R
N×N . (5.5)

where I = (1, . . . , 1)T ∈ R
N is the constant vector, and II

T is the

constant matrix filled with ones. It maps X ∈ R
k×N to a centered set

of points XJ ∈ Ck.
This centering operator allows to define another loss criterion called

strain to replace the projection (5.4) by

min
X∈Ck

||J(D(X)−D)J || (5.6)

It turns out that one can find the global minimizer of the strain with an

explicit formula, that we now detail. This corresponds to the so-called

classical MDS [32].

Using the expansion

D(X) = dIT + Id− 2XTX where d = (||xi||2)i ∈ R
N ,

and the fact that JI = 0 and X = XJ for X ∈ Ck, one obtains

∀X ∈ Ck, −1

2
JD(X)J = XTX.

And thus (5.6) is re-written as

min
X∈Ck

||XTX + JDJ/2||. (5.7)
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The solution X⋆ to this problem is in general unique (up to a rotation

and symmetry of the points) and computed by first diagonalizing the

symmetric matrix K = −JDJ/2

K = UTΛU where

{
Λ = diag(λ0, . . . , λN−1),

λi > λi+1

and then retaining only the first k leading eigenvectors

X⋆ =
√

ΛkUk where

{

Uk = (u0, . . . , uk−1)
T,

Λk = diag(λ0, . . . , λk−1),
(5.8)

where ui is an eigenvector of K, Kui = λiui.

The decay of eigenvalues λi indicates the dimensionality of the man-

ifold. In particular, if λi = 0 for i > k = 2, it means that the (discrete)

manifold Ω is isometric to the Euclidean plane, and that the classical

MDS finds a correct embedding of the manifold.

Figure 5.3, middle column, shows example of mappings ϕ : Ω→ R
k

for k = 2 (top) and k = 3 (bottom) computed using classical MDS.

Local minimization using SMACOF. The approximation that

replaces the matrix projection (5.3) by the strain minimization (5.6)

is only used for computational simplicity, and does not come from a

geometrical or physical motivation. In particular, the matrix J signif-

icantly changes the L2 norm used to compute the projection, which

might lead to a dimension reduction of poor quality.

To compare non-squared distances one defines the loss δ(a, b) =

|√a−
√
b|2. Using (5.2) for this loss function, the dimensionality reduc-

tion is achieved by minimizing

min
X

S(X) =
∑

06i,j<N

|||xi − xj || − di,j |2. (5.9)

The functional S in (5.9) is called the stress function. It is a smooth

non-linear function at configurations such that xi 6= xj for all i 6= j,

which can be optimized using gradient descent to converge to a local

minimum [157].

The SMACOF (scaling by majoring a complicated function) method

[89] is a fast algorithm to solve this equation. It replaces the non-convex
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minimization problem (5.9) by a series of simple convex problems. This

algorithm computes iteratively X(ℓ) ∈ R
k × N with a multiplicative

update rule

X(ℓ+1) = X(ℓ)B(X(ℓ))/N where B(X)i,j =
di,j

||xi − xj ||
. (5.10)

Note that this multiplicative iteration is equivalent to a gradient de-

scent with a fixed step size [50]. One can prove that X(ℓ) converges to

a local minimum of the original one, see [89]. Since S is not convex,

minimization with such an iterative method requires a good initializa-

tion X(0). This method can be accelerated using multi-grid computa-

tions [50] and vector extrapolation [239].

ℓ = 0 ℓ = 1 ℓ = 5 ℓ = 50

Fig. 5.2 Iterations of the SMACOF algorithm.

Figure 5.2, top row, shows the iteration of the SMACOF algorithm

to compute a mapping ϕ : Ω → R
2 where Ω is a 2D planar shape, as

described in Section 1.3.2. Bottom row shows the SMACOF algorithm

on a 3D surface Ω, to compute a mapping ϕ : Ω→ R
3.

Landmark acceleration. To speed up computation, one can use a

set of Landmark points {xi}N0−1
i=0 ⊂ {xi}N−1

i=0 of the fully discretized

manifold. One then only uses N0 Fast Marching or Dijkstra propaga-

tions to compute the set of N ×N0 distances

∀ 0 6 i < N0, ∀ 0 6 j < N, di,j = dΩ(xi, xj).
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The goal is then to compute the embedding ϕ(xi) for all 0 6 i < N

from the partial distances di,j .

A first class of methods consists in applying any MDS method to

find an embedding of the landmarks points alone, so that

∀ 0 6 i, j < N0, ||ϕ(xi)− ϕ(xj)|| ≈ ||xi − xj ||

T hen, one needs to interpolate the mapping ϕ to the remaining N−N0

points, using various interpolation formula, see for instance [43]. For

classical scaling, it is possible to use the eigenvector relationship, which

corresponds to a Nistrom extrapolation, see [90].

For stress minimization, it is possible to minimize a partial stress

min
{xi}N−1

i=0

N−1∑

i=0

N0−1∑

j=0

|di,j − ||xi − xj |||2, (5.11)

for which an extended SMACOF algorithm can be used, that extends

the multiplicative update rule (5.10) and requires the resolution of a

linear system at each iteration.

5.1.2 Bending Invariants

Invariant signatures. To perform shape and surface recognition in

a way that is invariant to isometric deformations, one can replace a

manifold Ω by its bending invariant ϕ(Ω) as defined in [111]. The map-

ping ϕ : Ω→ R
k is computed by solving the MDS problem, using either

the classical scaling solution (5.8) or the stress minimization (5.9).

The bending invariant is originally designed to replace a 3D surface

Ω ⊂ R
3 by a signature ϕ(Ω) ⊂ R

3 in the same embedding space. Figure

5.3, top row, shows an example of such an invariant signature.

It can also be applied to a binary shape Ω ⊂ R
2 that is a compact

planar set, as described in Section 1.3.2. In this case, ϕ(Ω) ⊂ R
2 is a

deformed shape, as shown on Figure 5.3, bottom row.

Extrinsic comparison of signatures. Given two manifolds Ω0 and

Ω1, one can compare shapes up to isometric deformations by compar-

ing their bending invariant ϕi(Ωi). In this way it is possible to define
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a distance between manifolds that is invariant to isometries such as

bendings or articulations

∆(Ω0,Ω1) = min
R∈R(Rk)

δ(ϕ0(Ω0), R(ϕ1(Ω1))), (5.12)

where R(Rk) is the set of Euclidean isometries of R
k (rotations, trans-

lations and symmetries), and δ is a distortion measure between subsets

of R
k, such as for instance the Hausdorff distance, defined in (5.13)

δ(A1, A2) = max(δ̃(A1, A2), δ̃(A2, A1)), (5.13)

where the non-symmetric distance is

δ̃(A1, A2) = max
x1∈A1

min
x2∈A2

||x1 − x2||.

Computing exactly ∆ is difficult, but one can resort to approximate

iterative algorithms such as iterative closest points [60, 27].

Original Ω0 Classical MDS SMACOF

Fig. 5.3 Examples of bending invariance computed using classical MDS and SMACOF,
2D shape (top row) and for a 3D surface (bottom row).
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5.1.3 Surface Flattening and Parameterization

Geodesic surface flattening. Surface flattening computes a map

ϕ : Ω → R
2 where Ω is a 2D manifold, typically embedded into 3D

space R
n = R

3. This corresponds to a particular case of dimensionality

reduction. One can thus use the MDS methods to compute such a

flattening that maps the geodesic distances on Ω to Euclidean distances.

This approach was originally proposed by [250] to perform the flat-

tening of the cortical surface. It was also applied in [302] to perform

texture mapping.

Figure 5.4, (b), shows an example of such a geodesic surface flat-

tening.

(a) Surface Ω (b) Flattening ϕ(Ω)

(c) Laplacian eigenmaps (d) Laplacian parameterization

Fig. 5.4 Examples of surface flattening and parameterization using spectral methods (b,c)
and linear system resolution (d).
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Differential surface flattening. Many other approaches for surface

flattening have been proposed, for instance by minimizing the deviation

from conformality or area conservation. This leads to the computation

of the mapping ϕ using eigen-vectors of certain differential operators,

such as the Laplace-Beltrami second order derivative. This can be com-

puted numerically, as detailed in the Laplacian eigen-maps framework

[19].

Figure 5.4, (c), shows an example of such a Laplacian eigen-maps

flattening, where the X and Y coordinates of the embedding are the

second and third eigenvectors of a discretized Laplacian. Various dis-

cretizations exist, with the most popular being the cotangent weights,

see for instance [257, 117] and references therein.

Differential surface parameterization. Other approaches flatten

a 2D manifold Ω with the topology of a disk by imposing that the

boundary ∂Ω is mapped onto a closed convex curve in R
2. The mini-

mization of differential distortion such as the deviation from conformal-

ity leads to a mapping ϕ that can be shown to be bijective [277]. This

is useful to parameterize a surface for texture mapping application.

The X and Y coordinates of the embedding ψ(Ω) of a discretized

triangulated surface Ω are then both solution of a linear system whose

left hand size is a discrete Laplacian, and right hand side incorporates

the fixed location of the boundary. These two systems can be efficiently

solved using a sparse linear solver. See [257, 117] for surveys about mesh

parameterization methods.

Figure 5.4, (d), shows an example of such a Laplacian parameteri-

zation, where the boundary of Ω is mapped by ϕ on a circle.

5.1.4 Manifold Learning

The application of MDS to geodesic distances is used in the Isomap

algorithm [270] to perform manifold learning. In this setting, the man-

ifold is estimated from a point cloud {xi}i ⊂ R
n using a nearest neigh-

bor graph, and the geodesic distances are estimated using the Dijkstra

algorithm detailed in Section 2.2.3.

The graph adjacency relationship can be defined in different ways.
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The simpler one is obtained by thresholding the Euclidean distance in

R
n, and the graph metric is defined as

Wi,j =

{ ||xi − xj || if ||xi − xj || 6 ε,

+∞ otherwise.

Ω ϕ(Ω)

Fig. 5.5 Example of dimensionality reduction using Isomap with classical MDS.

Figure 5.5 shows an example of application of Isomap to a simple

3D point cloud that is sampled on a surface isometric to a planar rect-

angle. Figure 5.6 shows iterations of the SMACOF algorithm (5.10)

on the same dataset. To overcome the numerical complexity of com-

puting all pairwise distances, local spectral methods that enforce a

local smoothness of the mapping ϕ have also been proposed, based on

local tangent plane estimation [243], Laplacian [19] or Hessian opera-

tor [102]. These methods suffers from difficulties to handle a manifold

with a complicated topology, but it is possible to enforce topological

constraints during the learning [240].

Manifold learning can be used to recover the low dimensional geom-

etry of a database of images, such as for instance binary digits or im-

ages representing an object under varying lighting and camera view. In

practice though, this method works for relatively simple manifold with

a simple topology, see [103] for a theoretical analysis of the geodesic

geometry of image datasets.
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ℓ = 0 ℓ = 5 ℓ = 10 ℓ = 100

Fig. 5.6 Iterations of SMACOF algorithm to compute the Isomap embedding.

5.2 Geodesic Shape and Surface Correspondence

Shape and surface comparison can be performed by matching two

manifolds Ω0 and Ω1. This can be achieved by mapping one manifold

onto the other.

A correspondence map is a function between the manifolds

ϕ : Ω0 −→ Ω1.

Depending on the application, one usually restricts the set of allow-

able ϕ, such as for instance mappings respecting some invariance. By

computing an optimal map that minimizes some distortion, one gains

access to a measure of similarity between manifolds to perform retrieval

(the distortion) and an explicit mapping (the optimal map itself) that

can be used for several applications such as texture mapping.

Finding a mapping ϕ between two manifolds generalizes the dimen-

sionality reduction problem (5.1) to the case where the second manifold

is not Euclidean.

5.2.1 Mapping Between Manifolds and Distortion

The bending invariant distance (5.12) requires the use of an in-

termediate Euclidean space R
k to measure the similarity between two

different manifolds Ω0 and Ω1. This approach can be simplified by map-

ping directly one manifold onto the other, in a way that preserves the

geodesic distances.

In the following, dΩi
is the geodesic distance on the manifold defined

in (1.15).
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Similarities between manifolds. A measure of similarity

∆(Ω0,Ω1) between two manifolds takes into account some important

features of the surface, and on the contrary discards other meaningless

features to gain invariance in shape recognition.

One usually would like this measure to be a valid metric among the

space of shapes, and in particular it should be symmetric and satisfy

the triangular inequality

∆(Ω0,Ω1) 6 ∆(Ω0,Ω) + ∆(Ω,Ω1). (5.14)

This desirable property implies that if both Ωi are approximated by

discretized manifolds at precision ε, meaning ∆(Ωi,Ω
ε
i ) 6 ε, then the

discrete measure of similarity is within precision 2ε from the true one

|∆(Ω0,Ω1)−∆(Ωε
0,Ω

ε
1)| 6 2ε.

The condition (5.14) is however not satisfied by many useful similarity

measures.

Correspondence and similarities. An optimal correspondence is

selected by minimizing some distortion criteria δ(ϕ) in a restricted class

of mapping. For some applications, one also wishes ϕ to be injective so

that it does not map two different points of Ω0 to the same location.

The measure of similarity ∆ between manifolds is then computed

as the distortion of this optimal map

∆(Ω0,Ω1) = min
ϕ:Ω0→Ω1

δ(ϕ).

One should note that this similarity measure is non symmetric, and

does not in general satisfy the triangular inequality (5.14).

5.2.2 As Isometric as Possible Correspondence.

To compare shapes according to their intrinsic geometry, one wishes

to use a correspondence that maintains as much as possible the geodesic

distance along the manifold.

Gromov-Hausdorf framework. The Gromov-Hausdorff mea-

sure [127, 51] particularized to the case of Riemannian manifolds, is
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a metric between metric spaces that measures the joint distortion of

pairs of mappings (ϕ0,1, ϕ1,0) between two manifolds

ϕi,j : Ωi → Ωj .

The distortion of the pair (ϕ0,1, ϕ1,0) is measured using the maximum

distortion of each map

δ(ϕi,j) = max
x,y∈Ωi

|dΩi
(x, y)− dΩj

(ϕi,j(x), ϕi,j(y))|,

and a joint distortion

δ(ϕ0,1, ϕ1,0) = max
x∈Ω0,y∈Ω1

|dΩ0(x, ϕ1,0(y))− dΩ1(ϕ0,1(x), y)|.

The Gromov-Hausdorff distance between the two manifolds is then

defined as

∆(Ω0,Ω1) = min
ϕ0:Ω0→Ω1,ϕ1:Ω1→Ω0

max (δ(ϕ0), δ(ϕ1), δ(ϕ0, ϕ1)) . (5.15)

One can show that this similarity measure ∆ is a metric among mani-

folds, and in particular it satisfies the triangular inequality (5.14).

This Gromov-Hausdorff distance was introduced in computer vision

by Memoli and Sapiro [187]. For discretized spaces Ω0 = {xi}N−1
i=0 and

Ω1 = {yi}N−1
i=0 , where we have used the same number N of points, and

if one restricts its attention to bijective mappings ϕ : Ω0 → Ω1, one can

approximate the Gromov-Hausdorff distance (5.15) by a permutation

distance

∆(Ω0,Ω1) = min
σ∈ΣN

max
06i,j<N

|dΩ0(xi, xj)− dΩ1(xσi
, xσj

)|, (5.16)

where ΣN is the set of permutation of N numbers. This distance can

be shown to be a faithful approximation of (5.15) for randomized sam-

pling, see [187].

Computing the distance (5.16) is computationally prohibitive, since

it requires to check all possible permutations. A fast approximate al-

gorithm was developed in [187] and has been applied to comparison

and retrieval [185]. The minimization (5.16)can be recasted as a binary

graph labeling problem [272], which is NP-hard in the general case,

and can be approximated using fast algorithms [285]. The Gromov-

Hausdorff distance has been relaxed to a probabilistic setting [186, 185],
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where each manifold point is associated to a probability to take into

account for imperfect measurements and partial matching. This de-

fines a family of Gromov-Wasserstein distances that can be computed

numerically by solving a non-convex optimization problem.

GMDS framework. The maximum error in the Hausdorff distance

(5.15) is difficult to manipulate and optimize numerically. One usually

prefers an average notion of geodesic deviation, such as for instance a

mean square distortion

δ(ϕ) =

∫∫

Ω2
0

|dΩ0(x, y)− dΩ1(ϕ(x), ϕ(y))|2dxdy, (5.17)

introduced by Bronstein, Bronstein and Kimmel in the Generalized

Multi-dimensional Scaling (GMDS) shape matching framework [49].

Figure 5.1, right, shows a schematic example of this approximate con-

servation of pairwise geodesic distances between two surfaces.

In this setting, the integration measure dx refers to the area volume

element |det(Tx)| defined on the manifold Ωi from the Riemannian

metric. In the usual case where the manifolds are embedded in R
d, it

corresponds to the usual area element in R
d.

This mapping distortion (5.17) defines a non-symmetric distortion

on the set of manifolds

∆(Ω0,Ω1) = min
ϕ:Ω0→Ω1

δ(ϕ).

One should be careful that, on the contrary to the Gromov-Hausdorff

distance (5.15), ∆ is not symmetric and does not satisfy the triangular

inequality (5.14). It does not define a distance among manifolds.

The distortion (5.17) is computed numerically on a discretized man-

ifold {xi}N−1
i=0 and the set of points yi = ϕ(xi) ∈ Ω1 that minimizes

∆(Ω0,Ω1) = min
{yi}i

δ({yi}i) = min
{yi}i

∑

06i,j<N

|dΩ0(xi, xj)− dΩ1(yi, yj)|2

The GMDS algorithm [49] finds a local minima of this complicated non-

convex energy by gradient descent. It requires a proper interpolation

of the geodesic distance dΩ1 on Ω1 that is usually pre-computed on
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a discrete set of points, whereas the optimized location {yi}i varies

continuously.

The distance ∆(Ω0,Ω1) can be applied to surface [49] and shape

retrieval [41] using nearest neighbors or more advanced classifiers. The

partial stress (5.11)can be extended to the GMDS framework to take

into account embedding of a manifold into a subset of another mani-

fold. GMDS can be further extended to allow for partial matching [42].

GMDS has been extended to take into account photometric informa-

tion [271].

The optimal mapping ϕ⋆ computed with GMDS, which is a local

minima of δ(ϕ), is also relevant to perform shape comparison and pro-

cessing. A 3D facial surface Ω0 is embedded as ϕ⋆(Ω0) into a sphere Ω1,

with minimal distortion by finding the optimal sphere radius. The re-

sulting nearly isometric signature ϕ⋆(Ω0) can then be used to perform

3D face recognition [45]. This optimal mapping ϕ⋆ can also be used to

perform texture mapping of animated surfaces [44].

5.2.3 2D Shape Matching

Matching 2D shapes represented as closed contours is simpler than

matching higher dimensional manifold. In particular, it can be solved

with fast algorithms. The analysis and retrieval of 2D closed curves

has received considerable attention, both because it is computationally

tractable, and because of its relevance for human vision [195], which is

highly sensitive to contours in images.

The structure of non-intersecting curves. In this setting, one

considers a 2D planar shape Ω, and focuses on its contour ∂Ω, which is

assumed to be a closed non-intersecting curve γ : [0, 1] → [0, 1]2. This

curve is closed and 1-periodic, meaning γ(0) = γ(1).

The set of non-intersecting closed curves has a very special struc-

ture [163], that can be represented as an infinite-dimensional Rieman-

nian space [163]. The resulting space of curves can be manipulated to

define various operations such as shape averaging [217].

Finding a correspondence between shapes can be thought as finding

a path connecting two curve on this high dimensional space of curves.
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Taking into account this structure is however too complicated, and in

practice one sets up ad hoc optimization problems that require finding

shortest paths, as we detail next.

Matching between curves. We consider two shapes Ω0,Ω1, repre-

sented using their contour curves γ0, γ1. A bijective matching between

two curves γ0, γ1 can be represented as a bijective map ϕ between the

parameter spaces. Since these parameter domains are periodic, this

corresponds to find some η ∈ [0, 1] and a non-decreasing map

ϕ : [0, 1]→ [η, 1 + η],

such that the local geometry around γ0(t) ∈ Ω0 matches in some sense

the local geometry around γ1(ϕ(t)) ∈ Ω1.

Local differential features. For each point x ∈ ∂Ωi, for i = 0, 1,

one considers a local feature pi(x) ∈ R
s, that is a low dimensional

vector, intended to represent the geometry of Ωi around x. To perform

a recognition that is invariant to a class of deformationsR, one needs to

build features that are invariant under R. It means that if Ω0 = R(Ω1)

for R ∈ R, then

∀ t ∈ [0, 1], p0(γ0(t)) = p1(γ1(ϕ(t))).

The vector pi(x) ∈ R
s usually gives a multi-scale local representation

of Ωi around x, and makes use of s different resolutions. A popular

choice is the curvature of γi at various scales {σj}s−1
j=0

∀ 0 6 j < s, (pi(x))j = κ(γi ⋆ Gσj
, t), (5.18)

where γi⋆Gσj
denotes the component-by-component convolution of the

curve with a Gaussian kernel of variance σ2, and κ is the curvature as

defined in (3.5)

n(γ, t) =
γ′(t)⊥

||γ′(t)|| , and κ(γ, t) = 〈n′(γ, t), γ′(t)〉 1

||γ′(t)||2 .

Using a continuous set of scales defines a curvature scale space [193]. In

practice, scales are often sampled according σj = σ0a
j for some a > 1.
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An alternative local set of features is computed by local integration

over the shape domain [180]. For instance, one can use an averaging of

the indicator function of the shape

∀ 0 6 j < s, (pi(x))j = (Gσj
⋆ 1Ωi

)(x) (5.19)

where

1Ω(x) =

{
1 if x ∈ Ω,

0 otherwise

see [180] for the connection between differential features such as (5.18)

and integral features such as (5.19).
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Fig. 5.7 Examples of multi-scale curvature descriptors pxi
as defined in (5.18) for three

different locations xi ∈ ∂Ω.

Global geodesic features. In order to be invariant to non-rigid

bending R ∈ R, that is nearly isometric with respect to the geodesic

structure of the shape

dΩi
(x, y) ≈ dR(Ωi)(R(x), R(y)),

one needs to use more global features based on geodesic distances. In-

deed, complicated bendings might change significantly local curvature

indicators such as (5.18).

This can be achieved by defining pi(x) as the histogram of the

geodesic distance {dΩi
(x, y)}y to the point x, see (5.34).
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Variational matching. For each η ∈ [0, 1], an optimal matching

γη : [0, 1]→ [η, η + 1] minimizes a weighted length

min
γ(0)=η,γ(1)=η+1

L(γ) =

∫ 1

0
W (t, γ(t))

√

1 + |γ′(t)|2dt, (5.20)

where the optimization should be restricted to strictly increasing map-

pings. The weight W takes into account the matching between the

features

W (t, s) = ρ(||p0(t)− p1(s)||) > 0

where ρ is an increasing function. In this way, the optimal matching

tries to link together parameter t and s = γ(t) having similar features

p0(t) and p1(s).

The final match γ⋆ between the parameters is the shortest match

γ⋆ = argmin
η∈[0,1]

L(γη). (5.21)

Dynamic programming for matching. The minimization of a dis-

cretized version of the energy (5.20) can be performed using dynamic

programming, see for instance [180, 159, 251, 274]. One discretizes

[0, 1]2 on a square regular grid

∀ 0 6 i, j < N, (ti, sj) = (i/N, η + j/N) (5.22)

of N2 points. A directed graph is defined as

(i, j) ∼ (i′, j′) ⇔







j′ > j,

mod (i′ − j′, N) < N/2

||i− j|| 6 µ

,

where mod (i,N) ∈ {0, . . . , N − 1} is the usual modulo operator, and

µ > 1 controls the width of the connection. Increasing the value of µ

and N makes the discrete optimization problem more precise.

A graph metric is then defined on each edge as

∀ e = ((i, j) ∼ (i′, j′)), We = (W (ti, sj) +W (ti′ , sj′))/2.

The discrete geodesic γη between the points (0, 0) and (N−1, N−1) of

the graph is obtained using the Dijkstra algorithm detailed in Section

2.2.3.

The search for the final match that solves (5.21) is performed by

testing several values of η, and it can be accelerated by using heuristics.
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Fast Marching for matching. As suggested in [121], one can relax

the condition that the mapping γ is strictly increasing. This allows

the use of the Fast Marching algorithm to compute a precise sub-pixel

matching.

One replaces the variational problem (5.20) by a geodesic length

minimization inside the square Ωη = [0, 1]× [η, η + 1]

min
γ(0)=(0,η),γ(1)=(1,η+1)

L(γ) =

∫ 1

0
W (γ(r))||γ′(r)||dr, (5.23)

where γ : [0, 1]→ Ωη is a planar curve.

Finding the shortest curve γη that solves (5.23) is obtained by using

the isotropic Fast Marching on the discrete grid (5.22), as detailed in

Section 2.2.2, and then performing a gradient descent as detailed in

Section 2.5.1.

Similarly to (5.21), the final matching γ⋆(r) = (t⋆(r), s⋆(r)) is the

one that minimizes L(γη) by varying η. The resulting matching is ob-

tained by linking t⋆(r) ↔ s⋆(r) for a varying r. One should note that

this matching is not necessarily one to one.

Metric W (t, s) and geodesic curve γ⋆(r) Matching of the curves

Fig. 5.8 Example of geodesic curve in [0, 1]2 and the corresponding matching of the curves.

Figure 5.8 shows an example of matching between two curves ob-

tained with this method.
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5.3 Surface and Shape Retrieval Using Geodesic Descriptors

Content based 2D shape and 3D surface retrieval is an important

problem in computer vision. It requires to design similarity measures

∆ to discriminate shapes from different classes, while being invariant

to certain deformations.

5.3.1 Feature-based Shape Retrieval

Computing correspondences between shapes, as detailed in Section

5.2, is computationally too intensive for fast retrieval applications. Fast

similarity measures ∆ are computed by extracting global or local fea-

tures, and then performing some comparison between the features. An

important goal in designing a similarity measure is to achieve invariance

to some class R of deformations

∀R ∈ R, ∆(Ω0,Ω1) = ∆(R(Ω0), R(Ω1)). (5.24)

There is a large amount of literature on content-based retrieval using

similarity measures. One should refer to the review papers on 2D shapes

[281, 296] and 3D surfaces [52, 266] retrieval.

Global descriptors. Fast approaches to shape comparisons use a

low dimensional manifold descriptor ϕ(Ω) that is usually a vector

ϕ(Ω) ∈ R
k. To achieve invariance (5.24), one requires that the de-

scriptors are invariant with respect to a family R of deformations

∀R ∈ R, ϕ(R(Ω)) = ϕ(Ω). (5.25)

A descriptor is a single point in a low dimensional space. It is usually

faster to compute than the full embedding of the manifold ϕ(Ω) ⊂ R
k

using a dimensionality reduction method of Section 5.1.

Simple global features are computed using polynomial mo-

ments [267, 268, 171], or Fourier transform [295], see [232] for a review.

The spectrum of the Laplace Beltrami operator defines a descriptor

invariant to rigid motion and to simple bendings [235]. Spectral dimen-

sionality reduction [19]allows one to define spectral distances between

manifolds that requires the computation of a few eigenvectors of the
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Laplace-Beltrami operator, see for instance [186, 47, 48]. Shape distri-

butions [206] compute descriptors as histogram of the distribution of

Euclidean distance between points on the manifold. This is extended

to bending invariant descriptors in [21, 137, 136] using geodesic dis-

tances. It is possible to replace the geodesic distance by a diffusion

distance [126] computed by solving a linear Poisson PDE, which might

be advantageous for some applications.

Similarities by matching local descriptors. Many other shape

and surface representations do not make use of a single descriptor. They

rather compute similarities by matching points of interest for which

local descriptors are defined. Local shape contexts [20] are local 2D

histogram of contours around points of interest. Geodesic shape context

makes use of geodesic curves to gain bending invariance [174]. Local

tomographic projection on tangent plane (spin images) [141] defines a

set of local descriptors.

5.3.2 Similarity Measures

Once the descriptor map ϕ has been computed for the manifolds of

interest, a similarity measure between manifolds is obtained by com-

paring the descriptors

∆(Ω0,Ω1) = δ(ϕ(Ω0), ϕ(Ω1)),

where δ is a metric between vectors of R
k. This ensures that the trian-

gular inequality (5.14) is satisfied.

In the following, we detail only the most popular metrics. The choice

of a particular metric δ depends on the targeted application, and on

the specificities of the manifolds of interest. See [280] for a comparison

of various metric for 2D shape comparison.

ℓp similarity measures. The most classical measures are the ℓp

norms

δ(a, b)p =

k−1∑

i=0

|ai − bi|p. (5.26)
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Kullback-Leiber divergence. A popular way to define a descriptor

ϕ(Ω) ∈ R
k is by computing a discrete histogram with k bins of some

set of values that depend on the geometry of Ω. Such a histogram

descriptor a = ϕ0(Ω0) satisfies the constraints

∀ i, ai > 0, and
∑

i

ai = 1.

Under these conditions, one can consider the Kullback-Leiber diver-

gence,

δ(a, b) =
∑

i

ai log2(ai/bi), (5.27)

which is non-symmetric and does not satisfy the triangular inequal-

ity, so (5.14) does not hold. The resulting distance between shapes is

however quite popular because of its simplicity.

Wassersein distance. Similarities (5.26) and (5.27) compare inde-

pendently each entry of the descriptors. In particular, shuffling in the

same manner the entries of both descriptors does not change the sim-

ilarity. In order to take into account the position of the index in the

descriptors, one can use the Wasserstein distance, also called the earth

mover’s distance [244] which is more complicated to compute. The

ℓp Wasserstein distance is defined as a minimization among matrices

P ∈ R
k×k

δ(a, b)p = min
P1=a,PT1=b,P>0

∑

i,j

|i− j|pPi,j . (5.28)

One can prove that δ(a, b) is a distance on probability distributions,

see [282].

In this section, we consider only integer indexes (i, j), and the dis-

tance can be expressed using the inverse of the cumulative distribution

δ(a, b)p =
∑

i

|C−1
a (i)− C−1

b (i)|p where Ca(i) =
∑

j6i

cj (5.29)

where C−1
a is the inverse function of Ca. Some care is required to com-

pute it if Ca is not strictly increasing, which is the case if ai = 0 for

some i.

The Wasserstein distance extends for indices i in any dimension (not

necessarily integers), and computing (5.28) requires the resolution of a
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linear program. It has been used in conjunction with geodesic distances

to perform shape retrieval [?].

5.3.3 Geodesic Descriptors

One can design a family of global descriptors by considering the

histogram of some functions defined on the manifold.

Euclidean shape distributions. Shape distributions [206] build

global descriptors from a set of Euclidean distances

∀ 0 6 i, j < N, di,j = ||xi − xj ||, (5.30)

where {xi}i is a discrete uniform sampling of the manifold.

One builds from these distances real valued mappings, such as for

instance the mean, median, maximum and minimum value of the dis-

tances to a fixed point, for all 0 6 i < N

fmin
i = min

06j<N
di,j , fmax

i = max
06j<N

di,j , (5.31)

fmean
i =

∑

06j<N

di,j , fmedian
i = median

06j<N
di,j . (5.32)

One can then define global descriptors by considering the histograms

of these mappings

ϕ(Ω) = H({f∗i }06i<N ) (5.33)

where ∗ is any of {min,max,mean,median}. The histogram h =

H(Y ) ∈ R
k of a set of values Y ⊂ R, assumed to be rescaled in [0, 1],

is defined as

hℓ =
card({y ∈ Y \ ℓ/k 6 y < (ℓ+ 1)/k})

card(Y )
.

The resulting global descriptors ϕ(Ω) are invariant to rigid deforma-

tions, meaning that (5.25) holds for the set R of rigid motions.

Geodesic shape distributions. It is possible to extend these shape

distribution descriptors (5.33) by replacing the Euclidean distance || · ||
by the geodesic distance dΩ.
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One can for instance consider the geodesic distance inside a planar

shape Ω ⊂ R
2, inside a volumetric shape Ω ⊂ R

3, or on the boundary

of a surface embedded in R
3. They are all treated within the same

geodesic framework. The planar and volumetric shapes correspond to

the restriction of the identity metric Tx = Idd to a sub-domain, as

detailed in Section 1.3.2, while surfaces correspond to an anisotropic

metric Tx, as detailed in Section 1.1.2.

Fig. 5.9 Geodesics inside a 2D shape.

One thus replaces (5.30) by the following pairwise measures

di,j = dΩ(xi, xj),

where dΩ is the length of the shortest path inside Ω linking xi to xj .

Figure (5.9) shows some examples of such shortest paths.

The geodesic distance map Uxi
(x) = dΩ(xi, x) differs significantly

from the Euclidean distance map ||xi − x|| when the shapes are non

convex. Figure 5.10 shows an example of comparison.

The shape distribution has been extended to the geodesic setting

on 3D meshes using the distribution of the mean fmean [21] and to 2D

shapes [137], volumetric shapes, and 3D surfaces [136] by considering

the distribution of the maximum distance fmax.

Figure 5.11 shows the examples of the maximum, minimum, mean

and median geodesic distance to all the points within a given planar

shape Ω ⊂ R
2.

The resulting global descriptors ϕ(Ω) = H(f∗) are invariant to iso-

metric deformations. More generally, ϕ(Ω0) ≈ ϕ(Ω1) for Ω1 = R(Ω0)
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Euclidean ||xi − x|| Geodesic dΩ(xi, x)

Fig. 5.10 Comparison of Euclidean and geodesic distances inside a 2D shape (from the
red point).

if the deformation does not modify too much the geodesic distance, as

measured for instance using δ(R) defined in (5.17). This is the case for

bending deformation and articulation, see [174].

fmin fmax

fmean fmedian

Fig. 5.11 Example of several functions of the geodesic distances.
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Geodesic eccentricity. The maximum distance fmax is also known

as the geodesic eccentricity of the manifold, see [137, 136]. For a con-

tinuous sampling of the manifold, it is defined as

fmax(x) = max
y∈Ω

dΩ(x, y).

This function has many interesting properties, in particular it can be

computed from the distance to the boundary points

fmax(x) = max
y∈∂Ω

dΩ(x, y),

which allows for a fast evaluation using a few fast marching propaga-

tion.

Figure 5.12 shows some examples of eccentricity function on shapes

and surfaces.

Fig. 5.12 Top row: eccentricity function fmax on a planar shape (left and center, the
red point corresponds to the minimum value) and on a 3D surface (right). Bottom row:
histograms ϕ(Ω) corresponding to these eccentricity functions.

Starting from a shape library {Ω1, . . . ,Ωp}, one can use the eccen-

tricity shape descriptor ϕ(Ω) to do shape retrieval using for instance a
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nearest neighbor classifier. More complex signatures can be constructed

out of geodesic distances, and un-supervised recognition can also be

considered. We refer to [137, 136] for a detailed study of the perfor-

mance of shape recognition with eccentricity histograms. Figure 5.13

shows examples of typical shape retrievals using this approach.

Fish shapes Hand shapes Tools shapes

Fig. 5.13 Example of shape retrieval using geodesic eccentricity, see [137] for details. The
query shape is the leftmost shape of each row. The left part of the figure shows

Local geodesic descriptors. Another way to describe these

geodesic shape distributions is to use local descriptors px that are the

histogram of the geodesic distance to x

px = H({dΩ(x, y)}y∈Ω) ∈ R
k. (5.34)

This descriptor is an indicator of the geometry of Ω seen from the point

x.

One can see that the functions f∗ defined in (5.31) corresponds

to the application of some particular statistical estimators (maximum,

minimum, mean or median values). This gives a recipe to build descrip-

tors using statistical measures.

It can be used to compute a matching γ between the boundaries

of two planar shapes, as a replacement for the differential or integral

descriptors defined in (5.18) and (5.19).

Figure 5.14 shows an example of local geodesic descriptor for several

locations in a planar shape.
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Fig. 5.14 Examples of local geodesic descriptors pxi
as defined in (5.34) for three different

locations xi ∈ Ω.



Conclusion

This monograph has reviewed fundamental and computational as-

pects of Riemannian manifolds, as well as applications in the fields

of computer graphics and vision. Riemannian metrics bring together

the concepts of spacial adaptivity, anisotropy and orientation within a

mathematically sound formulation. They also offer fast computational

algorithms that are suitable for large scale applications. These two im-

portant features work hand in hand to offer practical solutions to three

important classes of shape and surface processing problems: segmenta-

tion, sampling and recognition.

Many exciting areas of research on geodesic methods are currently

under investigation, or should deserve more attention. Faster algo-

rithms, which offer good performances for highly anisotropic metrics,

are desirable. Accelerating the computation of geodesic curves through

efficient heuristics with theoretical guarantees is also relevant for many

applications requiring real time performances. Deriving better geodesic

sampling schemes with theoretical guarantees could improve the state

of the art in surface remeshing and image compression. The problem

of fast and accurate matching of shapes with bending invariance is

mostly open, since solving high dimensional multi-dimensional scaling

182
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is computationally too demanding for interactive retrieval applications.

Finally, many other problems in vision and graphics that require han-

dling datasets with strong anisotropy could certainly benefit from ad-

vances in geodesic methods.
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hen. 3d shape matching by geodesic eccentricity. In Proc. Workshop on Search
in 3D, Anchorage, Alaska, June 2008. IEEE.
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[162] H. Le. Locating Fréchet means with application to shape spaces. Adv. Appl.
Probab., 33:324–338, 2001.

[163] H. Le and D. G. Kendall. The riemannian structure of euclidean shape space:
a novel environment for statistics. Ann. Statist., 21:1225–1271, 1993.

[164] J. M. Lee. Riemannian Manifolds. Springer-Verlag, 1980.
[165] G. Leibon and D. Letscher. Delaunay triangulations and voronoi diagrams

for riemannian manifolds. In SCG ’00: Proceedings of the sixteenth annual
symposium on Computational geometry, pages 341–349, New York, NY, USA,
2000. ACM.

[166] M. Levoy, K. Pulli, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton, S. An-
derson, J. Davis, J. Ginsberg, B. Curless, J. Shade, and D. Fulk. The digital
michelangelo project: 3D scanning of large statues. In Proc. Siggraph 2000,
pages 131–144, New York, 2000. ACMPress.

[167] F. Leymarie and M. D. Levine. Simulating the grassfire transform using an
active contour model. IEEE Trans. Patt. Anal. and Mach. Intell., 14(1):56–75,
January 1992.

[168] H. Li and A. Yezzi. Vessels as 4D curves: Global minimal 4D paths to ex-
tract 3D tubular surfaces and centerlines. IEEE Trans. on Medical Imaging,
26(9):1213–1223, 2007.

[169] H. Li, A. Yezzi, and Laurent D. Cohen. 3d multi-branch tubular surface and
centerline extraction with 4d iterative key points. In Proc. 12th International
Conference on Medical Image Computing and Computer Assisted Interven-
tion, MICCAI’09, Imperial College, London, UK, 2009.



194 References

[170] X. Li, J-F. Remacle, N. Chevaugeon, and M. S. Shephard. Anisotropic mesh
gradation control. In Proc. of 13th Int. Meshing Rountable, pages 401–412,
2004.

[171] S.X. Liao and M. Pawlak. On image analysis by moments. IEEE Trans. Patt.
Anal. and Mach. Intell., 18(3):254–266, 1996.

[172] S. Liapis, E. Sifakis, and G. Tziritas. Color and/or texture segmentation using
deterministic relaxation and fast marching algorithms. In ICPR, pages Vol
III: 617–620, 2000.

[173] M. Lin and D. Manocha. Collision and proximity queries. In Handbook of
Discrete and Computational Geometry., 2003.

[174] H. Ling and D. W. Jacobs. Shape classification using the inner-distance. IEEE
Trans. Patt. Anal. and Mach. Intell., 29(2):286–299, 2007.

[175] P. L. Lions, E. Rouy, and A. Tourin. Shape-from-shading, viscosity solutions
and edges. Numerische Mathematik, 64(3):323–353, March 1993.
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