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Composite Kernel Learning

Marie Szafranski, Yves Grandvalet, Alain Rakotomamonjy

1 Motivations

Kernel methods are very versatile tools for learning from areples
(Scholkopf and Smola 2001). In these models, the obsenstio belonging to
some measurable instance spatare implicitly mapped in a feature spatévia a
mapping® : X — H, whereH is a Reproducing Kernel Hilbert Space (RKHS) with
reproducing kernell : X x X — R.

When learning from a single source, selecting the righté&asnan essential choice,
conditioning the success of the learning method. Indeedkéhnel is crucial in many
respects regarding data representation issues. Forrtialyrimary role ofK is to
define the evaluation functional :

Ve e X, K(x,) € HandVf € H, f(x) = (f,K(@,))y .
but K also defines
1. H,sinceVf e H, Ve € X, Jo; eR,i=1,...,00, f(x) = i a; K(x;,x);
=1

2. a metric, and hence a smoothness function&l jiwhere, forf defined above,

1713, = 5 3w (@i, ,);

i=1j=1

3. the mappingg(x) = K(x,-) and a scalar product between observations:
V(z, ') € X2, (®(x), P(x')),, = K(z,2').

In other words, the kernel defines
1. the hypothesis spa@é;

2. the complexity measutgf||3, indexing the family of nested functional spaces in
the structural risk minimization principle (Vapnik 1995);

3. the representation space of data endowed with a scaldugiro

These observations motivate the developments of meansotd the use of un-
supported kernel, which do not represent prior knowledgmithe task at hand, and
are fixed before observing data. The consequences of thesaytithoice that may be
involved at this level range from interpretability issuespbor performances (see for



example Weston et al. 2001, Grandvalet and Canu 2003). tirggathe kernel”, aims
at alleviating these problems, by adapting the kernel tgthbblem at hand.

A general model of learning the kernel has two componenta:fémily of kernels,
that is, a sefC = {Ky,0 € O}, whereO is a set of parameters ard is the kernel
parameterized by, and (ii) an empirical functional, whose minimization wittspect
to 6 will be used to choose a kernel i that best fits the data according to some
empirical criterion.

In this paper, we develop the Composite Kernel Learning (C#&tproach, which
is dedicated to learning the kernel when there is a knownmsitucture among a
set of candidate kernels. This framework applies to legrpiroblems arising from
a single data source when the input variables have a grougtste, and it is also
particularly well suited to the problem of learning from riplle sources. Then, each
source can be represented by a group of kernels, and thethig@ims at identifying
the relevant sources and their apposite kernel repreg@ntathanks to the notion of
source embedded in the kernel parameterization, our framkentroduces in the Mul-
tiple Kernel Learning framework (Lanckriet et al. 2004) Higlity to select sources, or
alternatively to ensure the use of all sources.

We briefly review the different means proposed to extendddenethods beyond
the predefined kernel setup in Section 2, with an emphasisdtigié Kernel Learning
and the parametric relatives that inspired our approacBebtion 3, we formalize the
general CKL framework, starting from basic desiderata, famidhing with a general
and compact formulation amenable to optimization. Theritlgm is provided in Sec-
tion 4, and experiments are reported in Section 5. FinakgtiBn 6 summarizes the
paper and provides directions for future research. We use=standard notations found
in textbooks, such as Schélkopf and Smola (2001); they &rednced when they first
appear in the document, and an overview is provided in appé&hd

2 Flexible Kernel Methods

From now on, we restrict our discussion to binary classificatwhere, fromn pairs
(xi,y;) € X x {—1,1} of observations and binary labels, one aims at inferring a
decision rule that predicts the class lapelf any observatiorr € X. However, most

of our statements carry on to other settings, such as naddlassification, regression
or clustering with kernel methods. Indeed, the penaltiesvillepropose are learned
from data, but they are defined without any interdependeiritbetiae data-fitting term.

2.1 Support Vector Machines

A Support Vector Machine (SVM) is defined as the decision sige (f*(x) + b*),
wheref* andb* are the solution of

: 1. =
min SII7 15 +C;§z (1a)



wheref € H, b € R and¢ € R™ are the optimization variables, addis a positive
regularization parameter that is the only adjustable patamin the SVM learning
problem oncéH has been chosen. Note that, thougland are usually tuned in the
same outer loop, their role is completely different. Wiillesets the trade-off between
regularity and data-fittingi{, the so-called feature space, defines the embedding of the
observations via the mappidg Hence, while choosing amounts to select a modelin
a nested family of functional spaces whose size is contttiie| f||3, (or equivalently
by the margin irf{), choosingH boils down to picking a representation (endowed with
a metric) for the observations

Adapting the kernel to data is not representative of modektsen strategies that
typically balance goodness of fit with simplicity. As a résMapnik (1995) did not
provide guidelines for choosing the kernel, which was atersd to be chosen prior to
seeing data when deriving generalization bounds for SVM#owing these observa-
tions, all methods adapting the kernel to data will be hefierred to as kernel learning
instead of model selection.

Since solving (1) is usually not flexible enough to providedaesults whert{
is fixed, most applications of SVM incorporate a mechanismdarning the kernel.
This mechanism may be as simple as picking a kernel in a fiattebsit may also be
an elaborate optimization process within a finite or infirigmily of kernels. These
options are described in more details below.

2.2 Learning the Kernel

In our view, kernel learning methods encompass all prosessere the kernek’ is
chosen from a pre-defined g€t by optimizing an empirical functional defined on the
training set{x;, y; }1_,. With this viewpoint, the most rudimentary, but also the tos
common way to learn the kernel is cross-validation, thatstsis here in (i) defining
a family of kernels ¢.g. Gaussian), indexed by one or more parameterg. pand-
width), € = {K,,}M_,, wherem indexes the trial values for the kernel parameters,
and, (ii) computing a cross-validation score on each hyeameter setting, and pick-
ing the kernel whose hyper-parameters minimize the crafidation score. In this
example, the empirical functional used for learning thenkérs the minimum of the
cross-validation score with respect to the trial valuehefregularization parametér.

A thorough discussion of the pros and cons of cross-vatidas out of the scope
of this paper, but it is clear that this approach is inheydirtited to one or two hyper-
parameters and few trial values. This observation led terséyproposals allowing for
more flexibility in the kernel choice, where cross-validatimay still be used, but only
for tuning the regularization parametér

2.2.1 Filters, Wrappers & Embedded Methods

As already stated, learning the kernel amounts to learnghtife mapping. It should
thus be of no surprise that the approaches investigatedsbesr similarities with the
ones developed for variable selectipwhere one encounters filters, wrappers and em-

1In variable selection, the situation is simpler since d@igovariables provides simpler models, so that
variable selection or shrinkage may be used for model setepurposes.



bedded methods (Guyon and Elisseeff 2003). Some genena¢varks, such aky-
perkernels(Ong et al. 2005) do not belong to a single category, but teéndition is
appropriate in most cases.

In filter approaches, the kernel is adjusted before buildivegSVM, with no ex-
plicit relationship with the objective value of Problem .(1yor example, the kernel
target alignment of Cristianini et al. (2002) adapts thenkématrix to the available
data without training any classifier.

In wrapper algorithms, the SVM solver is the inner loop of tmested optimizers,
whose outer loop is dedicated to adjust the kernel. Thisiumay be guided by var-
ious generalization bounds (Cristianini et al. 1999, Westbal. 2001, Chapelle et al.
2002). In all these methods, the set of admissible kerkalks defined by kernel pa-
rameter(sy, wheref may be the kernel bandwidth, or a diagonal or a full covaganc
matrix in Gaussian kernels. The empirical criterion optiedl with respect t@ is
a generalization bound such as the radius/margin boundgike actual radius and
margin obtained witl on the training set).

Kernel learning can also be embedded in Problem (1), withS¥iM objective
value minimized jointly with respect to the SVM parametensl dhe kernel hyper-
parameters (Grandvalet and Canu 2003). In this line of rebeArgyriou et al. (2006)
consider combinations of kernels whose parameters amnizeti by a DC (difference
of convex functions) program. The present approach buitdthe simplest Multiple
Kernel Learning (MKL) framework initiated by Lanckriet et £004), which is lim-
ited to the combination of prescribed kernels but leadsmtpkr convex programs.

2.2.2 Multiple Kernel Learning

In MKL, we are provided withM candidate kernelsi(y, . .., K, and we wish to
estimate the parameters of the SVM classifier together Wwighweights of a convex
combination of kernelé(+, . .., K, that defines theffective kerneK,

M M
Kz{K,zZame,omZO,Zamzl} . (2
m=1 m=1

Each kernek,, is associated to a RKHE,,, whose elements will be denotégl, and

o = (01,...0n)" is the vector of coefficients to be learned under the convexato
nation constraints. The positiveness constraint enshegét is positive definite when
the base kernel&’,,, are themselves positive definite. The unitary constraint brea
seen as a normalization of the effective kernel that is resegg0 avoid diverging so-
lutions. In an embedded approach, where the empirical iumattused to seledk, is
the fitting criterion (1), the unitary constraint enis also important to preserve the role
of the SVM regularization parametér. Furthermore, provided that the individual ker-
nelsK,, are properly normalized (with identical trace norm), themaonstraint orr
can be motivated by generalization error bounds that aié fallearned kernels. The
first works in this direction (Lanckriet et al. 2004, Boustjard Herrmann 2003) were
found to be meaningless, with bounds on the expected erkar thess than one, but
Srebro and Ben-David (2006) provide tighter bounds basetepseudodimensioof

a family of kernel, which is at most the number of kernels imbination (2).



The original MKL formulation of Lanckriet et al. (2004) wasa$ed on the dual of
the SVM optimization problem. It was later shown to be eqlemato the following
primal problem (Bach et al. 2004)

M 2 n
R O SIS I o @
b,&l m=1 =1
M
5. t. yi(me(mi)—i—b)Zl—gi, &>0, i=1,...,n, (3b)
m=1

whose solution leads to a decision rule of the fodgn (S f* () + b*). This

expression of the learning problem is remarkable in thably dliffers slightly from
the original SVM problem (1). The squared RKHS norntins simply replaced by a
mixed-norm, with the standard RKHS norm within each featpaceH,,,, and andy
norm inRM on the vector built by concatenating these norms.

With this mixed-norm, the objective function is not diffetable at|| f,, ||+, = 0.
This is the cause of a considerable algorithmic burden, isicewarded by the sparse-
ness of solutions, that is, solutions where some functfgnbave zero norm. As each
function f,,, is computed from¥k,,,, this results in a sparse kernel expansion in (2).

Looking at Problem (3), one may wonder why a mixed-norm sthéel more flex-
ible than a squared RKHS norm, and why the former should bsidered as a ker-
nel learning technique. These questions are answered atMKL formulation of
Rakotomamonjy et al. (2008), which is a variational form ofttem (3), in the sense
that the solution of Problem (3) is defined as the minimizeéhwespect to the addi-
tional variableos of an optimization problem irfy, ..., far, b, €. By introducing the
parametersy, ..., o Of the combination (2) in the objective function, kernektgag
comes explicitly into view. The resulting optimization ptem, which is equivalent to
Problem (3), circumvents its differentiability issues saewn below:

. 1L 1 , n
B, 3 2 el ¥ 26 ()
b.&, o
M
s. t. yi(me(wi)ﬂLb)Zl—&-, &>0,i=1,....n (4b)
m=1
M
Z"mzla om >0, m=1,...,M , (4c)
m=1

where, here and in what follows/v is defined by continuation at zero ag0 = o if
u # 0and0/0 = 0.

MKL may be used in different prospects. When the individuainelsK,,, repre-
sent a series, such as Gaussian kernels with different paadeneters, it constitutes
an alternative to cross-validating the kernel paramet&vben the input data origi-
nates fromM/ differents sources, and that each kernel is affiliated togwaep of input
variables, it enables to select relevant sources.



However, MKL is not meant to address problems where sevenaidts pertain
to a single source. In this situation, its sparseness méahatoes not account for
the structure among kernels. In particular, it cannot faautions discarding all the
kernels computed from an irrelevant source. Although mb#ierelated coefficients
should vanish in combination (2), spurious correlation mayse irrelevant sources
to participate to the solution. A single coefficient couldditached for each source,
but this solution forbids kernel adaptation within eachrseywhose equivalent kernel
would be clamped to the average kernel. Note also that, infgpesite situation where
we want to involve all sources in the solution, with only a fieevnels per source, MKL
is not guaranteed to provide a solution complying with theuisite.

2.3 Group and Composite Penalties

The selection/removal of kernels between or within preaefigroups relies on the
definition of a structure among kernels. This type of hidmgrbas been investi-
gated among variables in linear models (Yuan and Lin 2006&fr&aski et al. 2008a,
Zhao et al. to appeatr).

The very general Composite Absolute Penalties (CAP) faroilyZhao et al.
(to appear) considers a linear model with parameters3 = (81,...,08x)T. Let
T ={1,...,M} be a set of index on these parameters, a group structure grathe
rameters is defined by a series bfsubsets{G,}Z_,, whereG, C Z. Additionally,
let {~,}}_, be L + 1 norm parameters. Then, the member of the CAP family for the
chosen groups and norm parameters is

L Yo/ Ve
S 1l
=1

= meGy

To our knowledge, there is no efficient general purpose dhgurfor fitting para-
metric models with penalties belonging to the CAP familyt fow the prominent par-
ticular cases listed below, such algorithms exist. Thegatlsidery, = 1 that enforces
sparseness at the group level and identical ndrmabL_, at the parameter level:

e v, = 1isthe LASSO (Tibshirani 1996), which clears the group stre;

e v, = 4/3 is the Hierarchical Penalization (Szafranski et al. 200&&jch gives
rise to few dominant variables within groups;

e v, = 2is the group-LASSO (Yuan and Lin 2006), which applies a prapoal
shrinkage to the variables within groups;

e v, = o is the iCAP penalty (examined in more details by Zhao et apoear),
which limits the maximal magnitude of the coefficients witlgiroups.

Mixed-norms correspond to groups defined as a partitionegéi of variables. A
CAP may also rely on nested grougs,C G2 C ... C Gr,, andyy = 1, in which case
it favors what Zhao et al. call hierarchical selection, tisathe selection of groups of
variables in the predefined ordgf \ G}, {Gr \ Gr—1},...,{G2 \ G1},G1 according
to some heredity principle. This example is provided hersttess that Zhao et al.’s
notion of hierarchy differs from the one that will be intrazhd in Section 3.



2.4 Relations between MKL and CAP

CAP and its earlier predecessor LASSO have been initiatdeiparametric regression
setting. Using the notations introduced for CAP, the LAS203ity is

i( > 18ul) = Z ] = Z (82)"*

=1 megy m=1

but the LASSO penalty can take a more general form. In the plaof M RKHS
‘H1, ... Hn, One may consider the penalty

M

M 1/2
> Ml = Y (anKmam)
m=1

m=1

wherea,,,, € R", K,,, is themth kernel matrixkK,, (i, j) = K, (z;, z;) andf,,(z) =
Yo (D) K (x4, x).

The representer theorem (Schoélkopfand Smola 2001) enthaeshe f,, solv-
ing the MKL Problem (3a) are of the above form. Hence, MKL maydeen as
a kernelization of LASSO, extended to SVM classifiers, whpsealty generalizes
the ones proposed in the framework of additive modeling sjiline functions (see
Grandvalet and Canu 1999) to arbitrary RKHS. In this send€l. lxtends the sim-
plest member of the CAP family to SVM classifiers.

Being a sum of; norms, the MKL penalty is also of the group-LASSO type, but
the groups are defined at the level of the expansion coefficier.? CKL extends
the MKL framework by defining groups at a higher level, thatighe kernel level:
Composite Kernel Learning is to CAP what Multiple Kernel triag is to LASSO.

3 Composite Kernel Learning

The flat combination of kernels in MKL does not include any heatism to cluster
the kernels related to each source. In order to favor theti@iéremoval of kernels
between or within predefined groups, one has to define a steueimong kernels,
which will guide the selection process. We present herednedt methods counterpart
of the methods surveyed in Section 2.3 for parametric models

3.1 Groups of Kernels

We consider problems where we have a set of kernels, pasdiiin groups, which
may correspond to subsets of inputs, sources, or more dignaistinct families of
similarity measures between examples. This structurebeiltepresented by a tree,
as we envision more complex structures with a hierarchy sfetegroups. We index
the tree depth by, with h = 0 for the root, andh = 2 for the leaves. The leaf
nodes represent the kernels at hand for the classificatak) the nodes at depth 1

2 Note that, except for the case whd&g,, has a block-diagonal structure, there is no effective graup
in the MKL penalty.
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Figure 1 —A tree of height two depicting groups of kernels.

stand for thegroup-kerneldormed by combining the kernels within each group; the
root represents the globeffective kerneinerging the group-kernels. Without loss of
generality, we consider that all leaves are at depth 2. Itim®tcase, an intermediate
node should be inserted at depth 1 between the root and edatedsleaf, as illustrated
in Figure 1.

In CKL, learning the kernel consists in learning the paraarsesf each combination
of kernels. There aré + 1 such combinations, one at each group level, and one at the
root level. Asiillustrated in Figure 1, the weights of thesenbinations may be thought
of as being attached to the branches of the tree: a brancihmstgnirom the root and
going to nod¢ is labelled by, ,, which is the weight associated to th# group in
the effective kernel; a branch stemming from néde depth 1 and reaching leaf is
labelled byos ,,, , which is the weight associated to theh kernel in its group-kernel.

3.2 Kernel selection

In the learning process, we would like to suppress the kerawatl/or the groups that
are irrelevant for the classification task. In the tree repnéation, this removal process
consists in pruning the tree. When a branch is pruned at #fiégeleel, a single kernel is
removed from the combination. When a subtree is pruned, apgkernel is removed
from the combination, and the corresponding group of kerhels no influence on
the classifier. With the branch labeling introduced abowe idnstrated in Figure 1,
removing kerneln consists in setting ,, to 0, and removing groug@ consists in
settingo ¢ to 0.

For the purpose of performing flat kernel selectien, is redundant witte ,,,, but
the decomposition proposed here allows to pursue diffeyeals, by constraining the
solutions to have a given sparsity pattern induced by thesepass constraints at each



level of the hierarchy: in the example of Figure 1, thouglyttielete the same number
of leaves, we may prefer for a solution with 5 = 0 (that is, the removal of group 3

composed of kernels 5 and 6) & 3 = 024 = 0 that also removes two kernels, but
retains all the groups.

We now elaborate on the notations introduced in Section@.&ie CAP family.
The M kernels situated at the leaves are indexe¢lby. ., m, ..., M}, and the group-
kernels (at depthi) are indexed by{1,...,¢,...,L}. The setg, of cardinalityd,
indexes the leaf-kernels belonging to group-kerehat is, the children of nodé
The groups form a partition of the leaf-kernels, thatlisg, = {1,...,m,..., M}
and)_,d, = M. Note that, to lighten notations, the range of indexes wiito be
omitted in summations, in which case: indexemd; refer to examples and go from
1 ton; indexm refers to leaf-kernels and goes from 1ib; index/ refers to group-
kernels and goes from 1 .

In a hard selection setup, wheyg = (01,1 ...01.1)" andos = (02,1 ...02.01) "
are binary vectors, the learning problem is stated as fallow

1 )
5 m c 4 5a
min S I fmld,, + Z& (5a)
b, & 0107 m ¢
s. t. yi<20'17g Z Ugymfm(.’lll)—Fb) Z 1—51 i:l,...,n (Sb)
0 megy
& >0 i=1,...,n (5¢)
> diori<si, o€ {0,1} (=1,...,L  (5d)
l
2027m§82’ 02,7”6{0,1} m=1,...,M , (58)

wheres; ands, designate the number of leaves that should be retainedpaftamg.
The constraint (5d) or; imposes some pruning at the group level, while the congtrain
(5e) ono 2 imposes some additional pruning at the leaf level. Notedbastraint (5e)
may only be active i§2 < sl1.

Problem (5) has a number of shortcomings. First, it is anrieidy combinatorial
problem, for which finding a global optimum is challengingewith a small number
of kernels. Second, this type of hard selection problem mamto provide unsta-
ble solutions (Breiman 1996), especially when the numbéeofiels is not orders of
magnitude lower than the training set size. Unstabilitgrehere to large changes in
the overall predictor, in particular via the changes in thieas selected kernels, in re-
sponse to small perturbations of the training set. Besidemb detrimental effects on
the variability of model parameters, unstability has besmws to badly affect model
selection (Breiman 1996). More recently, stability hasrbgigown to characterize the
generalization ability of learning algorithms (Bousqued &lisseeff 2002).

As the kernel choice is especially decisive for small to mmattiesample sizes, we
should devise well-behaved algorithms in this setup. Heweewill consider stable
soft-selection techniques, such as the ones baség ary, regularization.



3.3 Soft Selection

To convert Problem (5) in a smooth soft-selection problemwill transform the bi-
nary vectorso; ando, in continuous positive variables, which may either “choke
some branches or prune them. We also replace the hyper-pinam ands. in con-
straints (5d) and (5e) by 1, since their role is redundartt wie parameterg, when
the latter are not restrained to be equal to the group size pidblem reads

1 2
i s m C 7 6a
Jmin o Yl + €6 (6a)
b€ 0102 m !
s. t. yl-<zowZaszm(mi)+b>z1—gi i=1,...,n  (6b)
¢ meGy
& =0 i=1,...,n (6¢)
Sdolf <1, 01e>0 (=1,...,L  (6d)
4
Zaﬁfﬂigl, o2m > 0 m=1,...,.M , (6e)

where we incorporated two hyper-parameternd ¢ appearing respectively in con-
straints (6d) and (6e), whose roles are to drive these @nstioser or further from
their binary counterpart in (5), as illustrated in Figure Phese exponents can thus
be tuned to implement harder or softer selection strategies different values fop
andq will lead to more or less emphasis on sparsity within or betwgroups. Some
properties related to the choice pfandq will be discussed in the following section,
and the practical outcomes of these choices will be illtisttén Section 5.

3.4 Properties

Problem (6) is difficult to analyze and to optimize. We deffiaze a “flat” equivalent
formulation using a single weight per kernl,,, using the simple fact that the com-
position of combinations is itself a combination. The kégreup structure will not be
lost in the process, it will be transferred to the weightshef tombination.

This simplification proceeds in three steps (see detailsipefdix A). First, vari-
ableo,, disappears in a change of variables wher@ppears, then, we use a necessary
optimality condition that tiegr; with o for all stationnary points, including the global

10
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constraint approaches a hard selection process withe {0, 1}.

maximum? Finally, plugging these optimality conditions into Protl€6), we get

[

n =S — |l +CY 6 7a

min zm:Ume e, +CD¢ (7a)
b€ o ‘

q/(p+q)
ng/(p+q)<ZUMQ> <l,0,>0 m=1,...,.M , (7c)
J4

meGy

; 1/0\? . ) .
where, here and it what l‘oIIowéZm Om ) is defined as thé.. norm, with value

max,,, o,, Sinceo,, > 0.

Problem (7) is equivalent to Problem (6) in the sense thattdtonnary points
correspond to the ones of (6). As the objective function isves, the stationnary
points are minima and multiple (local) minima may only ocifuhe feasible domain
is non-convex.

This flat formulation is more easily amenable to the analg$isonvexity, and
optimization can be carried out by a simple adaptation ofSimepleMKL algorithm
(Szafranski et al. 2008b). Indeed, compared to (4), Prol§l®nonly differs in con-
straint (7c) oro, where the/; norm is replaced by a mixed-norp, /. 1/(p+q))- AS @
special case, MKL is recovered from CKL for parametgrs;) = (0, 1).

Proposition 1  Problem (7) isconvexif0 <¢<1l and 0<p+g¢<1.

3 A stationnary point is defined as a point satisfying the KK iditions.

11



Proof. A problem minimizing a convex criterion on a convex set isv@n
¢ the objective function (7a) is convex (cf. Rakotomamonjgle2008);
e the usual SVM constraints (7b) define convex setsfin. . ., far, b, £);

o if 0<¢g<1and0<p+q<1,theconstraints (7c) defines a convex setin
since

q
- ( > o—}n/q) is convex;
megy

- Z t}/"™ is convex and non-decreasingtin 0
4

The proposition below generalizes the equivalence bettreel KL formulations
Bach et al. (2004) and Rakotomamonijy et al. (2008), that ésween Problems (3)
and (4) respectively. If MKL may be seen as the kernelizatibthe LASSO, CKL
can be interpreted as the kernelization of the hierarcipieablizer of Szafranski et al.
(2008a) or more generally of the Composite Absolute Per(@#P) of Zhao et al.
(to appear).

Proposition 2 Problem (7) is equivalent to

r/s\ 2/T
i %(Zd}(}j Fnllc, ) /) oY (8a)
yeees M ¢ i

megy

)

s t. yz-<2fm(mi>+b>21—& &>0 i=1,...,n, (8b)

2 2 . L.
where s = , T = and t =1 — r , in the sense that the minima of
qg+1 ptqg+1 s
(7) are the minima of8). See proof in Appendix B.

Corollary 1 Problem (7) is sparse at the group level if and onlyjf+ ¢ > 1. Itis
sparse at the leaf level ifand onlyif > 1 orp + ¢ > 1.

Proof. This is the direct consequence of the equivalence staterbjpoBition 2, since
sparsity is obtained if and only if the boundary of the feksitegion is nondiffer-
entiable atf,, = 0 (Nikolova 2000). The sub-differential atf,,|+,, = 0 is re-

duced to one point if and only i§ > 1, that isq < 1, and the sub-differential at

> W fmlln,, = 0is reduced to one pointif and onlysif> 1, thatisp+ ¢ < 1. O
megy

Note that the external square on the norm of (8) affects tieagth of the penalty,
but not its type. Hence, CKL penalizes a kernelized mixedmQ,. ) in || fn |7, -

Table 1 displays some particular instances of the equicalgiven in Proposition 2.
Since the latter was obtained from the primal formulatioRPafblem (7), it also holds
for non-convex penalties, such as the one displayed in sietdumn of the table.
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Table 1 —Equivalence between mixed-norms dp, in Problem (7), and mixed-norms in
|| fm ||, in Problem(8) for some particular(p, ¢) values.

The first column of Table 1 illustrates that CKL indeed gefieea MKL, since it
enables to implement &, ;) mixed-norm, that is thé; norm of MKL. The second
column leads to &, 5 mixed-norm, that could also be obtained by an MKL algo-
rithm using the average of leaf-kernels within each groupe third column displays a
more interesting result, with thg, ;) that encourages a sparse expansion within each
group, and then performs a standard SVM with the kernel fdrime summing the
group-kernels. This setting corresponds to the situatiberes we want all sources
to participate to the solution, but where the relevant ginties are to be discov-
ered for each source. It has been used in the regressionviaiéor audio signals
(Kowalski and Torrésani 2008). The fourth solution, le@gia a/(; 4/3) norm is the
kernelized version of hierarchical penalization (Szadtaet al. 2008a), which takes
into account the group structure, provides sparse redithe group-level and approx-
imately sparse ones at the leaf level, with few leading cdiefits. Finally, the last
column displays a non-convex solution that enables exausip at the group-level
and at the leaf-level, with a group-structure that greatiyoeirages group selection.

Figure 3 illustrates the shape of the feasible region

S (Y Ihalie,) <1
£

megy

for the values ofr, s) given in Table 1, in a problem with/ = 3 kernels.

The left column depicts the 3D-shape in the positive octahgre the two horizon-
tal axes represent the positive quadr@dit ||, , || f2||~.) associated to the first group
G1, and the vertical axis represefits ||, associated to the second graiip

The cuts at| f2||x, = 0 and|| f3||=, = 0 are displayed to provide a between-group
plane and the within group view of the feasible region in thater and right column
respectively. These plots provide an intuitive way to cosmand the convexity and
sparsity issues. Sparsity is related to convexity and thgealof the boundary of the
admissible set af,,||~,, goes to zero (Nikolova 2000).

4 Solving the Problem

Since CKL generalizes MKL, we begin this section by a brigfew of the algorithmic

developments of MKL dedicated to solve Problem (3) or ondsoéquivalent forms.
The original MKL algorithm of Lanckriet et al. (2004) was legison a quadratically-
constrained quadratic program (QCQP) solver that had highpatational require-
ments and was thus limited to small problems, that is, smatilvers of kernels and

13
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data points. This restraint motivated the introduction sfreoothing term allowing to
use the SMO algorithm (Bach et al. 2004).

The following generation of MKL algorithms was then basedvaapper algo-
rithms, consisting in two nested optimization problemserathe outer loop optimizes
the kernel and the inner loop is a standard SVM solver. Therdobp was a cut-
ting plane algorithm for the Semi-Infinite Linear PrograniL(®) of Sonnenburg et al.
(2006) that optimizes the non-smooth dual of Problem (3)as later improved by a
gradient algorithm addressing Problem (4) in the SimpleMiKRakotomamonjy et al.
(2008).

The benefit of these approaches is to rely on standard SVMespifor which
several efficient implementations exist. This type of applowas also used in the
multiple task learning framework by Argyriou et al. (2008phd again in some recent
developments of MKL (Xu et al. 2009, Bach 2009).

We first chose the gradient-based approach that was derattsto be efficient
for MKL (Szafranski et al. 2008b). Nevertheless, moving@@ curved surface such
as the ones illustrated in Figure 3 may be problematic foresorixed-norms. Hence,
we pursue here another wrapper approach, where we will ugeapoint strategy to
update the kernels parameters in the outer loop.

4.1 A Wrapper Approach

Our wrapper scheme extends SimpleMKL by considering thewahg optimization
problem

min J(o) (9a)
a\ I/ (+a)
5. t. Z(dfg(za},{q)) <1, 0, >0 m=1,....,M , (9b)
4 megy
whereJ (o) is defined as the objective value of
. 1 1 2

3 g Ml + €26 (102

b, & '
s. t. Yi (Z fm (i) +b> >1-& §& >0 Vi . (10b)

In the inner loop, the criterion is optimized with respect{tf,}, b and&, con-
sidering that the coefficients are fixed. In the outer loopr is updated to decrease
the criterion, using an expression derived from the opfiljmabnditions, with the dual
variables related t§f,,, }, b and¢ being fixed.

4.2 First-Order Optimality Conditions

To lay down the foundations of our algorithm, we derive thstforder optimality con-
ditions for each part of Problem (7). These conditions ottar&ze the global mini-
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mizer if Problem (7) is convex, and all local minima othemvi§he Lagrangian reads

L = Z Hfm”?-lm + CZ &
Zai [yi <me(fﬂi)+b> +& — 11 - Z RS
a\ /(P +a)
S(a(S ) ) - S

4 megy

+ A

wherea; andn;, the usual positive Lagrange multipliers related to thest@ints (7b)
on the slack variablg;, will be optimized by considering Problem (10), whileand

1L, are the positive Lagrange multipliers related to constsg(irc) ono,,,, that appear
in Problem (9).

Optimality Conditions for f,,,band &

We first focus on the optimality conditions of Problem (10heTderivative ofL with
respect taf,,,, b and§ give

oL
% =0 —Umzazyz wza'
oL
% =0 =>Zalyz—0
oL
= < < .
o, 0 =0<<C

Hence, the equivalent dual formulation of Problem (10) itaadard SVM problem

max - Zaz o yiy; Ko (@i, ;) + Zai (11a)
s. t. Zazyl =0 (11b)
CZaizO i1=1,...,n, (1lc)

where K, is the effective kernel defined in (2). Note that this dualt@ies to the
sub-problem (10), not to the global problem (7).
Optimality Conditions for o,

The first-order optimality conditions far,,,, derived in Appendix B, establish the re-
lation betweenr,,, and|| f,.||%,,, which is

—(p+aq)

1
O =l fu 22D (g 1)/ PHOHD (Zdﬁf,/(p*q“)s§?+1)/(”+q+1>) (12)
E/
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since| fm |3, = o2, Zl ; iy Ko (24, ), Equation (12) only provides an

implicit definition of the optif’nal value of,,. Let g,,(o) denote the right-hand-side
of Equation (12), we have thgto) = (g1(o), ..., gm (o)) is a continuous mapping
from the closed unit ball defined by constraint (9b) to itsélence, Brouwer’s fixed
point theorem appliesand the outer loop of the wrapper can be performed by a fixed
point strategy, using the expression (12).

When the values g andq do not define a convex set in (9b), Brouwer’s theorem
does not hold anymore. Nevertheless, one can circumvenptbblem by consider-
ing the optimization with respect 1@, ando,, such as in Problem (6) provided the
constraints (6d) and (6e) both span closed unit balls.

4.3 Algorithm

We now have all the ingredients to define our wrapper algarith

Algorithm 1: CKL

initialize o

solve the SVM problem- J (o)

repeat
repeat
| o=g(o) /1 with gn.(c) defined by the |.h.s of (12)
until convergence

solve the SVM problem- J (o)
until convergence

The stopping criterion for assessing the convergeneeczn be based on standard
criteria for fixed point algorithms, while the one relatedtie SVM solver can be based
on the duality gap. In the following experiments, it is restpely based on the stability
of o andJ (o).

5 Channel Selection for Brain Computer Interfaces

We consider here two studies in Brain-Computer InterfaB€d); In BCI, one aims at
recognizing the cerebral activity of a person subject torawdtis, thanks to an array of
sensors placed on the scalp of the subject that records & slecbroencephalograms
(EEG). Here, the EEG signals are collected frételectrodes ochannelspositioned
onto the scalp as illustrated in Figure 4.

4 Brouwer's fixed point theorem states that,Afis a closed unit ball, then, any continuous function
g : B — B, has at least one fixed point.
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@

Figure 4 —Positions of the 64 electrodes on the scalp, for the two demsitl BCI problems. The
arrow represents the frontal direction.

Automated channel selection has to be performed for eagesgubject since it
leads to better performances or a substantial reductioheohtimber of useful chan-
nels (Schréder et al. 2005). Reducing the number of chaimeldtsed in the decision
function is of primary importance for BCI real-life applit@ns, since it makes the
acquisition system cheaper, easier to use and to set-up.

In this setup, each electrode may be considered as a soatogetherates a series
of potentials along the experiment. Composite Kernel Liegris well-suited to the
identification of a specific behavior in the EEG signals, byaibility to encode the no-
tion of channels. Besides the benefits of potentially retlyttie number of channels,
CKL may also be beneficial if able to identify the salient teat within each channel.
Hence, we will experiment with a non-convex parameteriratf CKL that encour-
ages sparseness within and between groups, in order to aegmdrse solution at the
channel and the feature levels. Note that, for non-convitings, we have no means
to assess the convergence towards a global optimum. Thoeg8\YM solver may
return the optimal decision rule for the returnedwe have no way to secure global
convergence for the outer Problem (9), and no certificatalofoptimality, such as the
one that could be provided by a duality gap.

In the following, CKL,/, stands for a convex version of our algorithm, with
p=q=1/2(a {43 mixed-norm), CKL is a non-convex version, with= ¢ = 1
(@ £(2/3,1) dissimilarity, that we will also abusively qualify as a mieorm). Note
that MKL is also implemented by our algorithm, with= 0 andgq = 1.

18



5.1 P300 Speller Paradigm
5.1.1 Protocol

The so-callesdbddballparadigm states that a rare expected stimulus produceg&&@os
deflection in an EEG signal after about 300 ms. The P300 spetlerface is based
on this paradigm (Farwell and Donchin 1998). Its role is igdger a related event
potential, namely the P300, in response to a visual stimullisis protocol uses a
matrix composed o6 rows and6 columns of letters and numbers, as illustrated in
Figure 5. First, the subject chooses a specific charactdreimtatrix. Then, tha2
lines (rows or columns) are intensified in a random order. W\éeintensified row or
column contains the chosen character, the subject is aglealint; this is assumed to
generate a P300. Because the signal to noise ratio of a sE@skgnal is usually low,
this process is repeatéd times per character.

Figure 5 —The spelling matrix.

The dataset, collected for a BCI competition (Blankertz2 €2@04), is processed as
described in (Rakotomamonjy and Guigue 2008). For eachreliant time samples
(that will be referred as frames), going from the beginnifithe stimulus up t&67 ms
after, have been extracted from the EEG signals. Franaesl8, respectively centered
around300 and350 ms, are the most salient ones according to the paradigm.

The dataset is composed @60 EEG signals (observations), paired with positive
or negative stimuli responses (classes). 9@ features extractedi{ channels< 14
frames) are not transformed. However, to unify the presemave will refer to these
features as kernels. The kernels related to a given chaommeld group of kernels, and
we have to learn/ = 896 coefficientss,,, divided intoL. = 64 groups. Thus, our
goal is to identify the significant channels, and within thefannels, the significant
frames, which discriminate the positive from the negatigeals.

The classification protocol is the following: we have randippicked567 training
examples from the dataset and used the remaining as testingpées. The parameter
C has been selected by 5-fold cross-validation. This overaltedure has been re-
peatedl0 times. Using a small part of the examples for training is raiéd by the use
of ensemble of SVM (that we do not consider here) at a latgesté the EEG classi-
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fication procedure (Rakotomamonjy and Guigue 2008). Thiopeance is measured
by the AUC, due to the post-processing that is done througgiepetitions in the P300:
as the final decision regarding letters is taken after séwéais, the correct row and
column should receive high scores to identify correctlylditer.

5.1.2 Results

Table 2 summarizes the average performance of SVM, MKL, aKk, @Ghat is, for

4 different penalization terms: quadratic penalizationtfor classical SVM (that is,

trained with the mean of th&96 kernels)¢; norm for MKL, and mixed-norms for the

two versions of CKL assessed here: CKki{.and CKL;. The number of channels and
kernels selected by these algorithms and the time needdbddraining process are
also reported, together with the standard deviations.

Algorithms AUC # Channels # Kernels Time (s)
SVM 84.6+ 0.9 64 896 19+1.0
CKLy /2 849+ 1.1 40.1+ 15.2 513.0+224.7 | 149.1+94.1
CKL; 847+ 1.1 14.6+ 13.1 65.8+ 52.2 64.8+ 18.5
MKL 85.7+ 0.9 47.0+ 7.9 112.6+ 46.2 60.3+ 12.1

Table 2 -Average results and standard deviations, for SVMs witledifft kernel learning strate-
gies on the BCI dataset (P300 speller paradigm).

The prediction performances of the four algorithms are lsimwith an insignif-
icant advantage for MKL. In terms of kernels, MKL is much sgarthan CKL /5,
but twice less sparse than CKLRegarding the number of groups, CKiIs still the
sparsest solution, removing about three quarters of theneha. At this level CKL /,
is sparser than MKL, although it retained many more kernatsexpected, CK{,,
favors sparseness among groups rather than sparsenessétske

Insofar as SVM does not require to estimate the coefficieptsthe training pro-
cess is much faster than for other methods. The kernel leamethods training time
is however still reasonable, and is rewarded by interpiitabnd cheaper evaluations
in the test phase. CKl;, is slower than MKL and CKL. on this problem, but this
difference is not consistently observed: the orders of ritade are identical for all
versions.

Figure 6 represents the median relevance of the electradeputed over the 10
experiments. It displays which electrodes have been seldny the different kernel
learning methods. For one experiment, the relevance ofreidrs computed by the
relative contribution of group to the norm of the solution, that is

1/s
dt
- (Z ||f,;||%m> : (13)

megy

whereZ is a normalization factor that sets the sum of relevanceasd¢oamd where

2
I ll3e, = om E a; o} yiy; Km(xi, ) -
i, J
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Figure 6 —Electrode median relevance for MKL, CKly and CKL (P300 speller paradigm).
The darker the color, the higher the relevance. Electrodeshite with a black circle are dis-
carded (the relevance is exactly zero).

CKL;

The results for CKL. are particularly neat, with high relevances for the eledzto
in the areas of the visual cortex (lateral electrodes B PQ). The scalp maps for
MKL and CKL, /, show the importance of the same region, followed by the pyma
motor and somatosensory cortex, (@d CR).> In addition, they also highlight nu-
merous frontal electrodes that are not likely to be relevanthe BCI P300 Speller
paradigm. Finally, the plots of relevance through time (tutwn) are similar for all
kernel learning methods, with a sudden peak at frahaad8 followed by a slow
decline.

5.1.3 Sanity check for channel selection

We provide supplementary experiments to support the retavaf the channel selec-
tion mechanism of CKL. We first have randomly pickedhannels, then randomly
selectedy kernels among the x 14 candidates. Variable (resp.y) has been set so
that it corresponds to the average number of channels (kespels) used by CKL/,
and CKLy, thatis41 and15 (resp. 513 and 66).

Table 3 gives the average performances for classical SVMM Sis trained with
a subset of: channels randomly chosen as described above, while &Y trained
with the single channel that reaches the highest crosdatain score.

Algorithms AUC # Channels # Kernels
SVM 4, 80.7£ 1.0 41 513
SVM 5 76.8+£ 1.7 15 66
SVM cv 68.8+ 2.0 1 14

Table 3 —Average results and standard deviations for SVMs (P300espedradigm). SVMv
selects the single best channel using a cross-validationgafure, while SVMrandomly selects
a subset of: channels.

5 These channels also appear in the third quartile map of CKL
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Figure 7 —Electrode median relevance for different SVMs, with ch&naed kernels randomly
selected (P300 speller paradigm). The darker the colorhilgger the relevance. Electrodes in
white with a black circle are discarded (the relevance isatlyazero). For SVMv, electrodes
in black correspond to the best channels identified usingpraszralidation procedure (over the
10 repetitions, P@and G have been selected 3 times each).

With only one channel left, SVMy, performs significantly worse than any other
method. Several channels are thus necessary to build a&@VM classifiers. Note
that most of the channels picked out by cross-validatioawshin Figure 7, are also
identified by CKL (see Figure 6). SV behaves poorly compared with CKlhigh-
lighting the ability of CKL to identify appropriate chaniselThe same remark applies
to SVMy1, where, despite the important number of channels and lkemmallved, the
average AUC for is much lower than for CK}, that selected 41 channels. Figure 7
shows that some of the channels assumed to be relevant et KL, /, are miss-
ing here, especially electrodes Pénd R located in the visual cortex, and electrodes
CPgz, CP; and G in the somatosensory cortex.

5.2 Contingent Negative Variation paradigm
5.2.1 Protocol

This new set of BCI experiments aims at detecting some detiveegions in the
brain when an event is being anticipated (Garipelli et aagpearf. The potentials
are here recorded according to the Contingent Negativeatiani (CNV) paradigm
(Walter et al. 1964). In this paradigm, a warning stimulusdicts the appearance of
an imperative stimulus in a predictable inter-stimuluteimal. More precisely, an ex-
periment processes as follows. A subject, looking at a s¢counters two kinds of
events:

1. In“GO” events, a green dot is displayed in the middle ofg¢be=en. This signal
triggers the anticipation of the subject. Four seconds, l&te dot becomes red,
prompting the subject to press a button as soon as possible.

6 We thank the authors for sharing their data with us.
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2. In “NOGO " events, a yellow dot is displayed in the middletioé screen. The
subject has been instructed to do nothing in this situatiwhen, four seconds
later, the dot becomes red, the subject does not react.

The data gather recordings on two subject&0iexperimental sessions, each being
composed ofl0 trials. For each subject, we have th2) examples. The 64 EEG
signals are available from tineto 3.25 s, in the anticipation phase, before the event
appears (at s). This results ir4 x 21 = 1344 linear kernels.

Available knowledge on the problem identifies the centrbd of the electrode €.
More generally, the channels located in the central regfidhescalp are expected to
be relevant for classification, contrary to the one at th@pery. Complying with that
knowledge, Garipelli et al. (to appear) use Linear Discniamit Analysis (LDA) on G
to estimate the predictability of anticipation.

5.2.2 Results

We compare the results obtained with LDA to the ones achibygdKL. The param-
eterC is estimated by 10-fold cross-validation, which is alsodugeestimate the test
error rate. This procedure is slightly biased, but sincéhalmethods share this bias,
the comparison should be fair. Considering the high vaitgtietween folds, we did
not go through a thorough double cross-validation prooediihe reported standard
deviations are likely be irrepresentative of the varidpilith respect to changes in the
training set, due to the known bias of the variance estinsatoK-fold cross-validation
(Bengio and Grandvalet 2004).

Tables 4 and 5 reports the average performances for,GKICKL; and MKL
in terms of accuracy, channel and kernel selection, anditrgitime. The accuracy
achieved by a SVM, trained with the mean of tt8el4 kernels, is also reported.

Concerning Subject 1, all SVMs perform slightly better thd»A. In this experi-
ment, CKL, s, is much less sparse, in the number of kernels and channats MKL
or CKL,. The latter only retain8 channels for classifying.

Subjectl Errorrate (%) | # Channels # Kernels Time (S)
LDA 25.0£1.2 Cz 21 -
SVM 21.0+1.0 64 1344 0.3
CKL; 5 22.0+1.0 50 988 20.7
CKL; 23.0£1.3 9 37 6.24
MKL 240+15 29 58 23.1

Table 4 —Average cross-validation score with standard deviatimrsSubject 1, for SVMs with
different kernel learning strategies on the BCI dataset {#dradigm). The number of channels
and kernels correspond to the predictor trained on the whlali set.

For Subject 2, both versions of CKL considerably improverup®A. Although
CKL, /, selects most of the kernels, it is sparser than MKL in termgrotips. CKL,
with only 6 channels achieves the lowest error rate. With regard taitrgitimes,
the overhead compared to SVMs is comparable to the previqesienent. MKL and
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Subject2 Errorrate (%) | # Channels # Kernels Time (s)
LDA 36.54+ 0.9 Cz 21 -
SVM 29.0+ 1.3 64 1344 0.4
CKLy/2 27.0+1.2 44 800 16.7
CKL1 23.0+1.1 6 35 8.6
MKL 33.0+ 1.3 51 112 20.0

Table 5 —Average cross-validation score with standard deviatimrsSubject 2, for SVMs with
different kernel learning strategies on the BCI dataset \{Q#dradigm). The number of channels
and kernels correspond to the predictor trained on the whlal set.

CKL,/, require approximately the same time, and GKwhich provides very sparse
results is about twice faster.

Results concerning interpretation are obtained with thelevidataset. Figure 8
shows the relevance of the electrodes, for both subjectoepeted in (13) for the
P300 speller problem. The three versions of CKL highliglet tentral region of the
brain. However, CKl, discards most peripheric channels, whereas CKland MKL
locate numerous relevant electrodes out of the central &mahe first subject, £is
estimated to be relevant by all methods. The results foré¢lsersd subject are some-
what puzzling, since the contribution ofzds much lower than the one ofsF This
shift may be due to an inappropriate positioning of the mesment device on the
scalp.

5.2.3 Sanity check for channel selection

Here also, additional experiments are carried out to sugherchannel and kernel
selection given by CKL, using the scheme described in Sedi@.3. We consider

two random draws per subject, that correspond, in terms oftbau of kernels and

channels, to the solutions produced by GKl.and CKL;. This process is repeated
10 times. Table 6 summarizes the performances for these S&vfer a SVM trained

with the channel that reaches the highest cross-validatiore. Figure 9 displays the
electrodes used for each method.

Algorithms Error rate (%) | # Channels # Kernels
SVM5, 29.1+£1.0 50 988
Subject1| svm, 37.9+ 1.1 9 37
SVM v 255+1.2 C, 21
SVM 44 31.2+1.1 44 800
Subject2| sym, 36.24 0.9 6 35
SVM v 275+ 0.7 FC 21

Table 6 -Average cross-validation score with standard deviatiamsSubjects 1 and 2, for SVMs
(CNV paradigm). SV selects the best channel using a cross-validation proeeduhile
SVM, randomly selects a subset ofchannels. The results reported for SyMre averaged

over 10 repetitions.
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Concerning Subject 1, the first two versions of SVMs perforaullp, especially
SVMy where G; was chosen only once and gRnly twice over the 10 repetitions.
The error rate for SVM:y is comparable to the one of LDA, and it selects @hich
is relevant in all versions of CKL. The error rate of S\W is slightly greater than the
one of CKL, s, or CKL;.

For Subject 2, SVM:y fails compared to CKL, but reaches the performance of
CKL, /2 with the “outsider” FG. SVMs with randomly selected kernels behave poorly
again, with regard to CKL.

6 Conclusion

This paper is at the crossroad of kernel learning and varisdlection. From the for-
mer viewpoint, we extended multiple kernel learning to take account the group
structure among kernels. From the latter viewpoint, we gadized the hierarchical
penalization frameworks based on mixed norms to kernesifiess, by considering
penalties in RKHS instead of parameter spaces.

We provide here a smooth variational formulation for arlariy mixed-norm penal-
ties, enabling to tackle a wide variety of problems. Thisialation is not restricted
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carded (the relevance is exactly zero). For S¥M electrodes in black correspond to the best
channels identified using a cross-validation procedure.

to convex mixed-norms, a property that turns out to be of@stiefor reaching sparser,
hence more interpretable solutions.

Our approach is embedded, in the sense that the kernel pgpameters are op-
timized jointly with the kernel expansion to minimize thenge loss. It is however
implemented by a simple wrapper algorithm, for which theeinand the outer sub-
problems have the same objective function, and where ther iloop is a standard
SVM problem.

In particular, this implementation allows to use availabtdvers for kernel ma-
chines in the inner loop. Hence, although this paper consitleinary classification
problems, our approach can be readily extended to othemifeaproblems, such as
multiclass classification, clustering, regression or nagk
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A Detailed Derivation of Problem (7)

We rewrite Problem (6) by applying succesively two changesganiable. We first
note that, whemw; ¢ or o3 ., is null, then the optimay,,, is also null. Hence, we may
apply fr, < 01,002,m fm Since this transformation is one-to-one provided # 0 and

02,m # 0. We then follow with,o1 ¢ < 02/F, 02, «— o3, ; this yields:

. 1

min Z > ——lfullbe, + CY &

Jiyfm 1 ¢ meg, 72m Z

b, &, 01,02 ¢
§& >0 1=1,...,n
ddiori <1,  010>0 (=1,...,L
4
Zag_’mgl, o2,m >0 m=1,....,.M |,

then, we proceed to another change of variable, that,is= o7 ,03 ,,, and Prob-

lem (6) is equivalent to the following optimization problémfi, ..., far, b,&, 01,0
min Z H fmll3e, + CZ@ (14a)
fiyeesfm
b,g,01,0
ngo—ugl, o10>0 (=1,....L (14c)
Za’p/“Za},{qgl, om >0 m=1,...,M. (14d)
megy

We now use the fact that, in the formulation above, the firdeonecessary optimality
conditions establish a functional link between ando. This link is derived from the
Karush-Kuhn-Tucker necessary optimality conditions aftfem (14), computed from
the associated Lagrange functign

oL

= \d A —(p+49)/q 1/q 15

Bo1e 10¢ — A2 — 01 Y] n;g Om e (15)

oL _ ||meHm)\ Ay + Ao —p/qo_r(?};q)/q — Tom (16)
Oom, o2,

where); and), are the Lagrange parameters related to the norm constfadtsand
(14d) respectively while; , andn:, ,, are associated to the positivity f ; ando,.

From (16), one sees that, except for the trivial case whére||f 7, = 0,
A2 # 0 at the optimum. Then, one easily derives from (15) that, ataptimum,
gA1 = pAa.
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Finally, combining Equation (15) and the ones stating tha horm con-
straints (14c¢) and (14d) are saturated, after some alg&waget that the optimal
(o*, o}) satisfies

Yot MY o M1 = de/(p+q)( 3 U;l/q)
4

megy ¢ megy

q/(p+q)

Plugging this optimality condition into Problem (14), wet §goblem (7).

B Proof of Proposition 2

The proof of Proposition 2 can be decomposed into three stéfesfirst derive the
optimality conditions for,,,, from which we express a relationship betwegh and
fm at stationnary points. Since the stationnary points aral lognima of the convex
objective function, the minima of (7) are minima of (8). Higathis expression iry,,
is plugged in the original objective function.

The Lagrangian associated to Problem (7) is

1 1
L=5 > G—Hfmllim +CY G- [%’(me(wi) + b) +&— 11
o\ I/ (p+a)
—Zni§i+)\ Z(dﬁ)(zarln/q) > -1 —Zumo’m ;
i 4 m
wheren; andpu,,, are the Lagrange parameters respectively related to thevggof

megGy
n; ando,,,, and\ is the Lagrange parameter pertaining to the norm consifait The
first-order necessary optimality conditior /do,,, = 0 reads

[ fm 3, A a—gy/af -1 1/q -
- + Om d, Z o — tm =0 .

) —p/(p+q)
2
207, p+q oy

As all the Lagrange parameters are non-negative, excefitddrivial case where, for
all m, o, = 0, the Lagrange parametgiis non-zero. We then have that, either

om =0 and || fmllx,, =0, either

/(g+1)
p+q\’ 2 O
oo (50 b (10 5

meGy

pq/(p+q)(q+1)
) 17)

To uncover the relationship of,,, with || f,,||#,, at the stationnary points, we start
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from (17):

1/(q+1) p/(p+aq)(g+1)
1 _(p+q 2/g+1 ;-1 1
= () il (40 X o)

meGy
q+1 q+1 p/(p+q)
p+gq 2/q+1 _
(X o) = 2t (S wswlile) (o X o)
megGy megy megy
q (¢+1)1 (P+a)/(p+a+1)
p+q 2/q+1
( Z 011n/q> = |5 d, p/(p+q)< Z ”meH/i+ > ] (18)
megy meGy

As A # 0, the constraint (7c) is saturated. We use this fact to gedfril Denoting

se= Y. ||fm|\fi/jf1, and summing both sides of (18) ovemwe get
meGy

p+gq
Finally, plugging (18) and (19) in (17), we obtain the redatship

—(pt+a)
o = B )0 (S o)
¢

2) pre
_ (Z dzg/(erqul) S§q+1)/(p+q+1)> . (19)
¢

Note that this equation also holds faf, = 0. It is now sufficient to replace,,, by this
expression in the objective function of Problem (7) to abthie claimed equivalence
with Problem (8) in Proposition 2.

C Overview of Notations and Symbols

Data
X observation domain
n number of training examples
i, ] indices, often running ovell, ..., n}
x; observations it
Yi class labels i{—1, 1}
Kernels
H feature space
) feature mapp : X — H
K reproducing kernel( : X x X — R
(CR scalar productirt; if f(-) = > a;K(x;,-) andg(-) = > a; K (x5, ),
i=1 j=1
then(f, g);, = 21 '21 i K (x;, ;)
1=1j =
Il 1l norm induced by the scalar producthfy || f{|» = /{f, f)
K kernel matrixK;; = K (x;, ;)
; expansion coefficients or Lagrange multipliers
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SVM-related

f function, fromX to R
b constant offset (or threshold) i
& slack variables ifR (constrained to be non-negative)
£ vector of all slack variables iR™
C regularization parameter in front of the empirical risknter
M Lagrange multiplier related to the positivity &f
MKL and CKL-related
K set of admissible kernels
M number of kernels
m kernel index, often running ovéd, ... M}
L number of groups for CKL
L group index, running ovefl, ..., L}
Gr set of indices for group, G, C {1,..., M}
dy cardinality ofG,
Hon mth feature space
K, reproducing kernel for thenth feature space
Om weight of themth kernel in the kernel combination
o vector of kernel weights iR
M
K, equivalentkerneKy, = > o Kp,
m=1
o1, weight of thefth group in the kernel combination
o1 vector of group weights iiR”
02,m weight of themth kernel in the group-kernel combination
) vector of kernel weights iR
Miscellaneous

R set of reals
AT transposed of matrid (ditto for vectors)

. ifx <0
sign sign function, fronR to {—1, 1}, sign(x { 0 ife>0

) a/p\ /4
Lip, q) mixed (p, ¢)-norm, the/(,, ;) norm ofo is <Z ( ) )
4 mege
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