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α i K(x i , x);
2. a metric, and hence a smoothness functional in H, where, for f defined above,

f 2 H = ∞ i=1 ∞ j=1 α i α i K(x i , x j );
3. the mapping φ(x) = K(x, •) and a scalar product between observations: ∀(x, x ′ ) ∈ X 2 , Φ(x), Φ(x ′ ) H = K(x, x ′ ).

In other words, the kernel defines 1. the hypothesis space H;

2. the complexity measure f 2 H indexing the family of nested functional spaces in the structural risk minimization principle [START_REF] Vapnik | The nature of statistical learning theory[END_REF]; 3. the representation space of data endowed with a scalar product.

These observations motivate the developments of means to avoid the use of unsupported kernel, which do not represent prior knowledge about the task at hand, and are fixed before observing data. The consequences of the arbitrary choice that may be involved at this level range from interpretability issues to poor performances (see for example Weston et al. 2001, Grandvalet and[START_REF] Grandvalet | Adaptive scaling for feature selection in SVMs[END_REF]. "Learning the kernel", aims at alleviating these problems, by adapting the kernel to the problem at hand.

A general model of learning the kernel has two components: (i) a family of kernels, that is, a set K = {K θ , θ ∈ Θ}, where Θ is a set of parameters and K θ is the kernel parameterized by θ, and (ii) an empirical functional, whose minimization with respect to θ will be used to choose a kernel in K that best fits the data according to some empirical criterion.

In this paper, we develop the Composite Kernel Learning (CKL) approach, which is dedicated to learning the kernel when there is a known group structure among a set of candidate kernels. This framework applies to learning problems arising from a single data source when the input variables have a group structure, and it is also particularly well suited to the problem of learning from multiple sources. Then, each source can be represented by a group of kernels, and the algorithm aims at identifying the relevant sources and their apposite kernel representation. Thanks to the notion of source embedded in the kernel parameterization, our framework introduces in the Multiple Kernel Learning framework [START_REF] Lanckriet | Learning the kernel matrix with semi-definite programming[END_REF]) the ability to select sources, or alternatively to ensure the use of all sources.

We briefly review the different means proposed to extend kernel methods beyond the predefined kernel setup in Section 2, with an emphasis on Multiple Kernel Learning and the parametric relatives that inspired our approach. In Section 3, we formalize the general CKL framework, starting from basic desiderata, and finishing with a general and compact formulation amenable to optimization. The algorithm is provided in Section 4, and experiments are reported in Section 5. Finally, Section 6 summarizes the paper and provides directions for future research. We used the standard notations found in textbooks, such as [START_REF] Schölkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF]; they are introduced when they first appear in the document, and an overview is provided in appendix C.

Flexible Kernel Methods

From now on, we restrict our discussion to binary classification, where, from n pairs (x i , y i ) ∈ X × {-1, 1} of observations and binary labels, one aims at inferring a decision rule that predicts the class label y of any observation x ∈ X . However, most of our statements carry on to other settings, such as multiclass classification, regression or clustering with kernel methods. Indeed, the penalties we will propose are learned from data, but they are defined without any interdependence with the data-fitting term.

Support Vector Machines

A Support Vector Machine (SVM) is defined as the decision rule sign (f ⋆ (x) + b ⋆ ), where f ⋆ and b ⋆ are the solution of

       min f,b,ξ 1 2 f 2 H + C n i=1 ξ i s. t. y i (f (x i ) + b) ≥ 1 -ξ i , ξ i ≥ 0 , i = 1, . . . , n , (1a) (1b) 
where f ∈ H, b ∈ R and ξ ∈ R n are the optimization variables, and C is a positive regularization parameter that is the only adjustable parameter in the SVM learning problem once H has been chosen. Note that, though C and H are usually tuned in the same outer loop, their role is completely different. While C sets the trade-off between regularity and data-fitting, H, the so-called feature space, defines the embedding of the observations via the mapping Φ. Hence, while choosing C amounts to select a model in a nested family of functional spaces whose size is controlled by f 2 H (or equivalently by the margin in H), choosing H boils down to picking a representation (endowed with a metric) for the observations x.

Adapting the kernel to data is not representative of model selection strategies that typically balance goodness of fit with simplicity. As a result, [START_REF] Vapnik | The nature of statistical learning theory[END_REF] did not provide guidelines for choosing the kernel, which was considered to be chosen prior to seeing data when deriving generalization bounds for SVMs. Following these observations, all methods adapting the kernel to data will be here referred to as kernel learning instead of model selection.

Since solving (1) is usually not flexible enough to provide good results when H is fixed, most applications of SVM incorporate a mechanism for learning the kernel. This mechanism may be as simple as picking a kernel in a finite set, but may also be an elaborate optimization process within a finite or infinite family of kernels. These options are described in more details below.

Learning the Kernel

In our view, kernel learning methods encompass all processes where the kernel K is chosen from a pre-defined set K, by optimizing an empirical functional defined on the training set {x i , y i } n i=1 . With this viewpoint, the most rudimentary, but also the most common way to learn the kernel is cross-validation, that consists here in (i) defining a family of kernels (e.g. Gaussian), indexed by one or more parameters (e.g. bandwidth), K = {K m } M m=1 , where m indexes the trial values for the kernel parameters, and, (ii) computing a cross-validation score on each hyper-parameter setting, and picking the kernel whose hyper-parameters minimize the cross-validation score. In this example, the empirical functional used for learning the kernel is the minimum of the cross-validation score with respect to the trial values of the regularization parameter C.

A thorough discussion of the pros and cons of cross-validation is out of the scope of this paper, but it is clear that this approach is inherently limited to one or two hyperparameters and few trial values. This observation led to several proposals allowing for more flexibility in the kernel choice, where cross-validation may still be used, but only for tuning the regularization parameter C.

Filters, Wrappers & Embedded Methods

As already stated, learning the kernel amounts to learn the feature mapping. It should thus be of no surprise that the approaches investigated bear some similarities with the ones developed for variable selection 1 , where one encounters filters, wrappers and em-bedded methods [START_REF] Guyon | An introduction to variable and feature selection[END_REF]. Some general frameworks, such as hyperkernels [START_REF] Ong | Learning the kernel with hyperkernels[END_REF] do not belong to a single category, but the distinction is appropriate in most cases.

In filter approaches, the kernel is adjusted before building the SVM, with no explicit relationship with the objective value of Problem (1). For example, the kernel target alignment of [START_REF] Cristianini | On kernel-target alignment[END_REF] adapts the kernel matrix to the available data without training any classifier.

In wrapper algorithms, the SVM solver is the inner loop of two nested optimizers, whose outer loop is dedicated to adjust the kernel. This tuning may be guided by various generalization bounds [START_REF] Cristianini | Dynamically adapting kernels in support vector machines[END_REF][START_REF] Weston | Feature selection for SVMs[END_REF][START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF]. In all these methods, the set of admissible kernels K is defined by kernel parameter(s) θ, where θ may be the kernel bandwidth, or a diagonal or a full covariance matrix in Gaussian kernels. The empirical criterion optimized with respect to θ is a generalization bound such as the radius/margin bound (using the actual radius and margin obtained with θ on the training set).

Kernel learning can also be embedded in Problem (1), with the SVM objective value minimized jointly with respect to the SVM parameters and the kernel hyperparameters [START_REF] Grandvalet | Adaptive scaling for feature selection in SVMs[END_REF]. In this line of research, [START_REF] Argyriou | A dc-programming algorithm for kernel selection[END_REF] consider combinations of kernels whose parameters are optimized by a DC (difference of convex functions) program. The present approach builds on the simplest Multiple Kernel Learning (MKL) framework initiated by [START_REF] Lanckriet | Learning the kernel matrix with semi-definite programming[END_REF], which is limited to the combination of prescribed kernels but leads to simpler convex programs.

Multiple Kernel Learning

In MKL, we are provided with M candidate kernels, K 1 , . . . , K M , and we wish to estimate the parameters of the SVM classifier together with the weights of a convex combination of kernels K 1 , . . . , K M that defines the effective kernel K σ

K = K σ = M m=1 σ m K m , σ m ≥ 0 , M m=1 σ m = 1 .
(2)

Each kernel K m is associated to a RKHS H m whose elements will be denoted f m , and σ = (σ 1 , . . . σ M ) ⊤ is the vector of coefficients to be learned under the convex combination constraints. The positiveness constraint ensures that K is positive definite when the base kernels K m are themselves positive definite. The unitary constraint may be seen as a normalization of the effective kernel that is necessary to avoid diverging solutions. In an embedded approach, where the empirical functional used to select K σ is the fitting criterion (1), the unitary constraint on σ is also important to preserve the role of the SVM regularization parameter C. Furthermore, provided that the individual kernels K m are properly normalized (with identical trace norm), the norm constraint on σ can be motivated by generalization error bounds that are valid for learned kernels. The first works in this direction (Lanckriet et al. 2004, Bousquet and[START_REF] Bousquet | On the complexity of learning the kernel matrix[END_REF] were found to be meaningless, with bounds on the expected error never less than one, but [START_REF] Srebro | Learning bounds for support vector machines with learned kernels[END_REF] provide tighter bounds based on the pseudodimension of a family of kernel, which is at most the number of kernels in combination (2).

The original MKL formulation of [START_REF] Lanckriet | Learning the kernel matrix with semi-definite programming[END_REF] was based on the dual of the SVM optimization problem. It was later shown to be equivalent to the following primal problem [START_REF] Bach | Multiple kernel learning, conic duality, and the SMO algorithm[END_REF])

               min f1,...,fM b,ξ 1 2 M m=1 f m Hm 2 + C n i=1 ξ i s. t. y i M m=1 f m (x i ) + b ≥ 1 -ξ i , ξ i ≥ 0 , i = 1, . . . , n , (3a) (3b) 
whose solution leads to a decision rule of the form sign

M m=1 f ⋆ m (x) + b ⋆
. This expression of the learning problem is remarkable in that it only differs slightly from the original SVM problem (1). The squared RKHS norm in H is simply replaced by a mixed-norm, with the standard RKHS norm within each feature space H m , and an ℓ 1 norm in R M on the vector built by concatenating these norms.

With this mixed-norm, the objective function is not differentiable at f m Hm = 0. This is the cause of a considerable algorithmic burden, which is rewarded by the sparseness of solutions, that is, solutions where some functions f m have zero norm. As each function f m is computed from K m , this results in a sparse kernel expansion in (2).

Looking at Problem (3), one may wonder why a mixed-norm should be more flexible than a squared RKHS norm, and why the former should be considered as a kernel learning technique. These questions are answered with the MKL formulation of Rakotomamonjy et al. (2008), which is a variational form of Problem (3), in the sense that the solution of Problem (3) is defined as the minimizer with respect to the additional variable σ of an optimization problem in f 1 , . . . , f M , b, ξ. By introducing the parameters σ 1 , . . . , σ M of the combination (2) in the objective function, kernel learning comes explicitly into view. The resulting optimization problem, which is equivalent to Problem (3), circumvents its differentiability issues, as shown below:

                           min f1,...,fM b,ξ,σ 1 2 M m=1 1 σ m f m 2 Hm + C n i=1 ξ i s. t. y i M m=1 f m (x i ) + b ≥ 1 -ξ i , ξ i ≥ 0 , i = 1, . . . , n M m=1 σ m = 1 , σ m ≥ 0 , m = 1, . . . , M , (4a) (4b) (4c) 
where, here and in what follows, u/v is defined by continuation at zero as u/0 = ∞ if u = 0 and 0/0 = 0. MKL may be used in different prospects. When the individual kernels K m represent a series, such as Gaussian kernels with different scale parameters, it constitutes an alternative to cross-validating the kernel parameters. When the input data originates from M differents sources, and that each kernel is affiliated to one group of input variables, it enables to select relevant sources. However, MKL is not meant to address problems where several kernels pertain to a single source. In this situation, its sparseness mechanism does not account for the structure among kernels. In particular, it cannot favor solutions discarding all the kernels computed from an irrelevant source. Although most of the related coefficients should vanish in combination (2), spurious correlation may cause irrelevant sources to participate to the solution. A single coefficient could be attached for each source, but this solution forbids kernel adaptation within each source, whose equivalent kernel would be clamped to the average kernel. Note also that, in the opposite situation where we want to involve all sources in the solution, with only a few kernels per source, MKL is not guaranteed to provide a solution complying with the requisite.

Group and Composite Penalties

The selection/removal of kernels between or within predefined groups relies on the definition of a structure among kernels. This type of hierarchy has been investigated among variables in linear models [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF]Lin 2006, Szafranski et al. 2008a, Zhao et al. to appear).

The very general Composite Absolute Penalties (CAP) family of Zhao et al. (to appear) considers a linear model with M parameters, β = (β 1 , . . . , β M ) T . Let I = {1, . . . , M } be a set of index on these parameters, a group structure on the parameters is defined by a series of L subsets {G ℓ } L ℓ=1 , where G ℓ ⊆ I. Additionally, let {γ ℓ } L ℓ=0 be L + 1 norm parameters. Then, the member of the CAP family for the chosen groups and norm parameters is

L ℓ=1 m∈G ℓ |β m | γ ℓ γ0/γ ℓ .
To our knowledge, there is no efficient general purpose algorithm for fitting parametric models with penalties belonging to the CAP family, but for the prominent particular cases listed below, such algorithms exist. They all consider γ 0 = 1 that enforces sparseness at the group level and identical norms {γ ℓ } L ℓ=1 at the parameter level: • γ ℓ = 1 is the LASSO [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], which clears the group structure;

• γ ℓ = 4/3 is the Hierarchical Penalization (Szafranski et al. 2008a), which gives rise to few dominant variables within groups;

• γ ℓ = 2 is the group-LASSO [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF], which applies a proportional shrinkage to the variables within groups;

• γ ℓ = ∞ is the iCAP penalty (examined in more details by Zhao et al. to appear), which limits the maximal magnitude of the coefficients within groups.

Mixed-norms correspond to groups defined as a partition of the set of variables. A CAP may also rely on nested groups, G 1 ⊂ G 2 ⊂ . . . ⊂ G L , and γ 0 = 1, in which case it favors what Zhao et al. call hierarchical selection, that is, the selection of groups of variables in the predefined order {I \ G L }, {G L \ G L-1 }, . . . , {G 2 \ G 1 }, G 1 according to some heredity principle. This example is provided here to stress that Zhao et al.'s notion of hierarchy differs from the one that will be introduced in Section 3.

Relations between MKL and CAP

CAP and its earlier predecessor LASSO have been initiated in the parametric regression setting. Using the notations introduced for CAP, the LASSO penalty is

L ℓ=1 m∈G ℓ |β m | = M m=1 |β m | = M m=1 β 2 m 1/2 ,
but the LASSO penalty can take a more general form. In the example of M RKHS H 1 , . . . H M , one may consider the penalty

M m=1 f m Hm = M m=1 α ⊤ m K m α m 1/2 , where α m ∈ R n , K m is the mth kernel matrix K m (i, j) = K m (x i , x j ) and f m (x) = n i=1 α m (i)K(x i , x).
The representer theorem [START_REF] Schölkopf | Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond[END_REF] ensures that the f m solving the MKL Problem (3a) are of the above form. Hence, MKL may be seen as a kernelization of LASSO, extended to SVM classifiers, whose penalty generalizes the ones proposed in the framework of additive modeling with spline functions (see [START_REF] Grandvalet | Outcomes of the equivalence of adaptive ridge with least absolute shrinkage[END_REF] to arbitrary RKHS. In this sense, MKL extends the simplest member of the CAP family to SVM classifiers.

Being a sum of ℓ 2 norms, the MKL penalty is also of the group-LASSO type, but the groups are defined at the level of the expansion coefficients α m .2 CKL extends the MKL framework by defining groups at a higher level, that is at the kernel level: Composite Kernel Learning is to CAP what Multiple Kernel Learning is to LASSO.

Composite Kernel Learning

The flat combination of kernels in MKL does not include any mechanism to cluster the kernels related to each source. In order to favor the selection/removal of kernels between or within predefined groups, one has to define a structure among kernels, which will guide the selection process. We present here the kernel methods counterpart of the methods surveyed in Section 2.3 for parametric models.

Groups of Kernels

We consider problems where we have a set of kernels, partitioned in groups, which may correspond to subsets of inputs, sources, or more generally distinct families of similarity measures between examples. This structure will be represented by a tree, as we envision more complex structures with a hierarchy of nested groups. We index the tree depth by h, with h = 0 for the root, and h = 2 for the leaves. The leaf nodes represent the kernels at hand for the classification task; the nodes at depth 1 stand for the group-kernels formed by combining the kernels within each group; the root represents the global effective kernel merging the group-kernels. Without loss of generality, we consider that all leaves are at depth 2. If not the case, an intermediate node should be inserted at depth 1 between the root and each isolated leaf, as illustrated in Figure 1.
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In CKL, learning the kernel consists in learning the parameters of each combination of kernels. There are L + 1 such combinations, one at each group level, and one at the root level. As illustrated in Figure 1, the weights of these combinations may be thought of as being attached to the branches of the tree: a branch stemming from the root and going to node ℓ is labelled by σ 1,ℓ , which is the weight associated to the ℓth group in the effective kernel; a branch stemming from node ℓ at depth 1 and reaching leaf m is labelled by σ 2,m , which is the weight associated to the mth kernel in its group-kernel.

Kernel selection

In the learning process, we would like to suppress the kernels and/or the groups that are irrelevant for the classification task. In the tree representation, this removal process consists in pruning the tree. When a branch is pruned at the leaf level, a single kernel is removed from the combination. When a subtree is pruned, a group-kernel is removed from the combination, and the corresponding group of kernels has no influence on the classifier. With the branch labeling introduced above and illustrated in Figure 1, removing kernel m consists in setting σ 2,m to 0, and removing group ℓ consists in setting σ 1,ℓ to 0.

For the purpose of performing flat kernel selection, σ 1,ℓ is redundant with σ 2,m , but the decomposition proposed here allows to pursue different goals, by constraining the solutions to have a given sparsity pattern induced by the sparseness constraints at each level of the hierarchy: in the example of Figure 1, though they delete the same number of leaves, we may prefer for a solution with σ 1,3 = 0 (that is, the removal of group 3 composed of kernels 5 and 6) to σ 2,3 = σ 2,4 = 0 that also removes two kernels, but retains all the groups.

We now elaborate on the notations introduced in Section 2.3 for the CAP family. The M kernels situated at the leaves are indexed by {1, . . . , m, . . . , M }, and the groupkernels (at depth 1) are indexed by {1, . . . , ℓ, . . . , L}. The set G ℓ of cardinality d ℓ indexes the leaf-kernels belonging to group-kernel ℓ, that is, the children of node ℓ. The groups form a partition of the leaf-kernels, that is, ∪ ℓ G ℓ = {1, . . . , m, . . . , M } and ℓ d ℓ = M . Note that, to lighten notations, the range of indexes will often be omitted in summations, in which case: indexes i and j refer to examples and go from 1 to n ; index m refers to leaf-kernels and goes from 1 to M ; index ℓ refers to groupkernels and goes from 1 to L .

In a hard selection setup, where σ 1 = (σ 1,1 . . . σ 1,L ) ⊤ and σ 2 = (σ 2,1 . . . σ 2,M ) ⊤ are binary vectors, the learning problem is stated as follows

                                     min f1,...,fM b, ξ, σ1 σ2 1 2 m f m 2 Hm + C i ξ i s. t. y i ℓ σ 1,ℓ m∈G ℓ σ 2,m f m (x i ) + b ≥ 1 -ξ i i = 1, . . . , n ξ i ≥ 0 i = 1, . . . , n ℓ d ℓ σ 1,ℓ ≤ s 1 , σ 1,ℓ ∈ {0, 1} ℓ = 1, . . . , L m σ 2,m ≤ s 2 , σ 2,m ∈ {0, 1} m = 1, . . . , M , (5a) (5b) (5c) (5d) (5e) 
where s 1 and s 2 designate the number of leaves that should be retained after pruning.

The constraint (5d) on σ 1 imposes some pruning at the group level, while the constraint (5e) on σ 2 imposes some additional pruning at the leaf level. Note that constraint (5e) may only be active if s2 ≤ s1. Problem (5) has a number of shortcomings. First, it is an inherently combinatorial problem, for which finding a global optimum is challenging even with a small number of kernels. Second, this type of hard selection problem is known to provide unstable solutions [START_REF] Breiman | Heuristics of instability and stabilization in model selection[END_REF], especially when the number of kernels is not orders of magnitude lower than the training set size. Unstability refers here to large changes in the overall predictor, in particular via the changes in the set of selected kernels, in response to small perturbations of the training set. Besides having detrimental effects on the variability of model parameters, unstability has been shown to badly affect model selection [START_REF] Breiman | Heuristics of instability and stabilization in model selection[END_REF]. More recently, stability has been shown to characterize the generalization ability of learning algorithms [START_REF] Bousquet | Stability and generalization[END_REF].

As the kernel choice is especially decisive for small to moderate sample sizes, we should devise well-behaved algorithms in this setup. Hence, we will consider stable soft-selection techniques, such as the ones based on ℓ 2 or ℓ 1 regularization.

Soft Selection

To convert Problem (5) in a smooth soft-selection problem, we will transform the binary vectors σ 1 and σ 2 in continuous positive variables, which may either "choke" some branches or prune them. We also replace the hyper-parameters s 1 and s 2 in constraints (5d) and (5e) by 1, since their role is redundant with the parameters d ℓ when the latter are not restrained to be equal to the group size. The problem reads

                                     min f1,...,fM b, ξ, σ1 σ2 1 2 m f m 2 Hm + C i ξ i s. t. y i ℓ σ 1,ℓ m∈G ℓ σ 2,m f m (x i ) + b ≥ 1 -ξ i i = 1, . . . , n ξ i ≥ 0 i = 1, . . . , n ℓ d ℓ σ 2/p 1,ℓ ≤ 1 , σ 1,ℓ ≥ 0 ℓ = 1, . . . , L m σ 2/q 2,m ≤ 1 , σ 2,m ≥ 0 m = 1, . . . , M , (6a) (6b) (6c) (6d) (6e) 
where we incorporated two hyper-parameters p and q appearing respectively in constraints (6d) and (6e), whose roles are to drive these constraint closer or further from their binary counterpart in (5), as illustrated in Figure 2. These exponents can thus be tuned to implement harder or softer selection strategies, and different values for p and q will lead to more or less emphasis on sparsity within or between groups. Some properties related to the choice of p and q will be discussed in the following section, and the practical outcomes of these choices will be illustrated in Section 5.

Properties

Problem ( 6) is difficult to analyze and to optimize. We derive here a "flat" equivalent formulation using a single weight per kernel K m , using the simple fact that the composition of combinations is itself a combination. The kernel group structure will not be lost in the process, it will be transferred to the weights of the combination. This simplification proceeds in three steps (see details in Appendix A). First, variable σ 2 disappears in a change of variables where σ appears, then, we use a necessary optimality condition that ties σ 1 with σ for all stationnary points, including the global maximum. 3 Finally, plugging these optimality conditions into Problem (6), we get

                         min f1,...,fM b, ξ, σ 1 2 m 1 σ m f m 2 Hm + C i ξ i s. t. y i m f m (x i ) + b ≥ 1 -ξ i , ξ i ≥ 0 i = 1, . . . , n ℓ d p/(p+q) ℓ m∈G ℓ σ 1/q m q/(p+q) ≤ 1 , σ m ≥ 0 m = 1, . . . , M , (7a) (7b) (7c) 
where, here and it what follows

m σ 1/0 m 0 is defined as the ℓ ∞ norm, with value max m σ m since σ m ≥ 0.
Problem ( 7) is equivalent to Problem (6) in the sense that its stationnary points correspond to the ones of (6). As the objective function is convex, the stationnary points are minima and multiple (local) minima may only occur if the feasible domain is non-convex.

This flat formulation is more easily amenable to the analysis of convexity, and optimization can be carried out by a simple adaptation of the SimpleMKL algorithm (Szafranski et al. 2008b). Indeed, compared to (4), Problem (7) only differs in constraint (7c) on σ, where the ℓ 1 norm is replaced by a mixed-norm ℓ (1/q, 1/(p+q)) . As a special case, MKL is recovered from CKL for parameters (p, q) = (0, 1).

Proposition 1 Problem (7) is convex if 0 ≤ q ≤ 1 and 0 ≤ p + q ≤ 1.
3 A stationnary point is defined as a point satisfying the KKT conditions.

Proof. A problem minimizing a convex criterion on a convex set is convex:

• the objective function (7a) is convex (cf. Rakotomamonjy et al. 2008);

• the usual SVM constraints (7b) define convex sets in (f 1 , . . . , f M , b, ξ);

• if 0 ≤ q ≤ 1 and 0 ≤ p + q ≤ 1, the constraints (7c) defines a convex set in σ since

- m∈G ℓ σ 1/q m q is convex; - ℓ t 1/(p+q) ℓ
is convex and non-decreasing in t ℓ .

The proposition below generalizes the equivalence between the MKL formulations [START_REF] Bach | Multiple kernel learning, conic duality, and the SMO algorithm[END_REF] and Rakotomamonjy et al. (2008), that is, between Problems (3) and ( 4) respectively. If MKL may be seen as the kernelization of the LASSO, CKL can be interpreted as the kernelization of the hierarchical penalizer of Szafranski et al. (2008a) or more generally of the Composite Absolute Penalty (CAP) of Zhao et al. (to appear).

Proposition 2 Problem (7) is equivalent to              min f1,...,fM b, ξ 1 2 ℓ d t ℓ m∈G ℓ f m s Hm r/s 2/r + C i ξ i s. t. y i m f m (x i ) + b ≥ 1 -ξ i ξ i ≥ 0 i = 1, . . . , n , (8a) (8b) 
where s = 2 q + 1 , r = 2 p + q + 1 and t = 1 -r s , in the sense that the minima of (7) are the minima of (8). See proof in Appendix B.

Corollary 1 Problem (7) is sparse at the group level if and only if p + q ≥ 1. It is sparse at the leaf level if and only if q ≥ 1 or p + q ≥ 1.

Proof. This is the direct consequence of the equivalence stated in Proposition 2, since sparsity is obtained if and only if the boundary of the feasible region is nondifferentiable at f m = 0 [START_REF] Nikolova | Local strong homogeneity of a regularized estimator[END_REF]. The sub-differential at f m Hm = 0 is reduced to one point if and only if s > 1, that is q < 1, and the sub-differential at

m∈G ℓ f m Hm = 0 is reduced to one point if and only if r > 1, that is p + q < 1.
Note that the external square on the norm of (8) affects the strength of the penalty, but not its type. Hence, CKL penalizes a kernelized mixed-norm ℓ (r, s) in f m Hm .

Table 1 displays some particular instances of the equivalence given in Proposition 2. Since the latter was obtained from the primal formulation of Problem (7), it also holds for non-convex penalties, such as the one displayed in the last column of the table.

(p, q) (0, 1) (1, 0) (-1, 1) (1/2, 1/2) (1,1) σ m ℓ (1, 1) ℓ (1, ∞) ℓ (∞, 1) ℓ (1, 2) ℓ (1/2, 1) f m Hm ℓ (1, 1) ℓ (1, 2) ℓ (2, 1) ℓ (1, 4/3) ℓ (2/3, 1)
Table 1 -Equivalence between mixed-norms in σm in Problem (7), and mixed-norms in fm Hm in Problem (8) for some particular (p, q) values.

The first column of Table 1 illustrates that CKL indeed generalizes MKL, since it enables to implement a ℓ (1, 1) mixed-norm, that is the ℓ 1 norm of MKL. The second column leads to a ℓ (1, 2) mixed-norm, that could also be obtained by an MKL algorithm using the average of leaf-kernels within each group. The third column displays a more interesting result, with the ℓ (2, 1) that encourages a sparse expansion within each group, and then performs a standard SVM with the kernel formed by summing the group-kernels. This setting corresponds to the situation where we want all sources to participate to the solution, but where the relevant similarities are to be discovered for each source. It has been used in the regression framework for audio signals [START_REF] Kowalski | Sparsity and persistence: mixed norms provide simple signals models with dependent coefficients[END_REF]. The fourth solution, leading to a ℓ (1, 4/3) norm is the kernelized version of hierarchical penalization (Szafranski et al. 2008a), which takes into account the group structure, provides sparse results at the group-level and approximately sparse ones at the leaf level, with few leading coefficients. Finally, the last column displays a non-convex solution that enables exact sparsity at the group-level and at the leaf-level, with a group-structure that greatly encourages group selection.

Figure 3 illustrates the shape of the feasible region

ℓ d t ℓ m∈G ℓ f m s Hm r/s ≤ 1 ,
for the values of (r, s) given in Table 1, in a problem with M = 3 kernels. The left column depicts the 3D-shape in the positive octant, where the two horizontal axes represent the positive quadrant ( f 1 H1 , f 2 H2 ) associated to the first group G 1 , and the vertical axis represents f 3 H3 associated to the second group G 2 .

The cuts at f 2 H2 = 0 and f 3 H3 = 0 are displayed to provide a between-group plane and the within group view of the feasible region in the center and right column respectively. These plots provide an intuitive way to comprehend the convexity and sparsity issues. Sparsity is related to convexity and the shape of the boundary of the admissible set as f m Hm goes to zero [START_REF] Nikolova | Local strong homogeneity of a regularized estimator[END_REF].

Solving the Problem

Since CKL generalizes MKL, we begin this section by a brief review of the algorithmic developments of MKL dedicated to solve Problem (3) or one of its equivalent forms. The original MKL algorithm of [START_REF] Lanckriet | Learning the kernel matrix with semi-definite programming[END_REF] was based on a quadraticallyconstrained quadratic program (QCQP) solver that had high computational requirements and was thus limited to small problems, that is, small numbers of kernels and ℓ (1, 1) 1 for a problem with three kernels (K1 and K2 in the same group, K3 in the second group) :left, 3-D representation in ( f1 H 1 , f2 H 2 , f3 H 3 ) ; center: between-group cut at f2 H 2 = 0; right: within-group cut at f3 H 3 = 0 data points. This restraint motivated the introduction of a smoothing term allowing to use the SMO algorithm [START_REF] Bach | Multiple kernel learning, conic duality, and the SMO algorithm[END_REF].

f 3 H 3 1 1 f 1 H 1 f 2 H 2 1 1 f 1 H 1 ℓ (1, 2) f 3 H 3 1 1 f 1 H 1 f 2 H 2 1 1 f 1 H 1 ℓ (2, 1) f 3 H 3 1 1 f 1 H 1 f 2 H 2 1 1 f 1 H 1 ℓ (1, 4/3) f 3 H 3 1 1 f 1 H 1 f 2 H 2 1 1 f 1 H 1 ℓ (2/3, 1) f 3 H 3 1 1 f 1 H 1 f 2 H 2 1 1 f 1 H 1 Figure 3 -Feasible regions for the mixed-norm of Table
The following generation of MKL algorithms was then based on wrapper algorithms, consisting in two nested optimization problems, where the outer loop optimizes the kernel and the inner loop is a standard SVM solver. The outer loop was a cutting plane algorithm for the Semi-Infinite Linear Program (SILP) of [START_REF] Sonnenburg | Large scale Multiple Kernel Learning[END_REF] that optimizes the non-smooth dual of Problem (3); it was later improved by a gradient algorithm addressing Problem (4) in the SimpleMKL of Rakotomamonjy et al. (2008).

The benefit of these approaches is to rely on standard SVM solvers, for which several efficient implementations exist. This type of approach was also used in the multiple task learning framework by [START_REF] Argyriou | Convex multi-task feature learning[END_REF], and again in some recent developments of MKL [START_REF] Xu | An extended level method for efficient multiple kernel learning[END_REF][START_REF] Bach | Exploring large feature spaces with hierarchical multiple kernel learning[END_REF].

We first chose the gradient-based approach that was demonstrated to be efficient for MKL (Szafranski et al. 2008b). Nevertheless, moving along a curved surface such as the ones illustrated in Figure 3 may be problematic for some mixed-norms. Hence, we pursue here another wrapper approach, where we will use a fixed point strategy to update the kernels parameters in the outer loop.

A Wrapper Approach

Our wrapper scheme extends SimpleMKL by considering the following optimization problem

         min σ J(σ) s. t. ℓ d p ℓ m∈G ℓ σ 1/q m q 1/(p+q) ≤ 1 , σ m ≥ 0 m = 1, . . . , M , (9a) (9b) 
where J(σ) is defined as the objective value of

             min f1,...,fM b, ξ 1 2 m 1 σ m f m 2 Hm + C i ξ i s. t. y i m f m (x i ) + b ≥ 1 -ξ i ξ i ≥ 0 ∀i . (10a) (10b) 
In the inner loop, the criterion is optimized with respect to {f m }, b and ξ, considering that the coefficients σ are fixed. In the outer loop, σ is updated to decrease the criterion, using an expression derived from the optimality conditions, with the dual variables related to {f m }, b and ξ being fixed.

First-Order Optimality Conditions

To lay down the foundations of our algorithm, we derive the first-order optimality conditions for each part of Problem (7). These conditions characterize the global mini-mizer if Problem ( 7) is convex, and all local minima otherwise. The Lagrangian reads

L = 1 2 m 1 σ m f m 2 Hm + C i ξ i - i α i y i m f m (x i ) + b + ξ i -1 - i η i ξ i + λ ℓ d p ℓ m∈G ℓ σ 1/q m q 1/(p+q) -1 - m µ m σ m ,
where α i and η i , the usual positive Lagrange multipliers related to the constraints (7b) on the slack variable ξ i , will be optimized by considering Problem (10), while λ and µ m are the positive Lagrange multipliers related to constraints (7c) on σ m , that appear in Problem (9).

Optimality Conditions for f m , b and ξ

We first focus on the optimality conditions of Problem (10). The derivative of L with respect to f m , b and ξ give

∂L ∂f m = 0 ⇒ f m (•) = σ m i α i y i K m (x i , •) ∂L ∂b = 0 ⇒ i α i y i = 0 ∂L ∂ξ i = 0 ⇒ 0 ≤ α i ≤ C .
Hence, the equivalent dual formulation of Problem ( 10) is a standard SVM problem

               max α - 1 2 i, j α i α j y i y j K σ (x i , x j ) + i α i s. t. i α i y i = 0 C ≥ α i ≥ 0 i = 1, . . . , n , (11a) (11b) (11c) 
where K σ is the effective kernel defined in (2). Note that this dual pertains to the sub-problem (10), not to the global problem (7).

Optimality Conditions for σ m

The first-order optimality conditions for σ m , derived in Appendix B, establish the relation between σ m and f m Hm , which is

σ m = f m 2q/(q+1) Hm d -1 ℓ s ℓ p/(p+q+1) ℓ ′ d p/(p+q+1) ℓ ′ s (q+1)/(p+q+1) ℓ ′ -(p+q) (12) 
where

s ℓ = m∈G ℓ f m 2/(q+1) Hm . Since f m 2 Hm = σ 2 m i,j
α i α j y i y j K m (x i , x j ), Equation ( 12) only provides an implicit definition of the optimal value of σ m . Let g m (σ) denote the right-hand-side of Equation ( 12), we have that g(σ) = (g 1 (σ), . . . , g M (σ)) is a continuous mapping from the closed unit ball defined by constraint (9b) to itself. Hence, Brouwer's fixed point theorem applies,4 and the outer loop of the wrapper can be performed by a fixed point strategy, using the expression (12). When the values of p and q do not define a convex set in (9b), Brouwer's theorem does not hold anymore. Nevertheless, one can circumvent this problem by considering the optimization with respect to σ 1 and σ 2 , such as in Problem (6) provided the constraints (6d) and (6e) both span closed unit balls.

Algorithm

We now have all the ingredients to define our wrapper algorithm.

Algorithm 1: CKL initialize σ solve the SVM problem → J(σ) repeat repeat σ = g(σ)
// with gm(σ) defined by the l.h.s of (12)

until convergence solve the SVM problem → J(σ)

until convergence

The stopping criterion for assessing the convergence of σ can be based on standard criteria for fixed point algorithms, while the one related to the SVM solver can be based on the duality gap. In the following experiments, it is respectively based on the stability of σ and J(σ).

Channel Selection for Brain Computer Interfaces

We consider here two studies in Brain-Computer Interfaces (BCI). In BCI, one aims at recognizing the cerebral activity of a person subject to a stimulus, thanks to an array of sensors placed on the scalp of the subject that records a set of electroencephalograms (EEG). Here, the EEG signals are collected from 64 electrodes or channels, positioned onto the scalp as illustrated in Figure 4. Automated channel selection has to be performed for each single subject since it leads to better performances or a substantial reduction of the number of useful channels [START_REF] Schröder | Robust EEG channel selection across subjects for brain computer interfaces[END_REF]. Reducing the number of channels involved in the decision function is of primary importance for BCI real-life applications, since it makes the acquisition system cheaper, easier to use and to set-up.

In this setup, each electrode may be considered as a source that generates a series of potentials along the experiment. Composite Kernel Learning is well-suited to the identification of a specific behavior in the EEG signals, by its ability to encode the notion of channels. Besides the benefits of potentially reducing the number of channels, CKL may also be beneficial if able to identify the salient features within each channel. Hence, we will experiment with a non-convex parameterization of CKL that encourages sparseness within and between groups, in order to reach a sparse solution at the channel and the feature levels. Note that, for non-convex settings, we have no means to assess the convergence towards a global optimum. Though the SVM solver may return the optimal decision rule for the returned σ, we have no way to secure global convergence for the outer Problem (9), and no certificate of sub-optimality, such as the one that could be provided by a duality gap.

In the following, CKL 1/2 stands for a convex version of our algorithm, with p = q = 1/2 (a ℓ (1,4/3) mixed-norm), CKL 1 is a non-convex version, with p = q = 1 (a ℓ (2/3,1) dissimilarity, that we will also abusively qualify as a mixed-norm). Note that MKL is also implemented by our algorithm, with p = 0 and q = 1.

P300 Speller Paradigm

Protocol

The so-called oddball paradigm states that a rare expected stimulus produces a positive deflection in an EEG signal after about 300 ms. The P300 speller interface is based on this paradigm [START_REF] Farwell | Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials[END_REF]. Its role is to trigger a related event potential, namely the P300, in response to a visual stimulus. This protocol uses a matrix composed of 6 rows and 6 columns of letters and numbers, as illustrated in Figure 5. First, the subject chooses a specific character in the matrix. Then, the 12 lines (rows or columns) are intensified in a random order. When an intensified row or column contains the chosen character, the subject is asked to count; this is assumed to generate a P300. Because the signal to noise ratio of a scalp EEG signal is usually low, this process is repeated 15 times per character. The dataset, collected for a BCI competition [START_REF] Blankertz | The BCI competition 2003: progress and perspectives in detection and discrimination of EEG single trials[END_REF]), is processed as described in [START_REF] Rakotomamonjy | BCI competition 3: Dataset 2 -ensemble of SVM for BCI P300 speller[END_REF]. For each channel, 14 time samples (that will be referred as frames), going from the beginning of the stimulus up to 667 ms after, have been extracted from the EEG signals. Frames 7 and 8, respectively centered around 300 and 350 ms, are the most salient ones according to the paradigm.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
The dataset is composed of 7560 EEG signals (observations), paired with positive or negative stimuli responses (classes). The 896 features extracted (64 channels × 14 frames) are not transformed. However, to unify the presentation, we will refer to these features as kernels. The kernels related to a given channel form a group of kernels, and we have to learn M = 896 coefficients σ m , divided into L = 64 groups. Thus, our goal is to identify the significant channels, and within these channels, the significant frames, which discriminate the positive from the negative signals.

The classification protocol is the following: we have randomly picked 567 training examples from the dataset and used the remaining as testing examples. The parameter C has been selected by 5-fold cross-validation. This overall procedure has been repeated 10 times. Using a small part of the examples for training is motivated by the use of ensemble of SVM (that we do not consider here) at a later stage of the EEG classi-fication procedure [START_REF] Rakotomamonjy | BCI competition 3: Dataset 2 -ensemble of SVM for BCI P300 speller[END_REF]. The performance is measured by the AUC, due to the post-processing that is done throughout repetitions in the P300: as the final decision regarding letters is taken after several trials, the correct row and column should receive high scores to identify correctly the letter.

Results

Table 2 summarizes the average performance of SVM, MKL, and CKL, that is, for 4 different penalization terms: quadratic penalization for the classical SVM (that is, trained with the mean of the 896 kernels), ℓ 1 norm for MKL, and mixed-norms for the two versions of CKL assessed here: CKL 1/2 and CKL 1 . The number of channels and kernels selected by these algorithms and the time needed for the training process are also reported, together with the standard deviations. The prediction performances of the four algorithms are similar, with an insignificant advantage for MKL. In terms of kernels, MKL is much sparser than CKL 1/2 , but twice less sparse than CKL 1 . Regarding the number of groups, CKL 1 is still the sparsest solution, removing about three quarters of the channels. At this level CKL 1/2 is sparser than MKL, although it retained many more kernels: as expected, CKL 1/2 favors sparseness among groups rather than sparseness in kernels.

Insofar as SVM does not require to estimate the coefficients σ m , the training process is much faster than for other methods. The kernel learning methods training time is however still reasonable, and is rewarded by interpretability and cheaper evaluations in the test phase. CKL 1/2 is slower than MKL and CKL 1 on this problem, but this difference is not consistently observed: the orders of magnitude are identical for all versions.

Figure 6 represents the median relevance of the electrodes computed over the 10 experiments. It displays which electrodes have been selected by the different kernel learning methods. For one experiment, the relevance of channel ℓ is computed by the relative contribution of group ℓ to the norm of the solution, that is

d t ℓ Z m∈G ℓ f ⋆ m s Hm 1/s , ( 13 
)
where Z is a normalization factor that sets the sum of relevances to one and where The darker the color, the higher the relevance. Electrodes in white with a black circle are discarded (the relevance is exactly zero).

f ⋆ m 2 Hm = σ ⋆ m 2 i, j α ⋆ i α ⋆ j y i y j K m (x i , x j ) .
The results for CKL 1 are particularly neat, with high relevances for the electrodes in the areas of the visual cortex (lateral electrodes PO 7 and PO 8 ). The scalp maps for MKL and CKL 1/2 show the importance of the same region, followed by the primary motor and somatosensory cortex (C • and CP Z ). 5 In addition, they also highlight numerous frontal electrodes that are not likely to be relevant for the BCI P300 Speller paradigm. Finally, the plots of relevance through time (not shown) are similar for all kernel learning methods, with a sudden peak at frames 7 and 8 followed by a slow decline.

Sanity check for channel selection

We provide supplementary experiments to support the relevance of the channel selection mechanism of CKL. We first have randomly picked x channels, then randomly selected y kernels among the x × 14 candidates. Variable x (resp. y) has been set so that it corresponds to the average number of channels (resp. kernels) used by CKL 1/2 and CKL 1 , that is 41 and 15 (resp. 513 and 66).

Table 3 gives the average performances for classical SVMs: SVM x is trained with a subset of x channels randomly chosen as described above, while SVM CV is trained with the single channel that reaches the highest cross-validation score. -Electrode median relevance for different SVMs, with channels and kernels randomly selected (P300 speller paradigm). The darker the color, the higher the relevance. Electrodes in white with a black circle are discarded (the relevance is exactly zero). For SVMCV , electrodes in black correspond to the best channels identified using a cross-validation procedure (over the 10 repetitions, PO8 and C1 have been selected 3 times each).

With only one channel left, SVM CV performs significantly worse than any other method. Several channels are thus necessary to build accurate SVM classifiers. Note that most of the channels picked out by cross-validation, shown in Figure 7, are also identified by CKL (see Figure 6). SVM 15 behaves poorly compared with CKL 1 , highlighting the ability of CKL to identify appropriate channels. The same remark applies to SVM 41 , where, despite the important number of channels and kernels involved, the average AUC for is much lower than for CKL 1/2 that selected 41 channels. Figure 7 shows that some of the channels assumed to be relevant according to CKL 1/2 are missing here, especially electrodes PO 8 and P 8 located in the visual cortex, and electrodes CP Z , CP 1 and C 1 in the somatosensory cortex.

Contingent Negative Variation paradigm

Protocol

This new set of BCI experiments aims at detecting some activated regions in the brain when an event is being anticipated (Garipelli et al. to appear). 6 The potentials are here recorded according to the Contingent Negative Variation (CNV) paradigm [START_REF] Walter | Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain[END_REF]. In this paradigm, a warning stimulus predicts the appearance of an imperative stimulus in a predictable inter-stimulus-interval. More precisely, an experiment processes as follows. A subject, looking at a screen, encounters two kinds of events: 2. In "NOGO " events, a yellow dot is displayed in the middle of the screen. The subject has been instructed to do nothing in this situation. When, four seconds later, the dot becomes red, the subject does not react.

The data gather recordings on two subjects, in 20 experimental sessions, each being composed of 10 trials. For each subject, we have thus 200 examples. The 64 EEG signals are available from time 0 to 3.25 s, in the anticipation phase, before the event appears (at 4 s). This results in 64 × 21 = 1344 linear kernels.

Available knowledge on the problem identifies the central role of the electrode C Z . More generally, the channels located in the central region of the scalp are expected to be relevant for classification, contrary to the one at the periphery. Complying with that knowledge, Garipelli et al. (to appear) use Linear Discriminant Analysis (LDA) on C Z to estimate the predictability of anticipation.

Results

We compare the results obtained with LDA to the ones achieved by CKL. The parameter C is estimated by 10-fold cross-validation, which is also used to estimate the test error rate. This procedure is slightly biased, but since all the methods share this bias, the comparison should be fair. Considering the high variability between folds, we did not go through a thorough double cross-validation procedure. The reported standard deviations are likely be irrepresentative of the variability with respect to changes in the training set, due to the known bias of the variance estimators in K-fold cross-validation [START_REF] Bengio | No unbiased estimator of the variance of K-fold crossvalidation[END_REF].

Tables 4 and5 reports the average performances for CKL 1/2 , CKL 1 and MKL in terms of accuracy, channel and kernel selection, and training time. The accuracy achieved by a SVM, trained with the mean of the 1344 kernels, is also reported.

Concerning Subject 1, all SVMs perform slightly better than LDA. In this experiment, CKL 1/2 is much less sparse, in the number of kernels and channels, than MKL or CKL 1 . The latter only retains 9 channels for classifying. Results concerning interpretation are obtained with the whole dataset. Figure 8 shows the relevance of the electrodes, for both subject, as computed in (13) for the P300 speller problem. The three versions of CKL highlight the central region of the brain. However, CKL 1 discards most peripheric channels, whereas CKL 1/2 and MKL locate numerous relevant electrodes out of the central area. For the first subject, C Z is estimated to be relevant by all methods. The results for the second subject are somewhat puzzling, since the contribution of C Z is much lower than the one of F Z . This shift may be due to an inappropriate positioning of the measurement device on the scalp.

Sanity check for channel selection

Here also, additional experiments are carried out to support the channel and kernel selection given by CKL, using the scheme described in Section 5.1.3. We consider two random draws per subject, that correspond, in terms of number of kernels and channels, to the solutions produced by CKL 1/2 and CKL 1 . This process is repeated 10 times. Table 6 summarizes the performances for these SVMs, as for a SVM trained with the channel that reaches the highest cross-validation score. Figure 9 Concerning Subject 1, the first two versions of SVMs perform badly, especially SVM 9 where C Z was chosen only once and CP Z only twice over the 10 repetitions. The error rate for SVM CV is comparable to the one of LDA, and it selects C 2 , which is relevant in all versions of CKL. The error rate of SVM CV is slightly greater than the one of CKL 1/2 or CKL 1 .

For Subject 2, SVM CV fails compared to CKL 1 , but reaches the performance of CKL 1/2 with the "outsider" FC 1 . SVMs with randomly selected kernels behave poorly again, with regard to CKL.

Conclusion

This paper is at the crossroad of kernel learning and variable selection. From the former viewpoint, we extended multiple kernel learning to take into account the group structure among kernels. From the latter viewpoint, we generalized the hierarchical penalization frameworks based on mixed norms to kernel classifiers, by considering penalties in RKHS instead of parameter spaces.

We provide here a smooth variational formulation for arbritrary mixed-norm penalties, enabling to tackle a wide variety of problems. This formulation is not restricted The darker the color, the higher the relevance. Electrodes in white with a black circle are discarded (the relevance is exactly zero). For SVMCV , electrodes in black correspond to the best channels identified using a cross-validation procedure.

to convex mixed-norms, a property that turns out to be of interest for reaching sparser, hence more interpretable solutions. Our approach is embedded, in the sense that the kernel hyper-parameters are optimized jointly with the kernel expansion to minimize the hinge loss. It is however implemented by a simple wrapper algorithm, for which the inner and the outer subproblems have the same objective function, and where the inner loop is a standard SVM problem.

In particular, this implementation allows to use available solvers for kernel machines in the inner loop. Hence, although this paper considered binary classification problems, our approach can be readily extended to other learning problems, such as multiclass classification, clustering, regression or ranking. 

We now use the fact that, in the formulation above, the first-order necessary optimality conditions establish a functional link between σ 1 and σ. This link is derived from the Karush-Kuhn-Tucker necessary optimality conditions of Problem ( 14), computed from the associated Lagrange function L:

∂L ∂σ 1,ℓ = λ 1 d ℓ -λ 2 p q σ -(p+q)/q 1,ℓ m∈G ℓ σ 1/q m -η 1,ℓ (15) 
∂L ∂σ m = - f m 2 Hm σ 2 m λ 1 d ℓ + λ 2 1 q σ -p/q 1,ℓ σ (1-q)/q m -η 2,m (16) 
where λ 1 and λ 2 are the Lagrange parameters related to the norm constraints (14c) and (14d) respectively while η 1,ℓ and η 2,m are associated to the positivity of σ 1,ℓ and σ m . From ( 16), one sees that, except for the trivial case where m f m 2 Hm = 0, λ 2 = 0 at the optimum. Then, one easily derives from (15) that, at the optimum, qλ 1 = pλ 2 .

Finally, combining Equation ( 15) and the ones stating that the norm constraints (14c) and (14d) are saturated, after some algebra, we get that the optimal (σ ⋆ , σ ⋆ 1 ) satisfies .

Plugging this optimality condition into Problem ( 14), we get Problem (7).

B Proof of Proposition 2

The proof of Proposition 2 can be decomposed into three steps. We first derive the optimality conditions for σ m , from which we express a relationship between σ m and f m at stationnary points. Since the stationnary points are local minima of the convex objective function, the minima of ( 7) are minima of (8). Finally, this expression in f m is plugged in the original objective function.

The Lagrangian associated to Problem ( 7) is

L = 1 2 m 1 σ m f m 2 Hm + C i ξ i - i α i y i m f m (x i ) + b + ξ i -1 - i η i ξ i + λ ℓ d p ℓ m∈G ℓ σ 1/q m q 1/(p+q) -1 - m µ m σ m ,
where η i and µ m are the Lagrange parameters respectively related to the positivity of η i and σ m , and λ is the Lagrange parameter pertaining to the norm constraint (7c). The first-order necessary optimality condition ∂L/∂σ m = 0 reads

- f m 2 Hm 2σ 2 m + λ p + q σ (1-q)/q m d -1 ℓ m∈G ℓ σ 1/q m -p/(p+q)
-µ m = 0 .

As all the Lagrange parameters are non-negative, except for the trivial case where, for all m, σ m = 0, the Lagrange parameter λ is non-zero. We then have that, either σ m = 0 and f m Hm = 0 , either 

σ m = p + q 2λ q/(q+1)
As λ = 0, the constraint (7c) is saturated. We use this fact to get rid of λ. Denoting

s ℓ = m∈G ℓ f m 2/q+1
Hm , and summing both sides of (18) over ℓ, we get

2λ p + q = ℓ d p/(p+q+1) ℓ s (q+1)/(p+q+1) ℓ p+q+1 . (19) 
Finally, plugging ( 18) and ( 19) in ( 17 .

Note that this equation also holds for σ m = 0. It is now sufficient to replace σ m by this expression in the objective function of Problem ( 7) to obtain the claimed equivalence with Problem (8) in Proposition 2. mixed (p, q)-norm, the ℓ (p, q) norm of σ is ℓ m∈G ℓ σ p m q/p 1/q
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 6 Figure6-Electrode median relevance for MKL, CKL 1/2 and CKL1 (P300 speller paradigm). The darker the color, the higher the relevance. Electrodes in white with a black circle are discarded (the relevance is exactly zero).

FC

  Figure7-Electrode median relevance for different SVMs, with channels and kernels randomly selected (P300 speller paradigm). The darker the color, the higher the relevance. Electrodes in white with a black circle are discarded (the relevance is exactly zero). For SVMCV , electrodes in black correspond to the best channels identified using a cross-validation procedure (over the 10 repetitions, PO8 and C1 have been selected 3 times each).
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Z Figure 4 -Positions of the 64 electrodes on the scalp, for the two considered BCI problems. The arrow represents the frontal direction.
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 2 Average

	Algorithms	AUC	# Channels	# Kernels	Time (s)
	SVM	84.6 ± 0.9	64	896	1.9 ± 1.0
	CKL 1/2	84.9 ± 1.1	40.1 ± 15.2	513.0 ± 224.7	149.1 ± 94.1
	CKL1	84.7 ± 1.1	14.6 ± 13.1	65.8 ± 52.2	64.8 ± 18.5
	MKL	85.7 ± 0.9	47.0 ± 7.9	112.6 ± 46.2	60.3 ± 12.1

results and standard deviations, for SVMs with different kernel learning strategies on the BCI dataset (P300 speller paradigm).

Table 3 -

 3 Average results and standard deviations for SVMs (P300 speller paradigm). SVMCV selects the single best channel using a cross-validation procedure, while SVMx randomly selects a subset of x channels.

	Algorithms	AUC	# Channels	# Kernels
	SVM 41	80.7 ± 1.0	41	513
	SVM 15	76.8 ± 1.7	15	66
	SVM CV	68.8 ± 2.0	1	14

Table 4 -

 4 Average cross-validation score with standard deviations for Subject 1, for SVMs with different kernel learning strategies on the BCI dataset (CNV paradigm). The number of channels and kernels correspond to the predictor trained on the whole data set.For Subject 2, both versions of CKL considerably improve upon LDA. Although CKL 1/2 selects most of the kernels, it is sparser than MKL in terms of groups. CKL 1 , with only 6 channels achieves the lowest error rate. With regard to training times, the overhead compared to SVMs is comparable to the previous experiment. MKL and

	Subject 1	Error rate (%)	# Channels	# Kernels	Time (s)
	LDA	25.0 ± 1.2	CZ	21	-
	SVM	21.0 ± 1.0	64	1344	0.3
	CKL 1/2	22.0 ± 1.0	50	988	20.7
	CKL1	23.0 ± 1.3	9	37	6.24
	MKL	24.0 ± 1.5	29	58	23.1

Table 5 -

 5 Average cross-validation score with standard deviations for Subject 2, for SVMs with different kernel learning strategies on the BCI dataset (CNV paradigm). The number of channels and kernels correspond to the predictor trained on the whole data set.CKL 1/2 require approximately the same time, and CKL 1 , which provides very sparse results is about twice faster.

  displays the electrodes used for each method.
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	Figure 8 -Electrode relevance for Subject 1 (top) and Subject 2 (bottom), for MKL, CKL 1/2 and
	CKL1 (CNV paradigm). The darker the color, the higher the relevance. Electrodes in white with
	a black circle are discarded (the relevance is exactly zero).								
							Algorithms			Error rate (%)			# Channels				# Kernels
										SVM 50		29.1 ± 1.0						50						988
				Subject 1		SVM 9		37.9 ± 1.1						9						37
										SVM CV		25.5 ± 1.2						C2						21
										SVM 44		31.2 ± 1.1						44						800
				Subject 2		SVM 6		36.2 ± 0.9						6						35
										SVM CV		27.5 ± 0.7					FC1						21
	Table 6 -Average cross-validation score with standard deviations for Subjects 1 and 2, for SVMs
	(CNV paradigm). SVMCV selects the best channel using a cross-validation procedure, while
	SVMx randomly selects a subset of x channels. The results reported for SVMx are averaged
	over 10 repetitions.																								

  often running over {1, . . . , M } L number of groups for CKL ℓ group index, running over {1, . . . , L} G ℓ set of indices for group ℓ, G ℓ ⊆ {1, . . . , M } d ℓ cardinality of G ℓ H m mth feature space K mreproducing kernel for the mth feature space σ m weight of the mth kernel in the kernel combination σ vector of kernel weights in R M

	SVM-related		
	f	function, from X to R
	b	constant offset (or threshold) in R
	ξ i ξ	slack variables in R (constrained to be non-negative) vector of all slack variables in R n
	C	regularization parameter in front of the empirical risk term
	η i	Lagrange multiplier related to the positivity of ξ i
	MKL and CKL-related	
	K	set of admissible kernels
	M	number of kernels	
	m kernel index, K σ equivalent kernel K σ =	M	σ m K m
					m=1
	σ 1,ℓ σ 1	weight of the ℓth group in the kernel combination vector of group weights in R L
	σ 2,m σ 2	weight of the mth kernel in the group-kernel combination vector of kernel weights in R M
	Miscellaneous		
	R	set of reals		
	A ⊤ X n sign Data	transposed of matrix A (ditto for vectors) observation domain number of training examples sign function, from R to {-1, 1}, sign(x) =	-1 if x < 0 0 if x ≥ 0
	i, j x i ℓ (p, q)	indices, often running over {1, . . . , n} observations in X
	y i	class labels in {-1, 1}
	Kernels			
	H	feature space		
	Φ	feature map, Φ : X → H
	K	reproducing kernel K : X × X → R
					∞
	•, • H	scalar product in H; if f (•) =	j=1	α j K(x j , •),
			∞	∞
		then f, g H =	i=1	j=1	α i α j K(x i , x j )
	• H	norm induced by the scalar product in H, f H =	f, f H
	K	kernel matrix K ij = K(x i , x j )
	α i	expansion coefficients or Lagrange multipliers
					29

∞ i=1 α i K(x i , •) and g(•) =

In variable selection, the situation is simpler since selecting variables provides simpler models, so that variable selection or shrinkage may be used for model selection purposes.

Note that, except for the case where Km has a block-diagonal structure, there is no effective grouping in the MKL penalty.

Brouwer's fixed point theorem states that, if B is a closed unit ball, then, any continuous function g : B → B, has at least one fixed point.

These channels also appear in the third quartile map of CKL 1 .

In "GO" events, a green dot is displayed in the middle of the screen. This signal triggers the anticipation of the subject. Four seconds later, the dot becomes red, prompting the subject to press a button as soon as possible.6 We thank the authors for sharing their data with us.

A Detailed Derivation of Problem (7) We rewrite Problem (6) by applying succesively two changes of variable. We first note that, when σ 1,ℓ or σ 2,m is null, then the optimal f m is also null. Hence, we may apply f m ← σ 1,ℓ σ 2,m f m since this transformation is one-to-one provided σ 1,ℓ = 0 and σ 2,m = 0. We then follow with, σ 1,ℓ ← σ

then, we proceed to another change of variable, that is, σ m = σ p 1,ℓ σ q 2,m , and Problem ( 6) is equivalent to the following optimization problem in f 1 , . . . , f M , b, ξ, σ 1 , σ: