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Abstract

The natural way to find the most compliant design of an elastic plate, is to consider the
three-dimensional elastic structures which minimize the work of the loading term, and pass to
the limit when the thickness of the design region tends to zero. In this paper, we study the
asymptotic of such compliance problem, imposing that the volume fraction remains fixed. No
additional topological constraint is assumed on the admissible configurations. We determine
the limit problem in different equivalent formulations, and we provide a system of necessary
and sufficient optimality conditions. These results were announced in [18]. Furthermore, we
investigate the vanishing volume fraction limit, which turns out to be consistent with the results
in [16, 17]. Finally, some explicit computation of optimal plates are given.

1 Introduction

The simplest and most common way for designing elastic plates is to use plane layers with constant
thickness and made of a single material. But if one desires to improve the resistance-weight ratio,
the use of more sophisticated structures is requested. A first possibility is to allow for a varying
thickness. The search of optimal designs in this context has been the object of several studies.
Without any attempt of being complete, we refer to [4, 5, 8, 9, 10, 23, 24, 26, 32]. In these works it
is assumed that any section of the plate is a segment and that the thickness variations are smooth
enough for the classical dimension reduction analysis to be applied. Clearly more exotic and more
efficient structures can be designed if one refutes such restrictive geometrical assumptions. This is
what we do in this paper, where we only assume that the structure is made of a single material
lying in some subset of a thin layer. The total volume of the subset being fixed, we look for an
optimal design and we study its limit when the thickness of the layer tends to zero. Thus our study
is at the junction of two research directions: the so-called 3D-2D asymptotic analysis and shape
optimization. Before describing the novelty of our approach and results, let us give a brief recall on
these two topics and some related bibliography.
The compliance of a given amount of elastic material occupying a domain Ω ⊂ R

3, characterized
by a strain potential j, and subject to a given system of loads F ∈ H−1(Ω; R3), is the opposite of
the total energy at equilibrium: the higher is this compliance, the smaller is the resistance of the
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material to the load F . More precisely, it is given by

Cj,F (Ω) := sup
{
〈F, u〉

R
3 −

∫

Ω
j(e(u)) dx : u ∈ C∞(R3; R

3)
}
. (1.1)

Here and throughout the paper we adopt the framework of small-displacement hypothesis, so the
strain tensor e(u) of the displacement field u : Ω → R

3 coincides with the symmetrical part of
its jacobian (in the sequel, for any vector field v : R

n → R
n, we set 2 e(v) := ∇v + (∇v)T ). The

function j characterizes the material properties of the elastic body: we assume it to be a convex,
2-homogeneous and coercive function defined on the space R

3×3
sym of 3× 3 symmetric tensors. In the

classical case of homogeneous linear elastic materials, it takes the form j(z) = λ(tr(z))2 +(µ/2)‖z‖2

where λ, µ are called the Lamé coefficients of the material and tr(z) is the trace of the matrix z.
The existence of a solution ū ∈ H1(R3; R

3) to problem (1.1) is ensured provided the load is balanced
(that is −〈F, u〉 = 0 whenever e(u) = 0), and it is well-known that Cj,F (Ω) = −〈F, ū〉. A solution
exists as well in variants of problem (1.1) where some Dirichlet constraint is added on the admissible
functions u in a suitably large part of Ω; in these cases, the balance condition on the load is not
needed. Our results extend without difficulties to such variants, so we do not treat them in this
paper.

Background on 3D-2D reduction analysis. Since thin structures play an important role in mechanical
engineering, the asymptotic study of the compliance when the domain Ω is a cylinder Qδ := D ×
[−δ/2,+δ/2] of infinitesimal height δ, has been the subject of numerous works. Clearly, a finite
value for the limit compliance can be expected only if the applied load is adapted to the thin design
region Qδ. If the spatial variable x ∈ R

3 is identified with the couple (x′, x3) ∈ R
2 × R, the usual

scaling adopted for elastic plates undergoing small deformations is

F δ(x) =

(
F1(x

′, δ−1x3)√
δ

,
F2(x

′, δ−1x3)√
δ

,
√
δ F3(x

′, δ−1x3)

)
. (1.2)

This scaling ensures that, as δ → 0, membrane and bending energies will remain finite and with the
same magnitude order. Then it turns out that the limit of Cj,F δ(Qδ) as δ → 0 can be written in
terms of descriptors depending only on the 2D transverse spatial variables x′. Indeed, as δ → 0, the
displacement field u takes the special structure of a Kirchoff-Love displacement, that is it belongs
to the space

H1
KL(Q; R

3) :=
{
u ∈ H1(Q; R

3) : ei3(u) = 0 , i = 1, 2, 3
}
. (1.3)

As well known, any u ∈ H1
KL(Q; R

3) can be written as

uα(x) = vα(x′) − ∂v3
∂xα

(x′)x3 , u3(x) = v3(x
′) (1.4)

for some vα ∈ H1(D) (α = 1, 2) and v3 ∈ H2(D). These are the above mentioned 2D descriptors,
and in terms of their derivatives the nonvanishing part of the symmetric gradient of u can be
expressed as

eαβ(u) = e(v1, v2) − x3∇2v3 (1.5)

(here and below the greek symbols α, β are used for indices running in {1, 2}). The representation
(1.4) of the limit strain is the key point of the well-established theory of elastic plates for homo-
geneous materials (see for instance [19, 20]). It remains true in the non-homogenous case provided
the stiffness tensor remains lower bounded over all the domain Ω. In presence of voids (that is Ω
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is a proper subset of the thin cylinder), this result remains true only on very specific geometric
restrictions [19, 26].

Background on shape optimization. A fundamental request for engineers is to have at their disposal
the lightest possible structures which can resist to a given load. Then one looks for domains Ω which,
for a given compliance, have the smallest possible volume, or equivalently for domains which, for
a given volume, minimize the compliance. In general an additional geometric constraint is set by
imposing that the admissible domains Ω are contained into some fixed compact subset Q, called the
design region. Thus the shape optimization problem reads:

inf
{
Cj,F (Ω) : Ω ⊆ Q , |Ω| = m

}
. (1.6)

In most cases such a problem is ill-posed. Indeed minimizing sequences of domains Ωn tend to
become more and more intricate structures consisting of a fine mixture of voids and elastic material:
the characteristic functions of Ωn converge to a function θ with values in [0, 1], and no optimal shape
exists as soon as intermediate values θ(x) ∈ (0, 1) are attained. Here relaxation theory comes into
play: by allowing such intermediate values, the new unknown becomes the local material density θ
and the new task is finding the variational problem solved by θ. A first guess in this direction (usually
called fictitious materials approach) consists simply in replacing in (1.1) the characteristic function
of Ω by the varying density θ. We adopt the notation C̃j,F (θ) for the corresponding generalized
compliance, which is given by

C̃j,F (θ) := sup
{
〈F, u〉

R
3 −

∫
j(e(u)) θ(x) dx : u ∈ C∞(Q; R

3)
}
. (1.7)

The problem of optimizing, under an integral constraint on θ, the convex functional θ 7→ C̃j,F (θ) is
well-posed. But unfortunately homogenization theory teach us that the compliance of minimizing
sequences Ωn for problem (1.1) converge to a more complex limit compliance, which is obtained by
replacing in (1.7) j(e(u)) θ(x) by a strictly smaller effective integrand jeff (θ(x), e(u)). The explicit
computation of jeff (θ, ·) is a challenging and partially open problem. Some characterization has been
given in [1, 3] by modelling the void region as artificially filled with a soft material of infinitesimal
stiffness.

Setting of the problem: shape optimization in thinning domains. The aim of this paper is to study
the asymptotics of the optimal shape problem when the design region is the flattening cylinder
Qδ = D × [−δ/2, δ/2], with δ → 0. In this limit process, the load will be rescaled as in (1.2).
Obviously, also the volume constraint for the optimal shape problem (1.6) has to be adapted to
the thin design region: we assume that the volume fraction τ ∈ [0, 1] is fixed, thus we impose
|Ω| = τ |Qδ| = τ δ. Summarizing we are interested in the asymptotics, as δ tends to zero, of the
following optimization problem

Iδ
j,F (τ) := inf

{
Cj,F δ(Ω) : Ω ⊆ Qδ , |Ω| = τδ

}
. (1.8)

It is convenient to remark that the volume constraint on the admissible sets in (1.8) can be dropped
by enclosing in the cost a volume penalization through a Lagrange multiplier. For a fixed k ∈ R,
we set

φδ
j,F (k) := inf

{
Cj,F δ(Ω) +

k

δ
|Ω| : Ω ⊆ Qδ

}
. (1.9)

Indeed, as it will be shown later, the asymptotics of problem (1.8) can be easily deduced once the
asymptotics of (1.9) is known.
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Previous contributions on the problem. As mentioned at the beginning of the paper, the most sig-
nificant contributions recently appeared on optimization of thin plates concern the case of plates
with varying thickness: in this framework, problem (1.8) is studied under the additional constraint
that admissible domains Ω are of the form {|x3| < δh(x′)}. As δ → 0, this leads to a variational
problem where the unknown profile function h appears with a cubic dependence and whose relax-
ation has been efficiently treated through the use of Young measures [29]. The papers [17, 18] are
first tries to get rid of topological constraints. In particular, [17] deals with the asymptotics of
problem (1.6) when the total volume of the material is firstly sent to zero, and then the 3D-2D
limit is performed. The outcoming model involves material distributions represented by possibly
concentrated measures, and the optimal configurations are shown to be related with a simple linear
Hessian-constrained problem, of the type considered in [16, 27]. As we shall see, this model can be
recovered within the approach of the present paper, in the special situation when the filling ratio τ
in (1.8) becomes infinitesimal (or equivalently when the parameter k in (1.9) goes to +∞).

Synopsis of the results and comments. We prove that, for every fixed k ∈ R, the limit as δ → 0 of
φδ

j,F (k) is given by

φ(k) := inf
{
Clim(θ) + k

∫

Q
θ dx : θ ∈ L∞(Q; [0, 1])

}
,

where the limit compliance Clim(θ) is the convex functional

Clim(θ) = sup
{
〈F, u〉

R
3 −

∫

Q
j(eαβ(u)) θ dx : u ∈ H1

KL(Q; R
3)

}
.

Here Q = D × [−1/2, 1/2], j is the 2D-energy density in the plane stress case, and H1
KL(Q; R

3) is
the space of Kirkhoff-Love displacements defined in (1.3). Representing the competitors u in terms
of 2D-descriptors v as in (1.4), the computation of φ(k) reduces to solving a very simple inf-sup
problem:

inf
θ∈L∞(Q;[0,1])

sup

{
〈F , v〉

R
2 −

∫

D

∫ 1/2

−1/2

[
j(e(v1, v2) − x3∇2v3) − k

]
θ dx : vα ∈ H1(D) , v3 ∈ H2(D)

}
,

where F is a suitable 2D-average load. By this way, the initial nonconvex problem becomes in the
limit a classical saddle problem for a convex-concave Lagrangian. It is then straightforward that
a saddle point (θ, v) exists, and one is allowed to exchange the supremum in v and the infimum
in θ. It follows that the optimal density θ(x′, ·) is uniquely determined, for all x′ ∈ D such that
∇2v3(x

′) 6= 0, as the characteristic function of the set

{
x3 ∈ [−1/2, 1/2] : j(e(v1, v2) − x3∇2v3) > k

}
.

The rather unexpected consequence is that no homogenization region appears in the limit optimal
shape: in bending regime (that is when ∇2v3(x

′) 6= 0 on D), the optimal material distribution
is simply made by two layers concentrated along the top and bottom faces of the design region.
The thickness of these two layers is not constant and depends on the applied load through the
optimal displacement configuration v. The efficiency of concentrating the material on the top and
bottom faces in order to design plates with the best resistance to bending is well known in applied
mechanics: sandwich structures are commonly used, as well as “I” or “T” structures in case of
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bending rods (see for instance [30]). The more suprising feature is that, in the mathematical limit
as δ → 0, these top and bottom layers are not connected. A more detailed discussion of this point
is postponed to the last section of the paper.

Outline of the paper. The paper is organized as follows.

In Section 2 we state and prove the main convergence results to the limit compliance problem.

In Section 3 we present a saddle approach, in which the limit problem is reformulated in terms of
Kirchoff-Love fields, or associated 2D descriptors.

In Section 4 we present a duality approach, in which the limit problem is reformulated in terms of
3D or 2D stress tensors.

In Section 5 we define optimal triples for the limit problem: they consist of a material distribution,
a Kirchoff-Love field, and a stress tensor, which are optimal for the different formulations of the
limit problem given respectively in Section 2, Section 3, and Section 4. We are able to derive
the optimality conditions for such triples and to deduce qualitative properties of optimal material
distributions.

In Section 6 we focus attention on the asymptotic behaviour of the limit problem when the volume
fraction becomes infinitesimal.

In Section 7 we show how straightforward the results allow to find explicitly optimal mass distribu-
tions in concrete model situations, and we conclude with some perspectives.

2 Convergence to the limit compliance problem

For convenience, let uilas sum up the basic notation and assumptions, which have been partly already
introduced along Section 1 and will be kept throughout the paper without any further mention. Let
Q := D× I, where D is an open bounded connected subset of R

2, and I := [−1/2, 1/2]. We assume
with no loss of generality that |Q| = 1, and we denote the spatial variable in R

3 by (x′, x3) ∈ R
2×R.

We set Qδ := D × δI = D × [−δ/2, δ/2], where δ > 0 is an infinitesimal parameter. We assume
that the stored energy density j is a convex, 2-homogeneous, and coercive integrand, defined on the
space R

3×3
sym of 3 × 3 symmetric tensors. We denote by j∗ the Fenchel conjugate of j:

j∗(ξ) := sup
{
z · ξ − j(z) : z ∈ R

3×3
sym

}
,

where · denotes the Euclidean scalar product. For any z ∈ R
2×2
sym, we denote by E0z ∈ R

3×3
sym the

matrix defined by (E0z)ij = zij if i, j < 3 and (E0z)i3 = 0 for i = 1, 2, 3.
Finally, we assume that the load F = (F1, F2, F3) acting on the material belongs to the space
H−1(Q; R

3) and is “balanced”, namely

〈F, u〉
R

3 = 0 whenever 2e(u) := ∇u+ (∇u)T = 0 .

An additional condition on F will be introduced later on (see (2.27)), in order to deal with arbitrarily
small volume fractions τ ∈ (0, 1].
Our goal is to determine, for fixed k ∈ R and τ ∈ [0, 1], the asymptotic behaviour as δ → 0 of the
problems introduced in (1.8) and (1.9). We proceed as follows.
After rescaling the problems under study on the fixed domain Q (subsection 2.1), we study the
asymptotic behaviour of the corresponding problems for fictitious materials (subsection 2.2). In
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subsection 2.3 we give bounds for the initial problems in terms of the corresponding fictitious ones.
In subsection 2.4 we state the main results of convergence to the limit compliance problem, and we
prove them relying on the contents of previous subsections.

2.1 Scaling

In order to deal with the asymptotics as δ → 0 of problems (1.8)-(1.9), it is convenient to restate
them on the fixed domain Q. Therefore, for u ∈ C∞(Q; R

3), we introduce the rescaled strain tensor
eδ(u) defined by

eδ(u) :=




eαβ(u) δ−1eα3(u)

δ−1eα3(u) δ−2e33(u)


 , (2.1)

and, for any ω ⊆ Q, we set

Cδ
j,F (ω) := sup

{
〈F, u〉

R
3 −

∫

ω
j(eδ(u)) dx : u ∈ C∞(Q; R

3)
}
. (2.2)

Then our rescaled problems read as follows.

Lemma 2.1 For every fixed δ > 0, k ∈ R and τ ∈ [0, 1], there holds

φδ
j,F (k) = inf

{
Cδ

j,F (ω) + k|ω| : ω ⊆ Q
}
, (2.3)

Iδ
j,F (τ) = inf

{
Cδ

j,F (ω) : ω ⊆ Q , |ω| = τ
}
. (2.4)

Proof. First rewrite any admissible domain Ω ⊆ Qδ in formulae (1.8)-(1.9) as

Ω =
{(
x′, δx3

)
: (x′, x3) ∈ ω

}

(so that ω ⊆ Q). Then insert in the definition of Cj,F δ(Ω) in (1.8)-(1.9) the following change of
variables: for any competitor ũ ∈ C∞(Qδ; R

3) set

ũ(x) =
(
u1

(
x′, δ−1x3

)
, u2

(
x′, δ−1x3

)
, δ−1u3

(
x′, δ−1x3

))
.

The lemma follows immediately, thanks to definition (2.1).
�

2.2 Asymptotic behaviour of fictitious problems

A first step towards our main results is the study of the “fictitious counterparts” of problems (2.3)-
(2.4). For fictitious materials, represented by varying densities θ in L∞(Q; [0, 1]), the generalized
rescaled compliance takes the form

C̃δ
j,F (θ) := sup

{
〈F, u〉

R
3 −

∫

Q
j(eδ(u)) θ dx : u ∈ C∞(Q; R

3)
}
. (2.5)

Accordingly, we set
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φ̃δ
j,F (k) = inf

{
C̃δ

j,F (θ) + k

∫

Q
θ dx : θ ∈ L∞(Q; [0, 1])

}
, (2.6)

Ĩδ
j,F (τ) = inf

{
C̃δ

j,F (θ) : θ ∈ L∞(Q; [0, 1]) ,

∫

Q
θ dx = τ

}
. (2.7)

In Proposition 2.2 below, we determine the Γ-limit Clim(θ) of the sequence C̃δ
j,F (θ) in the weak star

topology of L∞(Q; [0, 1]), and we deduce the asymptotic behaviour of the infima in (2.6)-(2.7).
In order to precise the expression of the limit compliance Clim(θ), we need to introduce the 2D-strain
energy density in the plane stress case, that is the integrand j : R

2×2
sym → R defined by

j(z) := inf
{
j
(
z +

3∑

i=1

ξi(ei ⊗ e3 + e3 ⊗ ei)
)

: ξi ∈ R

}
. (2.8)

Moreover, we need to introduce the 2D-average load F = (F 1, F 2, F 3) defined by

Fα := [[Fα]] and F 3 :=
[[
F3 + x3

2∑

α=1

∂Fα

∂xα

]]
, (2.9)

where for a given real measure ν on Q, [[ν]] is the real measure on D defined by the identity
〈[[ν]], ϕ〉

R
2 := 〈ν, ϕ〉

R
3 holding for all ϕ ∈ C∞(R2; R). Note that definition (2.9) implies that the

identity 〈F, u〉
R

3 = 〈F , v〉
R

2 holds whenever u and v are related to each other by (1.4).

Proposition 2.2 As δ → 0, the following results hold:

(i) The sequence C̃δ
j,F (θ) defined by (2.5) Γ-converges, in the weak star topology of L∞(Q; [0, 1]),

to the limit compliance defined by

Clim(θ) := sup
{
〈F, u〉

R
3−

∫

Q
j(eαβ(u)) θ dx : u ∈ H1

KL(Q; R
3)
}

(2.10)

= sup
{
〈F, v〉

R
2−

∫

Q
j(e(v1, v2) − x3∇2v3) θ dx : vα ∈ H1(D), v3 ∈ H2(D)

}
. (2.11)

(ii) For each k ∈ R, the sequence φ̃δ
j,F (k) defined by (2.6) converges to the limit φ(k) defined by

φ(k) := inf
{
Clim(θ) + k

∫

Q
θ dx : θ ∈ L∞(Q; [0, 1])

}
, (2.12)

(iii) For each τ ∈ [0, 1], the sequence Ĩδ
j,F (τ) defined by (2.7) converges to the limit I(τ) defined by

I(τ) := sup
k∈R

{
Φ(k) − kτ

}
. (2.13)

Remark 2.3 The properties of φ(k) as a function of the real variable k will be studied in detail in
Section 6. In particular, we shall prove that k 7→ φ(k) is a finite concave function on R and that,
for every τ ∈ [0, 1], the supremum in over k in (2.13) is attained at a certain k(τ), cf. Theorem 6.1
and Corollary 6.4.
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Let us start with the preliminary lemmas needed for the proof of Proposition 2.2. The first one
establishes two asymptotic properties, hereafter named (AP1) and (AP2), for the sequence of stored
energies

∫
Q j(e

δ(u))θ dx in terms of pairs (θ, u). Properties (AP1) and (AP2) will give the Γ-

convergence statement (i) of Proposition 2.2. Moreover, they will be used once again in Section 3
in order to prove a convergence result for saddle points.

Lemma 2.4 Let θ ∈ L∞(Q; [0, 1]), and u ∈ H1(Q; R
3). Then

(AP1) ∀ θδ ∗
⇀θ, ∃uδ ⇀u such that

lim sup
δ

∫

Q
j(eδ(uδ))θδ dx ≤





∫

Q
j(eαβ(u))θ dx if u ∈ H1

KL(Q; R
3)

+∞ otherwise ;

(2.14)

(AP2) whenever infQ θ > 0, ∀uδ ⇀u there holds

lim inf
δ

∫

Q
j(eδ(uδ))θ dx ≥





∫

Q
j(eαβ(u))θ dx if u ∈ H1

KL(Q; R
3)

+∞ otherwise .

Proof. (AP1). Let θδ ∗
⇀θ, and let u ∈ H1

KL(Q; R
3). In order to construct a sequence uδ ⇀u such

that (2.14) holds, we take smooth functions ξi = ξi(x) such that

j
(
eαβ(u)

)
= j

(
eαβu+

3∑

i=1

ξi(ei ⊗ e3 + +e3 ⊗ ei)
)
,

and we denote by Φ = (Φ1,Φ2,Φ3) the field of their primitives with respect to the x3 variable:

Φi(x
′, x3) :=

∫ x3

0
ξi(x

′, s) ds , i = 1, 2, 3 .

We then define the sequence {uδ} componentwise by

uδ
1 = u1 + δΦ1 , uδ

2 = u2 + δΦ2 , uδ
3 = u3 + δ2Φ3 ,

so that

eδ(uδ) = eαβ(u) + δ eαβ(Φ) +

2∑

i=1

(
ξi + δ

∂Φ3

∂xi

)
(ei ⊗ e3 + e3 ⊗ ei) + ξ3(e3 ⊗ e3) ,

By dominated convergence, we have j(eδ(uδ)) → j(eαβ(u)) strongly in L1(Q). Therefore, recalling

that by assumption θδ ∗
⇀θ, the integrand in the left hand side of (2.14) is the product between a

strongly and a weakly convergent sequence. We deduce that (2.14) is satisfied (with equality sign).

(AP2). Assume infQ θ > 0, and let uδ ⇀u. For every ξ ∈ L2(Q; R
2×2
sym), using the Fenchel inequality

and the assumption uδ ⇀u, we obtain

lim inf
δ

∫

Q
j(eδ(uδ))θ dx ≥ lim inf

δ

{ ∫

Q
eδ(uδ) · E0ξ θ dx−

∫

Q
j∗(E0ξ) θ dx

}

=

∫

Q
eαβ(u) · ξ θ dx−

∫

Q
j∗(E0ξ) θ dx .
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Starting from the definition (2.8) of j, one can easily check the algebraic identity

(j)∗(ξ) = j∗(E0ξ) ∀ξ ∈ R
2×2
sym . (2.15)

Using (2.15) and the arbitrariness of ξ in the previous inequality, we deduce that

lim inf
δ

∫

Q
j(eδ(uδ)) θ dx ≥ sup

ξ

{ ∫

Q
eαβ(u) · ξ θ dx−

∫

Q
j
∗
(ξ) θ dx

}
.

By passing the supremum over ξ under the sign of integral (see e.g. [15, Lemma A.2]), and taking
into account that j = (j)∗∗, we get the required inequality

lim inf
δ

∫

Q
j(eδ(uδ)) θ dx ≥

∫

Q
j(eαβ(u)) θ dx .

Let us now show that, if u /∈ H1
KL(Q; R

3), the left hand side of the above inequality is actually +∞.
Assume that ei3(u) 6= 0 for some i: for instance, let e13(u) 6= 0 (the other cases are completely
analogous). Using the coercivity of j and the definition eδ(uδ) according to (2.1), we have

lim inf
δ

∫

Q
j(eδ(uδ)) θ dx ≥ c lim inf

δ

∫

Q
|eδ(uδ)|2θ dx ≥ c lim inf

δ
δ−2

∫

Q
|e13(uδ)|2θ dx . (2.16)

Thanks to the weak lower semicontinuity on H1(Q; R
3) of the map u 7→

∫
Q |ei3(u)|2θ dx, and to the

assumptions ei3(u) 6= 0, infQ θ > 0, we have

lim inf
δ

∫

Q
|e13(uδ)|2θ dx ≥

∫

Q
|e13(u)|2θ dx > 0 . (2.17)

Combining (2.16) and (2.17), we obtain lim infδ
∫
Q j(e

δ(uδ)) θ dx = +∞. �

Next lemma allows to relate, in the fictitious framework, the volume constrained and the volume
penalized problems.

Lemma 2.5 For every δ > 0,

– the map k 7→ φ̃δ
j,F (k) is concave on R;

– the map τ 7→ Ĩδ
j,F (τ) is convex on [0, 1];

– if we extend Ĩδ
j,F by setting to Ĩδ

j,F (τ) = +∞ for τ /∈ [0, 1], there holds

φ̃δ
j,F (k) = −(Ĩδ

j,F )∗(−k) on R . (2.18)

Proof. The concavity of the map k 7→ φ̃δ
j,F (k) on R follows directly from its definition (2.6), as it

is the infimum of linear functions of k. Similarly, the convexity of the map τ 7→ Ĩδ
j,F (τ) on [0, 1] is

obtained from its definition (2.7), by using the convexity of the map θ 7→ C̃δ
j,F (θ) on L∞(Q; [0, 1]).

Finally, to prove (2.18), we apply the definition of Fenchel conjugate and we obtain

(Ĩδ
j,F )∗(−k) = sup

{
− kτ − Ĩδ

j,F (τ) : τ ∈ R

}
= sup

{
− kτ − Ĩδ

j,F (τ) : τ ∈ [0, 1]
}

= sup
{
− kτ − C̃δ

j,F (θ) : τ ∈ [0, 1] , θ ∈ L∞(Q; [0, 1]) ,

∫

Q
θ dx = τ

}

= sup
{
− k

∫

Q
θ dx− C̃δ

j,F (θ) : θ ∈ L∞(Q; [0, 1])
}

= − inf
{
k

∫

Q
θ dx+ C̃δ

j,F (θ) : θ ∈ L∞(Q; [0, 1])
}

= −φ̃δ
j,F (k) .

9
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We are now in a position to give the

Proof of Proposition 2.2.
(i) By definition, to show that C̃δ

j,F (θ) Γ-converges to Clim(θ) in the weak star topology, we have to
prove that for each fixed θ ∈ L∞(Q; [0, 1]) the following two inequalities hold:

inf
{

lim inf C̃δ
j,F (θδ) : θδ ∗

⇀θ
}
≥ Clim(θ) (2.19)

inf
{

lim sup C̃δ
j,F (θδ) : θδ ∗

⇀θ
}
≤ Clim(θ) . (2.20)

Consider an arbitrary sequence θδ ∗
⇀θ. Let u ∈ H1

KL(Q; R
3) be an optimal Kirchoff-Love displace-

ment for the variational definition (2.10) of Clim(θ). By (AP1) in Lemma 2.4, there exists a sequence
uδ ⇀u such that (2.14) holds. Then we have

lim inf
δ

C̃δ
j,F (θδ) ≥ lim inf

δ

{
〈F, uδ〉 −

∫

Q
j(eδ(uδ))θδ dx

}
≥〈F, u〉

R
3−

∫

Q
j(eαβ(u)) θ dx = Clim(θ) .

This proves (2.19). In order to prove (2.20), we have to find a recovery sequence θδ ∗
⇀θ such that

lim supδ C̃
δ
j,F (θδ) ≤ Clim(θ). Let us first show that this is possible under the additional assumption

infQ θ > 0. In this case, we claim that we are done simply by taking θδ ≡ θ. Indeed, let uδ ∈
H1

KL(Q; R
3) be such that

lim sup
δ

C̃δ
j,F (θ) = lim sup

δ

{
〈F, uδ〉 −

∫

Q
j(eδ(uδ))θ dx

}
. (2.21)

We may assume with no loss of generality that lim supδ C̃
δ
j,F (θδ) > −∞. Then, taking into account

that j is coercive and that infQ θ > 0, (2.21) implies that the sequence eδ(uδ) is uniformly bounded
in L2-norm. By applying the Korn inequality (after possibly substracting a rigid displacement,
which is not restrictive thanks to the assumption that F is balanced), we obtain that the sequence
uδ is precompact in H1(Q; R

3). Then we may pass to a weakly convergent subsequence. By applying

to such subsequence property (AP2) in Lemma 2.4, we infer that lim supδ C̃
δ
j,F (θδ) ≤ Clim(θ). It

remains to get rid of the additional assumption infQ θ > 0. This can be done via a standard

density argument. Indeed, for any θ we may find a sequence θh with infQ θ
h > 0 such that θh ∗

⇀θ.

Then, since the left hand side of (2.20) (usually called Γ − lim sup C̃δ
j,F (θ)), is weakly star lower

semicontinuous, and Clim(θ) is weakly star continuous, we obtain

(Γ − lim sup
δ

C̃δ
j,F )(θ) ≤ lim inf

h
(Γ − lim sup

δ
C̃δ

j,F )(θh) ≤ lim
h

Clim(θh) = Clim(θ) .

(ii) Since the term θ 7→
∫
Q θ is weakly star continuous, and since the space L∞(Q; [0, 1]) is weakly

star compact, the convergence of φ̃δ
j,F (k) to φ(k) follows immediately from statement (i) thanks to

well-known properties of Γ-convergence.

(iii) By Lemma 2.5, we have

Ĩδ
j,F (τ) = (Ĩδ

j,F )∗∗(τ) = sup
k∈R

[
− (Ĩδ

j,F )∗(−k) − kτ
]

= sup
k∈R

[
φ̃δ

j,F (k) − kτ
]
.
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Then we are reduced to compute the pointwise limit of the Fenchel conjugates of the sequence
of functions k 7→ −φ̃δ

j,F (−k). By Lemma 2.5 we know that these functions are convex, and by
statement (ii) already proved we know that they converge pointwise to −φ(−k). Since such limit
remains finite (cf. Remark 2.3), we deduce that −φ̃δ

j,F (−k) Γ-converge on R to −φ(−k) (see [22,
Example 5.13]). Now recall that the Fenchel conjugate is continuous with respect to the Mosco
convergence, hence to the Γ-convergence on R (see [6, Theorem 3.18]). Thereforewe have

lim
δ→0

Ĩδ
j,F (τ) = sup

k∈R

[
φ(k) − kτ

]
= I(τ) .

�

2.3 Bounding the relaxed compliance with ficticious problems

The next crucial step consists in bounding the relaxed compliance, both from above and from below,
in terms of fictitious problems. To this aim, we introduce the weak star lower semicontinuous
envelope Cj,F of the compliance, defined on L∞(Q; [0, 1]) by:

Cj,F (θ) := inf

{
lim inf

h
Cj,F (ωh) : 11ωh

∗
⇀θ

}
∀ θ ∈ L∞(Q; [0, 1]) . (2.22)

It is immediate that Cj,F (θ) is bounded from below by the fictitious compliance defined in (1.7):

C̃j,F (θ) ≤ Cj,F (θ) on L∞(Q; [0, 1]) . (2.23)

In contrast, it is a delicate matter to estimate Cj,F (θ) from above in terms of fictitious problems.
This is the reason why we are led to deal with a modified stored energy density. Let us introduce
the integrand j0 : R

3×3
sym → R defined by

j0(z) := sup
{
z · ξ − j∗(ξ) : z ∈ R

3×3
sym , det(ξ) = 0

}
. (2.24)

It follows immediately from this definition that the inequality j0 ≤ j holds. Moreover, denoting by
S0 the set of degenerate tensors in R

3×3
sym and by δS0

its indicator function, we see from (2.24) that
j0 is nothing else but the polar of j∗ + δS0

. As j0 is convex continuous, the polar j∗0 agrees with the
convexification of j∗ + δS0

, so that we have

j∗0(ξ) = inf
{ ∑

i

αij
∗(ξi) : ξi ∈ S0 , αi ∈ [0, 1],

∑

i

αi = 1 ,
∑

i

αiξi = ξ
}
. (2.25)

In particular, as already noticed in [11, Lemma 3.1], it holds

j∗(ξ) = j∗0(ξ) ∀ ξ ∈ S0 . (2.26)

As a straightforward consequence, we obtain that j0 has the crucial property stated in the next
lemma.

Lemma 2.6 There holds:
j(z) = j0(z) ∀ z ∈ R

2×2
sym .
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Proof. Applying the algebraic identity (2.15) to the convex integrands j and j0 yields, for every
z ∈ R

2×2
sym:

j0(z) = sup
{
z · ξ − (j0)

∗(E0ξ) : ξ ∈ R
2×2
sym

}
, j(z) = sup

{
z · ξ − j∗(E0ξ) : ξ ∈ R

2×2
sym

}
.

Then the lemma is proved since by (2.26) we have (j0)
∗(E0ξ) = j∗(E0ξ) for all ξ ∈ R

2×2
sym . �

Remark 2.7 For the explicit computation of j0, we refer to [11] and also to [1], where the Fenchel
conjugate j∗0 of j0 is considered. For instance, when j(z) = |z|2, denoting by λi(z) the eigenvalues
of z, with |λ1(z)| ≥ |λ2(z)| ≥ |λ3(z)|, one has j0(z) = λ1(z)

2 + λ2(z)
2.

The effective strain potential j0 appears to play a major role when studying the asymptotics of
the optimal elastic compliance problem in the vanishing volume limit. In a 2D setting, it is shown
in [3] that this limit reduces to the so called Michell’s problem [12, 28]. The 3D counterpart of
this compliance model was used in [2] and, in the context of 3D-2D reduction analysis, in [17]
(see in particular Proposition 3.2), in order to describe the optimal design of a thin plate in the
small volume case. A rough intuitive picture of the way this effective stress potential j∗0 comes
out is the following: when the total volume of material vanishes, concentrations on subsets of
lower dimension are necessary (possibly at a small scale) and on these sets stress tensors become
degenerate. However, macroscopic full rank stress tensors ξ can be reached by using fine mixtures
of degenerate tensors ξi ∈ S0. The minimal stress energy needed to build these mixtures turns out
to be given precisely by (2.25).

We are now going to exploit the integrand j0 in order to obtain the desired upper bound for the
relaxed compliance (as a counterpart of the lower bound (2.23)). At this stage, having in mind to
handle possibly small volume fractions, we introduce the following additional assumption on the
topological support of the load F : we ask that the Lebesgue measure of its r-neighbourhood is
infinitesimal as r → 0+, namely

lim
r→0+

∣∣{x ∈ Q : dist(x, spt(F )) < r}
∣∣ = 0 . (2.27)

For instance, (2.27) holds whenever spt(F ) is compactly contained into a 2-rectifiable subset of R
3.

Proposition 2.8 Let j0 given by (2.24). Then, under assumption (2.27), the following upper bound
holds

Cj,F (θ) ≤ C̃j0,F (θ) on L∞(Q; [0, 1]) . (2.28)

Proof. Step 1. We first show that (2.28) holds under the assumption that θ(x) ≡ θ, where is
θ is a constant in (0, 1]. To that aim we need to find a sequence {θε} in L∞(Ω, {0, 1}) such that

θε
∗
⇀θ and lim supε Cj,F (θε) ≤ C̃j0,F (θ). Our construction starts with a finite family {Ωi, 1 ≤ i ≤ I}

of connected disjoint regular open subsets of Q such that ∪Ωi is of full measure in Q. Inside each
subset Ωi, we approach the constant θ by the characteristic function χi(y) of a periodic subset of
R

3. We ask that, for each i ∈ I, the function χ = χi satisfies
∫
Y χ(y) = θ and is admissible in the

following sense: for a suitable constant C > 0 and for all k > 0
∫

kY
χ(y) |Du|2 dy ≤ C k3

∫

kY
χ(y)

(
|e(u)|2 + |u|2

)
dy ∀u ∈ H1

per(kY ) . (2.29)
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The latter condition is a scaled uniform Korn’s inequality allowing to apply classical homogenization
theory. It implies in particular that the set {χ = 1} is connected in a suitably strong way. However,
the connectedness of the set {χi = 1} inside each Ωi is not enough to our purposes. In fact, the
approximation of θ under construction must be made of sets which are globally connected (included
at the boundaries of the sets Ωi), and also compatible with the load F . To ensure these properties,
we consider a small r-neighbourhood Σr of all the boundaries of the sets Ωi, and a r-neighborhood
Kr of spt(F ). Then we define

χr(x, y) := χi(y) if x ∈ Ωi \ (Σr ∪Kr) , χr(x, y) := 1 if x ∈ Kr ∪ Σr ,

and we consider the double-indexed sequence

θr
ε(x) := χr

(
x,
x

ε

)
.

By construction, as ε→ 0, we have θr
ε

∗
⇀θr, with

θr(x) = θ if x ∈ Q \ (Σr ∪Kr) , θr(x) = 1 if x ∈ Kr ∪ Σr .

In turn, as r → 0, since by the assumption (2.27) and the regularity of the Ωi’s the measure of

Σr ∪Kr is infinitesimal, we have θr ∗
⇀θ.

Since θr
ε = 1 on Kr ∪ Σr, and since all the χi’s satisfy (2.29), the solutions uε which achieve the

maximum value Cj,F (θr
ε) in (2.22) have uniformly controlled norm in H1(Kr ∪ Σr; R

3) and can be
extended in the void subregion {θr

ε = 0} so that they are precompact in L2(Q; R
3). We can therefore

pass to the limit in the bracket 〈F, uε〉R3 and apply well-known homogenization results for the elastic
energies on the perforated domain Q \ (Kr ∪ Σr) (see for instance [14, 21]). We obtain

lim
ε→0

Cj,F (θr
ε) = sup

u

{
〈F, u〉

R
3 −

∫

Q
jhom
r (x, e(u)) dx

}
(2.30)

where jhom
r (x, z) :=

∑
i∈I 11Ωi\(Kr∪Σr)(x)j

hom
χi

(z) + 11Kr∪Σr
(x)j(z), being, for any χ, jhom

χ (z) =

inf
ϕ Y −per

{ ∫

Y
j(z + ∇ϕ(y))χ(y) dy

}
. It is convenient to majorize the right hand side of (2.30)

in terms of the conjugate potential given by (jhom
r )∗(x, ξ) :=

∑
i∈I 11Ωi\(Kr∪Σr)(x)(j

hom
χi

)∗(ξ) +
11Kr∪Σr

(x)j∗(ξ), being, for any χ,

(jhom
χ )∗(ξ) = inf

{∫

Y
j∗(ζ) dy : ζ Y -per,

∫

Y
ζ = ξ , div ζ = 0 , ζ = 0 on {χ = 0}

}
.

Fix an arbitrary stress field σ ∈ L2(Q; R
3×3
sym) such that − div(σ) = F . Then, since θr

ε
∗
⇀θr, by (2.30)

and by standard duality, we get

Cj,F (θr) ≤
I∑

i=1

∫

Ωi\(Σr∪Kr)
(jhom

χi
)∗(σ) dx +

∫

Σr∪Kr

j∗(σ) dx .

Eventually we send r to zero in the last inequality. As θr ∗
⇀θ, by the lower semicontinuity of relaxed

functional Cj,F and by using Beppo-Levi’s Theorem in the right hand side, we obtain

Cj,F (θ) ≤
I∑

i=1

∫

Ωi

(jhom
χi

)∗(σ) dx . (2.31)
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So far, we have obtained that the above inequality holds for all the admissible choices of the family
{Ωi, χi}. We notice that, by approximation, it can be extended to all measurable partitions {Ωi}
(not necessarily smooth), and all χi ∈ Aθi

satisfying (2.29), being

Aθ :=
{
χ ∈ {0, 1} , χ Y -periodic ,

∫

Y
χ(y) dy = θ

}
.

Now, we are going to optimize (2.31) with respect to the choice of the family {Ωi, χi}. Following
[1], we introduce the following stress potential, corresponding to the stiffest composite material that
one can reach with a volume fraction θ when the average stress is given by ξ:

g(ξ, θ) := inf
{

(jhom
χ )∗(ξ) , χ ∈ Aθ

}
. (2.32)

Assume for a moment that, for such potential g, the following claim holds true:

g(ξ, θ) ≤ inf
{
(jhom

χ )∗(ξ) , χ ∈ Aθ , χ satisfies (2.29)
}

≤ θ−1 j∗0(ξ) . (2.33)

Let F be the subfamily of L1(Q) consisting of all functions of the kind f =
∑

i 11Ωi
(jhom

χi
)∗(σ)

(where Ωi are the elements of a partition of Q and χi runs over Aθi
). Then, from (2.31) and (2.33),

we deduce that

Cj,F (θ) ≤ inf
f∈F

∫

Q
f(x) dx =

∫

Q
(ess inf

F
f) dx ≤

∫

Q
θ−1j∗0(σ) dx . (2.34)

Here in the second equality we passed the infimum under the integral thanks to a classical argument
(see for instance[25]) which relies on the following stability property of F : for any Borel set B ⊂ Q
and any couple (f1, f2) of elements of F , we have 11B f1 + 11Q\B f2 ∈ F . We conclude by taking the
infimum in (2.34) with respect to all σ ∈ L2(Q; R

3×3
sym) such that − div(σ) = F , which is nothing

else but looking for the optimal stress tensor associated with the fictitious compliance problem
(see (4.2)) after choosing j0 to be the strain potential. This achieves the first step of the proof of
Proposition 2.8.

Proof of Claim (2.33). First we establish a bound for g(ξ, θ) when ξ belongs to the class S0 of
degenerated tensors. In this case ξ has rank strictly less than 3 and there exists some nonzero
vector e in the kernel of ξ. Therefore there exists some χe ∈ Aθ associated with a strip whose
boundary is orthogonal to e so that ζ := ξ

θ χe is admissible in the variational problem which defines(
jhom
χe

)∗
(ξ). By (2.32), this implies that

g(ξ, θ) ≤
(
jhom
χe

)∗
(ξ) ≤ θ−1j∗(ξ) ∀ξ ∈ S0 . (2.35)

By passing to the Fenchel conjugates with respect to ξ in (2.35) and recalling the definition (2.24),
we get for all z ∈ R

3×3
sym:

g∗(z, θ) ≥ sup
ξ∈S0

{
z · ξ − θ−1j∗(ξ)

}
= θ−1 j0(θ z) .

To conclude we exploit Lemma 4.2.5 in [1] which ensures that the map ξ 7→ g(ξ, θ) is convex.
Therefore, by passing again to the Fenchel conjugate,

g(ξ, θ) = g∗∗(ξ, θ) ≤ θ−1j∗0(ξ) ∀ξ ∈ R
3×3
sym . (2.36)
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Set now g̃(ξ, θ) := inf
{

(jhom
χ )∗(ξ) , χ ∈ Aθ , χ satifies (2.29)

}
. Clearly g̃ ≥ g. Conversely, given

ξ and θ′ ∈ (0, θ), for every η > 0 we can choose χ′ ∈ Aθ′ so that
(
jhom
χ′

)∗
(ξ) ≤ g(ξ, θ′) + η. Further

we may increase the set {χ′ = 1} to a set of total volume θ so that its characteristic function χ
belongs to Aθ and satisfies (2.29). It is straightforward to check that

(
jhom
χ

)∗
(ξ) ≤

(
jhom
χ′

)∗
(ξ) .

Thus, recalling (2.32) and exploiting (2.36), we deduce that

g̃(ξ, θ) ≤
(
jhom
χ

)∗
(ξ) + η ≤ (θ′)−1 (j∗0(ξ) + η) .

The second inequality in (2.33) follows by sending η to zero and then θ′ to θ.

Step 2. We show now that (2.28) holds for θ piecewise constant and positive. Fix a finite family
{Qi, i ∈ I} of connected disjoint regular open subsets of Q such that ∪Qi is of full measure in Q.
Given θi ∈ (0, 1], we then consider θ ∈ L∞(Q, [0, 1]) defined by θ(x) = θi on each Qi. As in step
1, we consider an optimal stress field for the dual form (4.2) of the fictitious compliance, namely a
field σ ∈ L2(Q; R

3×3
sym) such that − div(σ) = F and

∫
Q θ

−1j∗0 (σ) dx = C̃j0,F (θ). We are looking for

an approximating sequence θε
∗
⇀θ with θε ∈ {0, 1} and such that

lim sup
ε

Cj,F (θε) ≤
∫

Q
θ−1j∗0(σ) dx (2.37)

To that aim, we apply step 1 substituting Q with Qi and F with Fi given by

〈Fi, u〉 :=

∫

Qi

σ · e(u) dx ∀u ∈ H1(Q; R
3).

By the regularity assumption on the Qi’s, all the Fi’s are balanced loads in H−1(Qi; R
3) and share

the property (2.27). Therefore, there exist sequences θi,ε ∈ L∞(Qi, {0, 1}) and σi,ε ∈ L2(Qi; R
3×3
sym)

such that, for every i, θi,ε
∗
⇀θi, σi,ε = 0 a.e. on {θi,ε = 0} , − div σi,ε = Fi in R

3 and

lim sup
ε

∫

Qi

j∗(σi,ε) dx ≤ (θi)
−1

∫

Qi

j∗0(σ) dx . (2.38)

We then define σε ∈ L2(Q; R
3×3
sym) and θε ∈ L∞(Q; {0, 1}) by setting

θε = θi,ε , σε = σi,ε on Qi .

As F =
∑

i Fi, the stess field σε is supported on {θε = 1} and satisfies − div σε = F . Thus, by
(2.38), we obtain inequality (2.37):

lim sup
ε

Cj,F (θε) ≤
∑

i

lim sup
ε

∫

Qi

j∗(σi,ε) dx ≤
∑

i

(θi)
−1

∫

Qi

j∗0(σ) dx =

∫

Q
θ−1j∗0(σ) dx .

Step 3. In step 2, we have shown that the subset E :=
{
θ ∈ L∞(Q, [0, 1]) : Cj,F (θ) ≤ C̃j0,F (θ)

}

contains all piecewise constants functions θ related to smooth finite partitions of our domain Q. To
show the equality E = L∞(Q, [0, 1]), we use the following implication holding for every sequence
{θn} ⊂ L∞(Q, [0, 1]):

θn ∈ E , θn ≥ θ a.e. , θn
∗
⇀θ =⇒ θ ∈ E . (2.39)

This can be easily checked by observing that Cj0,F (θn) ≤ Cj0,F (θ) whenever θn ≥ θ and by using the
lower semicontinuity of Cj,F . Thus, from (2.39), we find successively that E contains all continuous
functions, then all upper semicontinuous functions and finally, by the regularity of Lebesgue measure,
all measurable functions θ : Q 7→ [0, 1]. �
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2.4 Main results

By combining the lower and upper bounds (2.23) and (2.28) for the relaxed compliance, with the
results on fictitious problems established in subsection 2.2, and with the key Lemma 2.6, we are
able to establish the asymptotic behaviour of problems (2.3)-(2.4).

Theorem 2.9 (convergence of volume penalized problems)
Assume that the load F is balanced, belongs to H−1(Q; R

3) and satisfies condition (2.27). Then for
every fixed k ∈ R

+, the following results hold:

(i) As δ → 0, the sequence φδ
j,F (k) defined by (2.3) converges to the limit φ(k) defined by (2.12).

(ii) If ωδ ⊆ Q is a sequence of domains such that φδ
j,F (k) = Cδ

j,F (ωδ) + k|ωδ| + o(1), up to
subsequences there holds

lim
δ→0

11ωδ = θ weakly star in L∞(Q; [0, 1]) ,

where θ solves problem (2.12).

Proof. (i) From (2.23) and (2.28) we obtain the following double bounding for φδ
j,F (k):

φ̃δ
j,F (k) ≤ φδ

j,F (k) ≤ φ̃δ
j0,F (k) .

The thesis follows since, by Proposition 2.2 (ii) and Lemma 2.6, both sequences φ̃δ
j,F (k) and φ̃δ

j0,F (k)
converge to φ(k) as δ → 0.

(ii) Since the sequences φ̃δ
j,F (k) and φδ

j,F (k) have the same limit as δ → 0, the assumption φδ
j,F (k) =

Cδ
j,F (ωδ) + k|ωδ | + o(1) implies φ̃δ

j,F (k) = C̃δ
j,F (11ωδ ) + k

∫
Q 11ωδ dx + o(1). As already noticed, by

Proposition 2.2 (i), the sequence C̃δ
j,F (θ) + k

∫
Q θ dx Γ-converges to Clim(θ) + k

∫
Q θ dx in the weak

star topology L∞(Q; [0, 1]). Therefore, we may identify any cluster point of 11ωδ with a solution θ
to problem (2.12).

�

Corollary 2.10 (convergence of volume constrained problems)
For every fixed τ ∈ [0, 1] and for F satisfying the same assumptions as in Theorem 2.9, we have:

(i) As δ → 0, the sequence Iδ
j,F (τ) defined by (2.4) converges to the limit I(τ) defined by (2.13).

(ii) If ωδ ⊆ Q is a sequence of domains with |ωδ| = τ such that Iδ
j,F (τ) = Cδ

j,F (ωδ) + o(1), then

there exists k ∈ R such that φδ
j,F (k) = Cδ

j,F (ωδ) + k|ωδ|+ o(1) (so that Theorem 2.9 (ii) can be
applied).

Proof. (i) From (2.23) and (2.28) we obtain the following double bounding for Iδ
j,F (τ):

Ĩδ
j,F (τ) ≤ Iδ

j,F (τ) ≤ Ĩδ
j0,F (τ) .

The thesis follows since, by Proposition 2.2 (iii) and Lemma 2.6, both sequences Ĩδ
j,F (τ) and Ĩδ

j0,F (τ)
converge to I(τ) as δ → 0.
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(ii) Let now ωδ ⊆ Q be a sequence such that |ωδ| = τ and Iδ
j,F (τ) = Cδ

j,F (ωδ) + o(1). We have to

show that there exists k ∈ R such that φδ
j,F (k) = Cδ

j (ωδ) + kτ + o(1), or equivalently φδ
j,F (k)− kτ =

Iδ
j,F (τ)+o(1). The latter condition is satisfied because there exists k ∈ R such that φ(k)−kτ = I(τ)

(cf. first statement of Corollary 6.4). �

3 A saddle point approach.

Let us firstly recall the notion of saddle point. Let X,Y be topological spaces, and let L : X ×Y →
R ∪ {±∞}. By definition (x, y) is a saddle point for L if

L(x, y) ≤ L(x, y) ≤ L(x, y) ∀(x, y) ∈ X × Y .

It is not difficult to check that this occurs if and only if

x ∈ argminX

(
sup
Y

L(x, y)
)
, y ∈ argmaxY

(
inf
X

L(x, y)
)
, inf

X
sup
Y

L(x, y) = sup
Y

inf
X

L(x, y) . (3.1)

We now take X = L∞(Q; [0, 1]), endowed with the weak star topology, and Y = H1(Q; R
3) endowed

with the weak topology. On the product space X×Y we consider, for a fixed k ∈ R, the Lagrangians

Lδ(θ, u) := 〈F, u〉
R

3 −
∫

Q

[
j(eδ(u)) − k

]
θ dx

L(θ, u) :=




〈F, u〉

R
3 −

∫

Q

[
j
(
eαβ(u)) − k

]
θ dx if u ∈ H1

KL(Q; R
3)

−∞ otherwise .

Notice that the sequence of fictitious problems φ̃δ
j,F (k) in (2.6) and the limit problem φ(k) in (2.12)

satisfy respectively

φ̃δ
j,F (k) = inf

X
sup
Y

Lδ(θ, u) and φ(k) = inf
X

sup
Y

L(θ, u) .

Let us define fk : R
2×2
sym × R

2×2
sym → R by

fk(z, ξ) :=

∫

I

[
j(z − x3ξ) − k

]
+
dx3 , (3.2)

where [ · ]+ indicates the positive part.

With this notation, we can state the main result of this section.

Theorem 3.1

(i) For every δ > 0, there exist saddle points (θδ, uδ) for Lδ; we have that θδ is optimal for φ̃δ
j,F (k)

and uδ is optimal for C̃δ
j,F (θδ) in (2.5).

17



(ii) Up to subsequences, (θδ, uδ) converge to a saddle point (θ, u) for L; we have that θ is optimal
for φ(k), and u is optimal for both Clim(θ) in (2.10) and the following reformulation (3.3)
holding for φ(k):

φ(k) = sup
{
〈F, u〉

R
3 −

∫

Q
[j(eαβ(u)) − k

]
+
dx : u ∈ H1

KL(Q; R
3)

}
(3.3)

= sup
{
〈F, v〉

R
2 −

∫

D
fk

(
e(v1, v2),∇2v3

)
dx′ : vα ∈ H1(D) , v3 ∈ H2(D)

}
. (3.4)

Proof of Theorem 3.1. We set

Gδ(θ) := supY Lδ(θ, u) = C̃δ
j,F (θ) + k

∫

Q
θ dx

Jδ(u) := infX Lδ(θ, u) = 〈F, u〉
R

3 −
∫

Q

[
j(eδ(u)) − k]+ dx .

and

G(θ) := supY L(θ, u) = Clim(θ) + k

∫

Q
θ dx

J(u) := infX L(θ, u) =




〈F, u〉

R
3 −

∫

Q

[
j(eαβ(u)) − k]+ dx on H1

KL(Q; R
3)

−∞ otherwise.

We now prove separately statements (i) and (ii).

(i) It is enough to show that

∃ θδ ∈ argminXG
δ , ∃uδ ∈ argmaxY J

δ , infX Gδ = supY J
δ . (3.5)

Indeed by the characterization (3.1) this ensures that (θδ, uδ) are saddle points for Lδ. Moreover θδ

is optimal for φ̃δ
j,F (k) by construction, and uδ is optimal for Cδ

j,F (θδ) because Gδ(θδ) = Lδ(θδ, uδ),
so that

C̃δ
j,F (θδ) = 〈F, uδ〉

R
3 −

∫

Q
j(eδ(uδ)) θδ dx .

Let us check the three conditions in (3.5).
The existence of θδ ∈ argminXG

δ is a consequence of the compactness of X, combined with the
weak star lower semicontinuity of the map θ 7→ Gδ(θ) (which is in fact the supremum over u of the
weakly star continuous maps θ 7→ Lδ(θ, u)).
Let us show that a minimizer in Y exists for the functional

−Jδ(u) =

∫

Q

[
j(eδ(u)) − k]+ dx− 〈F, u〉

R
3 .

By the convexity of the integrand [j(z)− k]+, −Jδ is weakly lower semicontinuous on Y . Moreover,
the quadratic growth from below imposed on j implies that [j(z) − k]+ is coercive, so that any
minimizing sequence {un} for −Jδ satisfies supn ‖eδ(un)‖L2(Q) < +∞. Then, by the Korn inequality,
{un} is weakly precompact (up to subtracting a rigid displacement, which is not restrictive thanks
to the assumption that F is balanced). Hence −Jδ attains its minimum on Y .
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Finally, since Lδ(θ, u) is convex in θ on the compact space X and concave in u on Y , the equality
infX Gδ = supY J

δ holds by a standard commutation argument, see for instance [31, Proposition
A.8].

(ii) We first claim that the sequences θδ and uδ are precompact in X and Y respectively. The
sequence θδ is clearly precompact since X is compact. Concerning uδ, since it maximizes Jδ, we
have ∫

Q

[
j(eδ(uδ)) − k]+ dx− 〈F, uδ〉

R
3 = −Jδ(uδ) ≤ −Jδ(0) = [−k]+.

Since as noticed above the integrand [j(z) − k]+ is coercive, the sequence {eδ(uδ)} is bounded in
L2(Q; R

3×3
sym). Then, similarly as above, the Korn inequality ensures that {uδ} is precompact in Y

up to subtracting a rigid displacement.
Thus, up to subsequences, we know that the saddle points (θδ, uδ) converge to some limit (θ, u) in
X × Y . By applying [7, Theorem 2.4], we can conclude that (θ, u) is a saddle point for L provided
the following two inequalities hold for any pair (θ, u) ∈ X × Y :

inf
θδ

∗
⇀ θ

sup
uδ ⇀ u

{
lim inf

δ
Lδ(θδ, uδ)

}
≥ L(θ, u) , (3.6)

lscX

(
sup

uδ ⇀ u

inf
θδ

∗
⇀ θ

{
lim sup

δ
Lδ(θδ, uδ)

})
≤ L(θ, u) (3.7)

where lscX denotes the lower semicontinuous envelope in X.
Inequalities (3.6) and (3.7) may be reformulated in a much simpler way. Indeed, thanks to the
continuity of the maps u 7→ 〈F, u〉

R
3 on Y and θ 7→

∫
Q θ dx on X, inequality (3.6) holds provided,

∀ θδ ∗
⇀θ, ∃uδ ⇀u such that

lim sup
δ

∫

Q
j(eδ(uδ))θδ dx ≤

∫

Q
j(eαβ(u))θ dx .

This is exactly the asymptotic property (AP1) proved in Lemma 2.4.
Concerning (3.7), let ut first show that it holds under the assumption infQ θ > 0. Similarly as

above, inequality (3.7) holds provided, ∀uδ ⇀u, ∃ θδ ∗
⇀θ such that

lim inf
δ

∫

Q
j(eδ(uδ))θδ dx ≥





∫

Q
j(eαβ(u))θ dx if u ∈ H1

KL(Q; R
3)

+∞ otherwise .

This is implied (with θδ ≡ θ), by the asymptotic property (AP2) proved in Lemma 2.4.
It remains to get rid of the additional assumption infQ θ > 0. This can be done via a standard

density argument. Indeed, for any θ we may find a sequence θh with infQ θ
h > 0 such that θh ∗

⇀θ.
Then, since the left hand side of (3.7) (call it for brevity L′(θ, u)) is weakly star lower semicontinuous
in θ, and L(θ, u) is weakly * continuous in θ, we obtain

L′(θ, u) ≤ lim inf
h

L′(θh, u) ≤ lim
h

L(θh, u) = L(θ, u) .

Finally, since we have proved that (θ, u) is a saddle point for L, by using the characterization (3.1)
we obtain immediately that θ is optimal for φ(k), that φ(k) may be rewritten as in (3.3) (or in its
2D-reformlation (3.4)), and that u is optimal for both Clim(θ) and problem (3.3).
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4 A stress approach

In this section we focus attention on an alternative approach for studying the limiting behaviour
of problems (2.3)-(2.4), based on duality arguments. Let us first recall a useful Convex Analysis
lemma.

Lemma 4.1 Let X,Y be Banach spaces. Let A : X → Y be a linear operator with dense domain
D(A). Let Φ : X → R∪ {+∞} be convex, and Ψ : Y → R∪ {+∞} be convex lower semicontinuous.
Assume there exists u0 ∈ D(A) such that Φ(u0) < +∞ and Ψ is continuous at A(u0). Let Y ∗

denote the dual space of Y , A∗ the adjoint operator of A, and Φ∗, Ψ∗ the Fenchel conjugates of Φ,
Ψ. Then

− inf
u∈X

{
Ψ(Au) + Φ(u)

}
= inf

σ∈Y ∗

{
Ψ∗(σ) + Φ∗(−A∗σ)

}
,

where the infimum on the right hand side is achieved.

Proof. See [13, Proposition 14]. �

By applying repeatedly Lemma 4.1, we deduce that:

– the compliance Cj,F (Ω) defined by (1.1) and its fictitious counterpart C̃j,F (θ) defined by (1.7)
can be rewritten in dual form as

Cj,F (Ω) = inf
{ ∫

Q
j∗(σ) dx : σ ∈ L2(Q; R

3×3
sym) , σ = 0 on Q \ Ω , − div(σ) = F

}
(4.1)

C̃j,F (θ) = inf
{ ∫

Q
θ−1j∗(σ) dx : σ ∈ L2(Q; R

3×3
sym) , − div(σ) = F

}
; (4.2)

– the rescaled compliance Cδ
j,F (ω) defined by (2.2) and its fictitious counterpart C̃δ

j,F (θ) defined
by (2.5) can be rewritten in dual form as

Cδ
j,F (ω)= inf

{ ∫

Q
j∗(Πδ(σ)) dx : σ ∈ L2(Q; R

3×3
sym) , σ = 0 on Q \ ω , − div(σ) = F

}
(4.3)

C̃δ
j,F (θ)= inf

{ ∫

Q
θ−1j∗(Πδ(σ)) dx : σ ∈ L2(Q; R

3×3
sym) , − div(σ) = F

}
, (4.4)

where the operator Πδ(σ) is defined by

Πδσ :=



σαβ δσα3

δσα3 δ2σ33


 ;

– the limit compliance Clim(θ) defined in (2.10) can be rewritten in dual form as

Clim(θ) = inf
{∫

Q
θ−1j ∗(σ)dx : σ ∈ L2(Q; R

2×2
sym), − div[[σ]] = (F 1, F 2), − div2[[x3σ]] = F 3

}
;

(4.5)
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– the formulations (3.3) and (3.4) of the limit problem φ(k) defined in (2.12) can be rewritten
in dual form as

φ(k) = inf
{∫

Q
[j − k

]∗
+
(σ) dx : σ ∈ L2(Q; R

2×2
sym),− div[[σ]] = (F 1, F 2),− div2[[x3σ]] = F 3

}
(4.6)

= inf
{ ∫

D
f∗k (λ, η) dx′ : λ, η ∈ L2(D; R

2×2
sym),− div λ = (F 1, F 2),div2 η = F 3

}
, (4.7)

where the integrand fk is defined by (3.2).

We are now in a position to give the main result of this section.

Theorem 4.2 (convergence of stress tensors)
Let k ∈ R be fixed. Let ωδ ⊆ Q be a sequence of domains such that φδ

j,F (k) = Cδ
j,F (ωδ)+k|ωδ |+o(1),

and 11ωδ converges weakly star to θ in L∞(Q; [0, 1]). For every δ, let σδ ∈ L2(Q; R
3×3
sym) be optimal

for the dual form (4.3) of Cδ
j,F (ωδ). Then, up to subsequences, there holds

lim
δ→0

Πδσδ = E0σ weakly in L2(Q; R
3×3
sym) ,

where σ is optimal for the dual form (4.5) of Clim(θ), and also for the 3D dual form (4.6) of φ(k).

In order to prove Theorem 4.2, we begin to establish some preliminary lemmas.

Lemma 4.3 Let {σδ} ⊂ L2(Q; R
3×3
sym) be such that

− div(σδ) = F and Πδσδ ⇀σ in L2(Q; R
3×3
sym) .

Then

(i) σ = E0σ for some σ ∈ L2(Q; R
2×2
sym);

(ii) − div[[σ]] = (F 1, F 2) and − div2[[x3σ]] = F 3 [or equivalently div(E0σ)+F ∈
(
H1

KL(Q; R
3)

)⊥
].

Proof. (i) For a given smooth vector field ξ : Q→ R
3, define Φ : Q→ R

3 by

Φi(x
′, x3) :=

∫ x3

0
ξi(x

′, s) ds i = 1, 2, 3 .

Let {uδ} be the sequence defined componentwise by:

uδ
1 = δΦ1 , uδ

2 = δΦ2 , uδ
3 = δ2Φ3 ;

we have:

eδ(uδ) = δeαβ(Φ) +

2∑

i=1

(
ξi + δ

∂Φ3

∂xi

)
(ei ⊗ e3 + e3 ⊗ ei) + ξ3(e3 ⊗ e3) .

Thus

uδ → 0 in H1(Q; R
3) and eδ(uδ) →

3∑

i=1

ξi(ei ⊗ e3 + e3 ⊗ ei) in L2(Q; R
3×3
sym) .
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Hence

0 = lim
δ

〈F, uδ〉
R

3 = − lim
δ

〈div(σδ), uδ〉
R

3 = lim
δ

∫

Q
σδ · e(uδ) dx

= lim
δ

∫

Q
Πδσδ · eδ(uδ) dx =

∫

Q
σ ·

3∑

i=1

ξi(ei ⊗ e3 + e3 ⊗ ei) dx =

3∑

i=1

∫

Q
σ3iξi dx .

By the arbitrariness of the functions ξi, we deduce that σ3i = 0, and therefore σ = E0σ for some
σ ∈ L2(Q; R

2×2
sym).

(ii) Take (v1, v2, v3) ∈ H1(D)×H1(D)×H2(D) and u ∈ H1
KL(Q; R

3) related to each other through
formula (1.4). Recalling (2.9) and (1.5), we get:

〈F , v〉
R

2 = 〈F, u〉
R

3 = −〈div(σδ), u〉
R

3 =

∫

Q
σδ · e(u) dx =

∫

Q
σδ

αβ ·
(
e(v1, v2) − x3∇2v3

)
dx .

Passing to the limit as δ → 0 in the right hand side, we infer

〈F, v〉
R

2 =

∫

Q
σ ·

(
e(v1, v2) − x3∇2v3

)
dx =

∫

D

(
[[σ]] · e(v1, v2) − [[x3σ]] · ∇2v3

)
dx′

= −〈div[[σ]], (v1, v2)〉R2 − 〈div2[[x3σ]], v3〉R2 ,

so that − div[[σ]] = (F 1, F 2) and − div2[[x3σ]] = F 3. These conditions may be equivalently formu-

lated as div(E0σ) + F ∈ (H1
KL(Q; R

3)
)⊥

by taking into account that 〈F, u〉
R

3 = 〈F , v〉
R

2 and

−〈div[[σ]], (v1, v2)〉R2 − 〈div2[[x3σ]], v3〉R2 =

∫

Q
(E0σ) · e(u) dx = −〈div(E0σ), u〉

R
3 .

�

It will be useful to consider the (nonconvex) function gk : R
3×3
sym → R defined by

gk(ξ) :=

{
j∗(ξ) + k if ξ 6= 0

0 otherwise.
(4.8)

Next lemma allows to compute the convex envelope of gk.

Lemma 4.4 The Fenchel conjugate and biconjugate of the function gk : R
3×3
sym → R defined in (4.8)

are given respectively by

g∗k(z) = [j(z) − k]+ (4.9)

g∗∗k (ξ) = inf
θ∈[0,1]

(
θ−1j∗(ξ) + kθ

)
. (4.10)

Proof. There holds:

g∗k(z) = sup
ξ∈R

3×3
sym

{
z · ξ − gk(ξ)

}
= sup

{
sup
ξ 6=0

{
z · ξ − j∗(ξ) − k

}
, 0

}

= sup
{
j∗∗(z) − k, 0

}
= [j(z) − k]+ ,
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where in the last equality we have used the identity j = j∗∗, holding since z 7→ j(z) is convex,
proper, and lower semicontinuous on R

3×3
sym.

For the computation of f∗∗k , we observe that the optimal θ in the r.h.s. of (4.10) is given by

min
{

1,

√
j∗(ξ)
k

}
.

The corresponding value of the infimum turns out to be

{
j∗(ξ) + k if j∗(ξ) ≥ k

2
√
k
√
j∗(ξ) if j∗(ξ) ≤ k ,

which agrees with the expression of the convex envelope of gk.
�

Lemma 4.5 The Fenchel conjugate f∗k of the function fk : R
2×2
sym × R

2×2
sym → R defined in (3.2) is

given by

f∗k (λ, η) = inf
{ ∫

I
[j − k]∗+(σ) dx3 : σ ∈ L2(I; R

2×2
sym) , [[σ]] = λ , −[[x3σ]] = η

}
. (4.11)

Proof. Let us denote by ψk(λ, η) the right hand side of (4.11), and let us show that ψ∗
k(z, ξ) =

fk(z, ξ). We have indeed:

ψ∗
k(z, ξ) = sup

λ,η

{
z · λ+ ξ · η − inf

{ ∫

I
[j − k]∗+(σ) dx3 : σ ∈ L2(I; R

2×2
sym) , [[σ]] = λ , −[[x3σ]] = η

}}

= sup
{∫

I

(
(z − x3ξ) · σ − [j − k]∗+(σ)

)
dx3 : σ ∈ L2(I; R

2×2
sym)

}

=

∫

I
[j − k]∗∗+ (z − x3ξ) dx3 = fk(z, ξ) .

Passing to the Fenchel conjugate we obtain f∗k (λ, η) = ψ∗∗
k (λ, η). This gives the thesis by the identity

ψ∗∗
k (λ, η) = ψk(λ, η), holding since ψk is convex, proper, and lower semicontinuous on R

2×2
sym × R

2×2
sym.

�

Proof of Theorem 4.2. We claim that φδ
j,F (k) and φ̃δ

j,F (k) admit asymptotically the following
integral representations:

φδ
j,F (k) =

∫

Q
gk(Π

δσδ) dx+ o(1) . (4.12)

φ̃δ
j,F (k) =

∫

Q
g∗∗k (Πδσδ) dx+ o(1) , (4.13)

where gk is the nonconvex integrand defined in (4.8) and g∗∗k is its convex envelope which can be
computed thanks to Lemma 4.4.
In order to prove (4.12), let us consider the sets Eδ := {x ∈ ωδ : σδ 6= 0} = {x ∈ ωδ : Πδσδ 6= 0}.
We first notice that

Cδ
j,F (Eδ) = Cδ

j,F (ωδ) . (4.14)
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Indeed, since Eδ ⊆ ωδ, there holds Cδ
j,F (Eδ) ≥ Cδ

j,F (ωδ). On the other hand, σδ is admissible in the

dual form of Cδ
j,F (Eδ) because it vanishes outside Eδ, and by assumption it is optimal for the dual

form (4.3) of Cδ
j,F (ωδ). Therefore we have Cδ

j,F (Eδ) ≤
∫
Q j

∗(Πδσδ) dx = Cδ
j,F (ωδ).

Using (4.14) and the assumption made on ωδ, we deduce that

φδ
j,F (k) ≤ Cδ

j,F (Eδ) + k|Eδ | = Cδ
j,F (ωδ) + k|Eδ| ≤ Cδ

j,F (ωδ) + k|ωδ| = φδ
j,F (k) + o(1) .

and hence
|Eδ | = |ωδ| + o(1) . (4.15)

Then the assumptions made on ωδ and σδ , combined with (4.15), give:

φδ
j,F (k) = Cδ

j,F (ωδ) + k|ωδ| + o(1) =

∫

Q

{
j∗(Πδσδ) + k11ωδ

}
dx+ o(1)

=

∫

Q

{
j∗(Πδσδ) + k11Eδ

}
dx+ o(1)

=

∫

Q
gk(Π

δσδ) dx+ o(1) .

In order to prove (4.13), let us insert the dual form of C̃δ
j,F (θ) in the definition of φ̃δ

j,F (k), and then
let us we exchange the infima in θ and σ. We get

φ̃δ
j,F (k) = inf

{
inf

θ∈L∞(Q;[0,1])

∫

Q

(
θ−1j∗(Πδσ) + kθ

)
dx : σ ∈ L2(Q; R

3×3
sym) , − div σ = F

}
.

Taking into account (4.10), we deduce that

φ̃δ
j,F (k) = inf{

∫

Q
g∗∗k (Πδσ) dx : σ ∈ L2(Q; R

3×3
sym) , − div σ = F

}
. (4.16)

By using (4.12), (4.16), and the convergence of both φδ
j,F (k) and φ̃δ

j,F (k) to φ(k), we obtain

φ(k) = lim
δ→0

∫

Q
gk(Π

δσδ) dx ≥ lim inf
δ→0

∫

Q
g∗∗k (Πδσδ) dx ≥ lim inf

δ→0
φ̃δ

j,F (k) = φ(k) ,

which implies (4.13).
Now we observe that, since the integrals in the right hand side of (4.13) remain bounded and since
g∗∗k is coercive, the sequence Πδσδ turns out to be bounded in L2(Q; R

3×3
sym). Up to subsequences, it

converges weakly to some limit which, by Lemma 4.3, is of the form E0σ for some σ ∈ L2(Q; R
2×2
sym)
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such that − div[[σ]] = (F 1, F 2) and − div2[[x3σ]] = F 3. Then:

φ(k) =(1) lim
δ
φ̃δ

j,F (k) =(2) lim
δ

∫

Q
g∗∗k (Πδσδ) dx ≥(3)

∫

Q
g∗∗k (E0σ) dx

=(4) inf
θ∈L∞(Q;[0,1])

∫

Q

(
θ−1j ∗(σ) + kθ

)
dx =(5)

∫

Q
[j − k]∗+(E0σ) dx =(6)

∫

Q
[j − k]∗+(σ) dx

≥(7) inf
{ ∫

Q
[j − k]∗+(σ) dx : σ ∈ L2(Q; R

2×2
sym) , − div[[σ]] = (F 1, F 2) , − div2[[x3σ]] = F 3

}

≥(8) inf
{ ∫

D

(
inf

σ ∈ L2(Q; R2×2
sym)

[[σ]] = λ , −[[x3σ]] = η

∫

I
[j − k]∗+(σ) dx3

)
dx′ : − div λ = (F 1, F 2) , div2 η = F 3

}

=(9) inf
{∫

D
f∗k (λ, η) dx′ : λ, η ∈ L2(D; R

2×2
sym) , − div λ = (F 1, F 2) , div2 η = F 3

}
=(10) φ(k)

Here:
– equality (1) follows from Proposition 2.2 (ii);

– equality (2) follows from (4.13);
– inequality (3) follows from the convexity of the map g∗∗k which ensures the weak lower semiconti-
nuity on L2(Q; R

3×3
sym) of the integral functional ξ 7→

∫
Q g

∗∗
k (ξ) dx;

– equalities (4) and (5) follow from (4.9) and (4.10) in Lemma 4.4;
– equality (6) follows by an easy algebraic calculation (cf. (2.15));
– inequality (7) follows from Lemma 4.3;
– inequality (8) follows by passing an infimum under the sign of integral;
– equality (9) follows from Lemma 4.5;
– equality (10) follows from the 2D dual formulation (4.7) of φ(k).

Since all the inequalities in the above chain must turn into equalities, we infer that σ is optimal for
both the dual form (4.5) of Clim(θ) and the 3D dual form (4.6) of φ(k). �

5 Characterization of optimal limit configurations

We now turn attention to the optimality conditions for the limit problem. We give first the definition
of optimal triples, and then their characterization as solutions of a suitable optimality system (see
Theorem 5.2). As a remarkable consequence, we deduce that the limit compliance problem always
admits a classical solution. Moreover, for any admissible load, such solution is always given by the
characteristic function of two layers leaning on the top and bottom faces of the design region (see
Corollary 5.4).

Definition 5.1 Let (θ, u, σ) ∈ L∞(Q; [0, 1]) ×H1
KL(Q; R

3) × L2(Q; R
2×2
sym). We say that (θ, u, σ) is

an optimal triple for φ(k) if:

(·) θ solves problem (2.12);

(·) u solves problem (3.3) and is optimal for Clim(θ) in its primal form (2.10);
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(·) σ solves problem (4.6) and is optimal for Clim(θ) in its dual form (4.5).

Theorem 5.2 (optimality conditions)
Let (θ, u, σ) ∈ L∞(Q; [0, 1])×H1

KL(Q; R
3)×L2(Q; R

2×2
sym). We have that (θ, u, σ) is an optimal triple

for φ(k) if and only if it satisfies the conditions:

− div[[σ]] = (F 1, F 2) , − div2[[x3σ]] = F 3 (5.1)

σ = θ j ′(eαβ(u)
)

(5.2)

σ ∈ ∂
(
[j(eαβ(u)) − k]+

)
. (5.3)

θ
(
j(eαβ(u)) − k

)
= [j(eαβ(u)) − k]+ (5.4)

Remark 5.3 It can be checked that, in terms of 2D variables, the inclusion (5.3) is equivalent to
the following pair of conditions:

(λ, η) ∈ ∂fk

(
e(v1, v2),∇2v3

)
and f∗k (λ, η) =

∫

I

[
j − k

]∗
+
(σ(x′, x3)) dx3 ,

where v is related to u through the equality eαβ(u) = e(v1, v2)−x3∇2v3, whereas λ and η are given
respectively by [[σ]], and −[[x3σ]].

Proof of Theorem 5.2. Firstly note that, for every u and σ admissible respectively in the
primal and dual forms (2.10) and (4.5) of Clim(θ), there holds:

〈F, u〉
R

3 = −〈div(E0σ), u〉
R

3 =

∫

Q
E0σ · e(u) dx =

∫

Q
σ · eαβ(u) dx . (5.5)

Assume now that (θ, u, σ) is an optimal triple for φ(k) according to Definition 5.1. Then clearly
(5.1) holds since σ must be admissible for problem (4.6). Moreover, since σ is optimal for the dual
form (4.5) of Clim(θ), necessarily it must vanish on the set {θ = 0}. Then, using the equivalence
between the primal and the dual forms (2.10) and (4.5) of Clim(θ), we obtain:

0 =

∫

Q

{
σ · eαβ(u) − θ j(eαβ(u)) − θ −1 j ∗(σ)

}
dx

=

∫

Q∩{θ>0}

{
θ −1σ · eαβ(u) − j(eαβ(u)) − j ∗(θ −1σ)

}
θ dx ,

which yields (5.2) thanks to the Fenchel inequality.
Similarly, again using (5.5), the equivalence between (3.3) and (4.6) implies:

∫

Q

{
σ · eαβ(u) − [j − k]+(eαβ(u)) − [j − k]∗+(σ)

}
dx = 0 ,

which yields (5.3) thanks to the Fenchel inequality.
Finally, the equivalence between (2.12) and (3.3) implies:

∫

Q

{(
j(eαβ(u)) − k

)
θ −

[
j − k

]
+
(eαβ(u))

}
dx = 0 ,
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which yields (5.4) since the integrand is nonpositive.

Viceversa, assume that (θ, u, σ) satisfy the optimality conditions (5.1)-(5.2)-(5.3)-(5.4).
By (5.1), σ is admissible for Clim(θ) in its dual form (4.5). Hence,

〈F, u〉
R

3 −
∫

Q
j(eαβ(u)) θ dx

≤ sup
{
〈F, u〉

R
3 −

∫

Q
j(eαβ(u)) θ dx : u ∈ H1

KL(Q; R
3)

}

= inf
{ ∫

Q
θ −1j ∗(σ) dx : σ ∈ L2(Q; R

2×2
sym) , − div[[σ]] = (F 1, F 2) , − div2[[x3σ]] = F 3

}

≤
∫

Q
θ −1j ∗(σ) dx .

Using (5.5) one sees that, thanks to (5.2), the first and the last term in the above chain of inequalities
agree. Hence u and σ are optimal respectively for the primal and the dual forms (2.10) and (4.5)
of Clim(θ).
Similarly, by (5.1), σ is admissible also for problem (4.6). Hence,

〈F, u〉
R

3 −
∫

Q

[
j − k

]
+
(eαβ(u)) dx

≤ sup
{
〈F, u〉

R
3 −

∫

Q
[j(eαβ(u)) − k

]
+
dx : u ∈ H1

KL(Q; R
3)

}

= inf
{∫

Q
[j − k

]∗
+
(σ) dx : σ ∈ L2(Q; R

2×2
sym) , − div[[σ]] = (F 1, F 2) , − div2[[x3σ]] = F 3

}

≤
∫

Q

[
j − k

]
+
(σ) .

Using (5.5) one sees that, thanks to (5.3), the first and the last term in the above chain of inequalities
agree. Hence u and σ are optimal respectively for problems (3.3) and (4.6).
It remains to check that θ is optimal for problem (2.12). Indeed we have

Clim(θ) + k

∫

Q
θ dx = sup

{
〈F, u〉

R
3 −

∫

Q

(
j(eαβ(u) − k

)
) θ dx : u ∈ H1

KL(Q; R
3)

}

= 〈F, u〉
R

3 −
∫

Q

(
j(eαβ(u)) − k

)
θ dx

= 〈F, u〉
R

3 −
∫

Q
[j − k

]
+
(eαβ(u)) = φ(k) ,

where in the first equality we have used the primal form (2.10) of Clim(θ), in the second equality the
already proved optimality of u for such formulation, in the third equality the optimality condition
(5.4), and finally in the fourth equality the already proved optimality of u for problem (3.3). �

Thanks to Theorem 5.2, it is an easy task to deduce qualitative properties of optimal material
distributions θ, and to realize that classical shape solutions always exist, namely that θ can be
identified with characteristic functions.
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To be more precise, let us associate with a given u ∈ H1
KL(Q; R

3) the following subsets of Q:

Σ+
k (u) := {j(eαβ(u)) > k} , Σ−

k (u) := {j(eαβ(u)) < k} , Σ0
k(u) := {j(eαβ(u)) = k} .

Recalling that eαβ(u) = e(v1, v2) − x3∇2v3 for some vα ∈ H1(D) and v3 ∈ H2(D), we deduce that,
for any x′ ∈ D, the fiber {x3 ∈ I : (x′, x3) ∈ Σ+

k (u)} turns out to be the complement of an interval.
Moreover, up to a set of null Lebesgue measure in R

3, Σ0
k(u) may be identified with the cylinder

{
(x′, x3) : ∇2v3(x

′) = 0 , j(e(v1, v2)(x
′)) = k

}
;

in particular, Σ0
k(u) is Lebesgue negligible in R

3 if it happens that the set {x′ ∈ D : ∇2v3(x
′) = 0}

is Lebesgue negligible in R
2.

Corollary 5.4 Let (θ, u, σ) be any optimal triple for φ(k). Then

θ = 0 on Σ−
k (u) and θ = 1 on Σ+

k (u) .

Then two cases may occur, each one leading to the existence of a two-layers classical solution:

– if Σ0
k(u) has null measure, θ itself is a classical solution: it is indeed uniquely determined

as the characteristic function of the set ω = Σ+
k (u), whose fibers are the complement of a

(possibly empty) interval;

– if Σ0
k(u) has positive measure, the initial optimal triple (θ, u, σ) can be modified into another

optimal triple (θ∗, u, σ∗) such that θ∗ is a classical solution, and more specifically it is the
characteristic function of a set ω, whose fibers are the complement of a (possibly empty)
interval.

Proof. Equation (5.4) implies that θ = 0 on Σ−
k (u), and that θ = 1 on Σ+

k (u). In case Σ0
k(u) has

null measure, it follows straighforward that θ is a classical solution : it agrees with the characteristic
function of the set Σ+

k (u), whose fibers are the complement of an interval. In case Σ0
k(u) has positive

measure, the optimal triple (θ, u, σ) can be modified into another optimal triple (θ∗, u, σ∗) as follows.
We leave (θ, u, σ) unchanged on the complement of Σ0

k(u). For x = (x′, x3) ∈ Σ0
k(u) we define:

θ∗(x′, x3) := 1 − 11I∗(x′)(x3) and σ∗ := θ∗j ′(eαβ(u)) ,

where I∗(x′) = (−δ∗(x′), δ∗(x′)) is an interval chosen so that [[θ∗]] = [[θ]].
By construction, θ∗ is the characteristic function of a set whose fibers are the complement of an
interval. We have only to check that the triple (θ∗, u, σ∗) satisfies the optimality system on Σ0

k(u).
Equation (5.1) holds because [[σ∗]] = [[σ]] and [[x3σ

∗]] = [[x3σ]] (this follows from the definition of
σ∗, taking into account that [[θ∗]] = [[θ]], and that j ′(eαβ(u)) is independent of x3 on Σ0

k(u)).
Equation (5.2) holds by the definition of σ∗.
Equation (5.3) holds because we know from (5.2) that σ∗ equals either 0 or j ′(eαβ(u)), so that in

both cases it belongs to ∂
(
[j(eαβ(u)) − k]+

)
.

Finally equation (5.4) holds trivially on Σ0
k(u).

�
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6 Varying Lagrange multiplier and vanishing volume limit

The volume penalized version of the limit problem obtained in Section 2 is described, in terms of
the Lagrange parameter k, by the function φ(k) in (2.12). By Corollary 5.4, φ(k) admits a classical
solution θ, which is the characteristic function of some set. From now on, we will denote such a
set by ωk, since we want to emphasize its dependence on k. Indeed, we want to let the parameter
k vary, and to examine the asymptotic behaviour as k tends to +∞ of both the function φ(k) and
the sets ωk. This is an important issue, as it corresponds to study the asymptotic behaviour, as the
volume fraction τ tends to 0+, of the function I(τ) defined in (2.13). We are going to show that
this limit process allows to link our results with the models previously studied in [16, 17, 27].
Let us begin by extending the limit compliance in (2.11) to the class M+(Q) of positive measures
on Q, by setting

Clim(µ) := sup
v∈C∞(D;R3)

{
〈F, v〉

R
2−

∫

Q
j
(
e(v1, v2) − x3∇2v3

)
dµ

}
∀µ ∈ M+(Q) . (6.1)

The function φ(k) can be then recast as:

φ(k) = inf
{
Clim(µ) + k

∫
dµ : µ = θ dx , θ ∈ L∞(Q; [0, 1])

}
.

For k > 0, by multiplying µ by the scalar factor
√

2k, we are led to the equality

φ(k)√
2k

= inf
{
Clim(µ) +

1

2

∫
dµ : µ = θ dx , θ ∈ L∞(Q; [0,

√
2k])

}
. (6.2)

Therefore the positive quantity φ(k)√
2k

remains finite and is monotone nonincreasing in k. It is natural

to expect that its limit as k → ∞ is positive and given by

m := inf
{
Clim(µ) +

1

2

∫
dµ : µ ∈ M+(Q)

}
(6.3)

This fact is proved in the next theorem where in addition the asymptotics as k → +∞ of the optimal
sets ωk is established.

Theorem 6.1 (asymptotics as k → +∞)

(i) The function φ(k) defined by (2.12) is concave continuous. For k ≤ 0 it is affine, whereas for
k > 0 it has the following behaviour (being m defined by (6.3)):

φ(k)√
2k

is nonincreasing , lim
k→+∞

φ(k)√
2k

= m . (6.4)

(ii) Let ωk be an optimal set for φ(k). Then there holds |ωk| ≤ C√
k

for a suitable constant C and, up

to a subsequence, as k → +∞ we have:
√

2k 11ωk

∗
⇀µ , with µ optimal for problem (6.3) . (6.5)

In view of this result, it is important to understand how to deal in practice with problem (6.3).
In Proposition 6.2 below, we show that m can also be obtained through the linear constrained prob-
lem studied in [16, 17, 27], or equivalently through its dual formulation. This allows to determine
optimal measures µ for (6.3). Moreover, Proposition 6.2 will be useful for the proof of Theorem 6.1.
Let ρ : R

2×2
sym → R be defined by the identity j(z) = 1

2ρ
2(z), and let ρo be its polar function, namely

ρo(ξ) = sup{z · ξ : ρ(z) ≤ 1}.
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Proposition 6.2 With the above notation,

(i) problem (6.3) has solutions and m is positive. Furthermore

m = sup
{
〈F, u〉

R
3 : u ∈ H1

KL(Q; R
3) , ρ(eαβ(u)) ≤ 1 a.e. on Q

}
(6.6)

= sup
{
〈F, v〉

R
2 : vα ∈ H1(D), v3 ∈ H2(D) , ρ

(
e(v1, v2) ± 1

2∇2v3
)
≤ 1 a.e. on D

}
(6.7)

and any optimal measure µ in (6.3) satisfies C lim(µ) = 1
2

∫
dµ = m

2 ;

(ii) it holds

m = min
{∫

ρo
(λ
2

+ η
)

+

∫
ρo

(λ
2
− η

)
: λ, η ∈ M(D,R2×2

sym) ,

− div λ = (F 1, F 2) , div2(η) = F 3

}
;

(6.8)

(iii) if (λ, η) is a solution of (6.8), then a solution of (6.3) is given by

µ := ρo
(λ

2
+ η

)
⊗ δ{x3=1/2} + ρo

(λ
2
− η

)
⊗ δ{x3=−1/2} . (6.9)

Remark 6.3 Theorem 6.1 and Proposition 6.2 give a rather complete picture of the asymptotic
behaviour of the sets ωk. Firstly, by Theorem 6.1, we know that the rescaled measures

√
2k|ωk|

converge to m as k → +∞. Moreover, according to Corollary 5.4, we can look at the asymptotic
behaviour of the “profile functions” h±k (x′) : D → [0, 1] such that

ωk =
{
(x′, x3) ∈ Q : x3 ∈

[
− 1

2
,−1

2
+ h−k (x′)

]
∪ [

1

2
− h+

k (x′),
1

2

]}
(6.10)

(notice that, for those x′ ∈ D such that {x′}× (−1
2 ,

1
2) ⊂ ωk, by convention we may set h±k (x′) = 1

2).

By Theorem 6.1, we have
√

2k(h+
k + h−k )

∗
⇀ [[µ]] where µ solves (6.3). Furthermore, if this solution

is unique (which is the most usual case), then it is given by (6.9) and the asymptotics of h+
k , h−k can

be explicited separately. Indeed, in this case one can easily deduce by localizing the convergence
(6.5) that

√
2k h+

k
∗
⇀ ρo

(λ
2

+ η
)

and
√

2k h−k
∗
⇀ ρo

(λ
2
− η

)

Proof of Proposition 6.2. The functional C lim(µ) + 1
2

∫
dµ is convex and lower semicontin-

uous with respect to the weak star convergence of measures. The existence of solutions for (6.3)
follows from the direct method of calculus variations since minimizing sequences are tight on the
compact subset Q. The positivity of Clim(µ) implies that m > 0 (note that Clim(0) = +∞).
Let m ∈ R

+ be arbitrary. Recalling the definition (6.1) of Clim(µ), we apply the same inf-sup
commutation argument as in Section 3, and by using the 2-homogeneity of j, we obtain:

inf
{
C lim(µ) :

∫
dµ ≤ m

}
= sup

v∈C∞(D;R3)

inf

{
〈F, v〉

R
2−

∫

Q
j
(
e(v1, v2) − x3∇2v3

)
dµ ,

∫
dµ ≤ m

}

= sup
v∈C∞(D;R3)

{
〈F, v〉

R
2−m sup

x∈Q

∣∣j
(
e(v1, v2) − x3∇2v3

)∣∣
}

=
m2

0

2m
,
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where m0 denotes the right hand side of (6.7). Then, by the definition (6.3) of m, since the function

m 7→
(

m2
0

2m + m
2

)
attains its minimum on R

+ at m = m0, we deduce that m = m0. Thus any optimal

µ satisfies Clim(µ) = m
2 = 1

2

∫
dµ which proves statement (i).

Statement (ii) follows directly from [16, Lemma 3.9].
Finally, let µ be given by (6.9), with (λ, η) solution of (6.8). If v = (v1, v2, v3) is a solution of (6.7),
by [16, Proposition 3.10], it holds

ρo
(λ

2
± η

)
= 〈λ

2
± η , e(v1, v2) ±

1

2
∇2v3〉R2 .

By the definition of ρo, this implies ρ
(
e(v1, v2) ± 1

2∇2v3

)
≥ 1 a.e. on D. On the other hand, since

by construction v is admissible in problem (6.7), it holds ρ
(
e(v1, v2) ± 1

2∇2v3

)
≤ 1 a.e. on D. We

conclude that ρ
(
e(v1, v2) ± 1

2∇2v3

)
= 1 a.e. on D, and hence that j

(
e(v1, v2) ± 1

2∇2v3

)
= 1/2 a.e.

on D. Combined with the equality 〈F , v〉 = m, this gives

Clim(µ) = m− 1

2

∫
dµ ,

and statement (iii) follows. �

Proof of Theorem 6.1.

(i) The function given in (2.12) is an infimum of affine functions of k. It is therefore concave.
Moreover it is nonnegative for k ≥ 0 whereas, for k ≤ 0, the infimum in formulation (2.12) is
attained for θ ≡ 1, so that φ(k) − kτ = k(1 − τ) + Cj,F (Q). Thus φ is continuous as it is concave
and finite over the whole set R. On the other hand, owing to (6.2) and (6.3), we have trivially

lim
k→+∞

φ(k)√
2k

= inf
k>0

φ(k)√
2k

≥ m .

In order to show the converse inequality, we exploit the formulation (3.3) for φ(k) in which we insert
the change of variable w = u/

√
2k. We obtain, for every k ∈ R

+,

φ(k)√
2k

= sup
w∈H1

KL
(Q;R

3
)

{
〈F,w〉

R
3−

√
2k

∫

Q

[
j(eαβ(w)) − 1

2

]
+
dx

}
, (6.11)

Thanks to (6.11), there exists a sequence {wk} in H1
KL(Q; R

3) such that

lim
k→+∞

φ(k)√
2k

= lim
k→+∞

{
〈F,wk〉R3−

√
2k

∫

Q

[
j(eαβ(wk)) −

1

2

]
+
dx

}
. (6.12)

Up to a rigid displacement (which is not restrictive thanks to the assumption that F is balanced),
the sequence {wk} is bounded in the H1-norm. Indeed, by using the Korn inequality, the coercivity
of [j(z) − k]+, the inequality φ(k) ≥ 0, and the assumption F ∈ H−1(Q; R

3), we may find positive
constants Ci such that

‖wk‖2
H1 ≤ C1‖e(wk)‖2

L2 ≤ C2

√
2k

∫

Q

[
j(eαβ(wk)) −

1

2

]
+
≤ C2〈F,wk〉R3 ≤ C3‖wk‖H1 .
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Then up to a subsequence wk converge weakly in H1(Q; R
3) to some function w, which satisfies

∫

Q

[
j(eαβ(w)) − 1

2

]
+
dx ≤ lim inf

k→+∞

∫

Q

[
j(eαβ(wk)) −

1

2

]
+
dx = 0 .

In particular, we have j(eαβ(w)) ≤ 1
2 a.e. in Q. Recalling that F ∈ H−1(Q; R

3), by using (6.12)
and the characterization (6.6), it follows that

lim
k→+∞

φ(k)√
2k

≤ lim
k→+∞

〈F,wk〉R3 = 〈F,w〉
R

3 ≤ m ,

which completes the proof of (6.4).

(ii) Let now ωk be an optimal set for φ(k). Then for each k the measure µk :=
√

2k 11ωk
is optimal

in (6.2), namely
φ(k)√

2k
= C(µk) +

1

2

∫
dµk .

Since C(µk) ≥ 0 and since by the monotonicity property φ(k) ≤ φ(1)
√
k, the above equation implies

that the integral
∫
dµk remains uniformly bounded. Then up to a subsequence there exists µ such

that µk
∗
⇀µ. By using statement (6.4) already proved, the weak star semicontinuity of the map

µ 7→ C(µ), and the definition (6.3) of m, we obtain

m = lim
k→+∞

φ(k)√
2k

= lim
k→+∞

{
C(µk) +

1

2

∫
dµk

}
≥ C(µ) +

1

2

∫
dµ ≥ m . (6.13)

We deduce that all the inequalities in (6.13) must turn into equalities, so that µ is optimal for
problem (6.3). �

We turn now to our initial goal which consists in determining the vanishing volume fraction limit
that is the limit behavior as τ → 0 of I(τ) defined by (2.13). We notice that, by (6.4), the function
k 7→ φ(k) − kτ behaves like

√
2km − kτ for k → +∞ and therefore the Lagrange multiplier k(τ)

which for a given τ maximizes (2.13) should behave asymptotically like k(τ) = m2/(2τ2), so that
k(τ) → +∞ as τ → 0. In fact it is easy to deduce from Theorem 6.1 the following

Corollary 6.4 (asymptotics as τ → 0+)
For every τ ∈ (0, 1), the maximal value I(τ) in formulation (2.13) is achieved. Furthermore we
have

lim
τ→0

τ I(τ) =
m2

2
. (6.14)

Proof. First we notice that

I(τ) = sup {φ(k) − kτ : k ≥ 0} .

Indeed, as seen in the proof of Theorem 6.1, for k ≤ 0, we have φ(k) − kτ = k(1 − τ) + Cj,F (Q)
which is is maximal for k = 0. On the other hand, due to (6.4), the sublinear growth at infinity for
positive k implies that φ(k)− kτ → −∞ as k → +∞. Thus, by the continuity of the function φ(k),
the maximum in (2.13) is attained. Futhermore, by (6.4), we have for every τ ∈ [0, 1] the following
lower bound

I(τ) = sup
k≥0

{φ(k) − kτ} ≥ sup
k≥0

m
√

2k − k τ =
m2

2τ
. (6.15)
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Then the proof of (6.14) is achieved if we are able to show that

lim sup
τ→0

τ I(τ) ≤ m2

2
. (6.16)

Consider sequences τn → 0 and kn ∈ R
+ such that

lim sup
τ→0

τ I(τ) ≤ lim sup
τ→0

[
sup

k∈R
+

{τφ(k) − kτ2}
]

= lim
n

(
τnφ(kn) − knτ

2
n

)
. (6.17)

Possibly passing to a subsequence, we may assume that the sequence {kn} admits a limit k ∈
R

+ ∪{+∞}. If k ∈ R
+, then φ(kn) remains bounded and, by (6.17), we find that limτ→0 τ I(τ) = 0

which is in contradiction with (6.15). Therefore kn → +∞ and, exploiting (6.4) once more, we
deduce (6.16) by passing to the limit in the following upper bound

τnφ(kn) − knτ
2
n ≤ 1

2

[
φ(kn)√

2kn

]2

.

�

7 An explicit example of optimal plate and some perspectives

The 2D stress formulation (4.7) of φ(k) and the optimality conditions given by Theorem 5.2 make
easy to design optimal plates. Even if some numerical computation may be needed, the difficulties
are in no way comparable with those encountered when designing optimal structures in the general
case (see [1]). Indeed, by solving the stress problem (4.7), we can get the equilibrium stress fields
(λ̄, η̄). As the optimal displacement field ū is a Kirchoff-Love displacement, e(ū) is, owing to (1.5),
a linear function of x3. The coefficients of this linear function can easily be deduced from the
knowledge of (λ, η̄). Then an optimal set ωk for φ(k) can be explicitly determined by using the
optimality conditions.
Let us now describe a case where all these computations can be performed in an analytical way.
We first restrict to the case when no function depends on the x2 variable. Indeed we take Q =
[−2, 2] × R × [−1/2, 1/2], which is infinite in the x2-direction, and a balanced load F = (F1, 0, F3),
with F1, F3 independent of the x2 variable. Therefore in the sequel we drop any reference to the
variable x2.
In such framework, the stress problem (4.7) becomes trivial since there is a unique competitor
(λ, η): indeed the differential equations λ′ = F 1, η

′′ = F 3 (where the derivation is relative to the
x1 variable) uniquely determine stresses supported in the compact interval [−2, 2]. If we further
assume that F1 = 0 then, by (2.9), F 1 = 0 and so the solution of the first of these differential
equation is λ = 0.
Now, in order to make further computations as simple as possible, we assume that the considered
material is an isotropic linear elastic one with a vanishing Poisson coefficient : the energy density
j is given, for any z ∈ R

3×3
sym, by j(z) = 1

2 |z|2. Then for any z ∈ R
2×2
sym, equation (2.8) reduces to

j̄(z) = 1
2 |z|2 and the optimality condition (5.2) simply reads σ = 11ωk

e(u).
Owing to equation (1.5) we know that eαβ(u) takes the form: eαβ(u) = A + Bx3 where A and B
are rank one matrices depending only on the x1 variable. Owing to Corollary 5.4 we also know that
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ωk may be written as in (6.10) for suitable profile functions h±k . Thus the condition [[σ]] = λ = 0
reads

A(h+
k + h−k ) − B

2
((h−k − h+

k )(1 − (h+
k + h−k ))) = 0 . (7.1)

Moreover Corollary 5.4 states that [−1
2 + h−k ,

1
2 − h+

k ] coincides with the set {|e(u)|2 ≤ 2k}, so that
(−1

2 + h−k ) and (1
2 − h+

k ) are the two solutions of the following quadratic equation

|B|2 x2 + 2(B · A)x+ (|A|2 − 2k) = 0 . (7.2)

We deduce that B(h+
k − h−k ) = 2A. Substituting this equality into (7.1) we get A = 0. Hence the

two solutions of (7.2) are (−1
2 + h−k ) = −

√
2k

|B| , (1
2 − h+

k ) =
√

2k
|B| . Finally the condition [[−x3σ]] = η

gives

η =
B

3

(
(
1

2
− h+

k )3 − (−1

2
+ h−k )3 − 1

4

)
=
B

12

(
8(

1

2
− h+

k )3 − 1
)
.

Therefore, the total thickness 2h+
k = 2h−k = h+

k + h−k can be obtained in terms of η as the unique
solution of the third degree polynomial equation

6|η|√
2k

(x− 1) + 3x− 3x2 + x3 = 0 .

As a consequence, when k → +∞, h±k are infinitesimal, and more precisely we have the asymptotical
equivalence:

h+
k = h−k ∼ |η|√

2k
(7.3)

Such equivalence is consistent with the results obtained in Section 6, cf. in particular Remark 6.3 by
taking into account that, in the present framework, (0, η) is also the unique competitor for problem
(6.8).
Now, let us consider for instance the case when F3 is given by

F3 = −4H1
(
[−1, 1] × {1/2}

)
+ 10H1

(
([−2,−1] ∪ [1, 2]) × {−1/2}

)

−6H1
(
({−2} ∪ {+2}) × [−1/2, 1/2]

)
.

The domain and the loads under consideration are represented in Figure 1. Using (2.9), we have

F 3 = −4H1 [−1, 1] + 10H1
(
[−2,−1] ∪ [1, 2]

)
− 6 δ−2 − 6δ2 ,

where δa denotes the Dirac mass concentrated at point a. The unique solution of the differential
equation η′′ = F 3 reads

η =





−2x2
1 + 1 if x1 ∈ [−1, 1],

5x2
1 − 14x1 + 8 if x1 ∈ [−2,−1] ∪ [1, 2]

0 otherwise.

If we assume that the total volume of material is much smaller than the volume of the design region,
namely that the parameter k is large enough, we can use the approximation (7.3) to deduce that
the profile h±k is proportional to |η|. Thus we may draw an optimal design as done in Figure 1.
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Figure 1: Optimal shape for a plate submitted to bending forces

Figure 2: Completed optimal shape for a plate submitted to bending forces

Such optimal design thwarts our intuition. A first striking fact is that the support of the lateral
forces is not included neither in the optimal design nor in its boundary. How can such forces be
supported by the material? A second striking fact is that the optimal design is divided in two
disconnected parts: how can these two parts support the top and bottom forces without collapsing?
To understand our results, one has to remember that the optimal design under consideration is just
the limit as δ tends to zero of the (rescaled) optimal shape. When δ is small but finite the structure
is close to the presented design but it is somehow different: a small amount of material can be
diverted in order to solve the aforementioned problems. As this amount is very small (negligible in
the limit), it is not necessary to use it in a very clever way: we believe this is likely the reason why
so many different structures are commonly used to connect the upper and lower layers. In Figure
2 we have added such a light structure, which should be sufficient for this connection, and we have
added as well a boundary layer, which should be enough to support the lateral forces.

To conclude, we wish to point out some related open questions which are out of the scope of this
article and in our opinion deserve interest for future investigation.
A first natural problem is the optimization of the intermediate light structure that we have added
arbitrarily, according to our feeling, in Figure 2 above. In fact, this corresponds to a higher order
problem in the asymptotic expansion with respect to the parameter δ: a second order Γ-limit should
be studied in order to find the optimal layout of the material connecting the top and bottom layers.
It is also of interest to understand how our work could be adapted if one desires to include the
additional constraint of connected sections, i.e. to add in our starting problem (1.6) the constraint
that Ω takes the form Ω = {h−(x′) < x3 < h+(x′)}. This variant of the problem has some similarities
with the one considered in [8, 9, 10]. However, the comparison with our approach discloses deep
differences. Indeed, in [8, 9, 10], the 3D-2D limit is taken before any optimization is performed;
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therefore, plane stress state is somehow an implicit assumption, while in subsequent optimization
rapid oscillations of the thickness appear. In contrast, in our approach, we carry out a real 3D shape
optimization process (in a thinning domain), in which thickness oscillations would likely prevent a
plane stress state. We foresee that this will lead to a more complex situation, whose study should
require a challenging work.
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