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We study the problem of Michell trusses when the system of applied equilibrated forces is
a vector measure with compact support. We introduce a class of stress tensors which can
be written as a superposition of rank-one tensors carried by curves (lines of principal
strains). Optimality conditions are given for such families showing in particular that
optimal stress tensors are carried by mutually orthogonal families of curves. The method
is illustrated on a specific example where uniqueness can be proved by studying an
unusual system of hyperbolic PDEs. The questions we address here are of interest in
elasticity theory, optimal designs, as well as in functional analysis.
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1. Introduction

A very old problem in optimal design consists of minimizing the total volume of a
network of elastic bars (truss) while the resistance to a given load remains constant.
As no assumption is made on the number of bars, this study belongs to the class
of topological optimization problems. This is a problem of mechanical engineering
known to have no solution in general. Indeed during the optimization process, the
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number of bars may increase to infinity leading thus to diffuse structures. The cru-
cial contribution of Michell11 in the 1900s was to formulate a generalized version
(called Michell problem) in order to take into account all possible structures which
may appear in the limit. In the generalized version, attention is focussed on the
stress carried by the structure rather than on its geometry. Michell stated a dual-
ity principle and obtained optimality conditions on the stress and strain tensors:
they share the same eigenvectors (principal directions) and their eigenvalues have
the same sign, Moreover, Michell noticed that, in the two dimensions case, when
the eigenvalues of the strain tensor have opposite sign and when the eigenvector
fields are smooth enough to define stream lines (called “lines of principal action”),
then these lines constitute a so-called Hencky-net. This is a family of orthogonal
curves which represents the limit of the families of bars through the optimization
process.

The construction of the lines of principal action associated to a general stress
tensor field is a difficult mathematical problem with delicate regularity issues. In
order to overcome this difficulty we propose in this paper an alternative strategy.
We start by noticing that the stress in a network of elastic bars is concentrated
along segments which constitute a finite family of curves. On the other hand, we
know some limit structures in which the stress concentrates along infinitely many
curves which are not straight lines. We therefore propose another optimal truss
problem for which lines of principle action make sense even when the stress tensors
are not regular. We search for optima in a class of structures smaller than the class
of diffuse structures considered by Michell. In our setting, a truss is represented
by a signed Radon measure γ on a set X of curves; classical trusses correspond to
finitely supported γ concentrated on the subset of segment s. The positive part of
γ corresponds to lines in tension whereas the negative one corresponds to lines in
compression. To γ one associates a stress tensor σ(γ) given explicitly by (3.5).

Our conjecture is that when the topological space X is rich enough, the refor-
mulation of the optimal truss problem in terms of the unknown γ admits a solution.
We prove in this paper that the infimum of this reformulated problem is the same as
the infimum of the Michell problem. We also establish some optimality conditions.

The paper is organized as follows: in Sec. 2 we fix the notation and give a
mathematical framework to the optimal truss problem. We recall the classical gen-
eralization in term of stress due to Michell and write it in a modern mathematical
setting by using matrix-valued measures. We also describe the dual strain formula-
tion. In Sec. 3, we introduce a space made of C1,1 curves with a uniform bound on
the curvature. This space is a locally compact metric space. In Sec. 3.2, the gen-
eralized optimization problem in terms of curves is stated. By duality arguments,
it is proved in Sec. 3.3 that it has the same infimum as Michell problem. Opti-
mality conditions are provided in Sec. 3.4. In Sec. 4 our approach is illustrated by
two specific examples. In the second one uniqueness can be proven by studying an
unusual system of hyperbolic PDEs. This section makes rigorous facts commonly
accepted in the literature. We are not aware of any prior work providing these
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proofs. We conclude this work with a list of open problems, one of them being the
existence of an optimal measure γ on the space of curves.

2. Michell Trusses

2.1. Notation

Vectors and matrices. Let us start fixing some basic notations: If a, b are two vectors
in R

d, we denote by 〈a; b〉 the standard scalar product between a and b and we set
|a|2 = 〈a; a〉. The segment [a, b] is the convexhull of {a, b}. We denote by R

d×d the
set of d × d matrices, and by Sd×d the subset of R

d×d that consists of symmetric
matrices. If ξ = (ξij)d

i,j=1 and χ = (χij)d
i,j=1, then

ξT = (ξji)d
i,j=1, 〈ξ; χ〉 =

d∑
i,j=1

ξijχij , |ξ|2 = 〈ξ; ξ〉

denote respectively, the transposed of ξ, the trace of ξχT and the square norm of
ξ. For any matrix ξ ∈ Sd×d, we denote λ1(ξ), . . . , λd(ξ) its eigenvalues which are
real numbers. We denote by Id the d× d identity matrix and, for any a, b ∈ R

d, by
a ⊗ b the d × d rank-one matrix defined by (a ⊗ b)i,j = aibj . We define a ∧ b to be
the skew-symmetric matrix a ⊗ b − b ⊗ a.

Continuous functions and measures. Let E be a locally compact metric space, C(E)
the set of continuous functions of E to R endowed with the topology of uniform
convergence on compact subsets. We say that f ∈ C0(E) if for every ε > 0 there
exists a compact set K ⊂ E such that |f(x)| ≤ ε on E\K. The elements of C0(E)
are bounded functions and C0(E) is a closed subset of C(E) on which the induced
topology coincides with the uniform convergence on all E .

We denote by M(E) (resp. M(E ; Rd), M(E ; Rd×d)) the set of Borel signed-
measures (resp. R

d-valued vector measures, matrix-valued measures) on E . The set
of symmetric matrix valued measures is denoted M(E ;Sd×d): it is the set of those
measures µ ∈ M(E ; Rd×d) which satisfy µi,j = µj,i for any i and j in {1, . . . , d}.
The set of non-negative Borel measures on E is denoted by M+(E). When µ ∈
M(E), µ = µ+ − µ− is its Jordan decomposition where µ± ∈ M+(E) and we have
|µ| = µ+ + µ−. For any element M ∈ E , δM denotes the Dirac mass at M . When µ

belongs to M(E ; Rp), u : E → R
p is Borel-measurable and, for any i in {1, . . . , d},∫

E |ui|d|µi| is finite, we write∫
〈u; µ〉 :=

p∑
i=1

∫
ui(x)dµi(x).

We will essentially consider two cases for E : in Sec. 3, E will be a subset XΩ of
C1,1-curves in Ω ⊂ R

d but mostly E will be R
d (or an open subset Ω ⊂ R

d or its
closure).

Let S be a k-rectifiable subset of R
d, Hk

|S will denote the k-dimensional Hausdorff
measure on S. If µ ∈ M(Rd; Rd) and satisfies for any i, j,

∫ |xi|dµj < +∞, we may



September 10, 2008 16:49 WSPC/103-M3AS 00313

1574 G. Bouchitté, W. Gangbo & P. Seppecher

also define the “torque” of µ as the skew symmetric matrix:∫
Rd

x ∧ µ =
(∫

Rd

xidµj(x) −
∫

Rd

xjdµi(x)
)d

i,j=1

.

The vector-valued measure µ is said to be balanced if∫
Rd

µ = 0,

∫
Rd

x ∧ µ = 0. (2.1)

The set of such measures is denoted M0(Rd; Rd) (resp. M0(Ω; Rd) if µ is supported
in Ω). The forces F which are applied to the truss we want to optimize belong
naturally to M0(Ω; Rd).

For representing stresses we will very often use measures in the space
M(Rd;Sd×d).

Eventually given h a positively one homogeneous function on Sd×d, we can
associate a positive measure h(σ) to any σ ∈ M(Ω;Sd×d) by setting h(σ) :=
h
(

dσ
dµ

)
µ, where µ is any measure such that each σij is absolutely continuous with

respect to µ. Indeed this definition does not depend on the choice of µ. In particular,
|σ| will stand for the measure associated with the Euclidean norm on R

d.

Distributional divergence and strain. Assume that Ω is an open subset of R
d and

consider λ ∈ M(Ω; Rd) and f ∈ M(Ω). We say that −div(λ) = f holds in the
distributional sense if ∫

Ω

〈∇ϕ; λ〉 =
∫

Ω

ϕdf

for every compactly supported ϕ ∈ C1(Rd). In other words, the measures λ and f

are viewed as measures on all R
d supported on Ω. In particular, the test functions

may not vanish on the boundary ∂Ω and so, this imposes a boundary condition
on ∂Ω.

To make clear this point which is important in the sequel of the paper, let us
consider a simple example: assume that Ω is an open bounded set with Lipschitz
boundary and let nΩ denote the unit outward normal to ∂Ω. Assume that f =
βHd

|Ω + αHd−1
|∂Ω with β ∈ L1(Ω) and α ∈ L1(∂Ω). Then if λ = a Hd

|Ω with a a
smooth vector field, then the equation −div(λ) = f on Ω means nothing but{

−div(a) = β on Ω,

〈a;nΩ〉 = α on ∂Ω,

where the first equation holds in the distributional sense on Ω and 〈a;nΩ〉 denotes
the normal trace of a.

When σ and F belong respectively to M(Ω;Sd×d) and M(Ω; Rd), we say that
−divσ = F on Ω if, for any i, the ith row σi of σ satisfies −divσi = Fi.

Curves. In this paper we call curve any C1,1-curve that is the image of a map
r ∈ C1,1(0, 1; Rd) such that ṙ(s) �= 0. We will consider only simple curves that is for
which r is injective. Without loss of generality we will assume that |ṙ| is constant
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so that |ṙ| = H1(S) and r̈(s) = (H1(S))2 k(s) holds for almost all s where k(t)
denotes the the curvature vector of S at r(t). Such a curve is naturally oriented by
the tangent unit vector at M = r(t) given by τM = ṙ(t)

|ṙ(t)| . At those points where
k(t) �= 0, we can write k(t) = κ(t)n(t), where κ(t) is the positive scalar curvature
and n(t) the normal vector at r(t).

Singular curve stress. To any curve C, we associate the measure σC in M(Rd;Sd×d)
defined by

σC := τ ⊗ τ H1|C . (2.2)

If C = r([0, 1]) is simple with |ṙ(t)| constant, we have for all ξ ∈ C1(Ω, Rd×d):∫
〈σC ; ξ〉 =

1
H1(C)

∫ 1

0

〈ξ(r(t)); ṙ(t) ⊗ ṙ(t)〉dt. (2.3)

Taking ξ to be the gradient of a test function u ∈ C(Ω, Rd), we deduce that

−div σC = δB τB − δA τA + kH1
|C , (2.4)

where A := r(0), B := r(1) are the endpoints of C. Indeed,∫
Rd

〈σC ;∇u〉 =
1

H1(C)

∫ 1

0

〈∇u(r(t)); ṙ(t) ⊗ ṙ(t)〉dt

=
1

H1(C)

∫ 1

0

〈
d

dt
(u ◦ r)(t); ṙ(t)

〉
dt

=
〈

u(r(1));
ṙ(1)
|ṙ(1)|

〉
−
〈

u(r(0));
ṙ(0)
|ṙ(0)|

〉

− 1
H1(C)

∫ 1

0

〈u(r(t)); r̈(t)〉dt.

Remark 2.1. Note that when C is the segment [A, B], Eq. (2.4) reduces to
−divσ[A,B] = (δB − δA) B−A

|B−A| . Hence,∫
〈σ[A,B];∇u〉 = Πu(A, B) (2.5)

if [A, B] is contained in a convex open subset Ω of R
d and u ∈ C1(Ω). Here, we

have used the linear operator Π defined by (Πu)(x, y) =
〈
u(x) − u(y); x−y

|x−y|
〉
.

2.2. Bars and trusses

In structural mechanics a bar (A, B) is a purely one-dimensional object. It inherits
from its underlying three-dimensional nature a non-negative parameter S called
section, a volume V := S|B − A|. It also inherits the ability to resist only to
two opposite axial forces applied at the extremity points A and B. The stress σ

produced by the applied forces is axial and concentrated along the segment [A, B].
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It takes the form λτ ⊗ τ where τ is the unit vector τ := (B − A)/|B − A|. The
elastic energy stored in the bar during the loading is S|B − A|f(λ

S ). Here f is the
potential function of the material the bar is made of. For instance, if one considers
a linear elastic material with Young modulus κ, the potential is f(t) = κ

2 t2. From
now on, we assume that f is a convex and even function. It is essential here that
the material have the same behavior in traction or in compression.

From the mathematical point of view, it is convenient to consider the applied
forces F as the vector valued measure λτ(δB − δA) and the stress σ as the matrix-
valued measure λσ[A,B] so that the equilibrium equation reads as −divσ = F in the
distributional sense.

A truss is a finite union of such bars (Ai, Aj) for i �= j in {1, 2, . . . , l}. Its stress is

σ =
l∑

i,j=1

λi,jσ
[Ai,Aj ]. (2.6)

Submitted to a force distribution F =
∑k

i=1 F iδMi the truss is in equilibrium if
−div σ = F.

• Truss stresses. The possible stresses in trusses have already been described. There
are those measures σ ∈ M(Ω;Sd×d) which can be written as a finite combination
σ =

∑l
i=1 λi,jσ

[Ai,Aj ]. The set of such measures is denoted ΣT (Ω) and given a load
F with finite support we denote by ΣT

F(Ω) the subset {σ ∈ ΣT (Ω) : −div σ = F}.
The volume of the truss is V =

∑l
i,j=1 Si,j |Aj − Ai| and its energy is E =∑l

i,j=1 Si,j |Aj − Ai|f(λi,j

Si,j
). Noticing that σ[Aj ,Ai] = σ[Ai,Aj ], we can impose (and

that is what we do in the sequel) that the matrix (λi,j) is symmetric and has
vanishing diagonal values (∀ i, λi,i = 0).

2.3. Trusses with optimal rigidity-volume ratio

In the theory of optimal design, one desires to engineer a structure with a given
material at optimal cost. Optimality means for instance that the structure should
be of least total volume among the structures that remain in equilibrium with a
prescribed stored energy when subject to a prescribed system of forces F . Or, in
an equivalent way that the structure should be of least stored energy among the
structures with a prescribed volume.

Let us first optimize the Si,j ’s for a given geometry and given values λi,j . As f

is even and convex, we have

E =
l∑

i,j=1

Si,j |Aj − Ai| f
(

λi,j

Si,j

)
=

l∑
i,j=1

Si,j |Aj − Ai| f
(∣∣∣∣λi,j

Si,j

∣∣∣∣)

≥ V f

(∑l
i,j=1 |Aj − Ai| |λi,j |

V

)
. (2.7)

The optimal value for E is obtained when Si,j = C|λi,j | where C =
V −1

∑l
i,j=1 |Aj −Ai||λi,j |, and the stored energy is then simply E = V f(C): when
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one wants to minimize E for a fixed volume V , one has to minimize C, that is
to minimize

∑l
i,j=1 |Aj − Ai||λi,j |. Owing to this remark, the problem of optimal

design reads:

Find a set of points A = {Ai}l
i=1 ⊂ R

d and a set of real numbers Λ = {λij}l
i,j=1 ⊂ R

which minimize

inf

C(A, Λ) : −div σ = F; σ =
l∑

i,j=1

λi,jσ
[Ai,Aj]

 , (2.8)

where

C(A, Λ) =
l∑

i,j=1

|λi,j ||Aj − Ai| =
∫

|σ|. (2.9)

By rewriting the divergence condition in (2.8), the problem amounts to finding a
decomposition of F:

F =
l∑

i,j=1

λi,j (δAi − δAj )
Ai − Aj

|Ai − Aj | (2.10)

for which C(A, Λ) is minimal. When (2.10) holds, we say that the pair (A, Λ) is
admissible for problem (2.8).

Frequently one desires to design the frame inside some given domain. We will
assume that this domain is the closure Ω of some convex open subset Ω of R

d. We
ask the load F and the stress σ to be supported on Ω as Radon measures and the
balance equation −div(σ) = F to be satisfied in the sense of distributions on R

d.
When considering the problem in the form (2.8), this means that all the segments
[Ai, Aj ] used in the decomposition of F should lie in Ω.

Existence of admissible trusses. A first natural question that comes in mind is
to wonder if the admissible set ΣT

F(Ω) is nonempty. This amounts to finding a
decomposition F =

∑k
q=1 F qδMq as in (2.10). It is quite easy to check that what is

usually called “the equilibrium of the system of forces” is a necessary condition: the
net force and torque have to vanish (

∫
F)i = (

∫
x ∧F)ij = 0 for all i, j = 1, . . . , d.

It can be proven that these conditions are sufficient when the support of F is
finite and Ω is a sufficiently large neighborhood of the support of F. Example 2.2
shows that they may not be any admissible truss included in the convex hull of the
support of F.

A criterium for optimality. Let us now introduce a duality relation which is useful
to characterize optimal trusses. To that aim, we consider any function u: R

d → R
d

be such that, for any (x, y),

|〈u(x) − u(y); x − y〉| ≤ |x − y|2 (2.11)
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and we assume F =
∑l

i,j=1 λi,j(δAi − δAj )
Ai−Aj

|Ai−Aj | . We observe that, for any u

satisfying (2.11) and any admissible pair (A, Λ) for problem (2.8), there holds∫
Rd

〈F; u〉 =
l∑

i,j=1

λij

〈
u(Ai) − u(Aj);

Ai − Aj

|Ai − Aj |
〉

≤
l∑

i,j=1

|λij ||Ai − Aj | (2.12)

≤ C(A, Λ). (2.13)

Therefore, existence of u satisfying (2.11) and such equality hold in (2.12) and
(2.13), yields that the configuration (A, Λ) is optimal.

Example 2.1. A very simple case of optimal truss can be established when equality
holds in (2.12) and (2.13) for u = u0, where u0 denotes the identity map. We are
then reduced to the identity

l∑
i,j=1

λij |Aj − Ai| =
∫

Rd

〈F; uo〉 =
l∑

i,j=1

|λij | |Aj − Ai|. (2.14)

In other words any decomposition of F like in (2.10) will be trivially optimal pro-
vided the λij ’s are all non-negative. In particular, if there exists a center point C

such that, for any q ∈ {1, . . . , k}
〈F q; M q − C〉 = |F q||M q − C| (2.15)

(see Fig. 1), then the minimum value of C is

min C(A, Λ) =
k∑

q=1

|F q||M q − C|, (2.16)

which is achieved, for instance, by (Aopt, Λopt) where

Aoptq = M q (q = 1, . . . , k), Aopt
q+1 = C, (2.17)

and

λopt
i,j = 0 (i, j = 1, . . . , k + 1), λopt

i,(k+1) = λopt
(k+1),i = |F i| (i = 1, . . . , k). (2.18)

F1 M1 C

M2
2F

M3 F3

F1 M1

F3M3

M2
2F

C

Fig. 1. Two simple optimal trusses for a particular system of central forces.



September 10, 2008 16:49 WSPC/103-M3AS 00313

Michell Trusses and Lines of Principal Action 1579

Note that the truss represented on the left-hand side of Fig. 1 is not the unique
optimal truss. The truss represented on the right-hand side in one of the many
others.

Example 2.2. The “bridge”, a planar truss studied by Michell. In R
2, let

us consider the three points A1 := (−1, 0), A2 := (0, 0), A3 := (1, 0), the vector
e2 := (0, 1) and the equilibrated system of forces

F := e2(δA1 − 2δA2 + δA3),

(see Fig. 2). We first note that, although the points of applications of F lie in the
convex R×{0} we cannot find any set {Ai}l

i=1 ⊂ R×{0} and any symmetric matrix
of real numbers {λij}l

i,j=1 such that the decomposition (2.10) holds.
If we set Ω to be the unit disk of R

2, then the decomposition (2.10) with A4 =
(0, 1), λ2,4 = 1, λ1,2 = λ2,3 = 1/2, λ1,4 = λ4,3 = −√

2/2, {Ai}l
i=1 ⊂ Ω holds.

But the cost is non-optimal. This decomposition is represented in Fig. 2 where the
bars (the support of λ) are drawn in dotted lines when they are in traction (λij is
positive) and in plain lines when they are in compression (λij is negative).

In fact Michell11 himself noticed that an optimal truss does not always exist.
In Sec. 4.2.2, we show that in the particular case of the “bridge”, the optimal cost
is obtained as the limit of a sequence σn (see Fig. 3 where they are represented
successively σ1, σ2 and σ5).

The limit of the sequence σn cannot, in any sense, correspond to a truss: the
number of bars tends to infinity and the union of the upper bars converges to an
arc of circle.

This last example shows the necessity of enlarging the class of structures in
which the optimal design is to be searched.

2.4. Stress formulation for Michell problem

From (2.8) and (2.9), we learn that the optimal trusses problem can be written in
terms of stress: given a load F with finite support, we minimize

∫ |σ| where the

e 1

e 2

e 1−

e 1e 1−

0

F F

F0

Fig. 2. An admissible truss for the “bridge”.
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Fig. 3. A minimizing sequence of trusses.

stress measure σ ∈ ΣT(Ω) (see (2.6)) is subjected to the constraint −div σ = F. As
this problem has in general no solution, it is standard to look for solutions σ in a
larger class. Michell himself extended the problem to stresses with rank larger than
one and to diffuse stress measures. Let us sketch this extension which in fact is a
convexification procedure in a modern mathematical setting.

We extend the set of admissible stress measures to the set ΣF(Ω) of all measures
supported in Ω, taking values in symmetric matrices Sd×d and satisfying the con-
straint −div σ = F in the distributional sense. Besides we notice that this extension
allows considering more general loads: F is any vector measure compactly supported
in Ω and balanced in the sense of (2.1). The cost

∫ |σ| appearing in (2.8) now has
to be extended to non-rank one stresses: following Michell, we consider the largest
convex potential ρ0(χ) on Sd×d which agrees with the Euclidean norm |χ| for rank
one tensors. To compute ρ0 we introduce for any ξ ∈ Sd×d

ρ(ξ) := max
b∈Rd

{|〈ξb; b〉| : |b| ≤ 1} = max
i

|λi(ξ)|. (2.19)

The convexified function ρ0 is characterized in terms of its Fenchel conjugate:

(ρ0)∗(ξ) = sup
b∈Rd

{〈ξ; b ⊗ b〉 − |b ⊗ b|} =

{
0 if ρ(ξ) ≤ 1,

+∞ otherwise.

Thus

ρ0(χ) = max
ξ∈Rd×d

{〈ξ; χ〉 : ρ(ξ) ≤ 1} =
d∑

i=1

|λi(χ)|. (2.20)

Remark 2.2. The convex continuous functions ρ and ρ0 belong to an impor-
tant class of functions which depend on singular values of matrices. They enjoy
the following property (see Ref. 2): for any symmetric matrices ξ and χ we have
〈ξ; χ〉 ≤ ρ(ξ)ρ0(χ). The equality holds if and only if ξ and χ have a common basis
of eigenvectors and for any i,

λi(ξ)λi(χ) ≥ 0 and
(

λi(χ) = 0 or |λi(ξ)| = max
1≤j≤d

|λj(ξ)|
)

.
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We notice that the function ρ0 given by (2.20) is one homogeneous and therefore
the measure ρ0(σ) is meaningful. The following duality relation holds (see Ref. 4)∫

ρ0(σ) = sup
{∫

〈ξ; σ〉: ξ ∈ C(Ω;Sd×d), ρ(ξ) ≤ 1
}

. (2.21)

Since the measure ρ0(σ) coincides with |σ| for rank one tensor measures σ, the
problem

inf
{∫

ρ0(σ): σ ∈ ΣF(Ω)
}

. (2.22)

is a natural extension of the original truss optimization problem. The functional
σ → ∫

ρ0(σ) is coercive. Due to (2.21), it is lower semicontinuous on the closed
subset ΣF(Ω) of the space M(Ω;Sd×d) endowed with the weak-star topology. Exis-
tence of a minimizer is then ensured provided the set ΣF(Ω) is non-empty. This
fact will be proved in Proposition 2.1.

2.5. Strain formulation for Michell problem

Let us now introduce a dual problem in a way similar to what we did in (2.13). For
any function u : Ω �→ R

d, we denote

‖u‖∗Ω := sup
{ |〈u(x) − u(y); x − y〉|

|x − y|2 , x �= y , (x, y) ∈ Ω2

}
(2.23)

and we define U1 = U1(Ω) to be the set of continuous displacements u : Ω → R
d

such that ‖u‖∗Ω ≤ 1. The subspace U0 of functions u satisfying ‖u‖∗Ω = 0 coincides
with the space of rigid displacements (i.e. the space of affine functions u with skew-
symmetric matrix). In the sequel e(u) denotes the symmetric part of the gradient
of u in the sense of distributions on Ω: e(u) = 1/2(∇u + (∇u)T). We have the
following result

Lemma 2.1. Let Ω ⊂ R
d be an open connected subset and u : Ω → R

d.

(i) If ||u||∗Ω ≤ 1, then u is continuous and differentiable everywhere, except maybe
on a (d − 1)-dimensional Hausdorff set. Moreover, e(u) is an element of
L∞(Ω;Sd×d) and satisfies the inequality ρ(e(u)) ≤ 1 a.e.

(ii) Let C(Ω; Rd) be endowed with the topology of uniform convergence on compact
subsets of Ω. Then U1(Ω)/U0 is a convex compact subset of the quotient space
C(Ω; Rd) /U0.

(iii) Assume that Ω is convex. Then the following equivalence holds

‖u‖∗Ω ≤ 1 ⇔ u ∈ C(Ω; Rd), e(u) ∈ L∞(Ω;Sd×d), ρ(e(u)) ≤ 1 a.e. on Ω.

Moreover, every u ∈ U1(Ω) can be approximated by a smooth sequence {un} ⊂ C∞

such that un ∈ U1(Ω) and un → u uniformly.
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Proof. The first assertion is a consequence of the fact that ‖u‖∗Ω ≤ 1 implies the
monotonicity of the map u+Id (and of −u+Id as well). Then u is almost everywhere
differentiable and e(u) is an element of L∞(Ω;Sd×d) which satisfies ρ(e(u)) ≤ 1 at
every point of differentiability (see Ref. 1).

Let ω be a connected relatively compact open subset of Ω. Then by Korn’s
inequality, we derive that, up to rigid displacements, U1(Ω) is a bounded subset of
W 1,p(ω) for every 1 ≤ p < +∞ (see Ref. 12). Note, however, that this is not true
for p = ∞ since U1(Ω) contains non-Lipschitz functions (see Ref. 8). Taking p > d,
we deduce from Morrey’s theorem that the restrictions to ω of functions in U1(Ω)
are in a compact set of U1(ω) hence (ii).

The converse implication in (iii) can be checked as follows: by Korn’s inequality
u belongs to W 1,p

loc (Ω) for some p > d and we may choose u to be the continuous
representative in its class. For almost all (x, y) ∈ Ω

2
, such a u is almost everywhere

differentiable on [x, y] and therefore the function t �→ 〈u((1−t)x+ty)−u(x); y−x
|y−x|2 〉,

is 1-Lipschitz.
Let us now prove the last statement in (iii). Let u ∈ U1(Ω) and assume that

0 ∈ Ω. Take tk = 1 + 1/k and set vk(x) = tku(x/tk) which clearly belongs to
U1(tkΩ). Then consider the mollified sequence un,k = vk �αn where αn is the usual
convolution kernel. For nk large enough, the restriction of unk,k to Ω belongs to
U1(Ω), and unk,k → u uniformly as k → ∞.

Michell himself contributed the essential insight that a dual problem to (2.22) is:

sup
u

{∫
〈u;F〉: u ∈ U1(Ω)

}
. (2.24)

Recall that F is always assumed to be compactly supported and equilibrated. By
Lemma 2.1, we are maximizing a continuous linear form on a non-empty compact
set. So problem (2.24) admits a solution. A more subtle use of duality arguments
leads to

Proposition 2.1. Let Ω be a convex open subset of R
d and let F be a balanced

measure compactly supported in Ω. Then ΣF(Ω) is non-empty and

min
{∫

ρ0(σ): σ ∈ ΣF(Ω)
}

= max
{∫

〈u;F〉: u ∈ U1(Ω)
}

. (2.25)

A pair (uo, σo) ∈ U1(Ω) × ΣF(Ω) is optimal if and only if the following extremality
relation is satisfied ∫

ρ0(σo) =
∫
〈uo;F〉. (2.26)

Proof. As seen before, problem (2.24) admits a solution and by the assertion (iii)
of Lemma 2.1 α < +∞ where

α = max
{∫

〈u;F〉: u ∈ U1(Ω)
}

= sup
{∫

〈u;F〉: u ∈ C1(Ω) , ρ(e(u) ≤ 1
}

.
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Consider C0(Ω;Sd×d) where Sd×d is equipped with the norm ‖ξ‖ := ρ(ξ) and let
V be the (closed) subspace of C0(Ω;Sd×d) defined by V := {e(u) , u ∈ C1(Ω; Rd)}.
Then, as F vanishes on rigid displacements, we can define without ambiguity the
linear form

L : ξ ∈ V �→
∫
〈u,F〉 whenever ξ = e(u).

L is continuous and by the fact that α < +∞, its norm satisfies ‖L‖ = α. By the
Hahn–Banach Theorem, we may extend L to an element of

(
C0(Ω;Sd×d)

)∗
with

the same norm α. Therefore there exists a vector measure σ ∈ M(Ω;Sd×d) such
that

∫ 〈e(u); σ〉 =
∫ 〈u;F〉 for all u ∈ C1(Ω; Rd). This yields σ ∈ ΣF(Ω) and the

minimality of such σ follows since, by (2.21),

α = sup
{∫

〈ξ; σ〉: ξ ∈ C0(Ω), ρ(ξ) ≤ 1
}

=
∫

ρ0(σ).

This proves (2.25) and the fact that any optimal pair satisfies (2.26). The converse
is straightforward.

2.6. Lines of principal action

The concept of lines of principal action is often evoked in the literature on Michell
trusses. But is difficult to rigorously defined it since many stresses encountered
are not regularity. Let us recall that concept assuming that we are dealing with
displacements and stress tensors which are smooth enough. Assume for a moment
that problem (2.24) admits a maximizer uo ∈ C1(Ω). Let σo be a minimizing stress
measure for (2.22). By (2.26), integrating by parts and taking into account that
σo ∈ ΣF(Ω) and ρ(e(uo)) ≤ 1, we obtain∫

ρ0(σo) =
∫
〈σo; e(uo)〉 ≤

∫
ρ(e(uo))ρ0(σo) ≤

∫
ρ0(σo).

Thus

ρ0(σo) = 〈σo; e(uo)〉 and ρ(e(uo)) = 1 σo a.e. (2.27)

By diagonalization, there exist bounded real functions {θi}d
i=1 from Ω to [−1, 1]

and an orthonormal family {ai}d
i=1 of vector fields such that

e(uo) =
d∑

i=1

θi ai ⊗ ai. (2.28)

Thanks to Remark 2.2, we deduce from (2.27) and (2.28) the existence of signed
measures λ1, . . . , λd such that:

σo =
d∑

i=1

λi ai ⊗ ai, |λi| = θi λi. (2.29)

A standard approximation procedure shows that the localized optimality condi-
tions (2.28) and (2.29) still hold under weaker assumptions. We may merely assume
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that e(uo) is a continuous function on R
d except possibly on a |σo|-negligible subset.

For general uo ∈ U1(Ω), it is possible to write a weak counterpart of the relations
above. This could be done by introducing a suitable notion of tangent space to the
stress measure tensor σo and by characterizing the density of the duality pairing
measure 〈σo; e(uo)〉 (see Ref. 3).

Now one may try to associate to the optimal pair (uo, σo) the lines of the fields
ai which are called lines of principal action (or lines of principal strain or lines of
principal stress).

Suppose for instance that each measure λi in (2.28) is absolutely continuous
with a smooth density (denoted by the same symbol λi). The curve s → x(s, ω)
will be a line of principal action of σo if it lies in a region where some λi keeps a
constant sign and{

σo(x(s, ω))ẋ(s, ω) = λi(x(s, ω))ẋ(s, ω)

xi(0, ω) = ω,
(2.30)

Let F+ (respectively F−) be the lines of principal action whose tangents are eigen-
vectors corresponding to positive (resp. negative) eigenvalues of σo. Formally, we
have the following property: let ω, ω ∈ Ω such that xi(·, ω) is a curve in F+ and
xj(·, ω) is a curve in F−; then xi(·, ω) and xj(·, ω) are orthogonal where they inter-
sect. The families F+ and F− are special orthogonal curvilinear coordinates, in the
sense that they satisfy (2.28). When d = 2, F+ and F− are the so-called Hencky–
Prandtl nets (see Kohn and Strang in Ref. 13 for details).

The situation is still simpler in the case where σo is supported by a countable
family of curves and can be written in the form

σo =
∞∑

n=1

θ+
n σC+

n −
∞∑

n=1

θ−n σC−
n , (2.31)

where θ±n are positive densities and the C±
n are Lipschitz curves in Ω and tC±

n
is

a unit tangent vector to C±
n . In this case the λi in (2.28) are all zero except for

i such that the unit vector ai is tangent to the curve. Moreover F+ = {C+
n } and

F− = {C+
n } and C+

n is orthogonal to C−
n at any intersection point.

In this context, Michell made the following conjecture (see Refs. 11 and 9 p. 210
or Ref. 10 p. 71):

“A frame given by a stress tensor σo is optimal if it can carry its given forces
with stresses in its tension members equal to λ+ ≥ 0 and stresses in its compression
members equal to λ− ≤ 0. They must be a virtual deformation of uo : Ω → R

d that
satisfies the kinematics condition 〈σ; e(uo)〉 = ρ(e(uo))ρ0(σ) and gives strain of 1 in
its tension members and strain of −1 in its compression members. The deformation
uo must have no direct strain lying outside these limits in the sense that ρ(e(u)) ≤ 1.
The “bars” of the optimal structure are arranged along the lines of principal strain
of uo.”

Note that the above conjecture would be false if we do not impose any restric-
tion on the system of forces F and on the domain Ω. In fact rigorous optimality
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conditions for problems of the kind (2.22) and (2.24) have been obtained in a quite
general case by using arguments of geometric measure theory (see Ref. 3). How-
ever, due to the particular structure of ρ0, it appears from many examples, that
the optimal stress measures σo inherits a very particular one dimensional geometric
structure. This is roughly described by a system of curves like in (2.31).

The difficulty to deduce from an optimal stress measure the existence of such a
system of curves leads us to adopt the reverse strategy: going back to the original
truss optimization problem we directly enlarge the set of admissible curves. We
search an optimal distribution of such curves from which we deduce the optimal
stress measure. This new strategy is developed in the next section.

3. Reformulation of Michell Trusses Via Measures
on the Set of Curves

In the original truss optimization problem (2.8), the set of curves which support the
structure is a subset of the collection of all segments [x, y]. Here, (x, y) ∈ Ω×Ω \∆
and ∆ is the diagonal. We propose to enlarge this class to a set called XΩ. We
describe in the following subsection two possible choices for XΩ. As other choices
could be also interesting, the duality result in Sec. 3.3 will be established assuming
only general conditions on the class XΩ.

3.1. Some metric spaces involving curves

We will consider simple oriented C1,1-curves with an uniform upper bound on the
scalar curvature. More precisely, given l0 > 0 and κ0 ≥ 0 such that l0κ0 ≤ 1, we
define

X l0,κ0
Ω :=

{
C ⊂ Ω : C is a C1,1-curve, 0 < H1(C) ≤ l0, κ(C) ≤ κ0

}
(3.1)

X∞
Ω :=

{
C ⊂ Ω : C is a C1,1-curve, 0 < H1(C) < ∞, κ(C)H1(C) ≤ 1

}
.

(3.2)

We notice that for κ0 = 0, our definition (3.2) coincides with the sets of segments
[x, y] contained in Ω such that 0 < |x − y| ≤ l0. On the other hand, the condition
κ(C)H1(C) ≤ 1 is imposed in (3.2) in order to ensure that all curves in our space
are simple. More precisely the following lemma holds:

Lemma 3.1. Let r ∈ C1,1(0, 1; Rd) such that |ṙ(s)| = l and |r̈(s)| ≤ κl2 a.e. where
l, κ are two positive constants. Then, for every s, t ∈ [0, 1], there holds

|r(s) − r(t)| ≥ l|s − t|
2

whenever κl|s − t| ≤ 1. (3.3)

Proof. If s, t ∈ [0, 1] and such that 0 < κl(t − s) ≤ 1, then

|r(t) − r(s)| =
∣∣∣ṙ(s)(t − s) +

∫ t

s

dv

∫ v

s

r̈(σ)dσ
∣∣∣ ≥ l|s − t| − |s − t|2

2
κl2 ≥ l|s − t|

2
.
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The topology we next consider is the usual local Hausdorff convergence on the
family F(Ω) of closed subsets of Ω. This topology is induced by a distance we take
to be the truncated Hausdorff metric

dH(C, D) := min{1, h(C, D)}, h(C, D) := max
{

sup
x∈C

d(x, D), sup
x∈D

d(x, C)
}

,

where d(x, D) denotes the Euclidean distance from x to D. It turns out that
(F(Ω), dH) is a complete locally compact metric space. This space is compact if
Ω is bounded (see for instance Chap II of Ref. 7). We have

Lemma 3.2. The families X l0,κ0
Ω and X∞

Ω are locally compact subspaces of
(F(Ω), dH) provided that l0κ0 ≤ 1.

Proof. First we prove that X∞
Ω is locally compact. This amounts to showing that

closed balls of the form B = {C ∈ X∞
Ω : dH(C, C0) ≤ η} satisfy the Bolzano–

Weierstrass property. We may assume that 2η < inf{1, d0} where d0 is the diameter
of C0.

Let Ch be a sequence in B. Clearly, as η < 1, Ch remains in a fixed compact
subset of R

d. We consider a parametrization rh : [0, 1] �→ R
d such that |ṙh| = lh

and |r̈h| ≤ κh(lh)2 where lh > 0 and lhκh ≤ 1. Then by (3.3), we infer that

|rh(s) − rh(t)| ≥ lh
2
|s − t| (3.4)

for every 0 < |s − t| ≤ 1. Since the range of rh remains in a fixed compact subset,
(3.4) with s = 0, t = 1 gives that lh is bounded and therefore rh and ṙh are
equi-Lipschitz. Possibly passing to a subsequence, we may assume that rh → r
uniformly, lh → l and r̈h

∗
⇀ r̈ where r is suitable element of C1,1 such that |ṙ| = l

and |r̈| ≤ κl2. It is then clear that Ch does converge in the sense of the Hausdorff
distance to C := r([0, 1]). In particular, dH(C, C0) ≤ d0 implies that C cannot be
reduced to a single point. Thus l > 0 and C is an element of B. We then conclude
that B is compact.

Now, by using the same arguments, it is easy to check that X l0,κ0
Ω as a closed

subspace of X∞
Ω is locally compact as well.

3.2. Curves formulation of the truss problem

Let us assume that, as in the previous subsection, we are given a locally compact
metrizable space XΩ whose elements are curves contained in Ω which we assume
from now on to be convex. Recall that we associate with each element C ∈ XΩ the
stress tensor σC given by (2.2).

We make the following assumptions:

(H1) XΩ is a set of C1,1 simple curves with finite positive length, endowed with a
metrizable locally compact topology.

(H2) The map C ∈ XΩ �→ σC is continuous with respect to the weak-star topology
on M(Ω;Sd×d).
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(H3) XΩ contains all segments [x, y] with x �= y and the map (x, y) ∈ Ω×Ω \∆ �→
[x, y] ∈ XΩ is continuous.

Let us stress the fact that these formal assumptions are satisfied by the spaces
X∞

Ω and X l0,κ0
Ω considered in the previous subsection. We associate to any signed

Radon measure γ on XΩ the truss stress σ(γ) defined by setting, for all test functions
ξ ∈ C1(Ω, Rd×d): ∫

〈σ(γ); ξ〉 =
∫
XΩ

(∫
〈ξ; σC〉

)
γ(dC). (3.5)

Note that assumption (H2) implies the Borel measurability of C �→ ∫ 〈ξ; σC〉. As
this function is bounded by H1(C) sup |ξ|, the existence of the integral above is
guaranteed provided γ satisfies the condition

∫ H1(C)|γ|(dC) < ∞. We will call
generalized Michell truss such a signed measure γ. Its support is a family of curves
which are candidate to be the lines of principal action. It consists of two subfamilies
F+ and F− corresponding to the supports of the positive and negative parts of γ.

In this setting we identify a truss of the kind (2.6) with the atomic measure
γ =

∑l
i,j=1 λijδ[Ai,Aj ]. The energy of such a truss (see (2.9)) can be written as∫

XΩ
H1(C)|γ|(dC). Thus the natural extension of the truss optimization problem is

inf
{∫

XΩ

H1(C)|γ|(dC): γ ∈ ΓF(Ω)
}

. (3.6)

Here ΓF(Ω) :=
{
γ ∈ M(XΩ): σ(γ) ∈ ΣF(Ω)

}
. Under the above assumptions on the

space XΩ, we are going to establish that the infimum in (2.22) and (3.6) are the
same. We observe first that:

inf
{∫

XΩ

H1(C)|γ|(dC): γ ∈ ΓF(Ω)
}

≥ inf
{∫

ρ0(σ): σ ∈ ΣF(Ω)
}

. (3.7)

Indeed by Remark 2.2, for any ξ ∈ C(Ω;Sd×d) such that ρ(ξ) ≤ 1, we have that
H1(C) ≥ ∫ 〈ξ; σC〉 for all curves C ∈ XΩ. Then by (2.21) and (3.5), we deduce that
for every γ ∈ ΓF(Ω), there holds∫

XΩ

H1(C)|γ|(dC) ≥
∫

ρ0(σ(γ)). (3.8)

Establishing the converse of inequality (3.7) is a delicate problem we solve in the
next subsection by means of a general duality argument.

Remark 3.1. The map defined in (H3) identifies Ω × Ω \ ∆ (equipped with the
Euclidean metric) with a subspace of XΩ. This subspace is closed: indeed let Cn =
[xn, yn] converge to a curve C in XΩ. Then, by (H2), σ[xn,yn] converges weakly-star
to σC . Therefore (xn, yn) converges to a suitable (x, y) ∈ Ω × Ω and σC = σ[x,y].
Hence C = [x, y] and, owing to (H1), H1(C) > 0 and so x �= y.
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3.3. The general duality result

Theorem 3.1. Let XΩ be a space of curves satisfying (H1), (H2) and (H3). Let
F ∈ M0(Ω) be compactly supported and define

ΓF(Ω) :=
{
γ ∈ M(XΩ): σ(γ) ∈ ΣF(Ω)

}
.

Then ΓF(Ω) is non-empty and the following equalities hold

inf
{∫

XΩ

H1(C)|γ|(dC): γ ∈ ΓF(Ω)
}

= inf
{∫

ρ0(σ): σ ∈ ΣF(Ω)
}

= inf
{∫

ρ0(σ(γ)): γ ∈ ΓF(Ω)
}

= sup
{∫

〈F; u〉: u ∈ U1(Ω)
}

. (3.9)

Furthermore, the last supremum is achieved.

Remark 3.2. The existence of an optimal γ is ensured if there exists a minimizing
sequence {γn} such that supn var(γn) < ∞. Unfortunately we are unable to show
this uniform bound for a reasonable choice of the space XΩ. In other words, we
cannot assert that the minimum in (3.9) is reached for a stress tensor of the form
σ(γ). It seems reasonable to conjecture that it will be the case if XΩ contains enough
curved curves. Notice that in the scalar case, an equivalent version of Theorem 3.1
holds (see Ref. 3) where the infimum is reached taking XΩ to be the set of all
segments.

Remark 3.3. Theorem 3.1 ensures that any load F ∈ M0(Ω) can be equilibrated
using a generalized truss tensor of the kind σ(γ). In fact if F has a finite support,
it is possible to show that the admissible set ΓF(Ω) contains atomic measures
concentrated on finitely many bars provided Ω is large enough.

On the other hand, it is not restrictive to assume that the assumption (H3)
holds only for segments [x, y] whose length is below some given constant l0. Indeed
larger segments in Ω can be decomposed in a finite union of smaller segments [xi, yi]
such that |xi − yi| ≤ l0 and then σ[x,y] =

∑
σ[xi,yi] can be included in the family

{σ(γ), γ ∈ XΩ}.

Remark 3.4. A question correlated to Remark 3.3 is to know if the infimum with
respect to all admissible γ is the same if we restrict ourselves to those γ which are
supported on a finite number of bars. The answer is yes in the case considered in
Sec. 4.2 where the optimal γ is approximated using a sequence {γn} whose support
consists of n bars (see Sec. 4.2.2).
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The proof of Theorem 3.1 is based on the following equicontinuity lemma:

Lemma 3.3. Let {pn} be a sequence of continuous functions on Ω×Ω converging
uniformly to 0 and let {un} ⊂ C(Ω; Rd) such that

|〈un(x) − un(y); x − y〉 + pn(x, y) |x − y|| ≤ |x − y|2 ∀ (x, y) ∈ Ω × Ω. (3.10)

Then there a sequence of integers {ik}k≥1 and a sequence of rigid motions {rik
}k≥1

such that the family {uik
− rik

}k≥1 converges uniformly on every compact subset of
Ω. Furthermore all cluster points w belong to U1(Ω).

Proof. We assume without loss of generality that |pn| ≤ 1 for all n.

Step 1. We first assume that Ω is bounded. Let {a1, a2, . . . , ad+1} be a set of
affinely independent points in Ω. We may assume without loss of generality that a1

is the origin. First, we check that there exists a sequence of rigid motions {rn} such
that the sequences {un(ai) − rn(ai)} are bounded for all i in {1, . . . , d + 1}. For
instance, x → r1

n(x) ≡ un(a1) are rigid motion such that {un(a1) − r1
n(a1)} = {0}.

We use now an induction argument : let p < d + 1 and assume that there exists
a sequence of rigid motions {rp

n} and a real M such that ‖un(ai) − rp
n(ai)‖ < M

for all n and all i in {1, . . . , p}. Assumption (3.10) implies, for any i in {1, 2, . . . , p}
and for n large enough,

|〈(un − rp
n)(ap+1); ti〉| ≤ DΩ + M + 1, (3.11)

where DΩ is the diameter of Ω and ti := ap+1−ai

‖ap+1−ai‖ . As the points are affinely inde-
pendent the map lp defined by lp(w) := (〈w; t1〉, 〈w; t2〉, . . . , 〈w; tp〉) is an invertible
linear map from the vectorial space Vp associated to the points (a1, a2, . . . , ap+1)
into R

p. By (3.11), (un − rp
n)(ap+1) has a bounded projection on Vp. If p = d,

we can conclude the proof of this first step. Otherwise, let a′
p+1 be the orthogo-

nal projection of ap+1 on Vp−1, the vectorial space spanned by a1, a2, . . . , ap. Set
δ = |a′

p+1 − ap+1| > 0 and the unit vector t = (a′
p+1 − ap+1)/δ. let us consider the

projection wp
n of (un − rp

n)(ap+1) onto the orthogonal of Vp. Observe that for i ≤ p,
the vector a′

p+1 − ai is orthogonal to t and wp
n which are also orthogonal to each

other. Define a rigid motion ρp
n by

ρp
n(x) :=

1
δ
(wp

n ⊗ t − t ⊗ wp
n)(x − a′

p+1).

Note that ρp
n(ai) = 0 for all i ≤ p while ρp

n(ap+1) = wp
n. Setting rp+1

n := rp
n + ρp

n,
we obtain that the sequences {‖un(ai) − rp+1

n (ai)‖}n are bounded for any i in
{1, . . . , p + 1}. This complete the induction argument if we set rn := rd+1

n .
Now let x0 be any point in Ω. We can choose d points in the set {a1, a2, . . . , ad+1}

which are affinely independent of x0. We assume without loss of generality
that {a1, a2, . . . , ad, x0} is such a family. For ε = ε(x0) > 0 small enough
{a1, a2, . . . , ad, x} remains an affinely independent family for any x in a ball
B(x0, ε). Setting now ti(x) = x−ai

‖x−ai‖ , the assumption (3.10) and the fact that
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there exists M such that, for any n and any i ∈ {1, . . . , d}, ‖(un − rn)(ai)‖ < M

imply that for x ∈ B(x0, ε),

|〈(un − rn)(x); ti(x)〉| ≤ DΩ + M + 1. (3.12)

Defining the linear map �x by �x(w) := (〈w; t1(x)〉, 〈w; t2(x)〉, . . . , 〈w; td(x)〉), we get

‖�x((un − rn)(x))‖ ≤ d(DΩ + M + 1).

The map �x is invertible for any x ∈ K := B(x0, ε/2) and is a continuous function of
x. As C := B(0, d(DΩ + M + 1)) ⊂ R

d is compact, the set ∪x∈K�−1
x (C) is bounded

and by (3.12), un − rn is uniformly bounded on K. Since Ω ⊂ ∪x∈ΩB(x, ε(x)/2)
and Ω is compact, we obtain that un − rn is uniformly bounded on Ω.

Let us now prove that the sequence {un − rn} is equicontinuous on Ω. Assume
on the contrary that there exists a real a > 0 and two sequences {xn}n, {yn}n ⊂ Ω
such that dn := |yn − xn| converges to 0 while

‖(un − rn)(xn) − (un − rn)(yn)‖ > a. (3.13)

Set τn := (yn − xn)/dn and define

vn(x) := (un − rn)(x) − (un − rn)(xn), x ∈ Ω.

As Ω is convex, Ω satisfies the interior cone condition. In particular, there exists
δΩ, KΩ > 0 such that

∀x ∈ Ω, ∀ v ∈ R
d, C(δΩ, x) �= ∅, |v|

KΩ
≤ sup

k∈C(δΩ,x)

|〈v; k〉|. (3.14)

Here,

C(δΩ, x) := {k ∈ R
d : |k| = 1, [x, x + δΩk] ⊂ Ω}.

As C(δΩ, x) is a compact subset of R
d, the supremum in (3.14) is attained for some

vector kΩ(x, v). We set

kn = kΩ(xn, vn(yn)), zn = xn +
√

dnkn.

For n large enough,
√

dn < δΩ and so, zn ∈ Ω. Choose ε positive such that 8KΩε < a.

We apply (3.10) to (x, y) = (yn, zn) for n large enough so that |pn(yn, zn)| ≤ ε to
obtain that

|〈vn(zn) − vn(yn);−dnτn +
√

dnkn〉| ≤ | − dnτn +
√

dnkn|(| − dnτn +
√

dnkn| + ε)

and so, using that {vn} is uniformly bounded, we have

|〈vn(zn) − vn(yn); kn〉| ≤ 3ε (3.15)
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for n large enough. Similarly, applying (3.10) to (x, y) = (xn, zn), using that
vn(xn) = 0, we obtain for n large enough,

|〈vn(zn); kn〉| ≤ 3ε. (3.16)

By definition of kn,

|vn(yn)| ≤ KΩ|〈vn(yn); kn〉| ≤ 6εKΩ < a. (3.17)

To obtain the first inequality in (3.17), we have used the definition of kn, whereas,
the second inequality is a direct consequence of (3.15) and (3.16). Since (3.17) is
at a variance with (3.13), we conclude that {un − rn} is equicontinuous on Ω. By
Ascoli–Arzela theorem, {un − rn} is strongly relatively compact in C(Ω, Rd). One
can readily check that every cluster point w of {un − rn} will satisfy ‖w‖∗Ω ≤ 1.

Step 2. To obtain the conclusions in step 1, we have used that Ω is a bounded
set. Assume next that Ω is not bounded. For each integer k ≥ 1 we define Ωk :=
Ω∩Bk(0) where Bk(0) is the open ball of radius k, centered at the origin. Note that
Ωk is a convex bounded set. For k large enough, Ωk �= ∅. We assume without loss
of generality that Ω1 �= ∅. By step 1, we may find {u1

n}n, a subsequence of {un}n

and {r1
n}n, a sequence of rigid motions such that {u1

n − r1
n}n converges (uniformly)

in C(Ω1) to some w1. Suppose that we have inductively found sequences of rigid
motions {r1

n}n, . . . , {rk
n}n and sequences {u1

n}n, . . . , {uk
n}n such that {ui−1

n }n is a
subsequence of {ui

n}n for i = 1, . . . , k. Here, we have set u0
n := un. Suppose that

{ui
n − ri

n}n converges in C(Ωi) to some wi and wi−1 = wi on Ωi−1 for i = 1, . . . , k.

By step 1, there exists {uk
jn
}n a subsequence of {uk

n}n and a sequence of rigid
motions, {ρk+1

n }n such that {uk+1
n − ρk+1

n }n convergent in C(Ωk+1) to some w̃k+1.

Here, we have set uk+1
n := uk

jn
. On Ωk, we have the following uniform convergence:

w̃k+1 = lim
n→∞

(
uk+1

n −ρk+1
n

)
= lim

n→∞

(
uk

jn
−rk

jn
+rk

jn
−ρk+1

n

)
= wk+ lim

n→∞
(
rk
jn
−ρk+1

n

)
.

Hence, the sequence {rk
jn
−ρk+1

n }n converges uniformly on Ωk. Since the rk
jn
−ρk+1

n ’s
are rigid motions, this implies that the following convergence is uniform on every
compact subset of R

d:

r̃k =: lim
n→∞

(
rk
jn

− ρk+1
n

)
. (3.18)

Set

rk+1
n := ρk+1

n + r̃k, and wk+1 := w̃k+1 − r̃k.

Then wk and wk+1 coincide on Ωk and we have the following uniform convergence
on Ωk+1:

wk+1 = lim
n→∞

(
uk+1

n − rk+1
n

)
.
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This way, we have constructed inductively wk for all integers k ≥ 1. The function w

defined by w(x) = wk(x) is well defined on R
d. Furthermore, {uk

n − rk
n}n converges

uniformly to w on Ωk. Hence, we can find an increasing sequence {nk}k≥1 such that

‖uk
nk

− rk
nk

− w‖L∞(Ωk) <
1
k

. (3.19)

Observe that {uk
nk
}k≥1 is a subsequence of {un}n≥1 and {rk

nk
}k≥1 is a sequence of

rigid motion. By (3.19), {uk
nk

− rk
nk
}k≥1 converges uniformly to w on any compact

subset of R
d. Clearly, w ∈ U1(Ω). �

Proof of Theorem 3.1. We introduce, for every p ∈ C0(Ω × Ω\∆), the following
perturbation of dual problem (2.24):

h(p) := inf
{
−
∫
〈F; u〉 : u ∈ U(p)

}
.

Here,

U(p) = {u ∈ C(Ω; Rd), |〈u(x) − u(y); x − y
〉

+ p(x, y)|x − y||
≤ |x − y|2 ∀ x �= y ∈ Ω}.

The function h is convex and −h(0) coincides with the supremum of (2.24). Let us
assume for a moment that

h(0) > −∞ and h is lower semicontinuous at 0. (3.20)

Then the biconjugate h∗∗ of h in the duality of C0(Ω × Ω\∆) with M(Ω × Ω\∆)
satisfies:

h∗∗(0) = h(0) = − inf h∗. (3.21)

Let us evaluate h∗(µ) where µ is an element of M(Ω × Ω\∆). We have:

h∗(µ) = sup{L(u, p): u ∈ C(Ω; Rd) , p ∈ C0(Ω × Ω\∆)},
where

L(u, p) :=


∫

Ω×Ω\∆
〈µ; p〉 +

∫
Ω

〈F; u〉 if u ∈ U(p),

−∞ otherwise,

Set q to be defined on Ω × Ω\∆ by

q := Πu + p, (Πu)(x, y) :=
〈

u(x) − u(y);
x − y

|x − y|
〉

.

We may rewrite the Lagrangian L(u, p) in terms of (u, q) as follows:

L(u, p) = L̃(u, q) =


∫

Ω×Ω\∆
〈µ; q − Πu〉 +

∫
〈F; u〉 if q ∈ Q

−∞ otherwise.

Here, Q is the set of q ∈ C0(Ω×Ω\∆) such that |q(x, y)| ≤ |x− y| for all (x, y) ∈
Ω × Ω\∆. We notice that the linear operator Π is continuous from C0(Ω; Rd) to
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C0(Ω×Ω\∆) (with a norm less than 2). Denote by Π∗ the adjoint operator, so that
Π∗µ = F is equivalent to∫

Ω×Ω\∆
Π∗µ(x, y)µ(dx, dy) =

∫
〈F; u〉 ∀u ∈ C(Ω; Rd).

We find that
h∗(µ) = sup{ L̃(u, q) : u ∈ C(Ω; Rd), q ∈ C0(Ω × Ω\∆)}

=


∫

Ω×Ω\∆
|x − y| |µ|(dxdy) if Π∗µ = F,

+∞ otherwise.

(3.22)

Let us show that

inf
{∫

ρ0(σ(γ)) : σ ∈ ΓF(Ω)
}

≤ inf h∗. (3.23)

Since h(0) is finite, the convex function h never assumes the value −∞. We use this
and (3.20) to conclude that h∗ �≡ ∞. Let µ be a Radon measure on Ω × Ω\∆ such
that h∗(µ) < +∞. Then as Π∗(µ) = F, we may then associate a measure γ on XΩ

by setting ∫
XΩ

〈γ; Ψ〉 :=
∫

Ω×Ω\∆
Ψ([x, y])µ(dxdy), (3.24)

for every bounded continuous function Ψ on XΩ. Notice that by (H3), the function
(x, y) �→ Ψ([x, y]) is bounded continuous on Ω × Ω\∆. By (3.24), var(γ) ≤ var(µ)
and recalling (3.8), we have:∫

ρ0(σ(γ)) ≤
∫
XΩ

H1(C)|γ|(dC) =
∫

Ω×Ω\∆
|x − y||µ|(dxdy). (3.25)

We first use the definition of σ(γ), (3.5), then we use (3.24) and eventually (2.5) to
obtain for every u ∈ C1(Ω),∫

〈σ(γ);∇u〉 =
∫

Ω×Ω\∆

(∫
〈σ[x,y];∇u〉

)
µ(dx dy)

=
∫

Ω×Ω\∆
Πu(x, y)µ(dx dy)

=
∫
〈F; u〉.

We have used that Π∗(µ) = F to obtain that last equality. Therefore the measure γ

defined above, belongs to ΓF(Ω). This proves that ΓF(Ω) �= ∅. Furthermore, (3.22)
and (3.25) yield (3.23). Then by taking into account (3.21), (3.22), we deduce that

inf
{∫

ρ0(σ) : σ ∈ ΣF

}
≤ inf

{∫
ρ0(σ(γ)) : σ(γ) ∈ ΓF(Ω)

}
≤ inf h∗ = −h(0) = sup

u

{∫
〈u;F〉 : u ∈ U1

}
. (3.26)
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Since we already know by (2.25) that the reverse inequality holds, we obtain that
all quantities above are finite and equal.

To finish the proof of Theorem 3.1, we still have to show (3.20) and that the
supremum in (2.24) is achieved. Both facts are a consequence of Lemma 3.3. Let
pn ∈ C0(Ω × Ω\∆) such that pn → 0 uniformly. To prove the lower semicontinuity
of h at 0, we may assume, after extracting a suitable subsequence, that h(pn) does
converge to some α ∈ [−∞, +∞). Then we can choose αn < h(pn) and un so
that (3.10) holds, αn → α and − ∫ 〈F; un〉 ≤ αn. By Lemma 3.3, there exists a
sequence of rigid motion {rn} such that, possibly passing to a subsequence, we
have un − rn → u uniformly on compact subsets where u belongs to U1(Ω). Since
F is equilibrated and compactly supported, it follows that∫

〈F; un〉 =
∫
〈F; un − rn〉 →

∫
〈F, u〉.

Therefore h(0) ≤ − ∫ 〈F, u〉 ≤ α. This proves the lower semicontinuity at 0. Apply-
ing the same argument with pn = 0 for all n (thus α = h(0)), we obtain the existence
of u ∈ U1(Ω) such that h(0) = − ∫ 〈F; u〉. Thus h(0) is finite and the supremum of
(2.24) is reached at u.

3.4. Optimality conditions

Let u be an element of U1(Ω). It is shown in Lemma 3.4 below that, if C is a curve
in space X∞

Ω , then the restriction of u to C has a tangential component uτ = u ·tC .

The function uτ is Lipschitz with respect to the curvilinear abscissa s, whereas the
orthogonal component uν is continuous. We then define the tangential strain eC(u)
to be

eC(u) := u̇τ − κ(s)uν , (3.27)

where κ(s) the curvature is a bounded measurable function. Then eC(u) is well-
defined H1 a.e. along C, independent of the orientation of C and it coincides with
〈e(u), tC ⊗ tC〉 at every point of differentiability of u.

Lemma 3.4. Let u ∈ U1(Ω). Then for every C1,1-curve C in Ω, the restriction to
C of the tangential component uτ is Lipschitz continuous and eC(u) given by (3.27)
satisfies |eC(u)| ≤ 1 H1-a.e in C.

Furthermore, there holds

〈−divσC ; u〉 =
∫

C

eC(u) dH1.

In particular, we have |〈divσC ; u〉| ≤ H1(C) with an equality if and only if eC(u) =
±1 a.e. on C.

Proof. To prove that uτ is Lipschitz on C, we observe that, if C is parametrized
by the arclength as r(s) and if K is an upper bound for the curvature |r̈(s)|, then
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the tangent vector τ(s) = ṙ(s) is such that, for every s ∈ [s1, s2]:∣∣∣∣τ(s) − r(s2) − r(s1)
s2 − s1

∣∣∣∣ ≤ K

2
|s2 − s1|.

Therefore
∣∣ r(s2)−r(s1)

s2−s1

∣∣ ≤ 1 + K
2 and taking into account the fact that u ∈ U1(Ω),

we obtain

|〈u(r(s2)); τ(s2)〉 − 〈u(r(s1)); τ(s1)〉| ≤
∣∣∣∣〈u(r(s2) − u(r(s1));

r(s2) − r(s1)
s2 − s1

〉∣∣∣∣
+ K‖u‖L∞|s2 − s1|

≤ (1 + K‖u‖L∞(C))|s2 − s1|. (3.28)

Let {un)} ⊂ U1(Ω) be the smooth approximation sequence defined in
Lemma 2.1. Then by (3.28), the sequence of scalar functions un ·tC is equi-Lipschitz
on C and converges weakly to uτ in W 1,∞(C). Therefore, by (3.27), eC(un) as an
element of L∞(C,H1) converges weakly-star to eC(u). In particular, as un belongs
to U1(Ω), we have that |eC(un)| = |〈∇un, tC ⊗ tC〉| ≤ 1 and, passing to the limit,
we deduce that |eC(u)| ≤ 1 H1-a.e in C. Furthermore, by the uniform convergence
of un, we have

〈−div σC ; u〉 = lim
n→∞〈−div σC ; un〉 = lim

n→∞

∫
C

eC(un) dH1 =
∫

C

eC(u) dH1.

The last statement of the theorem follows easily from the fact that
eC(u) ≤ 1 a.e.

Theorem 3.2. (i) A pair (u, γ) ∈ U1(Ω) × ΓF(Ω) is optimal for (3.9) if and only
if the following equalities hold

eC(u) = 1 H1-a.e. for all C ∈ sptγ+, eC(u) = −1

H1-a.e. for all C ∈ sptγ− (3.29)

(ii) Let u0 be a particular maximizer in (3.9) and let x0 belong to an open subset
where u0 is of class C1. Then every curve C in the support of an optimal γ pass-
ing through x0 is such that tC(x0) is an eigenvector of e(u)(x0) associated with
the eigenvalue 1 if C ∈ sptγ+ and −1 if C ∈ sptγ−. In particular, two curves
respectively in sptγ+ and sptγ− passing through x0 are orthogonal.

Proof. Owing to Theorem 3.1, a pair (u, γ) ∈ U1(Ω) × ΓF(Ω) with σ(γ) ∈ ΣF(Ω)
is optimal if and only if the following equality holds

〈F, u〉 =
∫

XΩ

H1(C) |γ|(dC). (3.30)

By Lemma 3.4, exploiting (3.5), we have:

〈F, u〉 = 〈−div σ(γ); u〉 =
∫

XΩ

(∫
C

eC(u) dH1

)
γ(dC).
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Therefore, (3.30) can be rewritten as∫
XΩ

(∫
C

(eC(u) − 1) dH1

)
γ+(dC) +

∫
XΩ

(∫
C

(eC(u) + 1) dH1

)
γ−(dC) = 0

The assertion (i) follows since u ∈ U1(Ω) and thus satisfies |eC(u)| ≤ 1 a.e.
To prove the assertion (ii), it is enough to note that eC(u0) is continuous on a

neighborhood V of x0 and therefore constant equal to 1 (resp. −1) in C ∩ V where
C is any curve is the support of γ+ (resp. γ−). Then, if such a curve passes through
x0, we have

〈e(u0)(x0); tC ⊗ tC(x0)〉 = eC(u0)(x0) = 1 (resp. − 1),

whereas ρ(e(u0))(x0) ≤ 1 and ρ0(tC ⊗ tC)(x0) = 1. By Remark 2.2, we infer that
tC(x0) is an eigenvector of e(u0)(x0) associated with eigenvalue 1 (resp. −1). The
conclusion is then straightforward.

A straightforward application of Theorem 3.2 allows us to recover the optimality
criterium obtained in Example 2.1 (where uo is the identity map). We have

Corollary 3.1. (Optimal trusses in tension or compression) Let F ∈ M0(Ω). Then
u+

0 (x) := x (resp. u−
0 (x) := −x) is a solution of (2.24) if and only if the admissible

set ΓF(Ω) contains a non-negative (resp. nonpositive) element γ0. In this case σ(γ0)
is a minimizer of (2.22).

Proof. As eC(u+
0 ) = 1 and eC(u−

0 ) = −1 for every curve C, we need only to apply
the optimality conditions (3.29).

4. Examples of Optimal Structures

4.1. A structure with all lines of action in tension

In Example 2.1 we already described optimal trusses with all bars in tension. Let
us reformulate one of these examples via measures on the set of curves XR2 .

In R
2 we consider the points A(0,−1), B(−√

3/2, 1/2), C(
√

3/2, 1/2) and the
balanced system of forces

F = δAA + δBB + δCC.

For each t ∈ (0, 1) and M ∈ R
2 we set Mt = tM . We consider the measure

γt = γ1
t + γ2

t on XR2 , where

γ1
t =

1√
3
(δ[At,Bt] + δ[Bt,Ct] + δ[Ct,At]), γ2

t = δ[At,A] + δ[Bt,B] + δ[Ct,C].

We set

γ1
0 = 0 = γ2

1 , γ2
0 = δ[O,A] + δ[O,B] + δ[O,C], γ1

1 =
1√
3
(δ[A,B] + δ[B,C] + δ[C,A]).
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It is easy to check that, for any t ∈ [0, 1],

div(σ(γt)) = div
(

1√
3

(
σ[At,Bt] + σ[Bt,Ct] + σ[Ct,At]

)
+ σ[At,A] + σ[Bt,B] + σ[Ct,C]

)
= −F.

Hence σ(γt) belongs to ΣF(R2) and, as γt is a non-negative measure, Corollary 3.1
ensures that σ(γt) is a minimizer of (2.22). This shows that there are uncountably
many optimal Michell trusses in ΣF(R2).

There are also uncountably many optimal structures which are not trusses
(in the sense that these structures are not one-dimensional). Let us describe
them using our formulation: let p be any probability measure on [0, 1] and set
γp :=

∫
[0,1]

γt p(dt). Corollary 3.1 still apply to the measure γp. For this optimal
structure, we have σ(γp)) =

∫
[0,1]

σ(γt) p(dt). Note that the Hausdorff dimension of
this measure can be any real in [1, 2] (it is two if, for instance, p(dt) is chosen to be
the Lebesgue measure on [0, 1]).

4.2. A structure with some lines of action in tension

and others in compression

In R
2 we consider the points A = (

√
2, 0), B = (

√
2

2 ,
√

2
2 ), C = (−

√
2

2 ,
√

2
2 ) and

the symmetrical points D = −A, E = −B, F = −C. Denoting e1 = (1, 0) and
e2 = (0, 1), we consider the equilibrated system of forces

F =
√

2
2

(α + β) (δA − 2δ0 + δD) e2 +
√

2
2

(β − α) (δA − δD) e1, (4.1)

where α, β > 0 are two positive parameters. In the particular case α = β, Michell11

provided a picture of an optimal stress minimizing (2.25). He laid down arguments
which guide us to write an analytic description of the optimal structure in R

2 for
the system of forces (4.1).

4.2.1. Existence of optimal structure

For any θ ∈ [0, 2π), we consider the radial segment Cθ :=
[
0,
(
cos(θ), sin(θ)

)]
. A

straightforward computation shows that the Hausdorff distance between two such
segments Cθ and Cθ is lower than |θ − θ| and so, θ → Cθ := Θ(θ) is Lipschitz.
Therefore, it makes sense to define measures on X := XR2 as the push forward of
measures on [0, 2π). For instance, we can define γup and γlow on X by

∀ϕ ∈ C(X),
∫
X

ϕdγup =
∫ 3π/4

π/4

ϕ(Cθ)dθ,

∫
X

ϕdγlow =
∫ 7π/4

5π/4

ϕ(Cθ)dθ. (4.2)

Let us denote
�

BC the curve {(cos(θ), sin(θ)); θ ∈ [π/4, 3π/4]} and
�

EF the
symmetrical curve {(cos(θ), sin(θ)); θ ∈ [5π/4, 7π/4]}.
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We define γ = γ+ − γ− where

γ+ := αγup + β(δ[D,E] + δ �
EF

+ δ[F,A]), γ− := βγlow + α(δ[A,B] + δ �
BC

+ δ[C,D]).

Recall that, when r : [0, �] is a parametrization by the arclength of a C1,1-curve
C, with endpoints M = r(0), N = r(�), then the tangent vector tC = ṙ and the
curvature vector kC = r̈ satisfy the relation

−div(tC ⊗ tC H1|C) = −kC H1|C − tCδM + tCδN

in the sense of distributions. This enables us to compute div(σ(δ �
EF

)) and
div(σ(δ �

BC
)). As the support of the remaining part of γ contains only segments,

it is straightforward to check that

−div(σ(γ)) = F.

At any point x ∈ R
2\{0} let us introduce the polar coordinates (ρ(x), θ(x)) ∈

(0, +∞) × [0, 2π). Thus x = ρ(x)(cos(θ(x)), sin(θ(x))). We divide R
2\{0} in four

angular sectors

Sup :=
{

x; θ(x) ∈
[
π

4
,
3π

4

)}
, S left :=

{
x; θ(x) ∈

[
3π

4
,
5π

4

)}
,

S low :=
{

x; θ(x) ∈
[
5π

4
,
7π

4

)}
, Sright :=

{
x; θ(x) ∈

[
7π

4
, 2π

)
∪
[
0,

π

4

)}
.

We introduce the matrices

J̃ =

(
0 1

1 0

)
, J =

(
0 −1

1 0

)
, A(θ) :=

(
cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)
,

and define uo ∈ U1(R2) by uo(0) = 0 and

uo(x) =


x + (π − 2θ(x))J · x, if x ∈ Sup,

−J̃ · x − π
2 J · x, if x ∈ S left,

−x + (2θ(x) − 3π)J · x, if x ∈ S low,

J̃ · x + π
2 J · x, if x ∈ Sright.

(4.3)

It is easy to check that uo is continuous on R
2 while ∇uo and so e(uo) are continuous

on R
2\{0}. The explicit computation of e(uo) reads

e(uo)(x) =


A(θ(x)), if x ∈ Sup,

−J̃ , if x ∈ S left,

−A(θ(x)), if x ∈ S low,

J̃ , if x ∈ Sright.

(4.4)

Recalling that for any curve C ∈ X, eC(uo) coincides with 〈e(uo) ; tC ⊗ tC〉, it is
straightforward to check for any curve C ∈ spt(γ+) that eC(uo) = 1 and for any
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curve C ∈ spt(γ−) that eC(uo) = −1. Therefore Theorem 3.2 states that the pair
(uo, γ) is optimal.

Moreover, as uo(0) = 0 and uo(A) = uo(D) =
√

2(1 + π/2)e2, the value of the
optimal cost simply reads ∫

R2
〈uo;F〉 = (2 + π)(α + β).

Remark 4.1. There are several vector fields a : R
2 → R

2 such that |a| = 1 and

e(uo) = a ⊗ a− a⊥ ⊗ a⊥. (4.5)

Despite the fact that e(uo) is continuous on R
2\0, it is not possible to find a vector

field a which is continuous on the whole set R
2\0 such that (4.5) holds.

4.2.2. Approximation by trusses

The optimal structure γ described in the previous subsection is made of four bars

[F, A], [A, B], [C, D], [D, E], two arcs of circle
�

EF ,
�

BC and two parts which corre-
spond to two-dimensional measures σ(γup) and σ(γlow). In no way can this structure
be considered as a truss. In this subsection, we show that it can be considered as the
limit of a sequence of trusses. We construct a sequence {γn}∞n=1 of signed measures
on X such that σ(γn) converges to σ(γ) and is a minimizing sequence for both
(2.22) and (3.6). The existence of such a sequence supports, in this particular case,
the conjecture that (3.6) is a relaxation of (2.8).

We already quickly described the sequence {γn} in Fig. 3. Let us be more precise.
Let n > 0 be an integer and k ∈ {0, . . . , n}. We denote Mk the point Mk :=
(cos((1

4 + k
2n )π), sin((1

4 + k
2n )π). We set

tn = 1/ cos
( π

4n

)
, sn = 2 tan

( π

4n

)
,

and we introduce the signed-measure γn
up on X by setting

γn
up = sn

(
n−1∑
k=1

δ[0,Mk] +
1
2
δ[0,B] +

1
2
δ[0,C]

)
− tn

(
n∑

k=1

δ[Mk−1,Mk] − δ[A,B] − δ[C,D]

)
.

Considering γ̃n
up, the measure obtained from γn

up by a symmetry with respect to the
first axis, we set γn = αγn

up−βγ̃n
up. Direct computations reveal that −div(σ(γn)) =

F and ∫
ρ0(σn) = 2(α + β)

(
1 + 4n

(
sin

π

4n

)2 (
sin

π

2n

)−1
)

. (4.6)

Letting n tends to +∞ we obtain that

lim
n→+∞

∫
ρ0(σn) = (α + β)(2 + π).

Hence the cost converges to the optimal cost obtained in the previous subsection.
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1600 G. Bouchitté, W. Gangbo & P. Seppecher

4.2.3. Uniqueness of solutions; a special system of hyperbolic PDEs

Michell, when studying the case α = β, conjectured that the minimizer is unique.
This fact seems to be well accepted in the literature but we are not aware of any
work where the proof of uniqueness has been provided. The proof we propose is
based on the analysis of an unusual system of hyperbolic PDEs.

In Sec. 4.2.1 we exhibited an optimal stress measure σ(γ) and an associated
displacement field uo. We use the same notation and introduce a change of variables
which make easier the description of e(uo). For any (s, t) in S̃ := R×(0, +∞), we set

T (s, t) :=



√
2

2

(π

4
+ s − t,

π

4
+ s + t

)
, if s < −π

4
,

t (sin(s), cos(s)), if s ∈
[
−π

4
,
π

4

]
,√

2
2

(
−π

4
+ s + t,−π

4
− s + t

)
, if s >

π

4
.

This is a piecewise diffeomorphism from S̃ onto S := S left ∪Sup ∪Sright. Note that
T maps the set S̃up := [−π

4 , π
4 ] × (0, +∞) onto Sup and that, for any (s, t) ∈ S̃up,

we simply have θ(T (s, t)) = π
2 −s. The Jacobian j of this change of variable is given

by j(s, t) = t, if (s, t) ∈ S̃up, j(s, t) = 1 otherwise. We associate to any measure ξ

on S, the measure T−1�ξ on S̃ defined by

∀ϕ ∈ Co
c (S̃),

∫
eS
ϕd(T−1�ξ) =

∫
S

ϕ ◦ T−1 dξ.

We also introduce the orthonormal basis (ẽs, ẽt):

ẽs(s, t) =
1

j(s, t)
∂T

∂s
(s, t), ẽt(s, t) =

∂T

∂t
(s, t).

Denoting es := ẽs ◦T−1 and et := ẽt ◦T−1, it is straightforward to check that, on S,

e(uo) = −es ⊗ es + et ⊗ et.

We want to prove that any optimal stress measure σo coincides with σ(γ).
Both measures belong to ΣF, have finite energy and, since e(u0) is continuous,
they satisfy the localized optimality conditions (2.28), (2.29) (where in (2.29) the
orthonormal basis {ai} becomes {es, et}). Thus the restriction to S of the difference
σ := σo − σ(γ) is divergence free and takes the form

σ = −λ1 es ⊗ es + λ2 et ⊗ et,

where λ1 and λ2 are two (signed) measures on S with finite variation. In order to
prove that λ1 and λ2 vanish, let us consider a test function ϕ ∈ C∞

c (S̃) and set
v = ϕ ◦ T−1 es and w = ϕ ◦ T−1 et. A direct computation gives

∇v =
(

1
j

∂ϕ

∂s

)
◦ T−1 es ⊗ es +

∂ϕ

∂t
◦ T−1 es ⊗ et − (gϕ) ◦ T−1 et ⊗ es,

where g is the function defined on S̃ by g(s, t) := 1/j ∂j/∂t = 1/t χ| eSup. The
function g is discontinuous for s ∈ {−π/4, π/4} and so is ∇v; but it is easy to check
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that, if ρε is a standard mollifier, the following uniform convergence hold:

〈∇v ∗ ρε ; es ⊗ es〉 −→
(

1
j

∂ϕ

∂s

)
◦ T−1, 〈∇v ∗ ρε ; et ⊗ et〉 −→ 0.

Hence

0 =
∫
S
〈v ∗ ρε ; −div(σ)〉 =

∫
S
〈∇v ∗ ρε ; σ〉

=
∫
S
〈∇v ∗ ρε ; es ⊗ es〉dλ1 +

∫
S
〈∇v ∗ ρε ; et ⊗ et〉dλ2,

and passing to the limit

0 =
∫
S
〈∇v ; es ⊗ es〉 dλ1 =

∫
S

(
1
j

∂ϕ

∂s

)
◦ T−1 dλ1 =

∫
eS

1
j

∂ϕ

∂s
d(T−1�λ1).

As this is true for any ϕ ∈ C∞
c (S̃), we deduce that there exists a measure ν1 on

(0, +∞) such that T−1�λ1(ds, dt) = ds ⊗ ν1(dt). Then
∫
S d|λ1| =

∫
eS d|T−1�λ1| <

+∞ implies ν1 = 0 and so λ1 = 0.

Now, using this first result, and performing similar computations for the test
function w, we get

∇w =
(

1
j

∂ϕ

∂s

)
◦ T−1 et ⊗ es +

∂ϕ

∂t
◦ T−1 et ⊗ et + (gϕ) ◦ T−1 es ⊗ es

and

0 =
∫
S
〈∇w ; et ⊗ et〉 dλ2 =

∫
eS

∂ϕ

∂t
d(T−1�λ2).

We deduce that there exists a measure ν2 on R such that T−1�λ2(ds, dt) = ν2(ds)⊗
dt. Again, the finite total variation of λ2 implies that ν2 and so λ2 vanish.

To conclude, we observe that σ vanishes on S thus on R × R
+\{0}. The same

holds true on R × R
−\0 (this by using a symmetrical change of variables). Thus σ

is concentrated at 0 which is incompatible with the divergence free condition unless
σ = 0. �

5. Open Problems

The aim of this paper was to give a rigorous fundament to the notion of Michell’s
lines. These lines are designed to carry the constraints and support the optimal
structure; in our framework they are exactly the elements of the support of an
optimal (signed) measure γ. The lines in tension correspond to the positive part γ+

whereas the lines in compression are carried by the negative part γ−. We strongly
believe that our approach could be a useful tool to investigate the properties of
optimal structures. However, it is still necessary to prove the existence of a min-
imizing measure γ for the infimum problem in (3.9). Hereafter we propose some
open problems or conjectures.
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Problem 5.1. (Existence) Assume that the load F is supported by a finite number
of points. Then we conjecture that an optimal γ exists and that this γ is supported
on a subset of X l0,κ0

Ω for κ0 large enough (recall that X l0,κ0
Ω introduced in Sec. 2.2

consists of all smooth curves whose length and curvature are upper bounded respec-
tively by l0 and κ0).

A long standing conjecture concerns the relation between the support Y of the
load F and the region R in which an optimal structure lies. As noted in Example
2.2, R is not included in the convex hull of Y .

Problem 5.2. (Boundedness of optimal structure) Assume that the design region
is all R

d and that Y is bounded. Then it seems reasonable to conjecture that R is
bounded. Can we more precisely estimate the value R0 such that the value of

inf
σ∈ΣF(BR)

∫
BR

ρ0[σ] (5.1)

is independent on R for R ≥ R0? Furthermore, in the more ambitious attempt to
describe the domain R in the case d = 2, can we characterize a set of finitely many
extreme curves surrounding R, i.e. such that R is contained in the convex hull of
these lines?

In contrast with the scalar case of Monge transport problem, almost nothing is
known about the regularity of optimal pairs (uo, σo). In the usual case of application,
the load F is concentrated and we expect that the optimal stress measure σ exhibits
concentrations as it is shown in Sec. 3. For what concerns the optimal displacement
uo which should be everywhere defined in the design (in general it is not unique),
we expect that it is regular at least in the complementary of the lower dimensional
subsets where σo is concentrated.

Problem 5.3. (Regularity of optimal deformations) Assume that F is an
equilibrated system of forces with finitely many points of application M =
{M1, M2, . . . , Mk} ⊂ Ω ⊂ R

d. Let uo be a maximizer of u → ∫
< F; u > over

U1(Ω). Can we predict in terms of M the location of the subset where uo is not
differentiable? or of the subset where the symmetric tensor e(uo) is discontinuous?

The last question concerns, in the case d = 2, the subset of the optimal structure
R where the strain tensor e(u0) has two eigenvalues 1 and −1. This sub-region R′

plays an important role as it is the one where the Michell’s lines make a Hencky–
Prandl net: recall that, by the assertion (ii) in Theorem 3.2, two curves respectively
in sp γ+ and sp γ+ passing trough a point x ∈ R′ are orthogonal.

Problem 5.4. Assume that F is an equilibrated system of forces with finitely many
points of application M = {M1, M2, . . . , Mk} ⊂ R

2. How can we characterize the
set R′ associated with a maximizer uo of u → ∫ 〈F; u〉 over U1(Ω)? Can we state
that the curvature of Michell’s lines vanishes away from R′, i.e. that κ(s) = 0 a.e.
on C\R′ fo all curves C in the support of an optimal measure γ?
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