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Abstract — We study a problem of structural optimisation using the fictitious material approach. This is connected with the equilibrium of locking
materials, which can be approximated by strongly non linear materials. A finite element simulation allows us to experiment with some conjettures abou
the topology of the optimal solutionsl 2001 Editions scientifiques et médicales Elsevier SAS

shape optimisation / locking material / topological optimisation / fictitious material / finite elements

1. Introduction

Structural optimisation is a major objective in the conception of industrial systems. In particular, for a given
desired performance, engineers may need to minimise the mass of a structure by using an adapted geometry.
Early methods consist of progressively tuning some geometric parameters of a postulated initial shape. The
optimal design obtained in this way depends strongly on the initial one: the optimisation process cannot change
the fundamental topological characteristics of the shape. Methods which allow such modifications (Allaire et
al., 1997; Bendsoe, 1995) are called topological optimisation. Here we consider a structure submitted to a given
load and we try to get a structure with the smallest volume for a desired compliance (i.e. global stiffness, or
stored elastic energy for the given load). It is now well known that this problem may admit no solution in
the classical sense: the optimal ‘shape’ may consist of an intricate mixture of material and holes. The optimal
solution has to be understood in the framework of homogenisation theory and the optimisation problem has
to be set at the very beginning in a relaxed form. However, as the set of all possible effective stiffness tensors
for a given volume fraction of the material is rather intricate (Allaire and Kohn, 1993; Aubry, 1999; Bendsoe,
1995), it seems difficult to find analytic solutions or mathematical properties for optimal designs. That is why
we consider a very similar but much simpler problem: we assume that the stiffness tensor depends linearly on
the volume fraction (or the mass density) of the material. In 3-D this assumption is not realistic as the stiffness
of a composite material with a given volume fraction is weaker than the stiffness obtained assuming a linear
dependence: the problem we consider is then called fictitious material optimisation’. In 2-D, the problem
corresponds to the optimisation of the thickness of a plate submitted to a plane load (plane stress). These linear
dependence or different ‘artificial mixture’ rules are discussed in (Duysinx, 1996).

The optimal designs obtained using homogenisation theory or the fictitious approach are qualitatively similar.
Hopefully our results could then be extended to the optimal structures obtained by the homogenisation method.
We show that the problem of fictitious material optimisation is equivalent to the equilibrium problem of a
perfect locking material (i.e. a material whose strain tensor must belong to a given bounded set, in this case its
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internal energy density vanishes). This convex minimisation enables us to give non-trivial analytical solutions
(section 4.1). Its regularisation leads to a simple non-linear elasticity problem (section 3). Some 2-D numerical
solutions are presented (section 5) and compared to analytical solutions. The numerical solutions enable us
to test some conjectures about the topology of optimal solutions. In the case when the support of the optimal
design is a connected set, it seems that this support is a simply-connected bounded set. In particular, we can
prove that circular holes cannot be present in an optimal design.

This conjecture, if confirmed, is remarkable: the topological complexity is not introduced by the optimisation
process, but only by a later penalisation process (such a penalisation is generally used to get out of the relaxed
formulation and to obtain a classical solution (Allaire et al., 1997). Only this penalisation process justifies the
name of ‘topological optimisation’ for the whole process.

2. Optimal design of membranes
2.1. Mathematical formulation

Let us consider a thin plane membrane of variable thicki€s$, x belonging to some bounded domain
Q C R2. Its volumeV is then given by:

Y= /Q h(x)ds. 1)

Assuming that the membrane is made of an homogeneous isotropic elastic material with Young’s miodulus
and Poisson coefficient, its elastic energy under plane stress conditions is:

/ }8,,()6) :D:g,(x)h(x)ds, (2)
Q2

where v € H1(Q, R? denotes the displacement field of the membranethe plane strain tensar, =
%(Vv + V'v) and D is the two-dimensional fourth-order stiffness tensor:

Do =~ 580+ 5.8
tjkl—l_vz ij Okl 1+v ik9jl-

At equilibrium the displacement field minimises the potential energy:

1
J(v,h):/ﬂéev:D:svhds—/ﬁF-vdE, 3)

where F denotes a line density of applied forces along a lin@®ther types of measures could be considered
for F, but, for the sake of simplicity, this will not be done here. For equilibrium to be possible, we assume
that the resulting force and moment vanigh £ d¢ = [, x A F d¢ = 0). Such conditions could be replaced by
Dirichlet conditions for the displacement on some par®of

The elastic energy at equilibrium can be rewritten, in terms of the equilibrium displacement, field

8(h)=—inf](v,h)=—J(u,h)=/ }su:D:suhds:}/F-udE. 4)
v Q2 2J)c

Assume that we need to maximise the global stiffness of the structure (or which is equivalent, to minimise
the volume of the structure) for the given single loadiigAn optimal design of the membrane is a function
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h(x) which, for a given volumé&’, minimises the equilibrium elastic energy. The optimisation problem reads:

E= inf{é'(h); h(x)>0; / h(x)ds =V}, (5)
h Q

or, using (3) and (4):
1
E=—Supinf{/ —8,,:D:svhds—/F-vd(;h}O;/hds:V}. (6)
v a2 c Q

Let us remark that, even in this relaxed formulation, the existence of an optimal design (a function
minimising (6)) is generally not assured. For some special loadirige optimal solution may concentrate
along a line: indeed, as proved in (Bouchitté and Buttazzo, 2001), the optimal solutias to be sought in
the space of measures. Examples of this phenomenon are given in (Bouchitté et al., 1997-a) for conductivity
optimisation and can easily be extended to our problem. In this paper we assume that forces are kactuthat
the associated displacement fialéxist and are sufficiently regular.

Note that the lineC, where external forces are applied, may be different from the bourtdargf 2 and
may not even coincide with a part of the boundary. This allows us to consider th@cas¥ or, in numerical
studies, to consider a domain much larger than the support of applied forces. Then we can obtain optimal
structures which are not subjected to any geometrical constraint.

2.2. Perfect locking materials

We show now that the problem (6) is equivalent to the resolution of the equilibrium of a perfect locking
material. We search, a priori, the supremum in (6) in the convex compagt(stall non-negative measures
h on Q which verify [ h =V. By a density argument, the infimum can be sough€(2), so (6) can be
rewritten:

E=inf sup {—J(v,h)}. 7
heM yeco (@)

As, onC> () x M, —J is concave with respect to the first variable and convex (linear) lower semicontinuous
with respect to the second one, the ‘lop sided minimax theorem’ (cf. chapter 6 of (Aubin and Ekeland, 1984))
allows us to interchange inf and sup in (7):

E= sup inf{—J(,h)}=— inf_ supJ(v,h). (8)
vecm@heM{ s veC™(Q) he M

This last supremum i is easy to compute (it is enough to concentratehere||e, : D : .||« reaches its
maximum), and we get:

E=— inf {—/F-vd£+||ev:D:sv||ooz}. )
veC>®(Q) L 2

In order to get rid of the influence of the total voluiewe can consider, for eaghe C® (), the quantities
s =&, : D:&,]|¥? andw = s~1v and write (9) as:

. Vs?
E=— inf {—s/ F-wdﬁ—l—?, lley : D:sv||OO=1}. (20)
L

weC™®($),s >0
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As the minimisation iry is straightforward, we obtain:

E=—$[i2f{/ﬁ—F-wd£; ||8w:D:8w||oo=1H2, (1))
or, in an equivalent way,
1 2
E:—@{igf{/ﬁ—F-wdﬂ; ||8w:D:5w||oo<1H . (12)

In this last formulation, the minimisation problem corresponds to the equilibrium of a perfect locking
material (Demengel and Suquet, 1986). the strain tensor of such a material has to satisfy the constraint
llew : D :eylleo < 1, then its volume energy vanishes.

These results also hold in the more general case when the elastic material is a non-linear one. This has been
proved by G. Bouchitté and G. Buttazzo (2001).

Note that formulation (12) can be obtained by using the stress based formulation of (Allaire and Kohn,
1993). In our simpler case the set of all stiffness tensors for a given thicknesseduced to the singletanD.

Then, the variational problem (2.16) of (Allaire and Kohn, 1993) is easily explicated: in our case this problem
becomes convex and corresponds to the dual formulation of (12).

A similar formulation has already been used to study optimal truss structures (Michell, 1904; Lagache, 1981,
Rozvany, 1989). Indeed, problems (P2) or (P3) in (Lagache, 1981) clearly correspond to the equilibrium of a
perfect locking material. In the case of optimal trusses, the strain tensor has to verify the copgtiain 1
(wherel||¢||| denotes the highest singular valuesdfwhile in our case the constraint ig,, : D : g, ]lc < 1.

The locking material formulation for optimal trusses has been particularly fruitful and optimal solutions can
be described in terms of Hencky nets (Strang and Kohn, 1983). Here we investigate how the results obtained
for optimal trusses can be extended to the problem (12). We cannot obtain a simple structure like Hencky nets,
nevertheless the formulation (12) enables us to get some analytical solutions and some topological properties
of optimal designs.

Formulation (9) has already been used in finite dimension by (Ben-Tal and Bendsoe, 1993) for the numerical
analysis of optimal trusses and by (Zowe et al., 1997) for the finite element study of fictitious material. We will
first regularise our convex minimisation problems before discretising them.

3. Numerical formulation
3.1. Problem regularisation

In order to solve numerically (9) or (12), let us regularise the term containing the jhojg.
In the first formulation, we approximate the infinity norm byaorm wherep is a large parameter. Indeed:

1/p
lev: D :gylle= lim |le,: D:gyll, = lim {/(SUZD:SU)pdS] . (13)
p—>00 p—>| Jo

Then we deal with the following optimisation problem:

J@w(igf 5,®), (14)
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where
1/p
Jy(v) :=V(/(8,,:D:8v)”ds> —2/ F-vde. (15)
Q L

As the derivative ol/, is given by:

1/p-1
Jl’,(u) v =V</Q(eu :D:g,)? ds> (/QZ(SM :D:e)’ e, :D:gy) ds) — Z/LF -vde,

the variational formulation of the optimisation problem becomes:

/H(u)eu:Dzevds=/F-vd£, (16)
Q L
where

1/p—1
H@w):=V(,:D: su)”_l(/ (ey:D:g,)? ds> . a7
Q

This variational formulation corresponds to a non-local elastic problem. Indeed the stiffness A&ebsor
through H, depends on the solutianon the whole domain.

For a givenH, this formulation corresponds again to the equilibrium of an elastic plate of thickhessler
plane stress. The comparison of (17) and (4) showsHhabrresponds to the optimal desigiwe are looking
for. Here H depends on the global strain energy.

In the second formulation (12), introducing the indicator function defineR diby:

__Joo ift>1,
1) = {O otherwise, (18)

the optimisation problem becomes:

inf{—/ F-wdﬁ—i—/ I(ew:Dzew)ds}. (29)
w L Q

Let us now approximate the indicator functiérby the function?,, defined by?,(z) := (2p)~*t7, p being a
large parameter. The minimisation problem becomes:

Jim (igf J,,(w)), (20)
where
jp(w) rz/szi(sw:D:sw)pds—/LF-wdﬂ. (21)

As the derivative otfp is given by:

f[’,(u) U= (/Q(eu :D:e,)" e, :D:gy) ds) — /ﬁ F-vde, (22)
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the variational formulation of the optimisation problem is written again:

/Fl(u)suzD:evds=/F-vdﬂ, (23)
Q L

where
H@u):=(s,:D:5,)" . (24)

This variational formulation corresponds to a simple local elastic problem. Again the comparison of (23) and
(4) shows that corresponds to the optimal desiggrwe are looking for. Herd? depends simply on the local

strain energy density. Note that the problems (16)—(17) and (23)—(24) are equivalent up to a multiplicative
constant. They are both non linear, but convex, elastic equilibrium problems. They lead to the same optimal
design.

Similar formulations have been established by Ben-Tal and Bendsoe (1993) for the study of optimal trusses
or by Petersson (1999) for the study (very closely connected to ours) of optimal variable thickness sheets.

3.2. Finite element formulation
We use a finite element formulation (Batoz and Dhatt, 1995) for our problems. Let us dehtte vector

of the nodal unknowns and, for each elemen¥¢ the interpolation functions. Then the displacement field is
approximated o by:

u(x) = [N°(x)]{u},
which, by differentiation, define8¢ such that:

&4 (x) = [B(x) ] {u}.

Then we write on each elemest

ea: D e, = () [B°][D1[B]{v} = (u}” [K°]{v}.

Here[K°] := [B¢]"[D][B¢] is the elementary elastic stiffness matrix. Decomposing the do@aiith the
supportsV¢ of the finite element and denoting:

E,: _/(su D: su)”ds—Z/ {u}" [KNu})”

the finite element formulation of (16) is written as:
VESEY | K)o K s =3 [ i e
As this equality holds for anjw}, the residue:
(R} ({u}) : Z/ [N°] {F}dﬁ—l—V(Z/ ({u}" [K<]{u}) ds>l/pl
3 | (K u)” ™ [y o, (25)
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must vanish.
In the same way the residue of the finite element formulation of (23) becomes:

{R,}({u}) : Z/ ()" [K]{u})” e]{u}ds—Z/ave [N¢]{F}de. (26)

3.3. Computational method

As, for a given value op # 1, the problems:
{R,}({u}) = {0}, (27)
{R,}(tu}) =10}, (28)

are non linear, we use the Newton—Raphson method. At each itefatigsolve the following linear system:

AR}, i1 - i
Sy (Do = (R (1),

{u} = {8u} + {u~1}.

(29)

For p = 1 the problem is linear. Increasingprogressively, we initialise the Newton—Raphson algorithm by
choosing for{u°} the displacement field computed with a smaller valug of

The differentiation of formula (28) leads to the following tangent matrix:
d{R,) 1
R e

+2p =Y / () (K] )2 K] ae) (K] ) dls (30)

which we can use directly while the differentiation of formula (27) leads to a full tangent matrix:

] (5 [ Ty es) S [ (e
+2(p - 1>V<Z [ (™ (&) )Wl
<3 (" K"K (1K) (31)
+201- p)v(z [ ™ (&) )1/[7_2
(X (w0 xy” {u}ds)(Z/ () [K<] ()" [e]{u}ds)T.

As using such a full tangent matrix is numerically expensive, it is better to replace it by a truncated one. This
can be done by neglecting the last term in (31). We have tested both methods and their performances are similar.
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4. Comparison with an analytical solution
4.1. An analytical optimal design

In order to test our numerical procedure, we construct in this section a non-trivial analytical solution: we
consider the case of an elastic material with a vanishing Poisson’s coefficient.Dfhee= 21.6;.6;, and the
constraint for the displacement fieldakes the simple form:

g.:D:g,=2ue,:6, <L (32)

Using adapted units, we consider 2 1. Then, in support of the optimal desidn, 2(x) > 0} where the
constraint is active (the inequality is actually an equality), the strain tensor has to verify:

&5+ &5+ 265, =1, (33)

whereg;; denote the components gf in an orthogonal basicy, x»).
On the other hand, ag is a symmetric part of a gradient, it has to verify the compatibility condition:
82811 32822 82812

-2 =0. 34
dx3 dx? 0x10x2 (34)

Finally,  must correspond to the equilibrium displacement field of the optimal design. In a domain free from
external forces, this condition states that there exists a scalakfielduch that dighe,) =0, i.e.:

hdiv(e,) +gradh) - ¢, =0,

or
div(e,) + grad(In(h)) - &, =0. (35)

The existence of such a fieldis assured, wheg, is invertible, ifg, satisfies:
rot(e; * - div(e,)) = 0. (36)

It is difficult to describe the general properties of the solutions of equations (33), (34) and (36), but it is easy
to find particular non-trivial solutions.

Example 1: Let us determine, for instance, a solutiyrdiagonal in the Cartesian coordinate sysiam x»),
i.e. such that1,(x) = 0 everywhere. Then equations (33), (34) and (36) become:

9% 9% 92 £
2 2 11 22 22
+e5,=1, —+—"=0, <In<—>>=0 37
fLLT 22 8x22 asz_ axlaxz €11 ( )

a solution of which is:

) e @)
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The thicknesg of the optimal plate is then given, up to a multiplicative constant, by equation (35). We have:

h(x) =y x7*+ x4 (39)

Let us assume now that the plate is contained in the sqiate[a, b]?> with 0 < a < b. Itis easy to determine
the external density of forceB which are applied on the boundary of the domain. Indeed the equilibrium
condition readd"” = he, - n, wheren denotes the external normal to the bounda®yof 2. For the considered
domain,F is parallel ton: F = —pn. The plate is therefore subjected to the non-constant pressurefield

px) =x2‘2 along the vertical edgda} x [a, b] and{b} x [a, b],

40
p(x) =x;? along the horizontal edgés, b] x {a} and[a, b] x {b). (40)

The design given by (39) is the optimal design of a plate contained in the sfuarel subjected to the
pressure field given by (40), the multiplicative constanbeing determined by the volume constraint. The
associated strain field is given by (38).

Example2: It is also possible to obtain solutions with cylindrical symmetry by assuming that the strain
tensor is diagonal in the natural basis, ¢;) associated with the polar coordinatest). Such solutions (for
which g, = 0) correspond to more realistic loads than (40). Their computation is more intricate than in the
previous example and we only give the results. The parametric description of the optimal designs has the form:

r =a€'?|codt) — sin(t)|1/2,

_ (41)

h=be (cogr)) ™,
where the constants andb are determined by the loading. Indeed, if we consider the anfjus r < r,}
subjected to an internal constant pressey@nd an external constant presspre the quantity:

p:=he,, =be"’, (42)

coincides withp; and p, for r = r; andr = r, respectively. This enables us to determine the constaatsd

b and the valueg, andr, of the parameter which correspond te = r; andr = r,. It is remarkable that this
determination is only possible if the ratig/ p; does not exceed critical valugs,{ p; € [k1, k2]) which depend

on the geometrical parameter/ r, (for instance, when,/r is very large [k1, ko] >~ [0.1, 2.2]). Outside of this
interval, the optimal design is not entirely made of a regular 2-D plate: part of the mass concentrates along the
circle {r =rq}.

4.2. Numerical confrontation

In order to validate the numerical procedure presented in section 3, we compare its results with the analytical
solutions. Let us consider the square donin= [a, b]?> submitted to the boundary forces described by (40)
(seefigure 1). Then the optimal design is a plate the thickness of which is given by (39).

We compute the finite element solution for increasing values of the parapetéenerally we use the
increment 2 forp. We stop at the maximum value before the Newton’s method diverges. In order to check the
numerical scheme, we study three different regular finite element grids with quadratic interpolatid0(20
40x 40, 80x 80).
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Analysing the relative difference between the numerical and analytical solutions at every point of the domain
(cf. figure 29, we find that it is lower than 1%. We can conclude that the numerical scheme presented here is
efficient for solving the problem (12). The scheme’s convergence is the same in both formulations (27) or (28).
For a given value op, we initialise the Newton’s scheme by the solution obtained previously for a smaller value
of p. Beginning with the valug = 1 (which corresponds to a linear elastic problem) assures the convergence
of the scheme. Many iterations (about 20) are needed to cross the first non-linpa#t8)( Afterward, for
p > 3, the convergence is obtained within five iterations.

Analysing theL?-norm of the difference between the numerical and analytical solutions, we observe a good
agreement, which improves adncreases (cfiigure 2. Even wherp is small (about 10), the design obtained
is close to the exact solution: it is pertinent to compute first a solution on a large mesh for a rough design, then
to refine the mesh in order to obtain the best precision. Indeed, the mesh quality governs the precision and the
maximal value of the parametgrwe can reach.

We have also considered the annulus< r < r,} subjected to the pressures given by (42) (when their ratio
does not exceed the critical values). Again we get a very good agreement with the analytical solution (41).

73

'Z////////

Parameter p

Figure 2. Difference between analytical and numerical solutions.
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5. Topology of optimal solutions

The goal of topological optimisation is to obtain structures, the topology of which has not been postulated a
priori.

What can we say about the topology of the optimal design obtained using a fictitious material approach?
Essentially, we are limited to conjectures: first, it seems reasonable, and our numerical results show, that the
support of the structure (the location of non vanishing thickness) is bounded. We explored every equilibrium
system of three point forces (digure 3. These numerical experiments have been computed with the same
relatively rough mesh and a moderate valuepofp = 10): the design is not quite precise but qualitatively
pertinent. The gray scale used in the figure corresponds to the thickness of the plate. The domain in which the
optimal design has been sought is much larger than the support of the obtained designs. Thus, these designs
are not limited by any geometrical constraint. As a matter of fact, the optimal design seems to be included in
a disk containing the support of the forces. Here circles seem to play a central role for a still unknown reason.
Seefigure 4in which we consider a system of vertical forces applied at three points of an horizontal line: the
optimal design is a disk with variable thickness. This figure can be compared to figure 2.7, p. 106 of (Bendsoe,
1995) in which, in a different context and under geometrical constraints, circles also appear.

Secondly, if connected, the structure seems to be simply connected. The restriction to connected structures is
essential as many examples can be found of non connected optimal structures. On the other hand, this conjecture
does not hold when the design domain is subjected to some geometrical constraint. For instance, we consider
in figure 5the case of three symmetrical forces acting on the wedges of an equilateral triangle. The thickness of
the optimal design is small at the center of the structure but does not véigiste @ represents the thickness

NA
eL

Figure 3. Optimal designs for some systems of three forces.




642 F. Golay, P. Seppecher

Figure 4. Optimal design for a particular system of three forces.

Figure 5. Optimal design for the system of three symmetrical forces.

N,

Thickness

Figure 6. Thickness along the axis of symmetry.

of the design along one of its axis of symmetry obtained for different values of the pargmeldris fact is
numerically clear: we verified that this minimal thickness converges to a positive value when refining the mesh
and increasing the parameter Moreover this phenomenon is not an artefact of our regularisation procedure:
indeed, the previous comparison between numerical and analytical solutions has showed that the numerical
solutions are sufficiently accurate. Finally, we notice that, outside of the optimal design, the numerical solutions
tend to zero without any ambiguity.

We explored different values for the Poisson coefficient: the optimal design depends slightly on this
coefficient, but there is not any qualitative difference. Note that the triangle made by three elastic 2-D bars
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(or any other equivalent truss structure) which is an optimal design for the Michell criterion cannot be optimal
for our minimisation problem. Indeed, the optimal design we obtain has a smaller compliance. This fact has
been rigorously proved in (Bouchitté and Buttazzo, 2001).

We conjecture that the structure is simply connected. Up till now, we can only prove that there is no circular
hole in the optimal structure: ifz, u) is a regular solution of problem (12) in a domdincontaining the disk
B(0, R), then it is not possible fak to vanish inside a disB of radius Ry and to be positive in its vicinity (for
all x in {x, Ry < |lx|| < R1 < R}). Indeed, as the field, is assumed to be regular, it verifies the equilibrium
condition diWke,) = 0 in the whole diskB(0, R;), and at each point of the boundat® of B we have:

g, -n=0,

n denoting the external normal 6.
The optimality condition] e, ||?> = 1 whereh > 0, yields to:

t-g,-T=1 o0noB (43)
(r denoting a unit vector tangent &B) and
le. <1 inB. (44)

To prove that there is no fieldin B verifying these two conditions, let us consider the following minimisation
problem:

inf{/ e (o)||P dbx, u e /\/l}, (45)
B

where M denotes the space of those functions of the usual Sobolev &p&® such thait|;z € H*(d B) and
T-&,-T=210ndB. Thisis a linear elastic equilibrium problem. The boundary condition is not usual but it has
been proved in (Bouchitté et al., 1997-b) that this minimisation problem is well-posed. Therefore, there exists
a unique solutionsg, which due to the symmetry @&, is radial. Then, it is easy to verify that(x) = x and

the infimum of (45) isf, 2 dx. The mean value df, ||? is larger or equal to 2 for evenyin M: no element of

M can verify condition (44).

6. Final remarks

In this study we show how shape optimisation and locking materials are closely linked. First, this enables
us to have mechanic intuition of optimal designs, but overall this leads to a classical numerical approach. We
only have to search for the equilibrium configuration of a strongly non-linear elastic medium. The optimisation
problem we considered is very particular. Many practical applications need a more sophisticated model: one
should replace the fictitious energy (2) by an energy resulting from homogenisation theory; one should optimise
the stiffness under multiple loads; one should consider materials with different behaviors; one should discuss the
case of mass concentration along domains of lower dimension. All these variants lead to significant difficulties.
Our problem is pertinent for optimisation of 2-D structures, it raises some central questions and enables
us to test some conjectures. Our numerical experiments show that, as expected, the optimal structures are
bounded. To our knowledge, this quite intuitive fact is not proved even for the Michell optimisation criterion.
Our experiments show also, less expectedly, that the optimal structure is simply connected. This makes a
fundamental difference between Michell trusses and fictitious optimal designs. Before a penalisation step,
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optimal designs obtained through homogenisation seem to present the same feature (compare figures 1 and
2or 6 and7in (Allaire et al., 1997) and figures 2.17 and 2.21 in (Rossi, 1996)).
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