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Abstract – We study a problem of structural optimisation using the fictitious material approach. This is connected with the equilibrium of locking
materials, which can be approximated by strongly non linear materials. A finite element simulation allows us to experiment with some conjectures about
the topology of the optimal solutions. 2001 Éditions scientifiques et médicales Elsevier SAS
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1. Introduction

Structural optimisation is a major objective in the conception of industrial systems. In particular, for a given
desired performance, engineers may need to minimise the mass of a structure by using an adapted geometry.
Early methods consist of progressively tuning some geometric parameters of a postulated initial shape. The
optimal design obtained in this way depends strongly on the initial one: the optimisation process cannot change
the fundamental topological characteristics of the shape. Methods which allow such modifications (Allaire et
al., 1997; Bendsoe, 1995) are called topological optimisation. Here we consider a structure submitted to a given
load and we try to get a structure with the smallest volume for a desired compliance (i.e. global stiffness, or
stored elastic energy for the given load). It is now well known that this problem may admit no solution in
the classical sense: the optimal ‘shape’ may consist of an intricate mixture of material and holes. The optimal
solution has to be understood in the framework of homogenisation theory and the optimisation problem has
to be set at the very beginning in a relaxed form. However, as the set of all possible effective stiffness tensors
for a given volume fraction of the material is rather intricate (Allaire and Kohn, 1993; Aubry, 1999; Bendsoe,
1995), it seems difficult to find analytic solutions or mathematical properties for optimal designs. That is why
we consider a very similar but much simpler problem: we assume that the stiffness tensor depends linearly on
the volume fraction (or the mass density) of the material. In 3-D this assumption is not realistic as the stiffness
of a composite material with a given volume fraction is weaker than the stiffness obtained assuming a linear
dependence: the problem we consider is then called ‘fictitious material optimisation’. In 2-D, the problem
corresponds to the optimisation of the thickness of a plate submitted to a plane load (plane stress). These linear
dependence or different ‘artificial mixture’ rules are discussed in (Duysinx, 1996).

The optimal designs obtained using homogenisation theory or the fictitious approach are qualitatively similar.
Hopefully our results could then be extended to the optimal structures obtained by the homogenisation method.

We show that the problem of fictitious material optimisation is equivalent to the equilibrium problem of a
perfect locking material (i.e. a material whose strain tensor must belong to a given bounded set, in this case its
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internal energy density vanishes). This convex minimisation enables us to give non-trivial analytical solutions
(section 4.1). Its regularisation leads to a simple non-linear elasticity problem (section 3). Some 2-D numerical
solutions are presented (section 5) and compared to analytical solutions. The numerical solutions enable us
to test some conjectures about the topology of optimal solutions. In the case when the support of the optimal
design is a connected set, it seems that this support is a simply-connected bounded set. In particular, we can
prove that circular holes cannot be present in an optimal design.

This conjecture, if confirmed, is remarkable: the topological complexity is not introduced by the optimisation
process, but only by a later penalisation process (such a penalisation is generally used to get out of the relaxed
formulation and to obtain a classical solution (Allaire et al., 1997). Only this penalisation process justifies the
name of ‘topological optimisation’ for the whole process.

2. Optimal design of membranes

2.1. Mathematical formulation

Let us consider a thin plane membrane of variable thicknessh(x), x belonging to some bounded domain
� ⊂ R2. Its volumeV is then given by:

V =
∫
�

h(x)ds. (1)

Assuming that the membrane is made of an homogeneous isotropic elastic material with Young’s modulusE

and Poisson coefficientν, its elastic energy under plane stress conditions is:
∫
�

1

2
εv(x) : D : εv(x)h(x)ds, (2)

where v ∈ H 1(�,R2) denotes the displacement field of the membrane,εv the plane strain tensorεv =
1
2(∇v + ∇ t v) andD is the two-dimensional fourth-order stiffness tensor:

Dijkl = Eν

1− ν2
δij δkl + E

1+ ν
δikδjl .

At equilibrium the displacement fieldu minimises the potential energy:

J (v,h) =
∫
�

1

2
εv : D : εvhds −

∫
L
F · v d�, (3)

whereF denotes a line density of applied forces along a lineL. Other types of measures could be considered
for F , but, for the sake of simplicity, this will not be done here. For equilibrium to be possible, we assume
that the resulting force and moment vanish (

∫
L F d� = ∫

L x ∧ F d� = 0). Such conditions could be replaced by
Dirichlet conditions for the displacement on some part of�.

The elastic energy at equilibrium can be rewritten, in terms of the equilibrium displacement fieldu,

E(h) = − inf
v
J (v, h)= −J (u,h) =

∫
�

1

2
εu : D : εuhds = 1

2

∫
L
F · ud�. (4)

Assume that we need to maximise the global stiffness of the structure (or which is equivalent, to minimise
the volume of the structure) for the given single loadingF . An optimal design of the membrane is a function
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h(x) which, for a given volumeV , minimises the equilibrium elastic energy. The optimisation problem reads:

E = inf
h

{
E(h);h(x) � 0;

∫
�

h(x)ds = V
}
, (5)

or, using (3) and (4):

E = −sup
h

inf
v

{∫
�

1

2
εv : D : εvhds −

∫
L
F · v d�;h � 0;

∫
�

hds = V
}
. (6)

Let us remark that, even in this relaxed formulation, the existence of an optimal design (a functionh

minimising (6)) is generally not assured. For some special loadingF the optimal solution may concentrate
along a line: indeed, as proved in (Bouchitté and Buttazzo, 2001), the optimal solutionh has to be sought in
the space of measures. Examples of this phenomenon are given in (Bouchitté et al., 1997-a) for conductivity
optimisation and can easily be extended to our problem. In this paper we assume that forces are such thath and
the associated displacement fieldu exist and are sufficiently regular.

Note that the lineL, where external forces are applied, may be different from the boundary∂� of � and
may not even coincide with a part of the boundary. This allows us to consider the case� = R2 or, in numerical
studies, to consider a domain much larger than the support of applied forces. Then we can obtain optimal
structures which are not subjected to any geometrical constraint.

2.2. Perfect locking materials

We show now that the problem (6) is equivalent to the resolution of the equilibrium of a perfect locking
material. We search, a priori, the supremum in (6) in the convex compact setM of all non-negative measures
h on �̄ which verify

∫
h = V . By a density argument, the infimum can be sought inC∞(�̄), so (6) can be

rewritten:

E = inf
h∈M

sup
v∈C∞(�̄)

{−J (v,h)
}
. (7)

As, onC∞(�̄)×M, −J is concave with respect to the first variable and convex (linear) lower semicontinuous
with respect to the second one, the ‘lop sided minimax theorem’ (cf. chapter 6 of (Aubin and Ekeland, 1984))
allows us to interchange inf and sup in (7):

E = sup
v∈C∞(�̄)

inf
h∈M

{−J (v,h)
} = − inf

v∈C∞(�̄)
sup
h∈M

J (v,h). (8)

This last supremum inh is easy to compute (it is enough to concentrateh where‖εv : D : εv‖∞ reaches its
maximum), and we get:

E = − inf
v∈C∞(�̄)

{
−

∫
L
F · v d�+ ‖εv : D : εv‖∞

V
2

}
. (9)

In order to get rid of the influence of the total volumeV , we can consider, for eachv ∈ C∞(�̄), the quantities
s = ‖εv : D : εv‖1/2∞ andw = s−1v and write (9) as:

E = − inf
w∈C∞(�̄),s�0

{
−s

∫
L
F · w d� + Vs2

2
,‖εv : D : εv‖∞ = 1

}
. (10)
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As the minimisation ins is straightforward, we obtain:

E = − 1

2V

[
inf
w

{∫
L

−F · w d�; ‖εw : D : εw‖∞ = 1
}]2

, (11)

or, in an equivalent way,

E = − 1

2V

[
inf
w

{∫
L

−F · w d�; ‖εw : D : εw‖∞ � 1
}]2

. (12)

In this last formulation, the minimisation problem corresponds to the equilibrium of a perfect locking
material (Demengel and Suquet, 1986): the strain tensor of such a material has to satisfy the constraint
‖εw : D : εw‖∞ � 1, then its volume energy vanishes.

These results also hold in the more general case when the elastic material is a non-linear one. This has been
proved by G. Bouchitté and G. Buttazzo (2001).

Note that formulation (12) can be obtained by using the stress based formulation of (Allaire and Kohn,
1993). In our simpler case the set of all stiffness tensors for a given thicknessh, is reduced to the singletonhD.
Then, the variational problem (2.16) of (Allaire and Kohn, 1993) is easily explicated: in our case this problem
becomes convex and corresponds to the dual formulation of (12).

A similar formulation has already been used to study optimal truss structures (Michell, 1904; Lagache, 1981;
Rozvany, 1989). Indeed, problems (P2) or (P3) in (Lagache, 1981) clearly correspond to the equilibrium of a
perfect locking material. In the case of optimal trusses, the strain tensor has to verify the constraint|||εw||| � 1
(where|||ε||| denotes the highest singular value ofε) while in our case the constraint is‖εw : D : εw‖∞ � 1.
The locking material formulation for optimal trusses has been particularly fruitful and optimal solutions can
be described in terms of Hencky nets (Strang and Kohn, 1983). Here we investigate how the results obtained
for optimal trusses can be extended to the problem (12). We cannot obtain a simple structure like Hencky nets,
nevertheless the formulation (12) enables us to get some analytical solutions and some topological properties
of optimal designs.

Formulation (9) has already been used in finite dimension by (Ben-Tal and Bendsoe, 1993) for the numerical
analysis of optimal trusses and by (Zowe et al., 1997) for the finite element study of fictitious material. We will
first regularise our convex minimisation problems before discretising them.

3. Numerical formulation

3.1. Problem regularisation

In order to solve numerically (9) or (12), let us regularise the term containing the norm‖ · ‖∞.

In the first formulation, we approximate the infinity norm by ap-norm wherep is a large parameter. Indeed:

‖εv : D : εv‖∞ = lim
p→∞‖εv : D : εv‖p = lim

p→∞

[∫
�

(εv : D : εv)p ds
]1/p

. (13)

Then we deal with the following optimisation problem:

lim
p→∞

(
inf
v
Jp(v)

)
, (14)
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where

Jp(v) := V
(∫

�

(εv : D : εv)p ds
)1/p

− 2
∫
L
F · v d�. (15)

As the derivative ofJp is given by:

J ′
p(u) · v = V

(∫
�

(εu : D : εu)p ds
)1/p−1(∫

�

2(εu : D : εu)p−1(εu : D : εv)ds
)

− 2
∫
L
F · v d�,

the variational formulation of the optimisation problem becomes:

∫
�

H(u)εu : D : εv ds =
∫
L
F · vd�, (16)

where

H(u) := V(εu : D : εu)p−1
(∫

�

(εu : D : εu)p ds
)1/p−1

. (17)

This variational formulation corresponds to a non-local elastic problem. Indeed the stiffness tensorHD,
throughH , depends on the solutionu on the whole domain.

For a givenH , this formulation corresponds again to the equilibrium of an elastic plate of thicknessH under
plane stress. The comparison of (17) and (4) shows thatH corresponds to the optimal designh we are looking
for. HereH depends on the global strain energy.

In the second formulation (12), introducing the indicator function defined onR+ by:

I (t) :=
{∞ if t > 1,

0 otherwise,
(18)

the optimisation problem becomes:

inf
w

{
−

∫
L
F · w d�+

∫
�

I (εw : D : εw)ds
}
. (19)

Let us now approximate the indicator functionI by the functionIp, defined byIp(t) := (2p)−1tp, p being a
large parameter. The minimisation problem becomes:

lim
p→∞

(
inf
w

J̃p(w)
)
, (20)

where

J̃p(w) :=
∫
�

1

2p
(εw : D : εw)p ds −

∫
L
F · w d�. (21)

As the derivative ofJ̃p is given by:

J̃ ′
p(u) · v =

(∫
�

(εu : D : εu)p−1(εu : D : εv)ds
)

−
∫
L
F · v d�, (22)



636 F. Golay, P. Seppecher

the variational formulation of the optimisation problem is written again:
∫
�

H̃(u)εu : D : εv ds =
∫
L
F · v d�, (23)

where

H̃ (u) := (εu : D : εu)p−1. (24)

This variational formulation corresponds to a simple local elastic problem. Again the comparison of (23) and
(4) shows thatH̃ corresponds to the optimal designh we are looking for. HereH̃ depends simply on the local
strain energy density. Note that the problems (16)–(17) and (23)–(24) are equivalent up to a multiplicative
constant. They are both non linear, but convex, elastic equilibrium problems. They lead to the same optimal
design.

Similar formulations have been established by Ben-Tal and Bendsoe (1993) for the study of optimal trusses
or by Petersson (1999) for the study (very closely connected to ours) of optimal variable thickness sheets.

3.2. Finite element formulation

We use a finite element formulation (Batoz and Dhatt, 1995) for our problems. Let us denote{u} the vector
of the nodal unknowns and, for each elemente, Ne the interpolation functions. Then the displacement field is
approximated one by:

u(x) = [
Ne(x)

]{u},
which, by differentiation, definesBe such that:

εu(x) = [
Be(x)

]{u}.
Then we write on each elemente:

εu : D : εv = {u}T [
Be

]T [D][Be
]{v} = {u}T [

Ke
]{v}.

Here [Ke] := [Be]T [D][Be] is the elementary elastic stiffness matrix. Decomposing the domain� with the
supportsV e of the finite element and denoting:

Ep :=
∫
�

(εu : D : εu)p ds = ∑
e

∫
V e

({u}T [
Ke

]{u})p ds,

the finite element formulation of (16) is written as:

VE1/p−1
p

∑
e

∫
V e

({u}T [
Ke

]{u})p−1{v}T [
Ke

]{u}ds = ∑
e

∫
∂V e

{v}T [
Ne

]{F }d�.

As this equality holds for any{v}, the residue:

{Rp}({u}) := −∑
e

∫
∂V e

[
Ne

]{F }d�+ V
(∑

e

∫
V e

({u}T [
Ke

]{u})p ds
)1/p−1

× ∑
e

∫
V e

({u}T [
Ke

]{u})p−1[
Ke

]{u}ds, (25)
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must vanish.

In the same way the residue of the finite element formulation of (23) becomes:

{
R̃p

}({u}) := ∑
e

∫
V e

({u}T [
Ke

]{u})p−1[
Ke

]{u}ds − ∑
e

∫
∂V e

[
Ne

]{F }d�. (26)

3.3. Computational method

As, for a given value ofp �= 1, the problems:

{Rp}({u}) = {0}, (27){
R̃p

}({u}) = {0}, (28)

are non linear, we use the Newton–Raphson method. At each iterationj we solve the following linear system:

[
∂{R}
∂{u}

]({
uj−1}){δu} = −{R}({uj−1})

,

{
uj

} = {δu} + {
uj−1}.

(29)

Forp = 1 the problem is linear. Increasingp progressively, we initialise the Newton–Raphson algorithm by
choosing for{u0} the displacement field computed with a smaller value ofp.

The differentiation of formula (28) leads to the following tangent matrix:

[
∂{R̃p}
∂{u}

]
= ∑

e

∫
V e

({u}T [
Ke

]{u})p−1[
Ke

]
ds

+ 2(p − 1)
∑
e

∫
V e

({u}T [
Ke

]{u})p−2[
Ke

]{u}([Ke
]{u})T ds, (30)

which we can use directly while the differentiation of formula (27) leads to a full tangent matrix:

[
∂{Rp}
∂{u}

]
= V

(∑
e

∫
V e

({u}T [
Ke

]{u})p ds
)1/p−1 ∑

e

∫
V e

({u}T [
Ke

]{u})p−1[
Ke

]
ds

+ 2(p − 1)V
(∑

e

∫
V e

({u}T [
Ke

]{u})p ds
)1/p−1

× ∑
e

∫
V e

({u}T [
Ke

]{u})p−2[
Ke

]{u}([Ke
]{u})T ds (31)

+ 2(1− p)V
(∑

e

∫
V e

({u}T [
Ke

]{u})p ds
)1/p−2

×
(∑

e

∫
V e

({u}T [
Ke

]{u})p−1[
Ke

]{u}ds
)(∑

e

∫
V e

({u}T [
Ke

]{u})p−1[
Ke

]{u}ds
)T

.

As using such a full tangent matrix is numerically expensive, it is better to replace it by a truncated one. This
can be done by neglecting the last term in (31). We have tested both methods and their performances are similar.
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4. Comparison with an analytical solution

4.1. An analytical optimal design

In order to test our numerical procedure, we construct in this section a non-trivial analytical solution: we
consider the case of an elastic material with a vanishing Poisson’s coefficient. ThenDijk� = 2µδikδj� and the
constraint for the displacement fieldu takes the simple form:

εu : D : εu = 2µεu : εu � 1. (32)

Using adapted units, we consider 2µ = 1. Then, in support of the optimal design{x,h(x) > 0} where the
constraint is active (the inequality is actually an equality), the strain tensor has to verify:

ε2
11 + ε2

22 + 2ε2
12 = 1, (33)

whereεij denote the components ofεu in an orthogonal basis(x1, x2).

On the other hand, asεu is a symmetric part of a gradient, it has to verify the compatibility condition:

∂2ε11

∂x2
2

+ ∂2ε22

∂x2
1

− 2
∂2ε12

∂x1∂x2
= 0. (34)

Finally,u must correspond to the equilibrium displacement field of the optimal design. In a domain free from
external forces, this condition states that there exists a scalar fieldh(x) such that div(hεu) = 0, i.e.:

hdiv(εu) + grad(h) · εu = 0,

or

div(εu) + grad
(
ln(h)

) · εu = 0. (35)

The existence of such a fieldh is assured, whenεu is invertible, ifεu satisfies:

rot
(
ε−1
u · div(εu)

) = 0. (36)

It is difficult to describe the general properties of the solutions of equations (33), (34) and (36), but it is easy
to find particular non-trivial solutions.

Example1: Let us determine, for instance, a solutionεu diagonal in the Cartesian coordinate system(x1, x2),
i.e. such thatε12(x) = 0 everywhere. Then equations (33), (34) and (36) become:

ε2
11 + ε2

22 = 1,
∂2ε11

∂x2
2

+ ∂2ε22

∂x2
1

= 0,
∂2

∂x1∂x2

(
ln

(
ε22

ε11

))
= 0 (37)

a solution of which is:

ε11 = −
(

1+
(
x2

x1

)4)−1/2

, ε22 = −
(

1+
(
x1

x2

)4)−1/2

. (38)
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The thicknessh of the optimal plate is then given, up to a multiplicative constant, by equation (35). We have:

h(x) = γ

√
x−4

1 + x−4
2 . (39)

Let us assume now that the plate is contained in the square� := [a, b]2 with 0< a < b. It is easy to determine
the external density of forcesF which are applied on the boundary of the domain. Indeed the equilibrium
condition readsF = hεu · n, wheren denotes the external normal to the boundary∂� of �. For the considered
domain,F is parallel ton: F = −pn. The plate is therefore subjected to the non-constant pressure fieldp:

p(x) = x−2
2 along the vertical edges{a} × [a, b] and{b} × [a, b],

p(x) = x−2
1 along the horizontal edges[a, b] × {a} and[a, b] × {b}. (40)

The design given by (39) is the optimal design of a plate contained in the square� and subjected to the
pressure field given by (40), the multiplicative constantγ being determined by the volume constraint. The
associated strain field is given by (38).

Example2: It is also possible to obtain solutions with cylindrical symmetry by assuming that the strain
tensor is diagonal in the natural basis(er , eθ ) associated with the polar coordinates(r, θ). Such solutions (for
which εrθ = 0) correspond to more realistic loads than (40). Their computation is more intricate than in the
previous example and we only give the results. The parametric description of the optimal designs has the form:

r = aet/2∣∣cos(t) − sin(t)
∣∣1/2

,

h = be−t
(
cos(t)

)−1
,

(41)

where the constantsa andb are determined by the loading. Indeed, if we consider the annulus{r1 < r < r2}
subjected to an internal constant pressurep1 and an external constant pressurep2, the quantity:

p := hεrr = be−t , (42)

coincides withp1 andp2 for r = r1 andr = r2 respectively. This enables us to determine the constantsa and
b and the valuest1 and t2 of the parametert which correspond tor = r1 andr = r2. It is remarkable that this
determination is only possible if the ratiop2/p1 does not exceed critical values (p2/p1 ∈ [k1, k2]) which depend
on the geometrical parameterr2/r1 (for instance, whenr2/r1 is very large,[k1, k2] � [0.1,2.2]). Outside of this
interval, the optimal design is not entirely made of a regular 2-D plate: part of the mass concentrates along the
circle {r = r1}.

4.2. Numerical confrontation

In order to validate the numerical procedure presented in section 3, we compare its results with the analytical
solutions. Let us consider the square domain� := [a, b]2 submitted to the boundary forces described by (40)
(seefigure 1). Then the optimal design is a plate the thickness of which is given by (39).

We compute the finite element solution for increasing values of the parameterp. Generally we use the
increment 2 forp. We stop at the maximum value before the Newton’s method diverges. In order to check the
numerical scheme, we study three different regular finite element grids with quadratic interpolation (20×20,
40×40, 80×80).
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Analysing the relative difference between the numerical and analytical solutions at every point of the domain
(cf. figure 2a), we find that it is lower than 1%. We can conclude that the numerical scheme presented here is
efficient for solving the problem (12). The scheme’s convergence is the same in both formulations (27) or (28).
For a given value ofp, we initialise the Newton’s scheme by the solution obtained previously for a smaller value
of p. Beginning with the valuep = 1 (which corresponds to a linear elastic problem) assures the convergence
of the scheme. Many iterations (about 20) are needed to cross the first non-linearity (p = 3). Afterward, for
p > 3, the convergence is obtained within five iterations.

Analysing theL2-norm of the difference between the numerical and analytical solutions, we observe a good
agreement, which improves asp increases (cf.figure 2b). Even whenp is small (about 10), the design obtained
is close to the exact solution: it is pertinent to compute first a solution on a large mesh for a rough design, then
to refine the mesh in order to obtain the best precision. Indeed, the mesh quality governs the precision and the
maximal value of the parameterp we can reach.

We have also considered the annulus{r1 < r < r2} subjected to the pressures given by (42) (when their ratio
does not exceed the critical values). Again we get a very good agreement with the analytical solution (41).

Figure 1. Boundary conditions for the numerical test.

Figure 2. Difference between analytical and numerical solutions.
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5. Topology of optimal solutions

The goal of topological optimisation is to obtain structures, the topology of which has not been postulated a
priori.

What can we say about the topology of the optimal design obtained using a fictitious material approach?
Essentially, we are limited to conjectures: first, it seems reasonable, and our numerical results show, that the
support of the structure (the location of non vanishing thickness) is bounded. We explored every equilibrium
system of three point forces (cf.figure 3). These numerical experiments have been computed with the same
relatively rough mesh and a moderate value ofp (p = 10): the design is not quite precise but qualitatively
pertinent. The gray scale used in the figure corresponds to the thickness of the plate. The domain in which the
optimal design has been sought is much larger than the support of the obtained designs. Thus, these designs
are not limited by any geometrical constraint. As a matter of fact, the optimal design seems to be included in
a disk containing the support of the forces. Here circles seem to play a central role for a still unknown reason.
Seefigure 4 in which we consider a system of vertical forces applied at three points of an horizontal line: the
optimal design is a disk with variable thickness. This figure can be compared to figure 2.7, p. 106 of (Bendsoe,
1995) in which, in a different context and under geometrical constraints, circles also appear.

Secondly, if connected, the structure seems to be simply connected. The restriction to connected structures is
essential as many examples can be found of non connected optimal structures. On the other hand, this conjecture
does not hold when the design domain is subjected to some geometrical constraint. For instance, we consider
in figure 5the case of three symmetrical forces acting on the wedges of an equilateral triangle. The thickness of
the optimal design is small at the center of the structure but does not vanish (figure 6represents the thickness

Figure 3. Optimal designs for some systems of three forces.
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Figure 4. Optimal design for a particular system of three forces.

Figure 5. Optimal design for the system of three symmetrical forces.

Figure 6. Thickness along the axis of symmetry.

of the design along one of its axis of symmetry obtained for different values of the parameterp). This fact is
numerically clear: we verified that this minimal thickness converges to a positive value when refining the mesh
and increasing the parameterp. Moreover this phenomenon is not an artefact of our regularisation procedure:
indeed, the previous comparison between numerical and analytical solutions has showed that the numerical
solutions are sufficiently accurate. Finally, we notice that, outside of the optimal design, the numerical solutions
tend to zero without any ambiguity.

We explored different values for the Poisson coefficient: the optimal design depends slightly on this
coefficient, but there is not any qualitative difference. Note that the triangle made by three elastic 2-D bars
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(or any other equivalent truss structure) which is an optimal design for the Michell criterion cannot be optimal
for our minimisation problem. Indeed, the optimal design we obtain has a smaller compliance. This fact has
been rigorously proved in (Bouchitté and Buttazzo, 2001).

We conjecture that the structure is simply connected. Up till now, we can only prove that there is no circular
hole in the optimal structure: if(h,u) is a regular solution of problem (12) in a domain� containing the disk
B(0,R), then it is not possible forh to vanish inside a diskB of radiusR0 and to be positive in its vicinity (for
all x in {x,R0 < ‖x‖ < R1 � R}). Indeed, as the fieldεu is assumed to be regular, it verifies the equilibrium
condition div(hεu) = 0 in the whole diskB(0,R1), and at each point of the boundary∂B of B we have:

εu · n = 0,

n denoting the external normal of∂B.

The optimality condition,‖εu‖2 = 1 whereh > 0, yields to:

τ · εu · τ = 1 on∂B (43)

(τ denoting a unit vector tangent to∂B) and

‖εu‖2 � 1 in B. (44)

To prove that there is no fieldu in B verifying these two conditions, let us consider the following minimisation
problem:

inf
{∫

B

∥∥εu(x)∥∥2
dx,u ∈M

}
, (45)

whereM denotes the space of those functions of the usual Sobolev spaceH 1(B) such thatu|∂B ∈ H 1(∂B) and
τ · εu · τ = 1 on∂B. This is a linear elastic equilibrium problem. The boundary condition is not usual but it has
been proved in (Bouchitté et al., 1997-b) that this minimisation problem is well-posed. Therefore, there exists
a unique solutionu0, which due to the symmetry ofB, is radial. Then, it is easy to verify thatu0(x) = x and
the infimum of (45) is

∫
B 2dx. The mean value of‖εu‖2 is larger or equal to 2 for everyu in M: no element of

M can verify condition (44).

6. Final remarks

In this study we show how shape optimisation and locking materials are closely linked. First, this enables
us to have mechanic intuition of optimal designs, but overall this leads to a classical numerical approach. We
only have to search for the equilibrium configuration of a strongly non-linear elastic medium. The optimisation
problem we considered is very particular. Many practical applications need a more sophisticated model: one
should replace the fictitious energy (2) by an energy resulting from homogenisation theory; one should optimise
the stiffness under multiple loads; one should consider materials with different behaviors; one should discuss the
case of mass concentration along domains of lower dimension. All these variants lead to significant difficulties.
Our problem is pertinent for optimisation of 2-D structures, it raises some central questions and enables
us to test some conjectures. Our numerical experiments show that, as expected, the optimal structures are
bounded. To our knowledge, this quite intuitive fact is not proved even for the Michell optimisation criterion.
Our experiments show also, less expectedly, that the optimal structure is simply connected. This makes a
fundamental difference between Michell trusses and fictitious optimal designs. Before a penalisation step,
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optimal designs obtained through homogenisation seem to present the same feature (compare figures 1 and
2 or 6 and 7 in (Allaire et al., 1997) and figures 2.17 and 2.21 in (Rossi, 1996)).
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