Zhengliang Zhang 
  
Bin Qian 
email: binqiancn@yahoo.com.cn
  
Wei Liu 
  
Optimal Weighted Poincaré and Log-Sobolev Inequalities for Cauchy Measures *

Keywords: Cauchy measure, weighted Poincaré inequality, weighted Log-Sobolev inequality. AMS Classification Subjects 2000: 60E15 39B62 26Dxx 1 Introduction

In this paper, We establish the weighted Poincaré inequalities and Log-Sobolev inequalities for Cauchy distributions with optimal weight functions.

where the entropy is defined by

Ent µ (f 2 ) = f 2 log f 2 dµ - f 2 dµ log f 2 dµ .
The weighted functional inequalities are relatively weak inequalities. Although they can't deduce the exponential concentration of a probability measure for sure, they can also show some degree of decay for this measure, as can be seen in [START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF].

Consider the Cauchy measures:

dµ β (x) = (1 + |x| 2 ) -β c(n, β) dx
where β > n 2 , and c(n, β) is the normalizing constant. In [START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF], Bobkov and Ledoux proved that the Cauchy measures µ β admit a weighted Poincaré inequality with the weight 1 + |x| 2 and the constant

( 1+ 2 β-2 + 2 β-2 ) 2 2(β-1)
, as well as a weighted log-Sobolev inequalities with the weight (1 + |x| 2 ) 2 and the constant 1 β-1 . Comparing with the results in [START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF], the better weight functions are found by Hebisch and Zegarliński (in [START_REF] Hebisch | Coercive inequalities on metric measure spaces[END_REF]). However, the authors just prove that the constants exist and are independent of β.

The aim of this paper is to give the optimal weight functions and the corresponding constants of the inequalities for the one-dimensional Cauchy measures in a different way. But it's a pity that we can't reach the similar results for the multi-dimensional case in the same way. 

Var µ β (f ) ≤ C β R |f ′ (x)| 2 (1 + x 2 )dµ β (x),
where C β has the same order with 1 β . Moreover, the weight function is optimal in the sense of order. m2 Theorem 2.2. (one-dimensional weighted log-Sobolev inequality) For any β > 1, the probability measure µ β on R satisfy the following weighted log-Sobolev inequality: for any smooth function f : R → R,

Ent µ β (f 2 ) ≤ C β R |f ′ (x)| 2 (1 + x 2 ) log(e + x 2 )dµ β (x),
where C β has the same order with 1 β-1 . Moreover, the weight function is optimal in the sense of order, that is, for any other function ω 2 (x), if lim x→+∞ ω 2 (x) log(e+x 2 ) = 0, then the Cauchy measure µ β doesn't satisfy the weighted log-Sobolev inequality with the weight function (1 + x 2 )ω 2 (x). m3 Theorem 2.3. (multi-dimensional weighted log-Sobolev inequality) For any n ≥ 6, β > n/2, the probability measure µ β on R n satisfy the following weighted log-Sobolev inequality: for any smooth function f : R n → R,

Ent µ β (f 2 ) ≤ C R n |∇f (x)| 2 (1 + |x| 2 )dµ β (x),
where

C = 2 n -4 -4 √ n -1 n is independent of β.
Remark : The weight function is of course optimal. Because it has already been optimal for Poincaré type inequality. Now we state the previous relative works by Bobkov and Ledoux ([5]), Hebisch and Zegarliński ( [START_REF] Hebisch | Coercive inequalities on metric measure spaces[END_REF]) : thm2 Theorem 2.4. ( [START_REF] Bobkov | Weighted Poincaré-type inequalities for Cauchy and other convex measures[END_REF]) For β ≥ n, and any smooth bounded f on R n ,

Var µ β (f ) ≤ 1 + 2 β-2 + 2 β-2 2 2(β -1) |∇f (x)| 2 (1 + |x| 2 )µ β (x) thm3 Theorem 2.5. ([5]) If β ≥ (n + 1)/2, β > 1, for any smooth bounded f on R n , Ent µ β (f 2 ) ≤ 1 β -1 |∇f (x)| 2 (1 + |x| 2 ) 2 µ β (x)
thm4 Theorem 2.6. ( [START_REF] Hebisch | Coercive inequalities on metric measure spaces[END_REF]) Assume µ β is a probability measure on a n-dimensional manifold with metric d, and dµ β = e -β log(1+d)dx/Z with β ≥ n, β > 1. Suppose Ric ≥ 0. Then for any q ≥ 1, there are constants M q , c q ∈ (0, +∞), such that

M q µ β (|f -µ β (f )| q ) ≤ µ β ((1 + d) q |∇f | q ) and µ β |f | q log |f | q µ β (|f | q ) ≤ c q µ β ((1 + d) q log(e + d)|∇f | q )
Theorem 2.1 does not give a better result than Theorem 2.4 does. we just adapt another different way, and tell that the weight function is optimal.

From the comparison between Theorem 2.2 with Theorem 2.5, it's clear that our result gives a better weight function. Moreover, the order of the constant isn't changed.

Contrast to Theorem 2.6, our results give the estimate of order for the constants.

In [START_REF] Hebisch | Coercive inequalities on metric measure spaces[END_REF], their results still can derive a uniform weighted log-Sobolev inequality with weight 1 + |x| 2 and constant c q independent of β. In fact, we can also get the same result by Bakry-Émery criterion, i.e. getting Γ 2 ≥ ρΓ for some ρ > 0.

3 Proofs of main results

One-dimensional weighted Poincaré inequality

thm01 Theorem 3.1. ( [START_REF] Muckenhoupt | Hardy inequalities with weights[END_REF]) Let µ, ν be Borel measures on R with µ(R) = 1 and dν(x) = n(x)dx.

Let m be a median of µ. Let C P be the optimal constant such that for every smooth function f : R → R, one has

Var µ (f ) ≤ C P f ′2 dν. Then max(b, B) ≤ C P ≤ 4 max(b, B), where b = sup x<m µ((-∞, x]) m x 1 n , B = sup x>m µ([x, ∞)) x m 1 n .
Proof of Theorem 3.1: By the symmetry of the measure µ β , the median m of µ β is equal to 0. Define

b(β) := sup α∈(-∞,0) x -∞ (1 + y 2 ) -β dy 0 x (1 + y 2 ) β-1 dy B(β) := sup α∈(0,+∞) +∞ x (1 + y 2 ) -β dy x 0 (1 + y 2 ) β-1 dy .
Clearly, by Theorem 3.2 and symmetry, we just need to give an upper bound on B(β). Since the point 0 doesn't make trouble in our calculation, we can reduce the estimate on B(β) to that on B(β), By the following simple estimate,

+∞ x (1 + y 2 ) -β dy = 2 +∞ x 2 (1 + t) -β t -1/2 dt ≤ 2 x (1 + x 2 ) -β+1 β -1 , 
and x 0 (1 + y 2 ) β-1 dy = 2 x 2 0 (1 + t) β-1 t -1/2 dy ≤ (1 + x 2 ) β-1 x, w get B(β) ≤ 2 β-1 . However, B(β) ≥ 2 √ β 1 √ β (1 + y 2 ) -β dy 1 √ β 1 2 √ β (1 + y 2 ) β-1 dy ∼ 1 β (β → +∞).
Thus we get the right order 1 β of C β . For any other even function ω 2 (x) increasing in x > 0 (or increasing in x ≥ M for some M > 0), and lim x→+∞ ω 2 (x)

1+x 2 = 0, B ω 2 (β) := sup α∈(0,+∞) +∞ x (1 + y 2 ) -β dy x 0 (1 + y 2 ) β ω 2 (y) dy ≥ sup x∈(M,+∞) +∞ x (1 + y) -2β dy x M y 2β ω 2 (y) dy ≥ sup x∈(M,+∞) (1 + x) 1-2β 2β -1 1 ω 2 (x) x 2β+1 -M 2β+1 2β + 1 = + ∞.
Therefore, the weight function 1 + x 2 is optimal in the sense of order.

One-dimensional weighted Log-Sobolev inequality

Here we'll make use of the refined characterization from Barthe and Roberto [START_REF] Barthe | Sobolev inequalities for probabilty measures on the real line[END_REF]. Of course, we may also use that one from Bobkov, and Götze [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], after all, we can't give a sharp estimate on the logarithmic Sobolev constants. The refined characterization is stated as follows.

thm1 Theorem 3.2. ( [START_REF] Barthe | Sobolev inequalities for probabilty measures on the real line[END_REF]) Let µ, ν be Borel measures on R with µ(R) = 1 and dν(x) = n(x)dx. Let m be a median of µ. Let C be the optimal constant such that for every smooth function f : R → R, one has

Ent µ (f 2 ) ≤ C f ′2 dν. Then max(b -, b + ) ≤ C ≤ 4 max(B -, B + ), where b + = sup x>m µ([x, ∞)) log 1 + 1 2µ([x, ∞)) x m 1 n , B + = sup x>m µ([x, ∞)) log 1 + e 2 µ([x, ∞)) x m 1 n , b -= sup x<m µ((-∞, x]) log 1 + 1 2µ((-∞, x]) m x 1 n , B -= sup x<m µ((-∞, x]) log 1 + e 2 µ((-∞, x]) x m 1 n .
Proof of Theorem 2.1: By the symmetry of the measure µ β , the median m of µ β is equal to 0. Moreover, in order to get our result, by Theorem 3.2 we just need to give an upper bound on the following quantity,

S(β) := sup x∈(0,+∞) +∞ x (1 + y 2 ) -β dy log 1 + c(1, β) +∞ x (1 + y 2 ) -β dy • x 0 (1 + y 2 ) β dy (1 + y 2 ) log(e + y 2 )
.

Clearly, the superior can't be obtained on the point 0. If the superior is taken on x β ∈ (0, +∞). Let

I 1 = +∞ xβ (1 + y 2 ) -β dy I 2 = x β 0 (1 + y 2 ) β-1 dy log(e + y 2 )
Then we'll discuss S(β) under the following three sorts of situations by lim β→+∞ (1+( 1 √ β ) 2 ) β = e: Convention: in the following we'll use the signal "∼" to denote the same order as β → +∞.

Case 1:

If x β = 0( 1 √ β ), i.e. lim β→+∞ x β 1/ √ β = 0: I 1 ∼ 1 √ β I 2 ∼ x β 0 (1 + y 2 ) β-1 dy ∼ x β
By the monotonicity of x log(1 + C x ) in x > 0, we have immediately

S(β) ∼ x β √ β = 0( 1 β ).
Case 2:

If x β = O( 1 √ β ), I 1 ∼ 1 √ β I 2 ∼ x β 0 (1 + y 2 ) β-1 dy ∼ 1 √ β S(β) ∼ 1 β Case 3: If 1 √ β = 0(x β ), I 1 ∼ 1 β -1 • 1 x β (1 + x 2 β ) β-1 I 2 ∼          (1 + x 2 β ) β βx β if {x β } is bounded 1 log(e + x 2 β ) (1 + x 2 β ) β βx β if {x β } is unbounded (3.1) S(β) ∼ 1 β
Now there is the last case left that the superior is got as x → +∞. For that we might as well do it by reducing the estimate on S(β) to that on S(β), defined by 1) dy log(e + y 2 ) .

S(β) := sup x∈(1,+∞) +∞ x y -2β dy log 1 + 1/(2β -1) +∞ x y -2β dy x 1 y 2(β-1) dy log(e + y 2 )) = sup x∈(1,+∞) x 1-2β 2β -1 log 1 + x 2β-1 x 1 y 2(β-
By the basic formula of differential and integral, one can get readily

1 2β -1 x 2β-1 log(e + x) ≥ 1 2β -1 [ y 2β-1 log(e + y) ] x 1 = x 1 y 2(β-1) log(e + y) 1 - y (2β -1)(e + y) 1 log(e + y) dy ≥ x 1 y 2(β-1) log(e + y) 1 - 1 2β -1 1 log(e + y) dy When 2β -1 > 1, i.e. β > 1, we have x 1 y 2(β-1) dy log(e + y 2 ) ≤ x 1 y 2(β-1) dy log(e + y) ≤ 1 2β -2 x 2β-1 log(e + x) Therefore, S(β) ≤ sup x∈(1,+∞) 1 (2β -1)(2β -2) log(1 + x 2β-1 ) log(e + x) ≤ 1 2β -2
From the discussion above, 1 β is the right order of log-Sobolev constants.

Moreover, for any other even function ω 2 (x) increasing in x > M > 0, and

lim x→+∞ ω 2 (x) log(e + x 2 ) = 0,
we have

S ω 2 (β) := sup x∈(1,+∞) +∞ x y -2β dy log 1 + 1/(2β -1) +∞ x y -2β dy x 1 y 2(β-1) dy ω 2 (y) ≥ sup x∈(1,+∞) x 1-2β 2β -1 log 1 + x 2β-1 1 ω 2 (x) x 1 y 2(β-1) dy = + ∞.
As a result, the logarithmic-type weight function is optimal in the sense of order.

Multi-dimensional weighted log-Sobolev inequality

The Cauchy distribution can be represented in the following form:

dµ β (x) = e -β log(1+|x| 2 ) dx c(n, β) , x ∈ R n , β > n/2. Let V (x) := β log(1 + |x| 2 ), ω 2 (x) := 1 + |x| 2 ,
we have

∇V = 2βx 1 + |x| 2 , ∇ 2 V = 2β 1 + |x| 2 - 4βx ⊗ x (1 + |x| 2 ) 2 and ∇ω 2 = 2x, ∇ 2 ω 2 = 2, ∆ω = 2n.
The generator, associated with the measure µ β and the weight ω 2 , is

L ω := ω 2 ∆ + (∇ω 2 -ω 2 ∇V )∇. (3.2) diffusion
Note that µ β is the invariant measure of the diffusion operator L ω . We have the "Carré du champ" operator

Γ(f, g) := 1 2 (L ω (f g) -f L ω g -gL ω f ) = ω 2 ∇f ∇g. Define the Γ 2 curvature, see [2, 1, 14] Γ 2 (f, f ) := 1 2 (L ω Γ(f, f ) -2Γ(f, L ω f )).
Proposition 3.3. Assume that the dimension n ≥ 6, we have the dimension curvature inequality holds, i.e. there exists positive constants ρ, such that

Γ 2 (f, f ) ≥ ρΓ(f, f ), (3.3) CD for all f ∈ C ∞ 0 (R n ). ρ can be chosen to be n -4 -4 √ n -1 n if necessary. Proof. By the definition of Γ 2 curvature, Γ 2 (f, f ) = ω 4 |∇∇f | 2 + ω 2 2 |∇f | 2 ∆ω 2 + 2ω 2 ∇f ∇ 2 f ∇ω 2 + 1 2 |∇f | 2 |∇ω 2 | 2 - 1 2 ω 2 |∇f | 2 ∇V ∇ω 2 -ω 2 ∆f ∇f ∇ω 2 -ω 2 ∇f ∇ 2 ω 2 ∇f + ω 2 (∇V ∇f )(∇ω 2 ∇f ) + ω 4 ∇f ∇ 2 V ∇f = (1 + |x| 2 ) 2 |∇∇f | 2 + 2(β -1) + n(1 + |x| 2 ) |∇f | 2 + 4(1 + |x| 2 )∇f • ∇∇f • x -2(1 + |x| 2 )∆f x • ∇f (i) ≥ (1 + |x| 2 ) 2 |∇∇f | 2 -2 2 + 1 √ n (1 + |x| 2 )|∇∇f |(|x||∇f |) + 2(β -1) + n(1 + |x| 2 ) |∇f | 2 = (1 + |x| 2 )|∇∇f | -2 + 1 √ n |x||∇f | 2 + n -4 - 4 √ n - 1 n |x| 2 + (2β -2 + n) |∇f | 2 ≥ min n -4 - 4 √ n - 1 n , 2β -2 + n (1 + |x| 2 )|∇f | 2 ,
where |∇∇f | is the Hilbert-Schmidt norm of ∇∇f and (i) follows from

(∆f ) 2 ≤ |∇∇f | 2 n .
If n ≥ 6, there exists a positive constant ρ := ρ(n) = n -4 -4 √ n -1 n > 0 (independent on β), such that the dimension curvature inequality CD(ρ, ∞), i.e. (3.3) holds.

By the above proposition, Theorem 2.3 is wellknown, see [START_REF] Bakry | Diffusions hypercontractivies[END_REF], also [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF][START_REF] Bakry | On Sobolev and logarithmic Sobolev inequalities for Markov semigroups[END_REF][START_REF] Ledoux | The Concentration of Measures Phenomenon[END_REF] 

(1 + τ ) -β τ -1/2 dτ ∼ 1 √ β .
This is because of the following facts:

1 β 0 (1 + τ ) -β τ -1/2 dτ ∼ 1 β 0 τ -1/2 dτ = 2 √ β .
and

+∞ 1 β
(1 + τ ) -β τ -1/2 dτ ≤ β By the similar method, we can get

C(n, β) ∼ 1 β n 2
.

That is c(n, β) has the order of 1

β n 2
as β large enough.
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 2 Main result m1 Theorem 2.1. (one-dimensional weighted Poincaré inequality) For any β > 1/2, the probability measure µ β on R satisfy the following weighted Poincaré inequality: for any smooth function f : R → R,

  .

4 a0( 1 +

 41 Appendix Lemma 4.1. The normalized constant c(1, β) has the same order with 1 √ β as β goes to infinity. τ ) -β τ -1/2 dτ + +∞ 1 β

(1+r 2 )

 2 -β r n-1 dr, then c(n, β) has the same order with C(n, β) as β → +∞. Next we give an estimate for C(n, β).
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