
HAL Id: hal-00528944
https://hal.science/hal-00528944

Submitted on 23 Oct 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient pairing computation with theta functions
David Lubicz, Damien Robert

To cite this version:
David Lubicz, Damien Robert. Efficient pairing computation with theta functions. ANTS IX -
Algorithmic Number Theory 2010, Jul 2010, Nancy, France. pp.251-269, �10.1007/978-3-642-14518-
6_21�. �hal-00528944�

https://hal.science/hal-00528944
https://hal.archives-ouvertes.fr


Efficient Pairing Computation With Theta

Functions

David Lubicz1,2, Damien Robert3

1 DGA-MI, BP 7419, F-35174 Bruz
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Abstract. In this paper, we present a new approach based on theta
functions to compute Weil and Tate pairings. A benefit of our method,
which does not rely on the classical Miller’s algorithm, is its generality
since it extends to all abelian varieties the classical Weil and Tate pairing
formulas. In the case of dimension 1 and 2 abelian varieties our algorithms
lead to implementations which are efficient and naturally deterministic.
We also introduce symmetric Weil and Tate pairings on Kummer varieties
and explain how to compute them efficiently. We exhibit a nice algorithmic
compatibility between some algebraic groups quotiented by the action of
the automorphism −1, where the Z-action can be computed efficiently
with a Montgomery ladder type algorithm.

1 Introduction

In recent years, many new and interesting cryptographic protocols have been
proposed which use the existence of pairings on abelian varieties. In order to
obtain efficient and secure implementations of these protocols it is important to
be able to compute quickly these pairings. Miller has proposed a method (see
for instance [2]) to compute the function on an algebraic curve given up to a
constant factor by the data of a principal divisor. This method is a key ingredient
of all known algorithms to compute pairings. In this paper, we propose a different
approach based on theta functions. We first make explicit the link between Weil
and Tate pairings and the intersection pairing on the degree 1 homology of an
abelian variety. Our method appears to be a very natural and straightforward
way to compute the pairing associated to the Riemann form (or its arithmetic
counterpart the commutator pairing) of an abelian variety. It is then easy to
deduce practical formulas to compute Weil and Tate pairings. A first benefit of
our approach is its generality: where Miller’s algorithm rely on the representation
of an abelian variety as the Jacobian of an algebraic curve, our method works
with any abelian varieties. The case of the Tate pairing is noticeable: while the
original definition of Tate [8] deals with any abelian varieties, the formula of



Lichtenbaum [9] used in cryptographic applications is restricted to Jacobian of
curves. This restriction does not appear in our formulas. Our algorithm also
expand the algorithmic toolbox based on theta functions to compute with abelian
varieties.

For the complexity analysis of our algorithm we focus on the case of level
2 and 4 theta functions in order to obtain the best running time and memory
consumption. The only difference between the two cases lies in the initialisation
phase of the algorithm: in level 4 one can recover enough information from the
data of two points to compute the pairings. This is not possible with the level 2
embedding since it does not distinguish a point and its opposite. Nonetheless it
is possible to define a “symmetric pairing” on the quotient of an abelian variety
by the action of the automorphism −1. These notions extend the definition of
the trace pairing proposed in [3].

We have chosen to present all the formulas of this paper using the classical
analytic theory of theta functions. In order to consider also rationality problems
which are essential to the definition of the Tate pairing, we make the assumption
that all the abelian varieties that we consider are defined over a number field
K and we suppose given a fixed embedding of K in its algebraic closure C.
Nonetheless, it should be understood that all our algorithms apply to the case of
abelian varieties defined over any field of characteristic not equal to 2. To see this
one can invoke the Lefschetz’s principle or use Mumford’s theory of algebraic
theta functions. We refer to [10] for proofs of the main formulas of this paper in
the theory of Mumford.

Our paper in organized as follows: in Section 2 we recall some basic definitions
about theta functions. The Section 3 we give a method to compute the usual
pairings by using a double and add algorithm based a theta addition formula. In
Section 5 we make a precise assessment about the complexity of our algorithm.
We also introduce symmetric pairings on Kummer varieties and explain how to
adapt our algorithms to compute them efficiently. We end the paper with an
example of computation in Section 6.

2 Some notations and basic facts

In this section, in order to fix the notations, we recall some well known facts on
analytic theta functions (see for instance [14,6]). Let Hg be the g dimensional
Siegel upper-half space which is the set of g × g symmetric matrices Ω whose
imaginary part is positive definite. For Ω ∈ Hg, we denote by ΛΩ = ΩZg +Zg the
lattice of Cg defined by Ω. If A is an abelian variety of dimension g over the number
field K with a principal polarisation then A is analytically isomorphic to Cg/ΛΩ

for a certain Ω ∈ Hg. In the rest of this paper, we denote by π : Cg → Cg/ΛΩ = A
the canonical projection. The classical theory of theta functions gives a lot of
functions on Cg that are pseudo-periodic with respect to ΛΩ and can be used
as a projective coordinate system for A. More precisely, for a, b ∈ Qg, the theta
function with rational characteristics (a, b) is an analytic function on Cg × Hg



given by:

θ [ a
b ] (z, Ω) =

∑

n∈Zg

exp
[
πit(n + a).Ω.(n + a) + 2πit(n + a).(z + b)

]
. (1)

In order to write the pseudo-periodicity relations verified by the theta functions
it is convenient to introduce a certain pairing on Cg. First we identify Cg to R2g

via the isomorphism R2g → Cg, (x1, x2) 7→ Ωx1 + x2. Then for α, β ∈ R2g with
α = (α1, α2) and β = (β1, β2), we put eΩ(α, β) = exp(2πi(α1β2 − α2β1)). The
pseudo-periodicity of θ [ a

b ] is given by

θ [ a
b ] (z+Ω.m+n, Ω) = eΩ(Ω.a+b, Ω.m+n) exp(−πitm.Ω.m−2πitm.z)θ [ a

b ] (z, Ω).
(2)

We say that a function f on Cg is ΛΩ-quasi-periodic of level ℓ ∈ N if for all
z ∈ Cg and m ∈ Zg, we have:f(z + m) = f(z), f(z + Ω.m) = exp(−πiℓtm.Ω.m −
2πiℓtz.m)f(z). For any ℓ ∈ N∗, the set HΩ,ℓ of ΛΩ-quasi-periodic functions of
level ℓ is a finite dimensional C-vector space whose basis can be given by the theta
functions with characteristics: (θ

[
0

b/ℓ

]
(z, ℓ−1.Ω))b∈[0,...,ℓ−1]g . If ℓ = k2, then an

alternative basis of HΩ,ℓ is (θ
[

a/k
b/k

]
(kz, Ω))a,b∈[0,...,k−1]g . A theorem of Lefschetz

tells that if ℓ ≥ 3, the functions in HΩ,ℓ give a projective embedding of A in
Pℓg

−1, the projective space over C of dimension ℓg − 1. For ℓ = 2, the functions
in HΩ,2 does not give a projective embedding of A. It is easy to check that for all
f ∈ HΩ,2, we have f(−z) = f(z). Under some well known general conditions [7,

cor 4.5.2], the image of the embedding defined by HΩ,2 in Pℓ2
−1 is the Kummer

variety associated to A, which is the quotient of A by the automorphism −1.
Once we have chosen a level ℓ ∈ N, for the rest of this paper, we adopt

the following conventions: we let Z(ℓ) = (Z/ℓZ)g and for a point zP ∈ Cg

and i ∈ Z(ℓ) we put θi(zP ) = θ
[

0
i/ℓ

]
(zP , Ω/ℓ). If ℓ = k2, for i, j ∈ Z(k), we

let θi,j(zP ) = θ
[

i/k
j/k

]
(k.zP , Ω). We denote by P̃ the element of Aℓg

(C) with

coordinates P̃i = θi(zP ) and let P be the associated point of A that we consider
depending on the situation as embedded in Pℓg

−1 or as a point on the analytic
variety Cg/ΛΩ . In this paper, for n, ℓ ∈ N, such that n divides ℓ we will implicitly
consider Z(n) as a subgroup of Z(ℓ) via the morphism x 7→ (ℓ/n).x.

We denote by Ξℓ the theta divisor of level ℓ on A which is the divisor of
zero of θ [ 0

0 ] (z, ℓ−1.Ω). There is an isogeny ϕℓ : A → Â = Pic0
A, defined by

x 7→ τ∗

x Ξℓ − Ξℓ where τx is the translation by x morphism on A. The kernel of
ϕℓ is A[ℓ]. For ℓ = 1 we let Ξ1 = Ξ. We denote by K(A) the function field of A
and if f ∈ K(A), we denote (f) the divisor of the function f . Let Z0(A) be the
group of 0-cycles of A that is the free commutative group over the set of closed
points of A. If D =

∑
niPi is an element of Z0(A) and f ∈ K(A) then we put

f(D) =
∏

i f(Pi)
ni .

3 Weil and Tate pairings and theta functions

In this section, we present formulas to compute Weil and Tate pairings from the
knowledge of the theta coordinates of some points.



3.1 The Weil pairing

For Ω ∈ Hg, let A = Cg/ΛΩ be the associated complex abelian variety and
denote by π : Cg → A the natural projection. Let ℓ be a positive integer, we
denote by µℓ the subgroup of C∗ of ℓth roots of unity. For zP , zQ ∈ Cg, let P, Q
be the associated points of A, we consider the pairing: eW : A[ℓ] × A[ℓ] → µℓ,
(P, Q) 7→ eΩ(zP , zQ)ℓ. It is clear that eW does not depend on the choice of zP

and zQ representing P and Q respectively and that eW is a non-degenerate skew
linear form. The following proposition gives an expression of this pairing in term
of the values of certain theta functions.

Lemma 1. Let Ω ∈ Hg. Let a, b ∈ Qg, let ℓ be a positive integer and let zP , zQ ∈
Cg be such that ℓ.zP = ℓ.zQ = 0 mod ΛΩ. Set zP = Ω.zP 1 + zP 2 and zQ =
Ω.zQ1 + zQ2 with for i = 1, 2, zP i, zQi ∈ Rg. Let P = π(zP ) and Q = π(zQ). For
all z ∈ Cg, we have:

eW (P, Q) =
θ

[
a+zQ1

b+zQ2

]
(z, Ω)

θ
[

a+zQ1

b+zQ2

]
(z + ℓ.zP , Ω)

θ [ a
b ] (z + ℓ.zP , Ω)

θ [ a
b ] (z, Ω)

. (3)

Proof. By (2), we have:

θ
[

a+zQ1

b+zQ2

]
(z + ℓ.zP , Ω) = eΩ(Ω.(a + zQ1) + (b + zQ2), Ω.ℓzP 1 + ℓzP 2)

exp[(πiℓ2(tzP 1.Ω.zP 1) − 2πitzP 1.z]θ
[

a+zQ1

b+zQ2

]
(z, Ω),

θ [ a
b ] (z + ℓ.zP , Ω) = eΩ(Ω.a + b, Ω.ℓzP 1 + ℓzP 2)

exp[−πiℓ2(tzP 1.Ω.zP 1) − 2πitzP 1.z]θ [ a
b ] (z, Ω).

The lemma follows from immediately.

Let e′

W : A[ℓ] × A[ℓ] → µℓ be the usual Weil pairing. We recall a possible
definition for e′

W [13, p. 184]. Let P, Q ∈ A[ℓ]. Let D = τ∗

Q Ξ − Ξ, then D

represents a point of Â[ℓ] = Pic0
A[ℓ]. As a consequence, there exists a function

fQ ∈ K(A) such that (fQ) = ℓ.D. In the same way, there exists a function
gQ ∈ K(A) such that (gQ) = [ℓ]∗(D). As [ℓ]∗(fQ) = ℓ.[ℓ]∗D = (gℓ

Q) there exists

a constant c ∈ C∗ such that [ℓ]∗fQ = c.gℓ
Q. Thus for X a general point of A,

gQ(X)
gQ(X+P ) is an element of µℓ which is equal to e′

W (P, Q).

Proposition 1. Keeping the notations from above, let zP = Ω.zP 1 + zP 2 and
zQ = Ω.zQ1 + zQ2 be elements of Cg such that P = π(zP ) and Q = π(zQ). For
z ∈ Cg, we have the following equalities, up to a multiplication by a constant:

gQ(z) =
θ

[ zQ1
zQ2

]
(ℓ.z, Ω)

θ [ 0
0 ] (ℓ.z, Ω)

, fQ(z) = µQ(z)−1

(
θ [ 0

0 ](z + zQ)

θ [ 0
0 ](z)

)ℓ

, (4)

where µQ(z) : Cg → C is given by µQ(z) =
θ[ 0

0 ](z+ℓzQ)

θ[ 0
0 ](z)

.



Remark 1. In the preceding equations, the domain of the functions gQ and fQ is
Cg but we will see in the course of the proof that gQ and fQ are periodic with
respect to ΛΩ and are in fact well defined functions on A.

Proof. As π∗ Ξ is the divisor of zero of θ [ 0
0 ] (z, Ω), π∗D is the divisor of zero of

g′(z) = θ [ 0
0 ] (z + zQ, Ω)/θ [ 0

0 ] (z, Ω). But g(z) = exp[πitzQ1ΩzQ1 + 2πitzQ1(z +
zQ2)]g′(z) has the same zero divisor as g′(z) and g(z) = θ

[ zQ1
zQ2

]
(z, Ω)/θ [ 0

0 ] (z, Ω).

Let [̃l] : Cg → Cg, z 7→ ℓz. It is clear from its definition that up to a multiplication

by a constant gQ = g ◦ [̃l] which gives the left hand of (4). It is easily seen using
(2) that gQ(z) is periodic with respect to ΛΩ and as a consequence descends to a
function on A.

We turn to the proof of the second equality. As µQ(z) is a non vanishing

function, the zero divisor of the function µQ(z)−1 (θ [ 0
0 ](z + zQ)/θ [ 0

0 ](z))
ℓ

is
π∗(ℓD). Moreover, it is easily seen using (2) that this function is periodic with
respect to ΛΩ , and descends to a function on A which up to a multiplication by
a constant is fQ(z).

Corollary 1. The pairing eW is the Weil pairing.

Proof. This is an immediate consequence of Lemma 1 with a = b = 0, Proposition

1 and the definition of the Weil pairing as e′

W (P, Q) =
gQ(X)

gQ(X+P ) .

Corollary 2. Let Ω ∈ Hg. Let a, b ∈ Qg, let ℓ be a positive integer and let
zP , zQ ∈ Cg be such that ℓ.zP = ℓ.zQ = 0 mod ΛΩ. Let P, Q ∈ A be such that
P = π(zP ) and Q = π(zQ) and let:

L(zP , zQ) =
θ [ a

b ] (ℓ.zP + zQ, Ω)

θ [ a
b ] (zQ, Ω)

θ [ a
b ] (0, Ω)

θ [ a
b ] (ℓ.zP , Ω)

,

R(zP , zQ) =
θ [ a

b ] (ℓ.zQ + zP , Ω)

θ [ a
b ] (zP , Ω)

θ [ a
b ] (0, Ω)

θ [ a
b ] (ℓ.zQ, Ω)

.

(5)

If L(zP , zQ) and R(zP , zQ) are well defined and non null, we have:

eΩ(zP , zQ)ℓ = eW (P, Q) = L(zP , zQ)−1.R(zP , zQ). (6)

Proof. Since Q + ℓP = Q and ℓP = 0, L(zP , zQ) does not depend on [ a
b ] so

we can assume that a = b = 0. The corollary can then be proved by a direct
computation.

But it also follows immediately from Proposition 1 and the formula eW (P, Q) =
fP (Q − 0)/fQ(P − 0). In fact, using the notations of Proposition 1, we have

fP (Q − 0)

fQ(P − 0)
=

µP (zQ)µQ(0)

µP (0)µQ(zP )
.

The result follows an immediate computation.

Remark 2. One can recognize in (6) a classical formula to compute the first
Chern class of a line bundle from the knowledge of its factors of automorphy, see
for instance [1, Th. 2.1.2]



3.2 The Tate pairing

Let K be a number field. In this section, we suppose that µℓ ⊂ K and that A[ℓ]
is rational over K. Let K be the algebraic closure of K and let G = Gal(K/K).
Let δ1 : K∗/K∗ℓ → Hom(G, µℓ) (resp. δ2 : A(K)/[ℓ]A(K) → Hom(G, A[ℓ]))
be the connecting morphism of the Galois cohomology long exact sequence
associated to the Kummer exact sequence (resp. to the exact sequence 0 →
A[ℓ] → A(K) → A(K) → 0). There exists a bilinear application often referred
to as the Tate pairing eT : A(K)/[ℓ]A(K) × A[ℓ] → K∗/K∗ℓ such that for
(P, Q) ∈ A(K)/[ℓ]A(K) × A[ℓ], eW (δ2(P ), Q) = δ1(eT (P, Q)).

Proposition 2. Let K be a number field and let A be a dimension g abelian
variety over K. Let Ω ∈ Hg be such that A is analytically isomorphic to Cg/ΛΩ.
Let a, b ∈ Qg, and let ℓ be a positive integer. Let P ∈ A(K)/[ℓ]A(K) and
Q ∈ A[ℓ] and let zP , zQ ∈ Cg be such that π(zP ) = P and π(zQ) = Q where
π : Cg → A is the natural projection (by abuse of notation we use P, Q to denote
the corresponding points of an algebraic and analytic model of A). Suppose that

θ [ 0
0 ](zP + zQ)

θ [ 0
0 ](zP )

θ [ 0
0 ](0)

θ [ 0
0 ](zQ)

∈ K∗, (7)

then we have

eT (P, Q) =
θ [ 0

0 ](ℓ.zQ + zP )

θ [ 0
0 ](zP )

θ [ 0
0 ](0)

θ [ 0
0 ](ℓ.zQ)

. (8)

Proof. By Proposition 1, we have

fQ(P − 0) =
θ [ 0

0 ](zP )

θ [ 0
0 ](ℓ.zQ + zP )

θ [ 0
0 ](ℓ.zQ)

θ [ 0
0 ](0)

(
θ [ 0

0 ](zP + zQ)

θ [ 0
0 ](zP )

θ [ 0
0 ](0)

θ [ 0
0 ](zQ)

)ℓ

.

Taking care of the fact that eT (P, Q) has value in K∗/K∗ℓ we just have to
prove that eT (P, Q) = fQ(0−P ). The proof follows exactly the same computations
as [16, p. 280]. Let P0 ∈ A(K) such that ℓP0 = P . Following the definition of the
connection morphism δ2, we have δ2(P ) = f where f : G → A[ℓ], σ 7→ P σ

0 − P0

is a co-cycle (in fact a morphism since A[ℓ] is rational over K) representing an
element of H1(G, µℓ).

By definition of the Weil pairing, we have eW (P σ
0 − P0, Q) =

gQ(P0)
gQ(P σ

0 ) . On

the other side, as [ℓ]∗(fQ) = c.(gQ)ℓ where c ∈ C∗ is a constant, we have(
gQ(P0)
gQ(0)

)ℓ

=
fQ(P )
fQ(0) . But then δ1(fQ(0 − P )) is represented by the co-cycle

g : G →
gQ(P0)
gQ(P σ

0 ) . Comparing this with the preceding equation concludes the proof.

Remark 3. Let θ0
c be the canonical theta function given by (see [1, sec. 3.2]):

θ0
c (z) = exp(

π

2
tz(Im Ω)z)θ [ 0

0 ] (z, Ω).

Then θ0
c is an holomorphic function on Cg verifying: θ0

c(z + λ) = a(λ, z)θ0
c(z),

for all z ∈ Cg, λ ∈ ΛΩ. Here, a(λ, z) = χ(λ). exp(πH(z, λ) + π
2 H(λ, λ)) is the



canonical factor of automorphy, where H is the hermitian form whose matrix is
given by (Im Ω)−1.

Computing the expression (8) for eT (P, Q) we obtain that a representative of

eT (P, Q) is given by eT (P, Q) =
θ0

c (ℓ.zQ+zP )
θ0

c (zP )
θ0

c (0)
θ0

c (ℓ.zQ) = exp(πH(zP , ℓzQ)) which

gives a nice geometric interpretation of the Tate pairing. On the other side, we
recall that eΩ(., .) = exp(2πi Im H(., .)) and as a consequence, we can write the
Weil pairing as eW (P, Q) = exp(2πi Im H(zP , ℓzQ)). Compared to its counterpart
for the Weil pairing, the expression for the Tate pairing has to be taken cautiously
as it involves rationality conditions to be correct.

4 Pairing computations

In this section, we describe a general method to compute Weil or Tate pairings
which does not rely on the usual Miller’s loop and prove its correctness. We
postpone to the next section the analysis of the running time of these algorithms.

Let n, ℓ ∈ N. We suppose that 2 divides n and that ℓ and n are relatively
prime. Let A be an abelian variety over C with period matrix Ω. We represent
A as a closed subvariety of Png

−1 by the way of level n theta functions and we
suppose that this embedding is defined over K. Denote by Ã the pullback of
A via the natural projection κ : Ang

→ Png
−1. In the following, we adopt the

following convention: if P is a point of A, we denote by P̃ an affine lift of P that
is a point P̃ of Ang

such that κ(P̃ ) = P .
An important ingredient of our algorithm is the Riemann addition formulas.

The usual form of these formulas works for theta functions of level divisible by 4
(see for instance [6, p. 139]). In this paper we need a slight generalisation of these
formulas for working also with level 2 theta functions. We recall that following
the convention for the notation of theta functions described at the end of the
introduction, we let for all i ∈ Z(n), z ∈ Cg, θi(z) = θ

[
0

i/n

]
(z, Ω/n). Moreover,

we recall that in the following we consider Z(n) (resp. Z(2)) as a subgroup of
Z(2n) via the map x 7→ 2x (resp. x 7→ nx).

Theorem 1. Let i, j, k, l ∈ Z(2n). We suppose that i + j, i + k and i + l ∈ Z(n).
Let Ẑ(2) be the dual group of Z(2). For all χ ∈ Ẑ(2) and z1, z2 ∈ Cg we have




∑

η∈Z(2)

χ(η)θi+j+η(z1 + z2)θi−j+η(z1 − z2)







∑

η∈Z(2)

χ(η)θk+l+η(0)θk−l+η(0)




=




∑

η∈Z(2)

χ(η)θi+k+η(z1)θi−k+η(z1)







∑

η∈Z(2)

χ(η)θj+l+η(z2)θj−l+η(z2)




(9)

Proof. For i ∈ Z(2n) and z ∈ Cg, we let θ′

i(z) = θ
[

0
i/(2n)

]
(z, Ω/(2n)). Let

i, j ∈ Z(2n) be such that i + j ∈ Z(n) and let z1, z2 ∈ Cg. The usual duplication



formula [6, p. 139] gives θi+j(z1 +z2)θi−j(z1 −z2) = 1
2g

∑
η∈Z(2) θ′

i+η(z1)θ′

j+η(z2).

For χ ∈ Ẑ(2), using this formula, we compute

∑

η∈Z(2)

χ(η)θi+j+η(z1+z2)θi−j+η(z1−z2) =
1

2g

∑

η1,η2∈Z(2)

χ(η1+η2)θ′

i+η1
(z1)θ′

j+η2
(z2)

=
1

2g




∑

η∈Z(2)

χ(η)θ′

i+η(z1)







∑

η∈Z(2)

χ(η)θ′

j+η(z2)


 . (10)

Using this last equation to compute the left and right hand sides of the preceding
equation we obtain the result.

We suppose that the theta null point 0̃ = (θi(0))i∈Z(n) is known. We deduce im-

mediately from Theorem 1 an algorithm that takes as inputs P̃ = (P̃i)i∈Z(n), Q̃ =

(Q̃i)i∈Z(n) and P̃ − Q = ((P̃ − Q)i)i∈Z(n) and outputs P̃ + Q = ((P̃ + Q)i)i∈Z(n).

We write P̃ + Q = PseudoAdd(P̃ , Q̃, P̃ − Q). Indeed we will see latter (Proposi-
tion 3) that if n = 4, we can recover the projective point P + Q from P and Q
using the Riemann addition formulas. It is then easy to see that if we moreover

know P̃ , Q̃ and P̃ − Q, then there is a unique affine point P̃ + Q above P + Q

that satisfy the addition formulas from Theorem 1. If n = 2, the point P̃ + Q
is also unique provided the abelian variety satisfy the generic condition from
Theorem 3.

Chaining the algorithm PseudoAdd in a classical Montgomery ladder [2,

alg. 9.5 p. 148] yields an algorithm that takes as inputs Q̃ = (Q̃i)i∈Z(n),

P̃ + Q = ((P̃ + Q)i)i∈Z(n), P̃ = (P̃i)i∈Z(n) and an integer ℓ and outputs P̃ + ℓQ.

We write P̃ + ℓQ = ScalarMult(P̃ + Q, Q̃, P̃ , ℓ). In particular, we have ℓP̃ =

ScalarMult(P̃ , P̃ , 0̃, ℓ). The following lemma tells that the output of ScalarMult
does not depend on the particular chain of PseudoAdd calls it uses.

Lemma 2. Let L = {0, 1, . . . , ℓ} be a Lucas sequence. Let A0 = P̃ , B0 = 0̃,

A1 = P̃ + Q and B1 = Q̃. For m ∈ L, m > 2, write m = j +k with j, k, j −k ∈ L.
Let Bm = PseudoAdd(Bj , Bk, Bj−k) and Am = PseudoAdd(Aj , Bk, Aj−k). Then

Aℓ = P̃ + ℓQ. In other words P̃ + ℓQ does not depend on the Lucas sequence
used to compute it.

Proof. If there exist zP , zQ ∈ Cg such that P̃ = (θi(zP ))i∈Z(n), Q̃ = (θi(zQ))i∈Z(n)

and P̃ + Q = (θi(zP + zQ))i∈Z(n) then by Theorem 1 and an easy recur-
sion we see that Aj = (θi(zP + jzQ))i∈Z(n) and Bj = (θi(jzQ))i∈Z(n). Hence

Aℓ = (θi(zP + ℓzQ)) = P̃ + ℓQ.

Otherwise there exist λP , λQ and λP +Q in C∗ such that P̃ = λP (θi(zP ))i∈Z(n),

Q̃ = λQ(θi(zQ))i∈Z(n) and P̃ + Q = λP +Q(θi(zP + zQ))i∈Z(n). Since we have

PseudoAdd(λP +QP̃ + Q, λQQ̃, λP P̃ ) =
λ2

P +Qλ2
Q

λP
PseudoAdd(P̃ + Q, Q̃, P̃ ),



an easy recursion shows that Bj = λj2

Q (θi(jzQ))i∈Z(n) and Aj =
λj

P +Q
λ

j(j−1)

Q

λj−1
P

(θi(zP +

jzQ))i∈Z(n). Hence Aℓ =
λℓ

P +Qλ
ℓ(ℓ−1)

Q

λℓ−1
P

(θj(zP + ℓzQ))j∈Z(n) = P̃ + ℓQ.

Remark 4. There is a natural action of K
∗

on Ang

− {0} by multiplication of the

coordinates of a point that we denote by α∗P̃ for α ∈ K
∗

and P̃ ∈ Ang

(K). In the
proof of the preceding lemma we have seen the effect of this action on the output

of the algorithm ScalarMult: let P, Q ∈ A(K) and let P̃ , Q̃, P̃ + Q be affine lifts

of P , Q and P + Q. Let R̃ = ScalarMult(P̃ + Q, Q̃, P̃ , ℓ). Let α, β, γ ∈ K, we
have

ScalarMult(α ∗ P̃ + Q, β ∗ Q̃, γ ∗ P̃ , ℓ) = (αℓβℓ(ℓ−1)/γℓ−1) ∗ R̃, (11)

ScalarMult(α ∗ P̃ , α ∗ P̃ , 0̃, ℓ) = αℓ2

∗ ScalarMult(P̃ , P̃ , 0̃, ℓ). (12)

Given P and Q with projective coordinates (θi(zP ))i∈Z(n) and (θi(zQ))i∈Z(n)

for zP , zQ ∈ Cg, we would like to compute eW (P, Q) and eT (P, Q).
We can state the main theorem of this section

Theorem 2. We suppose that n and ℓ are relatively prime. For X, Y ∈ A(K),

denote by X̃, Ỹ , X̃ + Y any affine lifts of X, Y and X + Y . Recall that for
i ∈ Z(n), we denote by X̃i the coordinate i of the point X̃. For ℓ ∈ N and i ∈ Z(n),

let fT (X̃, Ỹ , X̃ + Y , ℓ, i) = ScalarMult(X̃+Y ,X̃,Ỹ ,ℓ)i

ScalarMult(X̃,X̃,̃0,ℓ)i

0̃i

Ỹi

. Then for P, Q ∈ A[ℓ] and

i ∈ Z(n), we have:

eW (P, Q)n = fT (P̃ , Q̃, P̃ + Q, ℓ, i)−1fT (Q̃, P̃ , P̃ + Q, ℓ, i), (13)

whenever the right hand side is well defined.
Moreover, for P ∈ A(K)/[ℓ]A(K), Q ∈ A[ℓ], if we suppose that P̃ , Q̃ and

P̃ + Q are affine lifts of P , Q and P + Q with coordinates in K, then we have
for i ∈ Z(n),

eT (P, Q)n = fT (Q̃, P̃ , P̃ + Q, ℓ, i), (14)

whenever the right hand side is well defined.

Proof. Let zP , zQ ∈ Cg such that π(zP ) = P and π(zQ) = Q (recall that

π : Cg → A = Cg/ΛΩ is the natural projection). Let P̃ = (θi(zP ))i∈Z(n),

Q̃ = (θi(zQ))i∈Z(n) and P̃ + Q = (θi(zP + zQ))i∈Z(n). Then applying Corollary
2, if P, Q ∈ A[ℓ], we obtain that

eΩ/n(zP , zQ)ℓ = eW (P, Q)n = fT (P̃ , Q̃, P̃ + Q, ℓ, i)−1fT (Q̃, P̃ , P̃ + Q, ℓ, i).

In the same way, by Proposition 2 (which apply for i = 0, but it is easy to see
that the same result is true for any i ∈ Z(n)), we have for P ∈ A(K)/[ℓ]A(K)

and Q ∈ A[ℓ], eT (P, Q)n = fT (P̃ , Q̃, P̃ + Q, ℓ, i).



Next, let α, β, γ ∈ K. By Remark 4, we have

fT (α ∗ X̃, β ∗ Ỹ , γ ∗ X̃ + Y , ℓ, i) =
γℓ

αℓβℓ
.fT (X̃, Ỹ , X̃ + Y , ℓ, i).

This shows that the expressions (13) and (14) for the Weil and Tate pairing does
not depend on the choice of affine liftings (rational over K in the case of the Tate
pairing) of P , Q and P + Q.

As we have shown that the formulas of Theorem 2 does not depend on a
choice of the affine lifts of the input points of the algorithm (as long as the choices
are the same for the computation of the two functions fT in the case of the Weil
pairing), from now on we only consider projective points.

In order to have a working algorithm to compute Weil and Tate pairings,
it remains to explain how to compute P + Q from the knowledge of P and Q.
As the formulas to compute the pairings only involve one of the level n theta
functions, and since the number of the coordinates used in the computation of
ScalarMult is ng, for the sake of efficiency it is important to have a small n. As
2 divides n, from now on, we focus on the only two interesting cases: n = 2 and
n = 4.

We first treat the case n = 4. Let zP , zQ ∈ Cg and let P = (Pi)i∈Z(n) =
(θi(zP ))i∈Z(n) and Q = (Qi)i∈Z(n) = (θi(zQ))i∈Z(n). From the knowledge of P
and Q, with the addition formula (9), one can compute the products:



∑

η∈Z(2)

χ(η)θi+j+η(zP + zQ)θi−j+η(zP − zQ)







∑

η∈Z(2)

χ(η)θk+l+η(0)θk−l+η(0)


 ,

(15)
for χ ∈ Ẑ(2) and i, j, k, l ∈ Z(2n) such that i + j, i + k, and i + l ∈ Z(n). If we
can prove that for any such choice of i, j, k, l ∈ Z(2n) and χ ∈ Ẑ(2) there exist
k′ ∈ k +Z(n) and l′ ∈ l+Z(n) such that

∑
η∈Z(2) χ(η)θk′+l′+η(0)θk′−l′+η(0) 6= 0,

then by summing over the characters the left bracket of (15) one can compute
all the products θi(zP + zQ)θj(zP − zQ), for i, j ∈ Z(n) from which it is easy to
recover by taking quotients the projective point (θi(zP + zQ))i∈Z(n).

Now, using equation (10), we have

∑

η∈Z(2)

χ(η)θk+l+η(0)θk−l+η(0) =
1

2g




∑

η∈Z(2)

χ(η)θ′

k+η(0)







∑

η∈Z(2)

χ(η)θ′

l+η(0)


 ,

(16)

where for k ∈ Z(8), θ′

k(z) = θ
[

0
k/8

]
(z, Ω/8). We have the

Proposition 3. Let δ ∈ N be such that 4 divides δ. For any a ∈ K(2δ) there
exists an element b ∈ a + K(δ) such that for all χ ∈ Ẑ(2) we have

∑

η∈Z(2)

χ(η)θ
[

0
(b+η)/(2δ)

]
(0, 1/(2δ).Ω) 6= 0.



Proof. This is just a rephrasing of [11, equation (*) p. 339].

Applying the preceding proposition to the factors of the right hand of equation
(16), we obtain that there exists k′ ∈ k + Z(n) and l′ ∈ l + Z(n) such that∑

η∈Z(2) χ(η)θk′+l′+η(0)θk′−l′+η(0) 6= 0 and we are done.

In the case n = 2, as usual, for all i ∈ Z(2), we put θi(z) = θ
[

0
i/2

]
(z, 1/2.Ω).

Then by Theorem 1, we have for any χ ∈ Ẑ(2) and for well chosen pairs of
quadruples (i, j, k, l), (i′, j′, k′, l′) ∈ Z(2)4 an equation




∑

η∈Z(2)

χ(η)θi+η(zP + zQ)θj+η(zP − zQ)







∑

η∈Z(2)

χ(η)θk+η(0)θl+η(0)




=




∑

η∈Z(2)

χ(η)θi′+η(zP )θj′+η(zP )







∑

η∈Z(2)

χ(η)θk′+η(zQ)θl′+η(zQ)


 .

(17)

If the kernel of χ does not contain the subgroup of Z(2) generated by k + l
then we have

∑
η∈Z(2) χ(η)θk+η(0)θl+η(0) = 0, so it is not possible to recover

θi+η(zP + zQ) as before. This is consistent with the fact that for i ∈ Z(2)
and z ∈ Cg, θi(z) = θi(−z), the right hand side of (17) is invariant for the
transformation zQ 7→ −zQ while it is not the case of the left hand side. The best
we can hope is that for almost all period matrices Ω ∈ Hg there exists a k ∈ Z(2)

such that for all l ∈ Z(2) and χ ∈ Ẑ(2) such that k + l is in the kernel of χ, we
have

∑
η∈Z(2) χ(η)θk+η(0)θl+η(0) 6= 0. This is exactly the content of Theorem 3.

In order to prove this theorem, we let Tk,l,χ =
∑

η∈Z(2) χ(η)θk+η(0)θl+η(0) and
we state the following lemma:

Lemma 3. For Ω ∈ Hg, the two following properties are equivalent:

1. There exists a k ∈ Z(2) such that for all ℓ ∈ Z(2) and χ ∈ Ẑ(2) such that
k + l is in the kernel of χ, we have Tk,l,χ 6= 0.

2. For all i, j ∈ Z(2) such that ti.j = 0, θi,j(0) 6= 0.

Proof. For χ ∈ Ẑ(2), let µ ∈ Z(2) be such that χ(η) = (−1)
tη.µ. Let ρ : Z(4) →

Z(2), x 7→ x mod Z(2) be the canonical projection. Then we have (see [14,
prop 1.3 p. 124]), for all i ∈ Z(4)

∑
η∈Z(2) χ(η)θ′

i+η(0) = 2g.θµ,ρ(i)(0), where

θ′

k(z) = θ
[

0
k/4

]
(z, 1/4.Ω). Combining this relation together with (16), for all

i, j ∈ Z(4) such that i + j ∈ Z(2), let k = i + j, l = i − j, we obtain the equality

Tk,l,χ = Ti+j,i−j,χ = 2g.θµ,ρ(i)(0)θµ,ρ(j)(0) = 2g.θµ,k+l(0)2. (18)

Since χ(k + l) = (−1)
t(k+l).µ the lemma follows immediately from (18).

It is well known that for z ∈ Cg, and k, l ∈ Z(2), we have θk,l(−z) = (−1)
tk.lθk,l(z).

As a consequence, for all k, l ∈ Z(2) such that tk.l = 1 (the odd characteristics),
we have θk,l(0) = 0. Denote by M4 the quasi-projective variety over C defined



as the locus of zeros of θi,j(0) considered as functions of Ω. It is clear that M4

parametrizes the set of principally polarized abelian varieties together with a
level 4 structure since from the knowledge of a point in M4 one can recover
the projective embedding of the corresponding abelian variety provided by the
Riemann equations.

Theorem 3. For all k, l ∈ Z(2) such that tk.l = 0, the function θk,l(0) on M4

is non-trivial and as consequence, its zero locus is a proper subvariety of M4 of
codimension 1.

Proof. We sketch the proof of the theorem. Suppose on the contrary that for
k, l ∈ Z(2) such that tk.l = 0, θk,l(0) is a constant function of Ω. This is a
degree 1 relation for level 4 theta constants, call it Rk,l. We have for all k ∈ Z(4),
θk(0) = θ

[
0

(2k)/8

]
(0, (2Ω)/8). Thus, the level 4 degree 1 relations Rk,l induce

degree 1 relations for level 8 theta constants. The hypothesis tk.l = 0 means that
these level 8 relations are not a linear combination of the symmetry relations
θk(0) = θ−k(0) for all k ∈ Z(8). This is a contradiction with the description of
M8 the modular space of level 8 marked abelian varieties given by Mumford in
[12, main th. p. 83] as an open subset of the reduced projective variety given by
the symmetry relations and the Riemann relations.

Remark 5. The preceding theorem shows that the symmetric pairing computation
algorithms that we describe in the next section works for a general abelian variety.
However, one can ask if the closed proper subset of M4, given by the cancellation
of some even level 4 theta constants contains noticeable abelian varieties. Actually,
this is the case since a theorem of Frobenius [15, cor. 6.7 p. 3.102] tells us that the
locus of Jacobian of hyperelliptic curves inside M4 can be given by equations of
the form θk,l(0) = 0 where (k, l) is an even characteristic. As a consequence, the
algorithms of Section 5.2 to compute symmetric pairings don’t apply to Jacobian
of hyperelliptic of genus g when g > 3. It should be noted however that following
[7, cor 4.5.2 and remark (2)], the condition that for all k, l ∈ Z(2) such that
tk.l = 0, θk,l(0) 6= 0 is equivalent to the fact the level 2 theta functions give a
projectively normal embedding. Considering this result, the condition of Theorem
3 should be considered as natural.

5 Complexity analysis

In this section, we explain how to use the results of the preceding section to
compute efficiently pairings on abelian and Kummer varieties with a special
focus on dimension 1 and 2 since these cases are particularly interesting for
cryptographic applications.

5.1 Abelian varieties

We begin with the case of abelian varieties since the main loop of the algorithm
can also be used for the computation of symmetric pairings on Kummer varieties.



Initialisation phase The initialisation phase depends on the representation
of the points P and Q on the abelian variety A. If P and Q are given by theta
coordinates of level 4 we can apply the procedure described in Section 4 to
compute the homogeneous coordinates of (θi(P + Q))i∈Z(4).

Suppose that another coordinate system is used to represent P and Q that
we denote by (Xi)i∈I where Xi are rational functions on a Zariski open subset of
A. Then by definition there exist formulas to compute θi(P ) and θi(Q) from the
knowledge of Xi(P ) and Xi(Q). In practise, the dictionary between some useful
coordinate system and the theta coordinates can easily be deduced from well
known properties of theta functions. It should be remarked that in order to carry
out these computations we might have to do a base field extension since in the
projective embedding of A provided by the level 4 theta functions the 4-torsion
of A is rational over the base field, whereas this may not the case with other
models of A. The advantage of the level 4 is that no square root extraction is
required for the computation of P + Q, contrarily to the level 2 case as we will
see.

From the knowledge of θ
[

0
i/4

]
(zX , 1/4.Ω), i ∈ Z(4) for X = P, Q, P + Q we

can then compute the level 2 coordinates given by

(
∑

j∈Z(2)

θ
[

0
(i+2j)/4

]
(zX , 1/4.Ω))i∈Z(2)

for the coordinates of the (isogeneous) points X = P, Q, P + Q.

Pairing computation phase As we have seen before, we can carry out the
computations of the main loop of the algorithm with level 2 theta functions since
at the end we only need one theta coordinate to compute the pairings. This is
more efficient because we only need 2g coordinates to represent a point and we
can do the computation on the field of definition of the 2-torsion of A.

We suppose that we are given the level 2 coordinates of P , Q, P + Q. Rather
than considering the formulas of Theorem 1 for the double and add algorithm, we
use the level 2 formulas given in [4] for the genus 2 case, and in [5] for the genus
1 case. For instance, let E be an elliptic curve defined by Ω ∈ H1, let Ω′ = Ω/2
and put

a = ϑ [ 0
0 ] (0, Ω′); b = ϑ

[
0

1/2

]
(0, Ω′); A = ϑ [ 0

0 ] (0, 2Ω′); B = ϑ
[

1/2
0

]
(0, 2Ω′).

The duplication formulas are given by the equalities:

{
aϑ [ 0

0 ] (z, Ω′) = ϑ [ 0
0 ] (z, 2Ω′)2 + ϑ

[
1/2

0

]
(z, 2Ω′)2,

bϑ
[

0
1/2

]
(z, Ω′) = ϑ [ 0

0 ] (z, 2Ω′)2 − ϑ
[

1/2
0

]
(z, 2Ω′)2.

{
2Aϑ [ 0

0 ] (2z, 2Ω′) = ϑ [ 0
0 ] (z, Ω′)2 + ϑ

[
0

1/2

]
(z, Ω′)2,

2Bϑ
[

1/2
0

]
(2z, 2Ω′) = ϑ [ 0

0 ] (z, Ω′)2 − ϑ
[

0
1/2

]
(z, Ω′)2.

Let x = θ [ 0
0 ] (z, Ω′) and z = θ

[
0

1/2

]
(z, Ω′) using the above formulas yield the

following algorithms:



Doubling Algorithm:

Input: A point P = (x : z).
Output: The double 2.P = (x′ : z′).

1. x0 = (x2 + z2)2;

2. z0 = A2

B2 (x2 − z2)2;
3. x′ = (x0 + z0);
4. z′ = a

b (x0 − z0);
5. Return (x′ : z′).

Differential Addition Algorithm:

Input: Two points P = (x : z) and Q =
(x̃ : z̃) on E, and R = (x : z) = P − Q,
with xz 6= 0.
Output: The point P + Q = (x′ : z′).

1. x0 = (x2 + z2)(x̃2 + z̃2);

2. z0 = A2

B2 (x2 − z2)(x̃2 − z̃2);
3. x′ = (x0 + z0)/x;
4. z′ = (x0 − z0)/z;
5. Return (x′ : z′).

Recall that in order to compute the pairing eT (P, Q), we have to compute

P̃ + ℓQ = ScalarMult(P̃ + Q, Q̃, P̃ , ℓ) and ℓQ̃ = ScalarMult(Q̃, Q̃, 0̃, ℓ). It should

be remarked that in the computation of P̃ + ℓQ, we need exactly the same values
of j.Q for some j ∈ {1, . . . , ℓ} as those required to obtain ℓQ̃. Since we want to
avoid a division in each step, we use a Montgomery ladder so that the differences
in the adding step are always the same points. To speed up the differential
additions, we have renormalised the theta null point (a, b) to (1, b/a). It is easy
to see by doing the same computation as in Remark 4 that this does not change
the value of the Tate pairing eT (P, Q). Moreover we also have renormalised the
theta null point (A, B). Looking back at the proof of 1, we see that this change
each affine addition by the constant factor B−2. This also does not affect the
final value of the Tate pairing eT (P, Q), since we use the same Lucas sequence

for computing ℓQ̃ and P̃ + ℓQ.
This give the following steps for the pairing: from (j − 1)Q, jQ and P + jQ

we compute 2(j − 1)Q, (2j − 1)Q, P + (2j − 1)Q or (2j − 1)Q, 2jQ and P + 2jQ
depending on the binary decomposition of ℓ. We remark that at each step we
do a doubling and two adding, and that we add the same point to the triple

(j−1)Q, jQ, P +jQ. For instance in genus 1, we only have to compute A2

B2 (x2 −z2)
once, where (x : z) are the coordinates of the doubled point.

The figure below summarises the cost per bit of computation of the Tate
pairing with our algorithm in genus 1 and 2 with the following notations: S is for
squaring, M is for general multiplication, m is for multiplication by a constant.

Tate pairing First pairing e(P, Q) Following pairings e(P ′, Q)
Dimension 1 8S+4m+4M 2S+1m+2M
Dimension 2 13S+12m+11M 4S+3m+4M

The algorithms that we have presented in this section are deterministic and
generalize immediately to the higher dimension case. Usually when computing
a pairing, the field of definition of Q has a smaller degree than the field of
definition of P , so that at each step one adding and one doubling is done with
points in the smaller field. We also remark that if we have to compute several
pairings e(P1, Q), e(P2, Q), . . . with the same Q, it makes sense to store the
results of the computations of the jQ so that for the next pairings we only



have to compute the Pi + jQ. For instance when g = 1 if we store the log2(ℓ)

coordinates (x2 + z2, A2

B2 (x2 − z2)) of each doubling step, we can compute the
subsequent pairings with only five multiplications at each step.

5.2 Kummer varieties

Let A be a principally polarized abelian variety of dimension g defined by Ω ∈ Hg.
As we have seen in the introduction, the level 2 theta functions defined by Ω
give a projective embedding of the Kummer variety associated to a A. We recall
that the Kummer variety K A of A is the quotient of A by the action of the
automorphism −1 of A. Let ζ : A → K A be the natural projection. In the
following, if P ∈ A(K) we denote by P its image by ζ. The construction of K A

does not preserve the group structure of A. Nonetheless, we remark that from the
data of P ∈ K A(K) one can compute 2P without ambiguity, and from the data
of P , Q and P − Q one can compute P + Q. As a consequence, K A inherits
from A of an action of Z on its points which can be computed by a Montgomery
ladder like algorithm.

Let e be a pairing on A, and let K
∗

0 be the quotient of K
∗

by the action

of the automorphism −1. Let ζ0 : K
∗

→ K
∗

0 be the natural projection. The

pairing e gives a well defined application e : K A(K) × K A(K) → K
∗

0, (P , Q) 7→

ζ0(e(P, Q)). It is easily seen that the elements of K
∗

0 are in bijection with

the set S = {x + 1/x, x ∈ K
∗

}. Identifying K
∗

0 with S, the application ζ0 is

given by ζ0(x) = x + 1/x, x ∈ K
∗

from which we deduce the expression of
e : (P , Q) 7→ e(P, Q) + e(−P, Q). This pairing has been introduced in [3]. In the
following, if e is a pairing, we say that e is the symmetric pairing associated to e.
The symmetric pairing e can be seen as a version of e for compressed coordinates
as it takes as input points with 2g coordinates rather than 4g.

Its cryptographic relevance comes from the compatibility of e with the Z-set
structures of K A and K

∗

0: for all λ, µ ∈ Z, P , Q ∈ K A, we have e(λ.P , µ.Q) =
(λµ).e(P , Q). In [3], the authors give an algorithm based on Lucas sequences
to compute the action of Z on K0 for certain finite fields. Here we would like
to emphasize that the compatibility of the Z-structure of K A and K0 is also
algorithmic. It comes from the fact and on any quotient of an algebraic group
by the automorphism −1 there exists a natural Montgomery ladder algorithm
to compute the resulting Z-action. In the case of K0 we obtain very simple and
general formulas. For x ∈ K, and i, j ∈ Z, we have

(xi +
1

xi
)2 = (x2i +

1

x2i
+2); (xi +

1

xi
)(xj +

1

xj
) = (xi+j +

1

xi+j
)+(xi−j +

1

xi−j
).

We have seen that the codomain of the Tate pairing eT is the multiplicative
group K∗/K∗ℓ. Again, we can take the quotient of this group by the action of
(−1) on it, denote it by (K∗/K∗ℓ)0. It is clear that there is a bijection between
the set (K∗/K∗ℓ)0 and the set ST = {x + 1/x, x ∈ KT } where KT is a set of
representatives of K∗/K∗ℓ. Moreover, one can compute the Z-action on such
representatives using the preceding algorithm.



Initialisation phase We suppose that we know the level 2 coordinates θi(zP )
and θi(zQ), i ∈ Z(2) of P and Q. We may assume (by multiplying by a pro-
jective factor) that the values of the projective coordinates (θi(zP ))i∈Z(2) and

(θi(zQ))i∈Z(2) are in K. Using Theorem 1 and Theorem 3, we obtain that for a

general choice of K A, it is possible to compute for all i, j ∈ Z(2) and χ ∈ Ẑ(2)
such that χ(i − j) = 1,

∑
η∈Z(2) χ(η)θi+η(zP + zQ)θj+η(zP + zQ) from the inputs.

By summing over the characters, we obtain for all i, j ∈ Z(2)

κij = θi(zP + zQ)θj(zP − zQ) + θj(zP + zQ)θi(zP − zQ). (19)

We suppose that θ0(zP + zQ)θ0(zP − zQ) 6= 0, if necessary by replacing
the index 0 by another one. By rescaling the projective coordinates, we do our
computations as if θ0(zP − zQ) = 1 hence we know θ0(zP + zQ).

For i ∈ Z(2), let Pi(X) = X2 − 2 κi0

κ00
X + κii

κ00
. The roots of Pi(X) are

θi(zP +zQ)
θ0(zP +zQ) ,

θi(zP −zQ)
θ0(zP −zQ) . If P or Q is a point of 2-torsion, P + Q = P − Q ∈ K A

so each Pi(X) has a double root. Otherwise, we may suppose that there exist

α ∈ Z(2), α 6= 0 such that the matrix M =

(
θ0(zP + zQ) θ0(zP − zQ)
θα(zP + zQ) θα(zP − zQ)

)
is

invertible.
We can compute {θα(zP + zQ), θα(zP − zQ)} by finding the roots of Pα(X).

As by hypothesis, P + Q, P − Q ∈ A(K), we deduce that these roots are in K.
We fix an arbitrary ordering (θα(zP +zQ), θα(zP −zQ)) of these roots (depending
on the ordering, we will compute P − Q or P + Q).

We can then find {θi(zP + zQ), θi(zP − zQ)} by solving the system

(
θ0(zP + zQ) θ0(zP − zQ)
θα(zP + zQ) θα(zP − zQ)

) (
θi(zP − zQ)
θi(zP + zQ)

)
=

(
κi0

κiα

)
. (20)

This method requires one square root.

Pairing computation phase Let P ∈ A(K)/[ℓ]A(K) and Q ∈ A[ℓ] and denote
by P , Q the corresponding points on K A. Denote by θi(z), i ∈ Z(2), the level
2 theta functions associated to Ω. We present two methods to compute the
symmetric Tate pairing.

A first method is to consider the formula eT (P , Q) = eT (P, Q) + eT (P, −Q).
We have explained in the last paragraph how to compute the set S = {P + Q, P − Q}
at the expence of a square root extraction. By choosing a point in S, we can use
the algorithm from Section 5.1 to compute e(P, Q) (resp e(P, −Q)). We can then
compute eT (P, Q) = e(P, Q) + e(P, −Q) with a simple division.

Another approach is to work in the algebra A = K[X]/(Pα(X)) for α ∈ Z(2)
as before. We denote by g the unique automorphism of the algebra of A leaving K
invariant and different from the identity. For each i ∈ Z(2) by using equation (20)
we can express θi(zP + zQ) = γiX + δi. (We can always compute an inverse of
γX +δ except when −δ/γ is a root of Pα. But in this case we have found a root of
Pα and we can use the first method.) Now, consider the vector (Tj)j∈Z(2) where



T0 = 1, Tα = X and Tj = γjX + δj . We compute R = ScalarMult(T, Q, P, ℓ)i.
Then it is easily seen that

R + g.R = ScalarMult(P + Q, Q, P, ℓ)i + ScalarMult(P − Q, Q, P, ℓ)i.

By Proposition 2, and using the fact that θi(−zQ) = θi(zQ) we have for

i ∈ Z(2) eT (P , Q) =
[θi(ℓ.zQ+zP )+θi(−ℓ.zQ+zP )]θi(0)

θi(zP )θi(ℓ.zQ) . We can now compute

eT (P, Q) =
[ScalarMult(P + Q, Q, P, ℓ)i + ScalarMult(P − Q, Q, P, ℓ)i]θi(0)

θi(zP )ScalarMult(Q, Q, 0, ℓ)i
,

(21)
By an application of Lemma 4, the result of (21) is a well defined element of
(K∗/K∗ℓ)0.

With this method, we have to compute 1 ScalarMult with value in A and
1 ScalarMult with value in K. It is interesing to note that it avoids the non
determinism of the square root computation of the first method.

In some cryptographic applications, it is important to have a unique value as
the result of the Tate pairing. In order to have this property, it is common to
compose the Tate pairing with a ℓth root extraction on K which can be done in
the case that K is a finite field by an exponentiation in K∗

0 . This operation can
be performed using the Montgomery ladder type algorithm presented above.

The symmetric Weil pairing computation Since we compute P + Q with the first
method, we can compute the Weil pairing as in the level 4 case.

We explain how to compute it with the second method: let P, Q ∈ A[ℓ] and
denote by P , Q the corresponding points in K A. Denote by θi(z), i ∈ Z(2) the
level 2 theta functions associated to Ω. By Corollary 2, we have:

eW (P , Q) =
θi(zQ)θi(ℓ.zP )[θi(ℓ.zQ + zP )θi(zQ − ℓzP ) + θi(ℓ.zQ − zP )θi(zQ + ℓzP )]

θi(zP )θi(ℓ.zQ)θi(zQ + ℓ.zP )θi(zQ − ℓ.zP )
.

(22)
The denominator of this expression can be easily computed from the knowledge of
θi(zQ), θi(ℓ.zQ), θi(zP ) and θi(ℓ.zP ) by using the addition formula (1), and the nu-
merator can be computed in the algebra A in the following way. Keeping the nota-
tions from above, we compute R′ = ScalarMult(T, Q, P, ℓ)i.ScalarMult(gT, P, Q, ℓ)i.
Then it is easily seen that

R′ + g.R′ = ScalarMult(P + Q, Q, P, ℓ)i.ScalarMult(P − Q, P, Q, ℓ)i

+ ScalarMult(P − Q, Q, P, ℓ)i.ScalarMult(P + Q, P, Q, ℓ)i, (23)

which gives the numerator of (22).

6 An example in dimension 2

In this section we give an example of compution of the pairings on a dimension 2
Jacobian. Let H be the hyperelliptic curve over the prime field Fp, p = 331, given



by the equation:

Y 2 = X5 + 204X4 + 198X3 + 80X2 + 179X.

Let J be the Jacobian of H. The cardinal of J(Fp) is 26 · 1889 (since we are
in level 2, all the 2-torsion points of J are rational), so that we let ℓ = 1889, and
the embedding degree k corresponding to ℓ is 4. A theta null point of level 2
associated to J is given by (328 : 213 : 75 : 1). Let P = (255 : 89 : 30 : 1), we have
P ∈ J [ℓ](Fp). Let Fpk ≃ Fp(t)/(t4 + 3t2 + 290t + 3). We let Q be the Fpk -point of
ℓ-torsion whose coordinates are:

(158t
3

+ 67t
2

+ 9t + 293 : 290t
3

+ 25t
2

+ 235t + 280 : 155t
3

+ 84t
2

+ 15t + 170 : 1).

We compute (and fix an arbitrary ordering):

P + Q = (217t
3

+ 271t
2

+ 33t + 303 : 308t
3

+ 140t
2

+ 216t + 312 : 274t
3

+ 263t
2

+ 284t + 302 : 1),

P − Q = (62t
3

+ 16t
2

+ 255t + 129 : 172t
3

+ 157t
2

+ 43t + 222 : 258t
3

+ 39t
2

+ 313t + 150 : 1).

Finally, we let r = pk
−1
ℓ = 6354480 and ζ = tr be a primitive ℓth-root of unity.

We then compute using the doubling and differential addition algorithms:

ℓP̃ = (12, 141, 31, 327) = 327.̃0,

ℓQ̃ = (21t
3

+ 280t
2

+ 101t + 180, 164t
3

+ 311t
2

+ 111t + 129,

137t
3

+ 282t
2

+ 123t + 134, 324t
3

+ 17t
2

+ 187t + 271) = (324t
3

+ 17t
2

+ 187t + 271).̃0,

ScalarMult(P̃ + Q, Q̃, P̃ , ℓ) = (45t
3

+ 118t
2

+ 219t + 308, 152t
3

+ 97t
2

+ 166t + 40,

200t
3

+ 267t
2

+ 201t + 192, 117t
3

+ 42t
2

+ 106t + 205) = (117t
3

+ 42t
2

+ 106t + 205).P̃ ,

ScalarMult(P̃ + Q, P̃ , Q̃, ℓ) = (50t
3

+ 31t
2

+ 84t + 309, 168t
3

+ 196t
2

+ 275t + 234,

67t
3

+ 186t
2

+ 159t + 102, 243t
3

+ 320t
2

+ 222t + 200) = (243t
3

+ 320t
2

+ 222t + 200).Q̃.

We then compute (following the previous ordering):

eW (P, Q) =
243t3 + 320t2 + 222t + 200

327
.
324t3 + 17t2 + 187t + 271

117t3 + 42t2 + 106t + 205
= ζ

−1
,

eT (P, Q) =

(
117t3 + 42t2 + 106t + 205

324t3 + 17t2 + 187t + 271

)r

= ζ
1068

,

eT (Q, P ) =

(
243t3 + 320t2 + 222t + 200

327

)r

= ζ
1184

.

Here the Tate pairings are normalized by taking their r = (pk − 1)/ℓ-power. The
symmetric pairings are then given by eW (P, Q) = 61t3 + 285t2 + 196t + 257 and
eT (P, Q) = 194t3 + 163t2 + 97t + 164.

7 Conclusion

In this paper, we have presented an algorithm based on theta functions to compute
Weil and Tate pairings. It would be interesting to carry out a fine grained study of
the efficiency of our algorithm depending on the target implementation (software,
hardware etc.) and to compare it with existing implementations based on Miller’s
algorithm.
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