Guohui Xiao
email: xiao@kr.tuwien.ac.at

Pascal Hitzler
email: pascal.hitzler@wright.edu

Zuoquan Lin

Yue Ma
email: yue.ma@lipn.univ-paris13.fr

Guilin Qi

Computational Complexity and Anytime Algorithm

Keywords: knowledge representation, inconsistency measurement, multi-valued logic, computational complexity, algorithm

HAL is

Introduction

Inconsistency handling is one of the central problems in the field of knowledge representation. Recently, there is an increasing interest in quantifying inconsistency in an inconsistent knowledge base. This is because it is not fine-grained enough to simply say that two inconsistent knowledge bases contain the same amount of inconsistency. Indeed, it has been shown that analyzing inconsistency is helpful to decide how to act on inconsistency [START_REF] Hunter | How to act on inconsistent news: Ignore, resolve, or reject[END_REF], i.e. whether to ignore it or to resolve it. Furthermore, measuring inconsistency in a knowledge base can provide some context information which can be used to resolve inconsistency [START_REF] Hunter | Measuring inconsistency in knowledge via quasi-classical models[END_REF][START_REF] Hunter | Approaches to measuring inconsistent information[END_REF][START_REF] Hunter | Shapley inconsistency values[END_REF], and proves useful in different scenarios such as Software Engineering [START_REF] Mu | Measuring inconsistency in requirements specifications[END_REF].

Different approaches to measuring inconsistency are based on different views of atomic inconsistency [START_REF] Hunter | Approaches to measuring inconsistent information[END_REF]. Syntactic ones put atomicity to formulae, such as taking maximal consistent subsets of formulae [START_REF] Knight | Measuring inconsistency[END_REF] or minimal inconsistent sets [START_REF] Hunter | Measuring inconsistency through minimal inconsistent sets[END_REF]. Semantic ones put atomicity to propositional letters, such as considering the conflicting propositional letters based on some kind of paraconsistent model [START_REF] Grant | Classifications for inconsistent theories[END_REF][START_REF] Hunter | Measuring inconsistency in knowledge via quasi-classical models[END_REF][START_REF] Hunter | Approaches to measuring inconsistent information[END_REF][START_REF] Grant | Measuring inconsistency in knowledgebases[END_REF][START_REF] Grant | Analysing inconsistent first-order knowledge bases[END_REF]. In this paper, we focus on the computational aspect of a 4-valued semantics based inconsistency degree which is among the latter view.

The main contributions of this paper are two-folded. One is to give a complete study of the computation complexity of the decision and functional problems related to measuring inconsistency degree. We show that computing exact inconsistency degrees is a computational problem of high complexity (Θ p 2 -complete). To conquer such a high complexity in computation, we present an anytime algorithm that provides tractable approximations of the inconsistency degree from above and below, by computing the lower and upper bounds. We show that our algorithm satisfies some desirable properties. Furthermore, we give some experimental explanations of the algorithm. Compared to many existing work on measuring inconsistency, our work complements them in that (1) it analyzes the complexity issues of computing the inconsistency degree and that (2) it attempts to alleviate the intractability of computing the exact inconsistency degree for full propositional logic by approximating it from above and from below in an anytime manner. Our results show that the computation of approximating inconsistency degree can be done tractable; and can be performed to full propositional knowledge bases, unlike the restriction to CNF for designing a tractable paraconsistent reasoning under the Quasi-Classical semantics [START_REF] Coste-Marquis | A unit resolution-based approach to tractable and paraconsistent reasoning[END_REF].

The paper is structured as follows. Section 2 gives a discussion of related work. Then after recalling some preliminaries on Belnap's four-valued semantics and knowledge of inconsistency degree in Section 3, we give the complexity analysis of problems of computing inconsistency degree in Section 4. We deal in turn with an approach to approximating inconsistency degree and the corresponding anytime algorithm in Section 5. The implementation of the anytime algorithm is given in Section 6. Finally we conclude the work in Section 7.

Related Work

Most effort has been directed at theoretical accounts of inconsistency measures, i.e. its definitions, properties, and possible applications. But few papers focus on the computational aspect of inconsistency degree. Among the syntactic approaches, [START_REF] Knight | Measuring inconsistency[END_REF] shows the possibility to compute inconsistency degrees using the simplex method. Among the semantics methods, [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF][START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF] and [START_REF] Grant | Analysing inconsistent first-order knowledge bases[END_REF] provide algorithms for computing inconsistency degrees that can be implemented. The algorithm in [START_REF] Grant | Analysing inconsistent first-order knowledge bases[END_REF] only deals with KBs consisting of first-order formulas in the form Q 1 x 1 , ..., Q n x n . i (P i (t 1 , ..., t mi) ∧ ¬P i (t 1 , ..., t mi)), where Q 1 , ..., Q n are universal or existential quantifiers. In [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF], an algorithm is proposed for full FOL logic. Although it can be applied to measure inconsistency in propositional logic, its computational complexity is too high to be used in general cases. In [START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF], approximating inconsistency degrees are defined but without detailed study of an anytime algorithm. The anytime algorithm proposed in this paper for computing approximating inconsistency degrees can avoid these shortcomings.

Although our algorithm is inspired by the algorithms given in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF][START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF], it is significantly different from the existing ones. Firstly, this paper develops the work in [START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF] by an anytime algorithm which can return approximating inconsistency degrees in tractable time. We show that for some special knowledge bases, this algorithm will return their exact inconsistency degree in polynomial time. In contrast, the algorithm in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF] is based on a reduction to hard SAT instances, which makes it inherently intractable. Secondly, ours is designed towards obtaining an approximation with guaranteed lower and upper bounds that gradually converge to the exact solution. The approximations have a meaningful sense in terms of bounding models. Thirdly, based on the monotonicity of S-4 semantics, we implement a new truncation strategy to limit the search space for better polynomial time approximations. We also present the preliminary evaluation results of the implementation of the algorithm. Our evaluation results show our algorithm outperforms that given in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF] and develops the results given in [START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF], which in all show that the approximating values are reasonable to replace the exact inconsistency degree.

Preliminaries

Let P be a countable set of propositional letters. We concentrate on the classical propositional language formed by the usual Boolean connectives ∧ (conjunction), ∨ (disjunction), → (implication), and ¬ (negation). A propositional knowledge base K consists of a finite set of formulae over that language. We use Var(K) for the set of propositional letters used in K and |S| for the cardinality of S for any set S.

Next we give a brief introduction on Belnap's four-valued (4-valued) semantics (See to Appendix section of this paper for more details that are used in the proofs). Compared to two truth values used by classical semantics, the set of truth values for four-valued semantics [START_REF] Belnap | A useful four-valued logic[END_REF][START_REF] Arieli | The value of the four values[END_REF] contains four elements: true, false, unknown and both, written by t, f, N, B, respectively. The truth value B stands for contradictory information, hence four-valued logic leads itself to dealing with inconsistencies. The four truth values together with the ordering defined below form a lattice, denoted by FOUR = ({t, f, B, N },): f N t, f B t, N B, B N . The four-valued semantics of connectives ∨, ∧ are defined according to the upper and lower bounds of two elements based on the ordering , respectively, and the operator ¬ is defined as ¬t = f, ¬f = t, ¬B = B, and ¬N = N . The designated set of FOUR is {t, B}. So a four-valued interpretation I is a 4-model of a knowledge base K if and only if for each formula φ ∈ K, φ I ∈ {t, B}. A knowledge base which has a 4-model is called 4-valued satisfiable. A knowledge base K 4-valued entails a formula ϕ, written K |= 4 ϕ, if and only if each 4-model of K is a 4-model of ϕ.

Every propositional knowledge base containing only connectives from {∨, ∧, ¬, →} has a 4-model which assigns B to each propositional letter [START_REF] Arieli | The value of the four values[END_REF]. Four-valued entailment can be reduced to the classical entailment [START_REF] Arieli | Reducing preferential paraconsistent reasoning to classical entailment[END_REF]. We write K for a knowledge base, and M 4 (K) for the set of 4-models of K throughout this paper. Four-valued semantics provides a novel way to define inconsistency measurements [START_REF] Hunter | How to act on inconsistent news: Ignore, resolve, or reject[END_REF]. Definition 1. Let I be a four-valued model of K. The inconsistency degree of K with respect to I, denoted Inc I (K), is a value in [0, 1] defined as Inc

I (K) = |Conflict(I,K)| |Var(K)|
, where

Conflict(I, K) = {p | p ∈ Var(K), p I = B}.
That is, the inconsistency degree of K w.r.t. I is the ratio of the number of conflicting propositional letters under I divided by the amount of all propositional letters used in K. It measures to what extent a given knowledge base K contains inconsistencies with respect to its 4-model I. Preferred models defined below are used to define inconsistency degrees and especially useful to explain our approximating algorithm later.

In [START_REF] Hunter | How to act on inconsistent news: Ignore, resolve, or reject[END_REF], instead of Inc I (K), the concordance degree of a knowledge base is defined as 1-

|Conflict(I,K)| |Var(K)| , denoted Concordance I (K). It is clear that Inc I (K) = 1 -Concordance I (K).
So all the results we get in this paper for Inc I (K) can be easily applied to the concordance degree in [START_REF] Hunter | How to act on inconsistent news: Ignore, resolve, or reject[END_REF].

Definition 2 (Preferred Models). The set of preferred models, written PreferModel(K), is defined as

PreferModel(K) = {I | ∀I ∈ M 4 (K), Inc I (K) ≤ Inc I (K)}.
By this definition and the fact that every knowledge base K containing only connectives from {∨, ∧, ¬, →} has 4-models, the inequation PreferModel(K) = ∅ always holds, and the inconsistency degree of K with respect to two preferred models are equal.

Definition 3 (Inconsistency Degree). The inconsistency degree of K, denoted by ID(K), is defined as the value Inc I (K), where I ∈ PreferModels(K).

Example 1. Let K = {p, ¬p ∨ q, ¬q, r}. Consider two 4-valued models I 1 and I 2 of K with p I1 = t, q I1 = B, r I1 = t; and p I2 = B, q I2 = B, r I2 = t. We have Inc I1 (K) = 1 3 , while Inc I2 (K) = 2 3 . Moreover, I 1 is a preferred model of K because there is no other 4-model I of K such that Inc I (K) < Inc I1 (K). Then ID(K) = 1 3 . One way to compute inconsistency degree is to recast the algorithm proposed in [START_REF] Ma | An algorithm for computing inconsistency measurement by paraconsistent semantics[END_REF] to propositional knowledge bases, where S-4 semantics defined as follows is used: Definition 4 (S-4 Model). For any given set S ⊆ Var(K), an interpretation I is called an S-4 model of K if and only if I ∈ M 4 (K) and satisfies the following condition:

I(p) ∈ {B} if p ∈ Var(K) \ S, {N, t, f } if p ∈ S.
That is, I is an S-4 model of K if it is a 4-valued model of K which assigns the propositional letters not in S to the contradictory truth value, while it assigns others to non-contradictory truth values.

For a given S ⊆ Var(K), the knowledge base K is called S-4 unsatisfiable iff. it has no S-4 model. Let ϕ be a formula and Var({ϕ}) ⊆ Var(K). ϕ is S-4 entailed by K, written K |= 4 S ϕ, iff. each S-4 model of K is an S-4 model of ϕ. Obviously, K |= 4 S f if and only if K has no S-4 model, where f is the truth value symbol in FOUR.

Theorem 1 ([14]). For any KB K, we have ID(K) = 1-A/|Var(K)|, where A = max{|S| : S ⊆ Var(K), K is S-4 satisfiable}.

Theorem 1 shows that the computation of ID(K) can be reduced to the problem of computing the maximal cardinality of subsets S of Var(K) such that K is S-4 satisfiable.

Computational Complexities

Apart from any particular algorithm, let us study the computational complexity of the inconsistency degree to see how hard the problem itself is. First we define following computation problems related inconsistency degrees:

• ID ≤d (resp. ID <d , ID ≥d ,ID >d): Given a propositional knowledge base K and a number

d ∈ [0, 1], is ID(K) ≤ d (resp. ID(K) < d, ID(K) ≥ d, ID(K) > d)? • EXACT-ID: Given a propositional knowledge base K and a number d ∈ [0, 1], is ID(K) = d? • ID: Given a propositional knowledge base K, what is the value of ID(K)?
Obviously, we have ID ≤1 and ID ≥0 that are two trivial instances of these decision problems with the answer "yes"; And another two trivial instances ID <0 and ID >1 with the answer "no".

In more general cases, the complexities of these computational problems are indicated by following theorems.

Theorem 2. ID ≤d and ID <d are NP-complete; ID ≥d and ID >d are coNP-complete.

Proof. We prove these results separately as follows:

ID ≤d is NP-complete:

The membership to NP is achieved by the following non-deterministic algorithm:

1. Guess a 4-valued interpretation I over Var(K); 2. Check that I is a 4-model of K and |Conflict(I)| |Var(K)| ≤ M , which can be done in deterministic polynomial time.

The hardness to NP comes from the following reduction from checking the satisfiability of K under classical 2-valued semantics, which is known to NP-complete, to this problem. The reduction is that K is 2-valued satisfiable if and only if ID(K) ≤ 0 which is obvious by the definition of inconsistency degree.

ID <d is NP-complete: Similarly to the case of ID ≤d , the membership to NP holds obviously. The hardness to NP holds by the reduction that K is 2-valued satisfiable if and only if ID(K) < 1 2|Var| . This is because, by the definition of ID(K), the smallest value of ID(K) for an inconsistent knowledge base is 1 |Var| . ID ≥d and ID >d are coNP-complete: This is because that ID ≥d is the complementary problem of ID <d and ID >d is the complementary problem of ID ≤d .

Theorem 3. EXACT-ID is DP-complete 1 .
Proof. To show that it is in DP, we have to exhibit two languages L 1 ∈ NP and L 2 ∈ coNP such that the set of all "yes" instances of EXACT-ID is L 1 ∩ L 2 . This is easy by setting

L 1 = {K | ID(K) ≤ M } and L 2 = {K | ID(K) ≥ M }.
To show completeness, let L = L 1 ∩ L 2 be any language in DP. We have to show that L can be reduced to EXACT-ID. To this end, recall that ID ≤ is NP-complete and ID ≥ is coNP-complete, that is, there is a reduction R 1 from L 1 to ID ≤ and a reduction R 2 from L 2 to ID ≥ . Therefore, the reduction R from L to EXACT-ID can be defined as follows, for any input x: R(

x) = (R 1 (x), R 2 (x)). We have that R(x) is a "yes" instance of EXACT-ID if and only if R 1 (x) is a "yes" instance of ID ≤ and R 2 (x) is a "yes" instance of ID ≥ , which is equal to x ∈ L. Theorem 4. ID is FP NP[log n] -complete 2 .
1 A language L is in the class DP [START_REF]Computational Complexity[END_REF] iff there are two languages

L 1 ∈ NP and L 2 ∈ coNP such that L = L 1 ∩ L 2 .
2 Complexity P NP[log n] is defined to be the class of all languages decided by a polynomial-time oracle machine which on input x asks a total of O(log |x|) SAT (or any other problem in NP) queries. FP NP[log n] is the corresponding class of functions. FP NP[log n] is also written as Θ p 2 .

Proof. To show that ID is in FP NP[log n] , consider problems of the following form: is the inconsistency degree less than i |Var(K)| (NP-complete by Theorem 2)? Through solving a logarithmic number of such problems (by dichotomy on i ∈ {0, ..., |Var(K)|}), we find an FP NP[log n] algorithm to compute the inconsistency degree, which shows that the problem belongs to FP NP[log n] .

Next we prove that ID is FP NP[log n] -hard, which is achieved by showing that MaxSAT3 (the maximum satisfiability problem) can be polynomially reduced to an instance of ID.

W.o.l.g, assume the inconsistent propositional knowledge base is K = {ϕ 1 , ..., ϕ n }. Define a new knowledge base K new as follows:

K new = {ϕ i ∨ ¬new i , new i | 1 ≤ i ≤ n} ∪ {(p i ∧ ¬p i) ⊃ f | p i ∈ V ar(K)},
where ⊃ is the internal implication under four-valued semantics (see to Appendix for details). Clearly, the reduction is polynomial with respect to the size of K and Var(K). Next, we aim to show that the maximal size of consistent subsets of K is M if and only if

ID(K new) = n-M |Var(K)|+n , where |Var(K)| + n = |Var(K new)|. That is, the maximal size of consistent subsets of K is M if and only if |Conf lict(I, K new)| = n -M for any preferred model I of K new .
(Only If) First, we show that |Conf lict(I, K new)| ≤ n -M . By the assumption, there is an M -size consistent subset of K, without loss of generality, written as K cons = {ϕ 1 , ..., ϕ M }. Suppose J is a classical model of K cons and define J based on J as follows:

p J =      p J , if p ∈ V ar(K), t, if p = new i (i ≤ M), B, if p = new i (i > M).
By the fact that p J = p J for p ∈ V ar(K), we have that J satisfies K cons and in turn satisfies {ϕ 1 ∨ ¬new 1 , ..., ϕ M ∨ ¬new M }. Obviously, J satisfies {new 1 , ..., new M }. Moreover, we have J satisfies {ϕ M +1 ∨¬new M +1 , ..., ϕ n ∨¬new n } by the fact that new J i = B(i > M). Finally, note that J is a classical interpretation and J equals J on all propositional letters in Var(K). Therefore, J interprets p i (p i ∈ Var(K)) classically. By the definition of semantics of internal implication, (p i ∧ ¬p i) ⊃ f is satisfied by any classical interpretation, which means that

J satisfies {(p i ∧ ¬p i) ⊃ f | p i ∈ V ar(K)}. In all, we have that J is 4-model of K new . It is to see that |Conf lict(J , K new)| = |{new i | M < i ≤ n}| = n -m. Then, by the definition of preferred model, we have |Conf lict(I, K new)| ≤ n -M . Next we show that |Conf lict(I, K new)| < n -M for preferred models I of K new . Otherwise, we can assume |Conf lict(I, K new)| < n -M . By noting that {(p i ∧ ¬p i) ⊃ f | p i ∈ Var(K)} ⊆ K new
and by the semantics of internal implication, we have

p I i = B for all p i ∈ V ar(K). That is, p i ∈ Conf lict(I, K new), which means Conf lict(I, K new) ⊆ {new i | 1 ≤ i ≤ n}. By the assumption |Conf lict(I, K new)| < n -M , there are at most n -M -1 letters in {new j | 1 ≤ j ≤ n} values B in I. That is, there are at least M + 1 clauses ϕ i1 ∨ ¬new i1 , ..., ϕ i M +1 ∨ ¬new i M +1 in K new with new I ij ∈ {t, f, N } for j ∈ [1, M + 1]. By the assumption that I is a model of K new and new ij ∈ K new , we have new I ij = t. In all, new I ij ∈ {t, N } (i.e. ¬new I ij ∈ {f, N }). Since ϕ ij ∨ ¬new ij ∈ K new , it holds that ϕ I ij ∈ {t, B}(1 ≤ j ≤ M + 1)
. That is, I satisfies at least M + 1 clauses of K. Consider the following classical interpretation I for each p ∈ Var(K):

p I = t if p I = N, p I otherwise.
Obviously, I < k I where < k denotes the partial order w.r.t to amount of information in four-valued logic (Refer to Appendix for details). By the monotonicity of classical logical connectives (¬, ∨, ∧, →) under the four-valued semantics (See to Proposition 8 in Appendix), we have I satisfies {ϕ i1 , .., ϕ i M +1 }. Furthermore, by noting that p ∈ Conf lict(I, K new), we can see that I is a classical model of {ϕ i1 , .., ϕ i M +1 } , which conflicts with the fact that the maximal size of consistent subsets of K is M .

In all, we have |Conf lict(I, K new)| = n -M .

(If) Similar to the proof of "only if" direction, the "if" direction can be proved.

Anytime Algorithm

According to the results shown in the previous section, computing inconsistency degrees is usually intractable. In this section, we propose an anytime algorithm to approximate the exact inconsistency degree. Our results show that in P-time we can get an interval containing the accurate value of ID(K).

Firstly, by borrowing the idea of guidelines for a theory of approximating reasoning [START_REF] Schaerf | Tractable reasoning via approximation[END_REF], we precise the requirements that an anytime approximating algorithm for computing inconsistency degrees should satisfy: It should be able to produce two sequences r 1 , ..., r m and r 1 , ..., r k :

r 1 ≤ ... ≤ r m ≤ ID(K) ≤ r k ≤ ... ≤ r 1 , (1)
such that these two sequences have the following properties:

• The length of each sequence is polynomial w.r.t |K|;

• Computing r 1 and r 1 are both tractable. Generally, computing r j and r j becomes exponentially harder as j increases, but it is not harder than computing ID(K). • Since computing r i and r j could become intractable as i and j increase, we need to find functions f (|K|) and g(|K|) such that computing r i and r j both stay tractable as long as i ≤ f (|K|) and j ≤ g(|K|). • Each r i (r j) in the two sequences is meaningful (in terms of corresponding to approximating preferred models in our case), which indicates the sense of the two sequences.

For the notation clarity, some definitions are necessary as given in the next section, which will be used to explain our algorithm.

Formal Definitions

Definition 5. (Bounding Values [START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF]) A real number x (resp. y) is a lower (resp. an upper) bounding value of the inconsistency degree of K, if and only if x ≤ ID(K) (resp. ID(K) ≤ y).

Intuitively, a pair of lower and upper bounding values characterizes an interval containing the exact inconsistency degree of a knowledge base. For simplicity, lower (resp. an upper) bounding value is called lower (resp. upper) bound.

Corresponding to bounding values, we define a new concept called bounding models which are used to illustrate the sense of results of our anytime algorithm. Intuitively, the lower and upper bounding models of K are approximations of preferred models from below and above. We call two-valued interpretations J trivial lower bounding models since Conflict(J, K) = 0 and ID(K) = 0 always holds. We are only interested in nontrivial bounding models for inconsistent knowledge bases, which can produce a nonzero lower bound of ID(K).

Example 2. (Example 1 continued) K has a lower bounding model I 3 and an upper bounding model I 4 defined as: p I3 = t, q I3 = t, r I3 = t; and p I4 = B, q I4 = B, r I4 = t.

Next proposition gives a connection between lower (resp. upper) bounds and lower (resp. upper) bounding models.

(K) = |Conflict(I,K)| |Var(K)| ≤ |Conflict(I1,K)| |Var(K)| = ID(K).
That is, Inc I (K) is a lower bounding value of ID(K). Similarly, we can prove the conclusion in the case that I is an upper bounding model of K.

Tractable Approximations from Above and Below

By Theorem 1, we have an algorithm to compute inconsistency degrees via the computation of S-4 satisfiability. However, next theorem shows that S-4 entailment is generally intractable.

Theorem 5. The decision problem of the S-4 satisfiability is NP-hard.

Proof. This theorem easily follows from the following reduction from SAT problem to S-4 satisfiability: A knowledge base K is classically two-valued satisfiable if and only if K is S-4 satisfiable, where S = Var(K). The "only if" direction of the reduction is obvious because a classical model of K is also an S-4 model of K with S = Var(K). For the "if" direction, suppose that K has an S-4 model I with S = Var(K), that is, for any p ∈ Var(K), I(p) ∈ {N, t, f }. Define the following classical interpretation I :

I (p) ∈ I(p) if I(p) ∈ {t, f }, t if I(p) = N.
By the monotonicity of classical logical connectives (¬, ∨, ∧, →) under the four-valued semantics (See to Proposition 8 in Appendix), we have I satisfies K, that is, K is classically satisfiable.

This theorem shows that algorithms based on S-4 semantics to compute inconsistency degrees are time-consuming. In this section, by a tractable case of S-4 entailment (proportional to the size of input knowledge base) [START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF], we give an algorithm to compute approximating inconsistency degrees in tractable time.

Lemma 1 ([14]

). Let S = {p 1 , ..., p k } be a subset of V ar(K) and ϕ be a formula such that Var(ϕ) ⊆ Var(K). K |= 4S ϕ if and only if

K ∧ q∈Var(K)\S (q ∧ ¬q) |= 4 ϕ ∨ (c 1 ∨ ... ∨ c k)
holds for any combination {c 1 , ..., c k }, where each c i is either

p i or ¬p i (1 ≤ i ≤ k).
This lemma shows a way to reduce the S-4 entailment to the 4-entailment. Specially note that if ϕ is in CNF (conjunctive normal formal), the righthand of the reduced 4-entailment maintains CNF form by a little bit of rewriting, as follows: Suppose

ϕ = C 1 ∧ ... ∧ C n . Then ϕ ∨ (c 1 ∨ ... ∨ c k) = (C 1 ∨ c 1 ∨ ... ∨ c k) ∧ ... ∧ (C n ∨ c 1 ∨ ... ∨ c k) which is still in CNF and its size is linear to that of ϕ ∨ (c 1 ∨ ... ∨ c k).

Lemma 2 ([20]

). For K in any form and ϕ in CNF, there exists an algorithm for deciding if

K |= 4 ϕ in O(|K| • |ϕ|) time.
By Lemma 1 and 2, we have the following theorem:

Theorem 6 ([14]

). There exists an algorithm for deciding if

K |= 4 S ϕ and deciding if K is S-4 satisfiable in O(|K||ϕ||S| • 2 |S|) and O(|K||S| • 2 |S|) time, respectively.
Theorem 6 shows that S-4 entailment and S-4 satisfiability can both be decided in polynomial time w.r.t the size of K, exponential w.r.t that of S, though. So they can be justified in P-time if |S| is limited by a logarithmic function of |K|.

The following results in [START_REF] Ma | Computing inconsistency measure based on paraconsistent semantics[END_REF] are useful for our anytime algorithm.

Theorem 7 ([14]

). Given S ⊆ Var(K), if K is S-4 satisfiable, then ID(K) ≤ 1-|S|/|Var(K)|.

Theorems 6 and 7 together show that for a monotonic sequence of sets S 1 ,...,S k , where k) satisfiable one by one, then we can get a sequence of decreasing upper bounding values of the inconsistency degree of

|S i | < |S i+1 | for any 1 ≤ i ≤ k -1, if we can show that K is S i -4 (i = 1, ...,
K in time O(|K||S i | • 2 |Si|). If |S i | = O(log |K|)
, it is easy to see that the computation of an upper bound is done in polynomial time with respect to the size of K. In the worst case (i.e., when S = Var(K)), the complexity of the method coincides with the result that ID ≤ is NP-complete (Theorem 2).

Theorem 8 ([14]). For a given w

(1 ≤ w ≤ |Var(K)|), if for each w-size subset S of Var(K), K is S-4 unsatisfiable, then ID(K) ≥ 1 -(w -1)/|Var(K)|.
Theorems 6 and 8 together show that for a monotonic sequence of sets S 1 , ..., S m satisfying Suppose r i , r j in Inequation 1 are defined as follows:

|S i | < |S i+1 |, if we can prove that K is |S i |-4 unsatisfiable 4 for each i ∈ [1, m],
r j = 1 -|S|/|Var(K)|, where K is |S|-4 satisfiable, j = |S|; r i = 1 - |S| -1 |Var(K)| , where K is |S|-4 unsatisfiable, i = |S|.
By Theorems 6, 7 and 8, we get a way to compute the upper and lower bounds of ID(K) which satisfy: if j ≤ log(|K|) and i ≤ M (M is a constant independent of |K|), r j and r i are computed in polynomial time; Both i and j cannot be greater than |Var(K)|. This is a typical approximation process of a NP-complete problem ID ≥d (resp. coNP-complete problem ID ≤d) via polynomial intermediate steps, because each intermediate step provides a partial solution which is an upper (resp. lower) bound of ID(K).

Example 3. Suppose K = {p i ∨ q j , ¬p i , ¬q j | 1 ≤ i, j ≤ N }. So |Var(K)| = 2N . To know whether ID(K) < 3 4
, by Theorem 7 we only need to find an S of size 2N 4 such that K is S-4 satisfiable. This is true by choosing

S = {p i | 1 ≤ i ≤ 2N
4 }. To know whether ID(K) > 1 3 , Theorem 8 tells us to check whether K is S-4 unsatisfiable for all S of size 4N 3

+ 1. This is true also. So ID(K) ∈ [1 3 , 3 4].

An interesting consequence of the above theoretical results is that we can compute the exact inconsistency of some knowledge bases in P-time. Let us first look at an example.

Example 4. Consider a knowledge base

K = {(p i ∨ p i+1) ∧ (¬p i ∨ ¬p i+1), p i1 ∧ ... ∧ p i N -5 , ¬p j1 ∧...∧¬p j N -10 , p 2t , ¬p 3j+1 ∨¬p 5u+2 , }(1 ≤ i ≤ N -1, 1 ≤ 2t, 3j +1, 5u+2 ≤ N). Var(K) = N .
To approximate ID(K), we can check whether K is l-4 satisfiable for l going larger from 1 by one increase on the value each time. Obviously, K's inconsistency degree is close to 1 if N 10. By Theorem 6, we can see that all of these operations can be done in P-time before the exact value obtained.

More formally, we have the following proposition.

Proposition 2. If ID(K) ≥ 1 -M/|Var(K)|,
where M is an arbitrary constant which is independent of |K|, then ID(K) can be computed in polynomial time.

Proof. By the definition of inconsistency degree and the assumption

ID(K) ≥ 1 -M |Var(K)| , we know that |Conflict(I,K)| |Var(K)| ≥ 1 -M |Var(K)| for any preferred model I of K. That is, |Conflict(I, K)| ≥ |Var(K)| -M, (2)
We claim that K has no S-4 model for any S ⊆ Var(K) whose size is strictly greater than M .

If not, suppose |S 0 | > M makes K S 0 -4 satisfiable. By the definition of S-4 semantics, we have |Conflict(I,

K)| = |Var(K)| -|S| < |V ar(K)| -M
. This is a contradiction with Inequation 2. Let us check whether K is l-4 satisfiable for l going larger from 1 by one increase on the value each time until K becomes l-4 unsatisfiable, then the accurate inconsistency degree ID(K) = 1 -(l -1)/|Var(K)|. By the claim above, the first l which makes K l-4 unsatisfiable is for l = M + 1 and K keeps l-unsatisfiable for l > M . Note that checking K l-4 satisfiability from l = 1 to M + 1 can be done in polynomial time by Theorem 6. Therefore, we find a way to get the exact inconsistency degree of K in P-time.

The Anytime Algorithm

Given a knowledge base K with |Var(K)| = n, it is natural to perform dichotomy on n to search for the maximal size of S ∈ Var(K) such that K is S-4 satisfiable. However, we will see, in this section firstly, that it leads to intractability from the beginning. To avoid this, subsequently, we give an anytime algorithm which can return approximating inconsistency degrees in polynomial time.

By the analysis given after Theorem 7 and Theorem 8, we know that in the worst case, given 0 ≤ w ≤ n, it takes O(n w |K|w2 w) time to get an upper (resp. a lower) bounding value

1 -w |Var(K)| (resp. 1 -w-1 |Var(K)|). By Fermat's Lemma 5 , the maximal value of O(n w |K|w2 w) is near w = 2n+1 3
when n is big enough. It means that to do dichotomy directly on size n 2 will be of high complexity. To get upper and lower bounding values in P-time instead of going to intractable computation directly, we propose Algorithm 1, which consists of two stages: The first one is to localize an interval [l 1 , l 2] that contains the inconsistency degree (line 1-8), while returning upper and lower bounding values in P-time; The second one is to pursue more accurate approximations within the interval [l 1 , l 2] by binary search (line 9-17).

Algorithm 1 is an anytime algorithm that can be interrupted at any time and returns a pair of upper and lower bounding values of the exact inconsistency degree. It has five parameters: the knowledge base K we are interested in; the precision threshold ε which is used to control the precision of the returned results; the constant M |Var(K)| to guarantee that the computation begins with tractable approximations; a pair of positive reals a, b which determines a linear function h(l 2) = al 2 + b that updates the interval's right extreme point l 2 by h(l 2) during the first stage (line 5). h(•) decides how to choose the sizes l to test l-4 satisfiability of K. For example, if h(l 2) = l 2 + 2, line 5 updates l from i to i + 1 (suitable for ID(K) near 1); If h(l 2) = 2l 2 , line 5 updates l from i to 2i (suitable for ID(K) near 0.5); While if h(l 2) = 2(|Var(K)| -M), line 5 updates l by |Var(K)| -M (suitable for ID(K) near 0). We remark that h(l 2) can be replaced by other functions.

Next we give detailed explanations about Algorithm 1. To guarantee that it runs in Ptime run at the beginning to return approximations, we begin with a far smaller search interval [l 1 , l 2] = [0, M] compared to |Var(K)|. The while block (line 3) iteratively tests whether the difference between upper and lower bounding values is still lager than the precision threshold and whether K is l-satisfiable, where l = l2

2 . If both yes, the upper bound r + is updated, the testing interval becomes [l, h(l 2)], and the iteration continues; Otherwise (line 7), the lower bound r -is updated and the search interval becomes [l 1 , l]. This completes the first part of the algorithm to localize an interval. If r + -r -is already below the precision threshold, the algorithm terminates (line 8). Otherwise, we get an interval [l 1 , l 2] such that K is l 1 -4 satisfiable and l 2 -4 unsatisfiable. Then the algorithm turns to the second "while" iteration (line 9) which executes binary search within the search internal [l 1 , l 2] found in the first stage. If there is a subset |S| = l 1 + l2-l1 2 such that K is S-4 satisfiable, then the search internal shortens to the right half part of [l 1 , l 2] (line 12), otherwise to the left half part (line 14). During this stage, K keeps l 2 -4 unsatisfiable and l 1 -4 satisfiable for [l 1 , l 2]. Until r + -r - below the precision threshold, the algorithm finishes and returns upper and lower bounds.

Theorem 9 (Correctness of Algorithm 1). Let r + and r -be values computed by Algorithm 1. We have r -≤ ID(K) and r + ≥ ID(K). Moreover, r + = r -= ID(K) if ε = 0.

l 1 ← l; l 2 ← h(l 2); l ← l2 2 {Update search interval} 6: end while 7: r -← 1 -(l -1)/n; ε ← r + -r -; l 2 ← l 8: if ε ≤ ε then return r + and r -end if 9: while ε > ε do 10: l ← l 1 + l2-l1 2 11: if K is l-4 satisfiable then 12: r + ← (1 -l/n); ε ← r + -r -; l 1 ← l 13: else 14: r -← 1 -(l -1)/n; ε ← r + -r -; l 2 ← l 15:
end if 16: end while 17: return r + and r - Proof. By analyzing Algorithm 1, r + is as 1-l/|Var(K)| only if K is l-4 satisfiable. By Theorem 7, r + ≥ ID(K). Similarly, r -is updated as 1 -(l -1)/|Var(K)| only if K is l-4 unsatisfiable. By Theorem 8, r -≤ ID(K). Note that Algorithm 1 terminates only when

ε ≤ ε. If ε = 0, r + -r -= ε ≤ ε. So r + = r -= ID(K).
The following example gives a detailed illustration. Unlike Example 5, for the knowledge base in Example 4, since its inconsistency degree is quite close to 1, it becomes S-4 satisfiable for an S such that |S| is less than a constant M . Therefore, after the first stage of Algorithm 1 applying on this knowledge base, the localized interval [l 1 , l 2] is bounded by M . For such an interval, the second stage of the algorithm runs in P-time according to Theorem 6. So Algorithm 1 is a P-time algorithm for the knowledge base given in Example 4. However, it fails for other knowledge bases whose inconsistency degrees are far less than 1. Fortunately, the following proposition shows that by setting the precision threshold ε properly, Algorithm 1 can be executed in P-time to return approximating values.

Proposition 3. Let s be an arbitrary constant independent of |K|. If ε ≥ 1 -h s (M) 2|Var(K)| , where h s (•) is s iterations of h(•), Algorithm 1 terminates in polynomial time with the difference between upper and lower bounds less than ε (r + -r -≤ ε).

Proof. Algorithm 1 terminates if and only if ε ≤ ε. At the beginning of the algorithm, r + = 1, r -= 0, and ε = 1. Suppose r + = 1 -l/|Var(K)| after the first while block beginning line 3. At this moment, ε = r + -r -= 1 -l/|Var(K)|. It has two cases:

• 1 -l/|Var(K)| ≤ ε holds such that the algorithm terminates. It is not difficult to see that the while block (line 3) will end if l reaches to h s (M)/2 because ε ≥ 1 -h s (M) 2|Var(K)| and ε = 1 -l/|Var(K)|. Note that = 0, M/2 , h(M)/2 , ... in each iteration of the while block. Therefore, it takes s times of l-4 satisfiability tests of K, each of which is P-time by Theorem 6. Because s is a constant independent of |Var(K)|, the computation time is P-time in all.

• 1 -l/|Var(K)| > ε which means that while block runs for less than s times. So the localized interval [l 1 , l 2] satisfies 0 ≤ l 2 -l 1 ≤ h s (M)/2, that is, it is bounded by a constant independent of |VarK|. Then the binary search in this interval costs P-time because logarithmic times of P-time computations is still in P-time.

In all, the algorithm terminates in P-time.

The following proposition shows that r -and r + computed by Algorithm 1 have a sound semantics in terms of upper and lower bounding models defined in Definition 6. Proposition 4. There is a lower (an upper) bounding model J (J) of K such that Inc J (K) = r -(Inc J (K) = r +).

Proof. For r + , there is an S ⊆ Σ such that K is S-4 satisfiable and r + = 1 -|S| |Σ| . Therefore, K has an S-4 model, written I , and Inc J (K) = 1 -|S| |Σ| . Obviously, I is an upper bounded model and Inc J (K) = r + .

For r -, if r -= 1 -l -1 |Var(K)| , then by Algorithm 1, K is S -unsatisfiable for all l -size subsets S and there is at least one S such that |S | = l -1 and K is S -4 satisfiable. So K has an S -4 model, written I . By the proof of Theorem 8, we know that for any preferred model

I of K, |Conflict(I, K)| ≥ |Var(K)| -|S |, then I is a lower bounded model of K and Inc I (K) = 1 -|S |-1 |Σ| = r -.
Summing up, we have achieved an anytime algorithm for approximately computing inconsistency degrees which is:

• computationally tractable: Each approximating step can be done in polynomial time if

|S| is limited by a logarithmic function for upper bounds (Theorems 6 and 7) and by a constant function for lower bounds (Theorems 6 and 8). • dual and semantical well-founded: The accurate inconsistency degree is approximated both from above and from below (Theorem 9), corresponding to inconsistency degrees of some upper and lower bounding models of K (Proposition 4).

[h] N = 9 and much less for N < 9). The quality of the approximations at different time points is shown on the right part of the figure. The decreasing (resp. increasing) curves represent upper (resp. lower) bounds for N = 5, 7, 10, respectively. Note that the inconsistency degrees of all the three knowledge bases are 0.5.

For large knowledge bases, it is time-consuming to compute the exact inconsistency degrees. For example, for N = 10, our algorithm took 239.935s to get the accurate inconsistency degree. In contrast, by costing much less time, approximating values (upper bounds for these examples) can provide a good estimation of the exact value and are much easier to compute. For example, when N = 10, the algorithm told us that the inconsistency degree is less than 0.8 at 3.9s; and when N = 5, we got the upper bound 0.6 at 0.152s. Note that in these experiments, the lower bounds were updated slowly. In fact, the exact inconsistency degrees were obtained as soon as the first nonzero lower bounding values were returned. This is because we set M = 2, h(l 2) = l 2 + 2 in our implementation. If we set M and h(•) differently, the results will be changed, as shown in Example 3 in Section 5.

We need to point out that our truncation strategy cannot be applied to the test data used in the experiments because no subsets can be pruned. Therefore, although our experiments show the benefits of the approximations, our algorithm can increase significantly when the truncation strategy is applicable and if we carefully set M and h(•). Take {p i , ¬p j | 0 ≤ i, j < 20, j is odd} for example, our optimized algorithm run less than 1s whilst it run over 5min without the truncation strategy.

Conclusion

In this paper, we investigated computational aspects of the inconsistency degree. We showed that the complexities of several decision problems about inconsistency degree are high in general. To compute inconsistency degrees more practically, we proposed an general framework of an anytime algorithm which is computationally tractable, dual and semantical wellfounded, and improvable and convergent. The experimental results of our implementation show that computing approximating inconsistency degrees is much faster than computing the exact inconsistency degrees in general. The approximating inconsistency degrees can be useful in many applications, such as knowledge base evaluation and merging inconsistent

Appendix. Four-valued Logic

Four-valued logic is based on the idea of having four truth values, instead of the classical two. The four truth values stand for true, false, unknown (or undefined) and both (or overdefined, contradictory). We use the symbols t, f, N, B, respectively, for these truth values, and the set of these four truth values is denoted by FOUR. The truth value B stands for contradictory information, hence four-valued logic lends itself to dealing with inconsistent knowledge. The value B thus can be understood to stand for true and false, while N stands for neither true nor false, i.e. for the absence of any information about truth or falsity.

Syntactically, four-valued logic is very similar to classical logic. Care has to be taken, however, in defining meaningful notions of implication, as there are several ways to do this. Indeed, there are three major notions of implication in the literature, namely the material implication →, the internal implication ⊃, and the strong implication →, which are discussed in detail in [START_REF] Arieli | The value of the four values[END_REF][START_REF] Arieli | Reasoning with logical bilattices[END_REF]. Thus the set of logical connectives allowed in four-valued logic is {¬, ∨, ∧, →, ⊃, →}.

Four-valued interpretations for formulae (i.e. 4-interpretations) are obviously mappings from formulae to (the set of four) truth values, respecting the truth tables for the logical connectives, as detailed in Table 7.

Definition 6 .

 6 (Bounding Models) A four-valued interpretation I is a lower (resp. an upper) bounding model of K if and only if for any preferred model I of K, Condition 1 holds (resp. Condition 2 holds and I ∈ M 4 (K)): Condition 1: |Conflict(I , K)| ≤ |Conflict(I, K)| Condition 2: |Conflict(I , K)| ≥ |Conflict(I, K)|

Proposition 1 .

 1 If I is a lower (an upper) bounding model of K, Inc I (K) is a lower (an upper) bounding value of ID(K). Proof. If I is a lower bounding model of K, then |Conflict(I, K)| ≤ |Conflict(I 1 , K)| for any preferred model I 1 , which in turn leads to that Inc I

 then we can get a series of increasing lower bounds of the inconsistency degree of K. For each w, it needs at most |Var(K)| w times tests of S-4 unsatisfiability. So it takes O(|Var(K)| w |K|w • 2 w) time to compute a lower bound 1 -(w -1)/|Var(K)|. If w is limited by a constant, we have that each lower bound is obtained in polynomial time.

Algorithm 1 3 :

 13 Approx Incons Degree(K, ε, M, a, b)Input: KB K; precision threshold ε ∈ [0, 1[; constant M |Var(K)|; a, b ∈ R + Output: Lower bound r -and upper bound r + of ID(K) 1: r -← 0; r + ← 1 {Initial lower and upper bounds} 2: ε ← r + -r -; n ← |Var(K)|; l 1 ← 0; l 2 ← M ; l ← l2 2 while ε > ε and K is l-4 satisfiable do 4: r + ← (1 -l/n); ε ← r + -r - {Update upper bound} 5:

Example 5 . 2 .

 52 (Example 3 contd.) Let ε = 0.1, h(l 2) = 2l 2 , and M = 4 N . Algorithm 1 processes on K as follows: Denote the initial search interval [l 0 1 , l 0 2] = [0, 4]. After initializations, l = 2 and line 3 is executed. Obviously, K is S-4 satisfiable for some |S| = l (e.g. S = {p 1 , p 2 }). So we get a newer upper bound r + = 2N -l 2N . Meanwhile, the difference between upper and lower bounds ε becomes 2N -l 2N > ε, and the search interval is updated as [l 1 1 , l 1 2] = [l, 2l 2] and l = 4. Stage 1. The while iteration from line 3 is repeatedly executed with double size increase of l each time. After c times such that 2 c-1 ≤ N < 2 c , l = 2 c and K becomes l-4 unsatisfiable. The localized interval is [2 c-1 , 2 c]. It turns to line 7 to update the lower bound by 1 -l-1 2N . The newest upper bound is 1 -2 c-2 /N , so ε = 2 c-2 /N . If ε ≤ ε, algorithm ends by line 8. Otherwise, it turns to stage 2.Stage By dichotomy in the interval [2 c-1 , 2 c], algorithm terminates until ε ≤ ε.

Fig. 1 .

 1 Fig. 1. Evaluation results over KBs in Example 3 with |K| = N 2 + 2N and |Var(K)| = 2N for N = 5, 7, 8, 9, 10.

Four-valued models (4 -

 4 models) are defined in the obvious way, as follows, where t and B are the designated truth values. Definition 8. Let I be a 4-interpretation, let Σ be a theory (i.e. set of formulae) and let ϕ be a formula in four-valued logic. Then we call that I is a 4-model of ϕ if and only if I(ϕ) ∈ {t, B}; We say that I is a 4-model of Σ if and only if I is a 4-model of each formula in Σ; And we name that Σ four-valued entails ϕ, written Σ |= 4 ϕ, if and only if every 4-model of Σ is a 4-model of ϕ.

Table 1

 1 Truth Table for 4-valued Connectives∧ β f f f f f t B N f B B f f N f N α ∨ β f t B N t t t t B t B t N t t N α → β t t t t f t B N B t B t N t t N α ⊃ β t t t t f t B N f t B N t t t t α → β t t t t f t f N f t B N N t N t

	α	f f f f t t t t B B B B N N N N
	β	f t B N f t B N f t B N f t B N
	¬α	t t t t f f f f B B B B	N N N
	α		

International Journal of Software and Informatics, Vol.?, No.?, March 2010

A MaxSAT problem is to ask for the maximum number of clauses which are satisfiable of a propositional knowledge base K.

For the sake of simplicity, we say that K is l-4 satisfiable for l ∈ N, if there is a subset S ⊆ Var(K) such that K is S-4 satisfiable. We say that K is l-4 unsatisfiable if K is not l-4 satisfiable.

V.A. Zorich, Mathematical Analysis, Springer, 2004.

We use instances of Example 3 because they are the running examples through the paper and meet the worst cases of the algorithm (e.g. the truncation strategy discussed later cannot be applied). We want to show the performance of our algorithm in its worst case.

16

International Journal of Software and Informatics, Vol.?, No.?, March 2010 knowledge bases. We will further study on the real applications of approximating inconsistency degree in the future work.

† This work is sponsored by the Quaero Programme, funded by OSEO, French State agency for innovation (for Yue Ma). Guilin Qi is partially supported by Excellent Youth Scholars Program of Southeast University under grant 4009001011 and National Science Foundation of China under grant 60903010. Zuoquan Lin and Guohui Xiao are supported by the National Natural Science Foundation of China under number 60973003.

• convergent: More computation resource available, more precise values returned (Theorems 7 and 8). It always converges to the accurate value if there is no limitation of computation resource (Theorem 9) and terminates in polynomial time for special knowledge bases (Proposition 2).

Proposition 5. Given two sets S and S satisfying S ⊆ S ⊆ P, if a theory K is S-4 unsatisfiable, then it is S -4 unsatisfiable.

Proof. Assume that K is S-4 unsatisfiable and that there exists an S -4 interpretation I S satisfying K. We construct an S-4 interpretation I S as follows. For each propositional letter p ∈ P:

Obviously, I S is an S-4 model of K, a contradiction.

Proposition 5 says that if we have known that K is S-4 unsatisfiable, then there's no necessity to test its S -4 satisfiability for S ⊂ S. By this proposition, we can get a truncation strategy to limit the search space in the implementation of our algorithm discussed in the next section:

Definition 7 (Truncation Strategy). For any knowledge base K, if an S ∈ Var(K) is found which makes K being S-4 satisfiable, then all supersets S of S are pruned.

Evaluation

Our algorithm has been implemented in Java using a computer with Intel E7300 2.66G, 4G, Windows Server 2008. Algorithm 1 gives a general framework to approximate inconsistency degrees from above and below. In our implementation, we set

That is, the first while loop (see line 3) keeps testing l-4 satisfiability of K from l = i to i + 1. So the interval [l 1 , l 2] localized in the first stage of the algorithm satisfies l 2 = l 1 + 1 and the second binary search is not necessary. According to our analysis in Section 5, this avoids direct binary search which needs to test all n!

(n/2)!(n/2)! subsets of Var(K), where n = |Var(K)|. There are tow main sources of complexity to compute approximating inconsistency degrees: the complexities of S-4 satisfiability and of search space. The S-4 satisfiability that we implemented is based on the reduction given in Lemma 1 and the tractable algorithm for 4-satisfiability in [START_REF] Cadoli | On the complexity of entailment in propositional multivalued logics[END_REF]. Our experiments told us that search space could heavily affect efficiency. So we carefully designed a truncation strategy to limit the search space based on the monotonicity of S-4 unsatisfiability. That is, if we have found an S such that K is S-4 unsatisfiable, then we can prune all supersets S of S which makes K S -4 unsatisfiable. We implemented this strategy in breadth-first search on the binomial tree [START_REF] Malouf | Maximal consistent subsets[END_REF][START_REF] Mu | An approach to measuring the significance of inconsistency in viewpoints framework[END_REF] of subsets of Var(K).

Figure 1 shows the evaluation results over knowledge bases 6 in Example 3 with |K| = N 2 + 2N and |Var(k)| = 2N for N = 5, 7, 8, 9, 10. The left part of the figure shows how the preset precision threshold ε affects the run time performance of our algorithm: the smaller ε is, the longer it executes. If ε ≥ 0.7, the algorithm terminated easily (at most 18.028s for Proposition 6. We note the following general properties.

• The language L = {¬, ∨, ∧, ⊃, N, B} is functional complete for the set FOUR of truth values, i.e. every function from FOUR n to FOUR is representable by some formula in L [16, Theorem 12]. • Any formula containing only connectives from {¬, ∨, ∧, ⊃} always has a four-valued model.

Some general remarks about the different notions of implication are in order. The basic rationales behind them are the following: Material implication can be defined by means of negation and disjunction as known from classical logic. However, it does not satisfy Modus Ponens or the deduction theorem, and is thus of limited use as an implication in the intuitive sense. Internal implication satisfies Modus Ponens and the deduction theorem, but cannot be defined by means of other connectives. Furthermore, internal implication does not satisfy contraposition. Strong implication is stronger than internal implication, in that it additionally satisfies contraposition. Indeed, an alternative view on the truth tables for the implication connectives is as follows.

ϕ → ψ is definable as ¬ϕ ∨ ψ.

(Material Implication)

Further properties of the implication connectives are summarized in the following proposition (as shown in [START_REF] Arieli | The value of the four values[END_REF]Corollary 9] and [START_REF] Arieli | Reasoning with logical bilattices[END_REF]).

Proposition 7. [START_REF] Arieli | The value of the four values[END_REF] The following claims hold, where Γ is a theory and ψ, φ are formulae.

• Internal implication is not definable in terms of the connectives ¬, ∨, ∧.

The other partial order defined on the four truth values {t, f, B, N }, denote < k , is to reflect differences in the amount of knowledge or information that each truth value exhibits:

lattice where < k is its minimal element N , its maximal element B, and t, f are incomparable. The truth operators ∧, ∨, and ¬ are monotone with respect to < k . For two four-valued interpretations I, I , we call I < k I if and only if p I < k p I for any propositional letter p in the considered language. Proposition 8. [START_REF] Arieli | The value of the four values[END_REF] For any given four-valued interpretations I, I and any formula φ containing only connections from {∨, ∧, ¬, →}, suppose I < k I , then φ I < k φ I . Moreover, if I |= 4 φ, I |= 4 φ.