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Large Margin Filtering
Rémi Flamary, Devis Tuia, Member, IEEE, Benjamin Labbé,

Gustavo Camps-Valls, Senior Member, IEEE and Alain Rakotomamonjy

Abstract—We address in this paper the problem of multi-
channel signal sequence labeling. In particular, we consider the
problem where the signals are contaminated by both additive and
convolutional noise. We investigate several approaches based on
windowing and propose to learn a support vector machine (SVM)
classifier and a signal filter jointly. We derive algorithms to solve
the optimization problem and discuss different filter regularizers
for automated scaling or selection of channels. After considering
its properties on a toy dataset, the approach is tested on two
challenging real life datasets: BCI time series and 2-dimensional
image segmentation. Results show the interest of large margin
filtering in terms of performance and interpretability.

Index Terms—Sequence labeling, time series classification,
large margin methods, support vector machine (SVM),

I. INTRODUCTION

Signal sequence labeling is a classical machine learning

problem in which the goal is to assign a label for every

sample of a signal while taking into account the sequentiality

of the samples. The field is very vast and typically arises in

many signal processing problems, such as Automatic Speech

Recognition (ASR) [1], Brain Computer Interfaces (BCI) [2],

or pathology discrimination from biosignals [3]. For instance,

in speaker diarization, the aim is to recognize which speaker

is talking along time. Another example is the recognition of

mental states from Electro-Encephalographic (EEG) signals.

These mental states are then mapped into commands for a

computer (virtual keyboard, mouse) or a mobile robot, hence

the need for sample labeling [2], [4]. Electrocardiographic

(ECG) signals are used to predict the presence or absence of

a given pathology in advance, such as particular arrythmias or

fibrillation episodes [5]. Signal sequence labeling is sometimes

referred to as time series (predictive) classification [6].

A widely used approach for performing sequence labeling is

Hidden Markov Models (HMMs) [7]. HMMs are probabilistic

models that may be used for sequence decoding of discrete

state observations. In the case of continuous observations

such as signal samples or vector features extracted from

the signal, Continuous Density HMMs are considered [7].

When using HMM for sequence decoding, one needs to have

the conditional probability of the observations per hidden

states (classes), which is usually obtained through Gaussian

Mixtures (GM) [7]. However, this kind of model leads to

poor discrimination in high dimensional spaces, and recent
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{devis.tuia,gustavo.camps}@uv.es, http://www.uv.es/gcamps

works have shown that decoding accuracy may be improved

by using discriminative models [8], [9]. One simple approach

for using discriminative classifiers in the HMM framework has

been proposed in [1]. It consists in learning support vector

machine (SVM) classifiers known for their better robustness

in high dimension problems and to transform their outputs into

probabilities using Platt’s method [10], [11], leading to better

performances after Viterbi decoding. This approach supposes

that the complete sequence of observations is available, which

corresponds to an off-line decoding, which is not often the

case. In the case of BCI applications, for example, a real time

decision is often needed [2], [4], which restricts the use of

Viterbi decoding. Note that local Viterbi decoding may be used

for online decoding [12]. Another online decoding approach

is to directly classify the current sample and the preceding

decoded labels. These methods are defined in [13] as greedy

decoding and permit the use of higher-order HMM taking into

account several preceding states.

Besides the online processing problem, when the sequence

labeling has to be performed on a measured signal, the

efficiency of the model highly depends on the type of noise

induced by the measurement. This is why in most applications,

the acquired signal is first preprocessed by filtering and then a

classifier is applied. Even though this approach to sequence

labeling typically yields good results, the crucial step of

selecting and designing the filter is very often time consuming,

needs prior knowledge and is scenario-dependent. Besides, we

should note that the approach will only work if the peculiarities

and particular statistical properties of the signal are taken

into account in both the filter and the classifier. In many

applications, the filter is restricted to deal with particular

noise sources (typically Gaussian), while the classifier is not

commonly adapted to the non-i.i.d. nature of the signals.

HMMs adapt well to additive noise such as Gaussian noise

but they cannot take into account a time-lag between the labels

and the discriminative features. Indeed if the labels and the

features are not re-synchronized, some of the learning obser-

vations are mislabeled, leading to a biased density estimation

per class. This kind of dephasing is a classical simple case of

convolutional noise (e.g convolution by a delayed Dirac). This

is a problem in BCI applications where the interesting informa-

tion is not always synchronized with the labels. For instance,

authors in [14] showed the need for applying delays to the

signal, since the neural activity precedes the actual movement.

Note that they selected the delay through validation. Another

illustration of the need for time-lag automated handling is the

following. Suppose we want to interact with a computer using

multi-modal acquisitions (e.g. EEG or EMG). Then, since

each modality has its own time-lag with respect to neural

activity [15], it may be difficult to manually synchronize
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all modalities while better adaptation could be obtained by

learning the “best” time-lag to apply to each channel. Note

that correcting time-lags boils down to applying filters in the

same way as denoising a signal by an ad hoc filtering.

In the general case, labeling is not restricted to unidimen-

sional signals. A paradigmatic multidimensional problem that

involves signal sequence labeling is that of image segmen-

tation. Images, like time series and data sequences, are not

i.i.d. data. The statistics of grayscale and natural colors has

been studied extensively. Natural images are smooth, auto-

correlation functions are broad, and have a 1/f band-limited

spectrum. In the case of color images, the correlation between

the tristimulus values of the natural colors is high. Such a

characterization is more difficult in the case of multi- and

hyper-spectral images acquired by satellite sensors. Although

images are not i.i.d. data, image segmentation algorithms

are still applied either to single pixels (hence obviating the

spatial correlation), to low-pass filtered pixels (imposing an

ad hoc spatial arrangement), or to small patches (assuming

a spatial extent of pixel relations). In remote sensing image

processing, spatial filters for taking into account neighboring

relations have been addressed through textural [16], [17] and

morphological [18]–[20] filters.

In this paper, we propose to learn the filter directly from

samples, instead of using a fixed filter as a preprocessing

stage. This approach may help in adapting to signal and noise

characteristics of each channel in addition to alleviate the

time-lag misadjustment. In [21], we proposed a method to

learn a large margin filtering for linear SVM classification.

Here, we extend this preliminary work by formalizing the

problem of large margin filter learning. The idea is to learn

a Finite Impulse Response (FIR) filter for each channel of

the signal jointly with a classifier. This approach can adapt

to different properties in the channels and the learned filter

corresponds to a convolution maximizing the margin between

classes. Moreover, we have access to the filtering and it can be

interpreted in both the temporal and the frequency domains.

Here, we extend the method to the non-linear case and propose

different regularization types to promote channel scaling or

selection.

The remainder of the paper is organized as follows. In Sec-

tion II, we first formalize the problem and review traditional

approaches such as filtered-sample classification and time-

window classification. In Section III, we introduce the problem

of large margin filtering to deal with the limitation observed

when considering non-i.i.d. signals. We discuss the complex-

ity of our approach and the effect of different regularization for

the filtering matrix. Finally, the algorithmic complexity and the

effect of different regularizers are discussed. In Section IV, the

different proposed approaches are tested on three classification

scenarios: first, a toy dataset accounting for both additive

and convolutional noise. Then, a real life BCI dataset and

2-dimensional image segmentation problem are considered.

Section V concludes the paper.

II. THE SAMPLE LABELING PROBLEM

In this section, we formally define the problem of sample

labeling. Then, we define the filtering of a multi-dimensional
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Fig. 1. Data matrix X (top), filtered matrix X̃ (bottom) and time-window
X (light gray) with n0 = 0, d = 3 and f = 5.

signal and the SVM classifier for filtered samples. The prob-

lem is stated for the general case using mapping functions

in reproducing kernel Hilbert spaces and both linear and

nonlinear problems are discussed.

A. Problem definition

We want to predict a sequence of labels either from a

multi-channel signal or from multi-channel features extracted

from that signal by learning from examples. We suppose that

the training samples are gathered in a matrix X ∈ R
n×d

containing d channels and n samples. Xi,j is the value of

channel j for the ith sample (Xi,·). The vector y ∈ {−1, 1}n

contains the class of each sample.

In order to reduce noise in the samples or variability in

the features, an usual approach is to filter X before learning

the classifier. In literature, all channels are usually filtered

similarly although there is no reason for believing that a single

filter will be optimal for every channel. Moreover, assuming

an explicit filter structure may not fit the underlying system

that generated the data. The Savitzky-Golay [14] or the gamma

[22] filters are structures commonly used to this purpose. Let

us define the filter applied to X by the matrix F ∈ R
f×d.

Each column of F is a filter for the corresponding channel in

X and f is the size of the filters.

We define the filtered data matrix X̃ by:

X̃i,j =

f∑

m=1

Fm,j Xi+1−m+n0,j = Xi,j ⊗ F·,j

where the sum is a uni-dimensional convolution (⊗) of each

channel by the filter in the appropriate column of F . Here, n0

is the delay of the filter, for instance n0 = 0 corresponds to a

causal filter and n0 = f/2 corresponds to a filter centered on

the current sample. Figure 1 presents an example of signal X

and filtered signal X̃.

B. SVM for filtered samples

To improve the classification rate one may filter the channels

in X in order to reduce the impact of the noise. The usual filter
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in the case of high frequency noise is the average filter defined

by Fi,j = 1/f, ∀i ∈ {1, . . . , f} and j ∈ {1, . . . , d}, while n0

is selected depending on the problem at hand (i.e. n0 = 0
for a causal filtering or n0 > 0 for a non-causal filtering).

In the following, the method using a moving average filter

as preprocessing on the signal and a SVM classifier will be

called Avg-SVM.

Once the filtering is chosen we can learn a SVM sample

classifier on the filtered samples by solving the problem:

min
g

{
1

2
||g||2H +

C

n

n∑

i

H(yi, g(X̃i,·))
p

}
(1)

where C is the regularization parameter, g(·) ∈ H is the

decision function in a Reproducing Kernel Hilbert Space H,

H(y, g(x)) = max(0, 1 − y · g(x))p is the hinge loss to the

power of p (p = 1 corresponds to ℓ1-SVM and p = 2 to ℓ2-

SVM [23]). For the ℓ1-SVM, one can solve the dual form of

this problem w.r.t. g:

max
α

{
JSVM (α,F) = −

1

2

n,n∑

i,j

yiyjαiαjK̃i,j +

n∑

i

αi

}

s.t.
C

n
≥ αi ≥ 0 ∀i and

n∑

i

αiyi = 0

where αi are the dual variables and K̃ is the kernel matrix for

filtered samples. In the Gaussian case, K̃ is defined by:

K̃i,j = k(X̃i,·, X̃j,·) = exp

(
−
||X̃i,· − X̃j,·||

2

2σ2

)

= exp

(
−

∑d
m ||(Xi,m −Xj,m)⊗ F·,m||

2

2σ2

)

where σ is the kernel bandwidth. Note that for any FIR filter,

the resulting matrix K̃ is always positive definite if k(·, ·)
is definite positive. To confirm that, suppose a kernel k(·, ·)
from X 2 to R and φ a mapping from any X ′ to X , then

k′(·, ·) = k(φ(·), φ(·)) is a positive definite kernel [23]. Since

the proposed filter is a linear combination of Rd elements the

constructed kernel is always definite positive.

Once the classifier is learned, the decision function for a

new filtered (test) signal X̃′ at sample i is:

g(X̃′
i,·) =

n∑

j

αjyjk(X̃′
i,·, X̃j,·) + b (3)

with αj the dual variables learned by solving (2) and b
the bias term. We show in the experiment section that this

approach may lead to improved performance over the non-

filtered approach. However, the method relies on the (possibly

critical) choice of a filter structure which in turn depends on

prior information or user’s knowledge. There is no evidence

whatsoever that the user-selected filter will be optimal for the

given classification task.

C. Time-Window Classification

Another way for taking into account the sequentiality of

the samples, i.e. for handling the non-i.i.d. caracteristics of

the temporal samples, is to classify time-windows of samples.

We define X ∈ R
n×(d×f) that stacks for every sample Xi,·

the samples in the complete time window of length f with

n0 delay (see Fig. 1). Note that this approach leads to the

classification of data in high dimension (f × d). Finally, one

can learn a SVM classifier on samples Xi,· using Equation

(1). This method will be called Win-SVM in the following.

1) Linear Win-SVM: When the model is linear, it is often

more efficient to solve the SVM in the primal (see Equation

(8)). Indeed, the problem has d + 1 parameters to learn

(separating hyperplane in R
d) instead of n+ 1 .

If we want to learn a linear classifier on a window of

samples, the problem may be expressed as the minimization

of:

JW (W,w0) =
1

2
||W||2F +

C

n

n∑

i

H(y, gW (i,X))p, (4)

where ||W||
2
F =

∑
i,j W

2
i,j is the squared Frobenius norm

of W, C is a regularization term to be tuned and gW is the

decision function for the ith sample defined as:

gW (i,X) =

f,d∑

m,j

Wm,jXi+1−m+n0,j + w0

where W ∈ R
f×d and w0 ∈ R are the classification

parameters. Note that we choose p = 2 for the linear case

as it allows the objective function to be differentiable. Thus,

we can take advantage of many linear SVM solvers existing in

the literature such as the one proposed by Chapelle [24]. Using

that solver, Win-SVM complexity is about O(n × (f × d)2)
which scales quadratically with the filter dimension.

One of the interests of this approach is that W may be

seen as a large margin filtering. Indeed the columns of the

W matrix correspond to a temporal filtering whereas the

rows correspond to a spatial filtering. However, previous

experiments have shown a decrease in performance for high

dimensional signal [21]. This comes from the fact that the

Frobenius norm does not promote sparsity and treats all the

coefficients independently.

2) Channel selection for linear Win-SVM: In some applica-

tions, among all channels that have been acquired some may

be more informative than others and thus it may be useful,

in terms of prediction performance and interpretability, to

perform channel selection. This situation occurs for instance

in BCI problems, where discriminative features are usually

well-localized. To include an automated channel selection

procedure in the time-window classification problen given

in (4), we propose to consider a ℓ1 − ℓ2 mixed norm as a

regularizer instead of the Frobenius norm :

Ω1−2(W) =

d∑

j

(
f∑

i

W2
i,j

) 1
2

=
d∑

j

h
(
||W.,j ||

2
)

(5)

with h(u) = u
1
2 the square root function. This mixed-norm

acts as an ℓ2-norm on each single channel filter, while the ℓ1-

norm of each channel filter energy will induce sparsity over

channels.
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The optimization problem when using (5) for regularization

is a problem with non-differentiable objective function which

may pose difficulties. However, recently, there has been a lot

of works which aim at solving this kind of problem where

one part of the objective function has a Lipschitz gradient and

the other part is convex but non differentiable [25], [26]. Here

we straighforwadly applied the accelerated gradient method

proposed (AGP) by Chen et al. [27] since the squared hinge

loss is known to be Lipschitz gradient. For more details about

the algorithm, the reader is referred to the work of Chen et al.

III. LARGE MARGIN FILTERING

The classification of a time window is a way to handle

temporal information, but the classification approach used

treats all the coefficients independently. Doing a per-channel

convolution is sensible here as it will take into account the

channel structure and extract the discriminative information

spread along time. But in order to adapt to the problem at

hand, we propose to learn that filtering jointly with the sample

classifier. In this section, we present the optimization problem

to learn a large margin filtering along with a general algorithm

to solve it. Then we discuss the implementation of this method,

named KF-SVM, in the linear and non-linear case. Finally, we

discuss the use of different regularizers and the related works.

A. Optimization problem

Jointly learning the filtering matrix F and the classifier leads

to a filter maximizing the margin between the classes in the

feature space. The problem we want to solve is:

min
g,F

{
1

2
||g||2H +

C

n

n∑

i=1

H(yi, X̃i,·, g)
p + λΩ(F)

}
, (6)

where λ is a regularization parameter and Ω(·) represents a

differentiable regularization function of F. Note that the left

part of (6) is a standard SVM for filtered samples X̃, but here

F is a variable to be minimized instead of a fixed one. This

objective function is non-convex. However, the optimization

problem w.r.t. g(·) is convex for a fixed F and boils down

to a SVM problem. Therefore we propose to solve (6) by

minimizing the following objective function with respect to

F:

J(F ) = J ′(F) + λΩ(F) (7)

where J ′(F) is the following primal problem

J ′(F) = min
g

{
1

2
||g||2H +

C

n

n∑

i

H(yi, X̃i,·, g)
p

}
(8)

and its corresponding dual problem is

J ′(F) = max
C/n≥α≥0,

∑
i
αiyi=0

{
JSVM (α,F)

}
(9)

where JSVM is defined by (2) and g(·) by (3). Due to the

strong duality of the SVM problem, J ′(·) can be expressed

in his primal or dual form (see (8) and (9)). The objective

function J defined in (7) is non-convex. But, according to

[28], for a given F∗ with g∗(·) the solution of problem (8),

J ′(·) is differentiable w.r.t. F. At the point F∗, the gradient

of J(·) can be computed. Finally we can solve the problem in

(7) by doing a gradient descent on J(F) along F.

Note that due to the non-convexity of the objective func-

tions, solving problems (6) and (7) may lead to different

results. However, it is advantageous to consider (7) because it

can be solved using standard SVM solvers [29], [30] and our

method would benefit from any improvement in this domain.

B. KF-SVM Solver

For solving the optimization problem, we propose a con-

jugate gradient (CG) descent algorithm along F with a line

search method for finding the optimal step. The method is

detailed in Algorithm 1, where β is the CG update parameter

and Di
F the descent direction for the ith iteration. For the

experimental results we used the β proposed by Fletcher and

Reeves, see [31] for more information. The iterations in the

algorithm may be stopped by two stopping criteria: a threshold

on the relative variation of J(F ) or on the norm of the

variation of F.

Algorithm 1 KF-SVM solver

Set Fl,k = 1/f for k = 1 · · · d and l = 1 · · · f
Set i = 0, Set D0

F = 0
repeat

i = i+ 1
Gi

F ← gradient of J ′(F) + λΩ(F) w.r.t. F

β ←
‖Gi

F
‖2

‖Gi−1
F

‖2
(Fletcher and Reeves)

Di
F ← −G

i
F + βDi−1

F

(Fi, g∗)← Line-Search along Di
F

until Stopping criterion is reached

Note that for each computation of J(F) in the line search,

the optimal g∗ is found by solving a SVM. A similar approach

has been used to solve the multiple-kernel problem in [32],

[33]. In these works, an objective function was minimized

with respect to kernel parameters (kernel weight in [32] or

bandwidth in [33]) using a gradient descent algorithm.

C. Complexity in the linear and non-linear cases

At each iteration of the algorithm, the gradient of J ′(F) +
λΩ(F) is computed and a SVM is solved at each cost

computation in the line-search. In this section, we discuss the

complexity of these tasks in both the linear and non-linear

cases.

In the linear case, the optimization problem can be solved

in the primal. In this case, the SVM decision function is a

separation hyperplane defined by d + 1 parameters while in

the dual, one needs n+ 1 parameters to express the decision

function. Several efficient solvers have been proposed in the

literature [24], [34]. In this paper, we used the solver proposed

by Chapelle et al., which learns the SVM classifier by using a

CG descent or a Newton descent algorithm. In order to make

both our algorithm and the SVM solver work, we need the
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objective function to be differentiable, so we used a ℓ2-SVM

in the linear case. The gradient of J ′(·) at point F is:

∇J ′(F)i,j = −

n∑

o

yo(g
∗
jXo−i+1+n0,j)×H(yo, g

∗(X̃o,.)),

where g∗i is the ith component of the optimal separating

hyperplane g∗ when using the matrix F for filtering. The

complexity of this gradient is O(n× f × d).
In the non linear case, with a Gaussian kernel for instance,

the problem has to be solved in the dual space. In this

case, in order to obtain a sparse representation (in terms of

support vectors), we solve the ℓ1-SVM (p = 1). We compute

the gradient of J ′(·) for a Gaussian kernel using the dual

formulation of equation (9). The gradient of J ′(·) at a given

point F is:

∇J ′(F)i,j =
1

2σ

n,n∑

o,p

(Xo+1−i,j −Xp+1−i,j)

× (X̃o,j − X̃p,j)K̃o,pyoypα
∗
oα

∗
p

where α∗ is the SVM solution for X̃ signal filtered by F

and K̃ is the kernel matrix of the filtered samples X̃i,.. The

complexity of this gradient is O(n2 × f × d) but, in practice,

SVMs have a sparse representation. So in fact the gradient

computation is O(n2
s × f × d) with ns being the number of

support vectors.

In conclusion, due to the non-convexity of the objective

function, it is difficult to provide an exact evaluation of the

solution complexity. However, we know that the gradient

computation is O(n2
s × f × d) in the non-linear case and

O(n × f × d) in the linear case. Moreover, when J(F ) is

computed in the line search, a O(n×f×d) filtering is applied,

and a SVM has to be solved (n parameters in the non linear

case and d in the linear case). Note that a warm-start trick

may be used when using iteratively the SVM solver in order

to speed up the method. It consists in using the last results

returned by the SVM solver as starting point for the new

problem to solve.

D. Filter regularization

In this section, we discuss the choice of the filter regular-

ization term. This choice is important because learning the

FIR filters adds parameters to the problem and regularization

is essential in order to avoid over-fitting.

The first regularization term for the filter that we consider

and use in our KF-SVM framework is the Frobenius norm:

Ω2(F) =

f,d∑

i,j

F2
i,j

This regularization term is differentiable and the gradient is

easy to compute. Minimizing this regularization term corre-

sponds to minimizing the filter energy. In terms of classifi-

cation, the filter matrix can be seen as a kernel parameter

that weights delayed samples. For a given channel, such a

sequential weighting is related to a phase/delay and cut-off

frequency of the filter. Moreover, the Gaussian kernel defined

in II-B shows that the column-wise convolution can be seen

Algorithm 2 SKF-SVM solver

Set Fl,k = 1/f for k = 1 · · · d and l = 1 · · · f
Set dk = 1 for k = 1 · · · d
repeat

(F, α)← Solve KF-SVM with d column weights

dk ←
1

||F.,k||
for k = 1 · · · d

until Stopping criterion is reached

as a scaling of the channels before the kernel computation.

The intuition of how this regularization term influences the

filter learning is the following. Suppose we learn our decision

function g(·) by minimizing only J ′(.), then the learned filter

matrix will maximize the margin between classes. Adding

the Frobenius regularizer will force non-discriminative filter

coefficients to vanish thus yielding to reduced impact on the

kernel of some delayed samples.

Using this regularizer, all filter coefficients are treated

independently, and even if it tends to down-weight some

non-relevant channels, the resulting filter coefficients are not

sparse. If we want to perform a channel selection while

learning the filter F, we have to force some columns of F to

be zero. For that, we can use the ℓ1−ℓ2 mixed-norm defined in

Equation (5) as a regularizer. However, this regularization term

is not differentiable and the solver proposed in Algorithm 1

can not be used. The AGP methods proposed in section II-C2

cannot be used either due to the non convexity of the objective

function J ′(·). In order to use the ℓ1 − ℓ2 mixed-norm,

we address the problem through a Majorization-Minimization

algorithm [35] that enables to take advantage of the KF-SVM

solver proposed above. The idea here is to iteratively replace

the function h(·) defined in (5) by a majorization and then

to minimize the resulting objective function. Since h(u) is

concave in its positive orthant, we consider the following linear

majorization of h(·) at a given point u0 :

∀u > 0, h(u) ≤ u
1
2
0 +

1

2
u
− 1

2
0 (u− u0)

The main advantage of a linear majorization is that we can

re-use the KF-SVM algorithm. Indeed, at iteration k + 1,

applying this linear majorization of h(‖F·,j‖) around a ‖F
(k)
·,j ‖

yields to a Majorization-Minimization algorithm for sparse

filter learning, which consists in solving:

min
F(k+1)

{
J ′(F) + λΩd(F)

}

with Ωd(F) =

d∑

j

dj

f∑

i

F2
i,j and di =

1

‖F
(k)
.,i ‖

where F(k) represents the solution at iteration k, and Ωd is a

weighted Frobenius norm. Note that this regularization term

is differentiable and the KF-SVM solver can be used. We

call this method Sparse KF-SVM (SKF-SVM) and the solver

is detailed in Algorithm 2. We use here a similar stopping

criterion as in Algorithm 1.
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E. Related works

To the best of our knowledge, there has been few works

dealing with the joint learning of a temporal filter and a

decision function. The first one addressing such a problem

is our work [21] that solves the problem for linear decision

functions. Here, we have extended this approach to the non-

linear case and we have also investigated the utility of different

regularizers on the filter coefficients. Notably, we have intro-

duced regularizers that help in performing channel selection.

Works on Common Spatio-Spectral Patterns (CSSSP) [36]

are probably the most similar to the ones proposed in this

paper. In these works, the aim is to learn a linear combination

of channels and samples that optimizes a separability criterion.

But the criterion optimized by CSSSP and KF-SVM are

different: CSSSP aims at maximizing the variance of the

samples for the positive class while minimizing the variance

for the negative class, whereas KF-SVM aims at maximizing

the margin between classes in the feature space. Furthermore,

CSSSP is a feature extraction algorithm that is independent of

the classifier used, while in our case we learn a filter that is

tailored to the (non-linear) classification algorithm criterion.

Furthermore, the filter used in KF-SVM is not restricted

to signal time samples but can also be applied to complex

sequential features extracted from the signal (e.g., PSD). An

application to this kind of complex data is provided in the

experimental section.

KF-SVM can also be seen as a kernel learning method. The

filter coefficients can be interpreted as kernel parameters de-

spite the fact that samples are non-i.i.d.. Learning such kernel

parameters is now a common approach introduced by [37].

While Chapelle et al. minimize a bound on the generalization

error by gradient descent, in our case we simply minimize

the SVM objective function. Also, it is worth noting that

the influence on the parameters differs in both approaches.

More precisely, if we focus on the columns of F we see

that the coefficients of these columns act as a scaling of the

channels. Finally note that, for a filter of size 1, our approach

would correspond to adaptive scaling as proposed by [38].

In their work, the authors jointly learn the classifier and the

Gaussian kernel parameter σ with a sparsity constraint on the

dimensions of σ leading to automated feature selection. KF-

SVM can thus be seen as a generalization of this approach,

which takes into account sample sequentiality as well.

IV. EXPERIMENTAL RESULTS

This section contains the numerical experiments comparing

the different approaches proposed. First we present numerical

results on a toy dataset containing both convolutional and

additive noise. Then we test the methods on a real life BCI

dataset from BCI Competition III [4]. Finally, we extend the

methods to a 2-dimensional problem of multispectral remote

sensing image segmentation. The Matlab code for all the

methods tested in this paper is available as Open Source

Software1.

1http://remi.flamary.com/
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Fig. 2. Projection of the sample on the 2 discriminative channels for the
linear case (left) and the non-linear case (Right). Here there is no convolutional
noise to illustrate the original shape of the data.

Fig. 3. Toy dataset creation: First a convolutional noise is applied to the
discriminative feature and then a gaussian additive noise is added.

A. Experiment 1: Toy Dataset

This first experiment is intended to provide some insight

on the capabilities of each method to handle feature weight-

ing/selection. To do this, we use a toy dataset corrupted

by both convolutional and additive noise. Within the data,

discriminative and non-discriminative channels are present. We

investigate the linear and the non-linear cases separately, as

some of the proposed methods are limited to the linear case.

The generation of the dataset is done in several steps: first

a sequence of labels is created. The length of the regions with

constant label in this sequence follows a uniform distribution

between 30 and 40 samples. This sequence is used to create the

discriminative channels in the signal. Every signal in the toy

dataset contains d channels, among which two are informative

and the others contains Gaussian noise only. Depending on

their complexity, the discriminative channels cast linear and

nonlinear problems, as shown in Fig. 2. Convolutional noise

is added to the discriminative channels in two ways: first, a

delay drawn from a uniform distribution on [−τ, τ ] is applied

to the channel, then a moving-average filtering of size l is

applied. Finally, additive Gaussian noise of standard deviation

σn is added. Figure 3 summarizes how the noise is applied to

the discriminant features.

Table I sums up the methods used in the experiments

reported. The size of the signal is of 1000 samples for

both the learning (training) and the validation sets and of

10000 samples for the test set. To allow a fair comparison with

Avg-SVM, we selected f = 11 and n0 = 6 for the non-linear

case and f = 15 and n0 = 8 for the linear case. These values

correspond to a good average filtering centered on the current

sample. We fixed the additive noise value at σn = 3 and the

possible delay at τ = 5 samples. The regularization parameters

of all the methods are selected by assessing performance in

the validation set. All the processes are run 10 times, the test
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TABLE I
LIST OF THE METHODS COMPARED IN OUR EXPERIMENTS.

Method Definition

SVM Classical SVM on the samples.

Avg-SVM SVM on samples filtered by an average filter to limit
the impact of the Gaussian noise (see II-B).

GMM Gaussian Mixture Model classification learned with an
EM algorithm.

WinSVM Classification of a window of samples (see II-C).

SWinSVM∗ Classification of a window of samples with channel
selection (see II-C2).

KF-SVM Kernel FilterSVM, Large Margin Filtering (see III).

SKF-SVM Kernel FilterSVM with channel selection (See III-D).

KF-GMM GMM classifiers on the pre-filtered samples. The filter
is the one obtained by KF-SVM

WinGMKL∗∗ Multiple kernel learning proposed by [33] for feature
selection applied on a window of samples. Publicly
available code .

∗ only in the linear case. ∗∗ only in the non-linear case.
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Fig. 4. Test error for different convolutional noise in the (a) linear and (b)
non-linear cases.

error is then the average over the runs. A Wilcoxon’s signrank

test with a risk of 5% was applied to the results in order to

check the statistical differences between the methods.

The results are shown in Fig. 4 for both the linear and

nonlinear problems. For the linear problem (Fig. 4(a)), we

can see that all the windowing methods work well. The best

method is SWinSVM followed closely by SKF-SVM (both

are proven statistically equivalent by the Wilcoxon test). Those

two approaches perform a channel selection leading to a better

generalization. Note that WinSVM performs similarly as KF-

SVM which is consistent with the results in [21] for small

dimensional problems. Due to the Gaussian nature of this

dataset, KF-GMM outperforms KF-SVM.

For the non-linear problem in Fig. 4(b), the statistically

best methods are the large margin filtering methods (KF-SVM,

SKF-SVM and KF-GMM). Note that the channel selection

seems to improve the results when the noise is high. The best

results are obtained here by KF-GMM as it uses the best model

for the data after denoising. Note here the poor behavior of

WinGMKL, that gives worse results than a simple average

filtering.

B. Experiment 2: BCI Dataset

The BCI Dataset considered is one of the problems pre-

sented in BCI Competition III [4]. The problem is to obtain

a sequence of labels out of brain activity signals for three

human subjects. The data consists of 96 channels containing

PSD features (three training sessions and one test session, with

n ≈ 3000 per session) and three possible labels (left arm,

right arm or a word). To handle the large number of samples

in the non-linear case, we use only a randomly selected subset

of the available dataset (of about 30%). The regularization

parameters are tuned using a grid search validation on the

third training session.

Our method is compared to the best BCI competition results

and to the SVM without filtering. Here we do not provide

performances for GMM and FilterGMM due to their bad

performances on this high dimensional problem. We could not

obtain WinGMKL results in a reasonable time so this approach

has not been reported either.

The test error for different methods and filter lengths is

given in Table II. For the linear models, the best methods for

all tested filter sizes are KF-SVM, SKF-SVM and SWinSVM.

This shows the advantage of taking into account the neigh-

borhood of the samples for decision and the importance of a

proper regularization. Longer filtering provides the best results,

especially in conjunction with regularization, that helps to

avoid over-fitting (≈ 500 filter coefficients are learned on

≈ 10000 samples for f = 50). The best overall results are

obtained by KF-SVM and SKF-SVM with the filter length

f = 50.

The results are similar for the non-linear models, showing

that for this task a linear classifier is sufficient. But also it is

important to keep in mind that, in this case, the parameters are

learned on only 30% of the samples. The windowing methods

are then more prone to over-fitting. In this case, the Avg-SVM

performs well, since the noise is in the high frequencies and

the non linearities that can be induced by over-filtering are

handled by the Gaussian kernel.

C. Experiment 3: Multispectral Image Segmentation

The method proposed to learn a large margin filtering may

be easily extended to the 2-dimensional case. In this case we

apply it to the segmentation of remotely-sensed multispectral

images. Nowadays, sensors mounted on satellite or airborne

platforms may acquire the reflected energy by the Earth with

high spatial detail and in several wavelengths or spectral

channels. This allows us the detection and classification of

the pixels in the scene. The obtained classification maps are

then used for management, policy making and monitoring.

In multispectral imagery, the pixels are multidimensional and

hence the filtering is a 2-dimensional convolution of the

image band-by-band. We tested our approach on a Very High

Resolution (VHR) image acquired by the sensor QuickBird

(spatial detail of 0.6m) over the city of Zürich, Switzerland

(see Fig. 5). The considered dataset represents a residential

area in the South-West part of the city. Seven classes were

labeled by photo-interpretation. The main challenge is to

distinguish between the two classes of buildings and of roads

by applying spatial filtering, because the spectral difference

between these couples of classes is low.

Classification results are shown in Table III. SKF-SVM

is not applied to this dataset, since sparse selection is not

necessary for such small dimensional data (d = 4). We

computed the overall accuracy in One-Against-All and the es-

timated Cohen’s kappa coefficient, which is a more appropriate
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TABLE II
TEST ERROR FOR THE BCI DATASET FOR DIFFERENT METHODS, AND FILTER LENGTH f . RESULTS ARE GIVEN FOR THE LINEAR MODEL (TOP) AND FOR

THE NON-LINEAR MODEL (BOTTOM).

Method f = 10 f = 20 f = 50

S1 S2 S3 Avg S1 S2 S3 Avg S1 S2 S3 Avg

Linear model
SVM 0.254 0.377 0.553 0.395 0.254 0.377 0.553 0.395 0.254 0.377 0.553 0.395
Avg-SVM 0.228 0.342 0.534 0.368 0.193 0.298 0.530 0.340 0.133 0.236 0.475 0.282
KF-SVM 0.205 0.304 0.512 0.340 0.185 0.269 0.429 0.294 0.126 0.231 0.423 0.260

SKF-SVM 0.205 0.294 0.473 0.324 0.182 0.262 0.481 0.308 0.128 0.222 0.438 0.263

WinSVM 0.214 0.316 0.540 0.357 0.196 0.280 0.534 0.337 0.146 0.223 0.482 0.284
SWinSVM 0.215 0.314 0.470 0.333 0.196 0.264 0.428 0.296 0.146 0.218 0.460 0.274

Non-linear model (Gaussian kernel)
SVM 0.239 0.357 0.481 0.359 0.239 0.357 0.481 0.359 0.239 0.357 0.481 0.359
Avg-SVM 0.217 0.331 0.470 0.340 0.197 0.295 0.448 0.313 0.128 0.234 0.450 0.271

KF-SVM 0.205 0.300 0.489 0.331 0.173 0.266 0.482 0.307 0.158 0.227 0.445 0.277
SKF-SVM 0.206 0.307 0.489 0.334 0.174 0.260 0.446 0.293 0.114 0.232 0.471 0.273

WinSVM 0.210 0.324 0.477 0.337 0.174 0.281 0.448 0.301 0.134 0.232 0.440 0.269
Note: best competition results are (0.2040, 0.2969, 0.4398 and 0.3135 for the average).

Fig. 5. QuickBird scene of suburbs of Zurich (left) and labeled pixels (right).
Legend: dark green = trees; light green = meadows; black = speedway;

brown = roads; orange = residential buildings; red = commercial buildings;

blue = shadows.

measure to evaluate the classification accuracy in imbalanced

class problems. Two configurations are tested: 7 classes and

6 classes. For the last configuration, class ’Residential’ and

’Commercial’ are merged as ’Building’ (see Figure 5 for the

list of classes).

For the 7–classes setting, the inclusion of spatial information

strongly improves the results of the SVM. In this case, learning

the filter provides better results in comparison with other

approaches. Regarding the 6–classes setting, WinSVM gives

slightly better results than KF-SVM. Note that the interest

of KF-SVM lies in the learned filters that can be interpreted

or used as pre-processing for other classifications, whereas

Win-SVM with a Gaussian kernel gives rise to a black-box

approach.

These results show the interest of learning a large margin

filtering when the overlap between the classes is important. But

the most important aspect of our approach is the fact that the

filters are interpretable. For instance, it is possible to compute

the Fourier transform of the learned filters. Figure 6 shows

the magnitude of the Fourier transform of the red component

filter for classes ‘Residential’ and ‘Commercial’. First, the

algorithm nicely learns low-pass filters, which is due to the

fact that the noise is mainly in the high spatial frequencies.

Besides, we can see that the cut-off frequency is different

for each class. The filter for houses cuts at 5 m (0.2 m−1)

whereas for commercial buildings, the cut-off frequency is

10 m (0.1 m−1). This will promote larger spatial filtering

TABLE III
RESULTS IN IMAGE SEGMENTATION. ONE-AGAINT-ALL ACCURACY AND

KAPPA COEFFICIENT.

Method Classes Filter
size

Training
Pixels

[%]OA Kappa

SVM
7 9 ∼ 5000

75.11 0.685
AvgSVM 83.68 0.796
WinSVM 82.98 0.785
KF-SVM 85.32 0.816

SVM
6∗ 9 ∼ 5000

83.04 0.772
AvgSVM 89.48 0.860
WinSVM 91.71 0.889

KF-SVM 91.45 0.885

∗ ‘Residential’ and ‘Commercial’ are merged into one ’Building’ class.
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Fig. 6. Magnitude of the spatial Fourier transform on the Red component
large margin filtering for the ’House’ and ’Commercial’ classes. The bold
black lines correspond to the −3dB attenuation.

for commercial buildings than for the residential ones, as one

intuitively would expect: commercial buildings are usually

bigger than residential ones, and by learning the filtering we

automatically find this discriminant feature.

V. CONCLUSION

In this work, we addressed the problem of multi-channel

signal sequence labeling in the presence of additive and convo-

lutional noise. We defined several methods based on filtering

preprocessing and time-window classification. We proposed a

framework for learning large-margin filtering jointly with a

sample classifier. Depending on the regularization term used,

we can do either adaptive scaling of the channels or channel

selection. We proposed a conjugate gradient algorithm to solve



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. YY, ZZZZ 9

the minimization problem and we discussed the complexity of

the method. We compared the different approaches on a non-

linear toy example and on a real life BCI dataset, and these

experiments showed the interest of learning a large margin

filtering. Finally, we extended our approach to a 2-dimensional

image segmentation problem and the interpretability of the

results have been shown by visualizing the Fourier transform

of the learned filters.

In future work, we plan to propose new regularization terms

that can bring prior information to the problem. For instance,

since noise typically appears in the high frequency range,

one could design regularizers that promote learning low pass

filters. Another interesting problem is the one of large scale

learning. The fact that we have to iteratively solve a SVM

limits the size of the problem. We will investigate the use of

a one-pass SVM solver such as [39] instead of an exact SVM

solver.
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